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ABSTRACT

Phenomena such as large-scale shear, buoyancy, and the proximity to the ground surface significantly
affect interactions among scales in atmospheric boundary layer turbulent flows. Hence, these phenomena
impact parameters that enter subgrid-scale (SGS) parameterizations used in large eddy simulations (LES)
of the atmospheric boundary layer. The effects of these phenomena upon SGS parameters have, to date,
been studied mostly as functions of the global state of the flow. For instance, the Smagorinsky coefficient
has been measured as a function of the mean shear and stability condition of the atmosphere as determined
from the average surface heat and momentum fluxes. However, in LES the global average field values are
often difficult to determine a priori and the SGS parameters ideally must be expressed as a function of local
flow variables that characterize the instantaneous flow phenomena. With the goal of improving the
Smagorinsky closure, in this study several dimensionless parameters characterizing the local structure and
important dynamical characteristics of the flow are defined. These local parameters include enstrophy,
vortex stretching, self-amplification of strain rate, and normalized temperature gradient and all are defined
in such a way that they remain bounded under all circumstances. The dependence of the Smagorinsky
coefficient on these local parameters is studied a priori from field data measured in the atmospheric surface
layer and, as a reference point, from direct numerical simulation of neutrally buoyant, isotropic turbulence.
To capture the local effects in a statistically meaningful fashion, conditional averaging is used. Results show
various important and interrelated trends, such as significant increases of the coefficient in regions of large
strain-rate self-amplification and vortex stretching. Results also show that the joint dependence on the
parameters is rather complicated and cannot be described by products of functions that depend on single
parameters. Dependence on locally defined parameters is expected to improve the SGS model by sensitizing
it to local flow conditions and by enabling possible generalizations of the dynamic model based on condi-
tional averaging.

1. Introduction

Large eddy simulation (LES) has evolved into a pow-
erful tool to perform the numerical simulation of high
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Reynolds number turbulent flows. The LES technique
originated from meteorological applications with the
works of Smagorinsky (1963) and Lilly (1967). Simula-
tions of the atmospheric boundary layer (ABL) were
first performed by Deardorff (1972, 1974) and Moeng
(1984) and are currently of crucial importance to im-
prove our understanding of turbulent transport in the
ABL.

In LES, the larger scales are explicitly resolved while
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the effect of the smaller ones is represented through the
subgrid-scale (SGS) stress tensor, which involves un-
known quantities and has to be parameterized. One of
the simplest approaches is based on the concept of tur-
bulent viscosity, introduced by Boussinesq (1877) and
first applied to LES by Smagorinsky (1963). By analogy
with the molecular viscosity, the SGS stress tensor is
assumed to be proportional to the resolved strain-rate
tensor. The proportionality is given through a turbulent
(or eddy) viscosity v;, which is then modeled using a
mixing length approach

vy =1%IS] = (¢,AP|S]. (1)

Here I = c¢,A is the mixing length, A is the filter width,
(~) represents the filtering operation, ¢, is the Smago-
rinsky coefficient, and |S| = (2S5;;5,)""? is the magnitude
of the resolved strain-rate tensor defined as §; =
1/2(0,i1; + 01;). By assuming that the filter is within the
inertial subrange (where Kolmogorov scaling is valid)
and that the average SGS dissipation has to match the
viscous dissipation, Lilly (1967) determined the value of
the coefficient to be ¢; ~ 0.17.

Despite extensive work documenting shortcomings
of the Smagorinsky model in representing the SGS
stress tensor (see Clark et al. 1979; Bardina et al. 1980;
Mason 1994; Meneveau and Katz 2000; Tao et al. 2002),
it is still widely used in LES because of its simplicity and
attractive numerical properties. However, for the Sma-
gorinsky-Lilly model to yield good results in simula-
tions of the ABL, three main (and maybe related) is-
sues have to be considered. The first one is related to
the occurrence of strong mean velocity gradients (usu-
ally close to the ground). The basic idea behind the
model (1) is that the turbulent eddy viscosity is propor-
tional to the resolved turbulent velocity gradients (Ma-
son 1994). In regions where the mean velocity gradients
are comparable to the turbulent ones, the viscosity ob-
tained from the model is too high. An alternative
implementation where the model is based only on the
turbulent component of S was proposed by Schumann
(1975) and a modified version specific for the ABL is
the model proposed by Sullivan et al. (1994). Both
models require evaluation of the mean velocity gradi-
ents.

Another challenge is that, close to the ground, the
turbulence integral scale decreases and becomes com-
parable to the filter scale (see Mason 1994). In this
region Lilly’s hypotheses are no longer valid, the filter
width is no longer a good estimate for the mixing
length, and not even the mechanisms of production of
turbulent kinetic energy are well resolved (Kosovic
1997). Once again the Smagorinsky model overesti-
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mates the eddy viscosity. Mason (1994) proposed a
modified mixing length that matches the Smagorinsky
one far from the ground and the rough-surface expres-
sion for eddy viscosity near the ground.

The last issue is related to the effects of buoyancy on
the eddy viscosity. Although such effects can be ne-
glected when the filter is within the inertial range (Ma-
son 1994), this is not the case close to the ground. Ma-
son suggests a modified eddy viscosity that accounts for
the effects of (mean) buoyancy on the integral scale and
on the energy balance. Canuto and Cheng (1997) derive
a mixing length expression that accounts for both mean
buoyancy and mean shear effects. A convenient ap-
proach to account for the changes in the eddy viscosity
due to these three factors consists of keeping the func-
tional form (1) unchanged and adjusting the Smagorin-
sky coefficient. Experimental analysis of atmospheric
data by Kleissl et al. (2003) and Sullivan et al. (2003)
shows that the coefficient has to be greatly reduced
when the atmosphere has a stable structure (i.e., when
buoyancy acts to suppress turbulence). Kleissl et al.
(2003) presented an empirical function to describe the
global effects of buoyancy and distance from the
ground on the coefficient. This function [Eq. (14) in
Kleissl et al. (2003)] is written as the product of two
functions each separately describing dependence on
stability and distance from the ground.

Most of the approaches described so far attempt to
determine a functional dependence between the eddy
viscosity parameter and parameters characterizing
mean shear, mean buoyancy, distance from the ground,
etc. However, mean quantities are not known a priori
during a simulation. For nonhomogeneous flow geom-
etries, accumulating such averages during LES is a chal-
lenge. A more general approach to deal with nonho-
mogeneous complex-physics flows is the dynamic
model proposed by Germano et al. (1991). In principle,
this model allows for the temporal and spatial variabil-
ity of the coefficient and can reproduce nontrivial de-
pendence on the flow conditions. In the dynamic model
the coefficient is determined during the simulation
based on the smallest resolved scales (adopting a scale-
similarity hypothesis). For ABL applications, scale
similarity does not hold close to the surface and Porté-
Agel et al. (2000) developed a scale-dependent dy-
namic model, which yields good results at the cost of an
additional filtering operation. Kleissl et al. (2004) used
a priori tests with data measured in the atmospheric
surface layer to show that a scale-dependent dynamic
model is also capable of reproducing many of the ef-
fects of atmospheric stability as characterized using
global average heat and momentum fluxes. This has
been confirmed in a posteriori tests performed by
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Kleissl et al. (2006) and Kumar et al. (2006), who used
the scale-dependent Lagrangian dynamic model (Bou-
Zeid et al. 2005).

Another important consideration is the influence of
coherent structures on the optimal value for the Sma-
gorinsky coefficient. Recent work by Kang and Men-
eveau (2005) documented the effects of coherent struc-
tures (periodic vortices) in a cylinder wake upon the
SGS stress tensor. Their results suggest that the Sma-
gorinsky model should perform better in the high-strain
regions between coherent vortices than within the vor-
tices themselves. However, it is not known whether this
conclusion is valid in the context of ABL flows. Also
there are no “periodic” von Kédrmdan vortices in the
ABL, where the identification of vortical structures is
therefore more problematic. Lin (1999), Porté-Agel et
al. (2001a,b), and Carper and Porté-Agel (2004) studied
the effect of sweeps and ejections on the SGS energy
fluxes in the atmospheric surface layer. Kobayashi
(2005) proposed a modified Smagorinsky model that is
sensitive to the effect of coherent structures. In his
model, the Smagorinsky coefficient has a functional de-
pendence on a local parameter that identifies the co-
herent structures. As is apparent from this discussion,
other than these few earlier studies, there is little direct
empirical evidence documenting the dependence of the
Smagorinsky coefficient on local parameters character-
izing ABL flow.

The main objective of the present study is to quantify
the dependence of the Smagorinsky coefficient upon
local parameters of the resolved scales. It is important
to note that such parameters are typically available dur-
ing the simulations and can be directly incorporated in
the SGS model. Specifically, one would like to write

Csz' = f(Hl’ H27 . ')’ (2)

where the Ils are physically relevant parameters. Two
basic issues are raised by this objective. The first is to
identify a set of physically meaningful local flow param-
eters, II,. For dimensional consistency they must be
dimensionless. The parameters thus typically involve
ratios of two locally determined flow variables. Hence,
particular attention must be devoted to formulations
that avoid divisions by zero. This can be satisfied if the
dimensionless parameters are formally bounded by
construction. The second issue relates to how to char-
acterize the dependence of the Smagorinsky coefficient
upon local flow parameters in a statistically meaningful
fashion (i.e., without having trends hidden by the natu-
ral high variability that occurs inherently in turbulence
data). The tool to be used will be conditional averaging,
that is, the coefficient will be sought for specified value
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ranges of the set of dimensionless flow parameters.
These two issues are addressed in section 2, where the
parameters to be studied are defined and where the
conditional averaging to be used to analyze data is ex-
plained. In section 3 the dataset as well as the general
data analysis procedures are described. Results are pre-
sented in section 4 and further discussed in section 5.

2. Flow parameters and averaging

a. Local flow parameters

The first parameters to be considered describe effects
of atmospheric stability and distance from the ground.
These effects on the eddy viscosity and Smagorinsky
coefficient have been extensively studied (e.g., Mason
1994; Canuto and Cheng 1997) and experimentally
documented (Kleissl et al. 2003; Sullivan et al. 2003).
Kleissl et al. used A/z (z is the distance from the sur-
face) and A/L (L is the Obukhov length obtained
through time averaging) to characterize distance from
the ground and buoyancy, respectively. Sullivan et al.
used only one parameter A, /A (A, being the wave-
length of the peak in the vertical velocity spectrum) to
describe both effects. Both studies led to the same con-
clusion—that the coefficient must be strongly reduced
as the atmosphere changes from unstable to stable
mean stratification.

Although both descriptions are capable of capturing
stability effects, the parameters used are not locally de-
fined and require averaging to determine L, A, etc. A
possible alternative is to use the gradient Richardson
number involving gradients. The traditional gradient
Richardson number can be written in terms of local
gradients of the filtered fields, according to

(g/T)(0T/0z)
leg = "% 2
(0i1/9z)% + (91/02)

where T is resolved temperature, g is gravitational ac-
celeration, and #, v are the resolved horizontal veloci-
ties while z is, as usual, the vertical coordinate. Written
in this local fashion, the Richardson number is more
problematic than when it is written in a global sense. It
is not a Galilean invariant expression. Locally, all the
components of the velocity gradient tensor may have
similar magnitudes and the tensor cannot be character-
ized by only two single components. Instead, it is pref-
erable to define the Richardson number in the more
general way suggested by Majda and Shefter (1998).
Here their definition is used with temperature replacing
density (invoking Boussinesq approximation) and mul-
tiplying the final result by a factor of 2 in order to
match the critical stability value of V4 for the usual defi-
nition (3):

)
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—2g-VT

Ri = - ~ - .
T(ISI* + |1

4)
In Eq. (4), |@|* is the magnitude of vorticity (& = V X
i1). Note that this definition is invariant under Galilean
transformations of the frame of reference.

Next, it is useful to follow Kleissl et al. (2003) and
also use A/z to characterize the distance from the sur-
face. The parameter A/z should be formally written as
Ald,, where d, is the smallest distance between the point
where the SGS stress is being modeled and the surface.
In this way, the formulation fits complex geometries
and the parameter is also independent of the frame of
reference adopted. In this work both definitions are
equivalent and A/z will be used for simplicity.

To further characterize the local structure of the re-
solved turbulent flow field, additional parameters
based on the invariants of the local velocity gradient
tensor are considered. There is ample evidence that
these invariants are intrinsically related to the dynamics
of turbulence (Chong et al. 1990; Martin et al. 1998).
The five independent invariants of the velocity gradient
tensor are given by (Pope 1975; Martin et al. 1998):

I, =|S)? =255,

ijeji

= 5 A=
I,= 1S 8" = &;8;@,S;

=& (8 &) =aS;d. 5)
Note that all these invariants are related to important
characteristics and processes of the resolved flow field:
I, is the strain-rate magnitude, I, is related to self-
amplification of strain rate, /5 is the magnitude of vor-
ticity (enstrophy), I, is the magnitude of the vortex
stretching vector, and /5 is the vortex stretching.
Borue and Orszag (1998) found that for isotropic tur-
bulence the SGS dissipation predicted by the tensor
eddy viscosity model is highly correlated to the mea-
sured SGS dissipation. They noted that the dissipation
of the model is a linear combination of the second and
fifth invariants (7, and I5) and concluded that the SGS
dissipation is strongly affected by these invariants. The
SGS dissipation produced by the Smagorinsky model
contains only information on the first invariant. More-
over, the dependence of the Smagorinsky coefficient
upon the invariants (5) is theoretically justified in the
more general nonlinear relation between stress and ve-
locity gradients proposed by Pope (1975). Lund and
Novikov (1992, 29-43) used a priori analysis to study
the dependences of the expansion coefficients on the
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invariants in the context of LES defining four dimen-
sionless parameters based on the invariants. They con-
cluded that the dependences were too weak to explain
the scatter and the low correlation observed in the a
priori tests. In the present work, as explained in the
next subsection, the effect of the parameters will be
diagnosed using conditional averages rather than cor-
relations and scatterplots as used in Lund and Novikov
(1992, 29-43).

Since the Smagorinsky coefficient is dimensionless, it
should depend only on dimensionless parameters, so
the next challenge is to render the five invariants I
dimensionless. Since only time scales are involved, the
five invariants can be reduced to four dimensionless
ones using one or several of them appropriately in de-
nominators. As a criterion, we require that resulting
parameters be bounded between —1 and 1, or between
0 and 1. Combining these requirements with the dy-
namical interpretations of the invariants described
above, the following arrangement is proposed:

o ~12/3Det(S)

l®|” - |S|?
E

KR 1&|% +|S|?

31S - @|> &S @)
V= ———— W# = —— . (6)

|®|%|S|? |®]|S - @

The first parameter (S *) was introduced by Lund and
Rogers (1994) to classify the local strain state of the
flow field and has been frequently used in studies of
LES (Tao et al. 2002; Higgins et al. 2003; Kang and
Meneveau 2005; Chumakov 2006). The parameter S * is
bounded between —1 and 1 and indicates the type of
deformation of the flow (e.g., —1 corresponds to axi-
symmetric contraction, 0 to plane shear, and 1 to axi-
symmetric extension).

The parameter Q* is a measure of the relative mag-
nitudes of strain and vorticity and is the base of the SGS
model proposed by Kobayashi (2005). It is a dimension-
less form of the second invariant of the full velocity
gradient tensor (Q), frequently used to characterize
flow topology (Chong et al. 1990; Martin et al. 1998). It
is also known as the Q-criterion, proposed by Hunt et
al. (1988) to identify vortical structures in turbulent
flows. The Q* is bounded between —1 and 1 and is
positive in vorticity-dominated regions and negative in
strain-dominated regions.

The third parameter, V*, is a measure of the magni-
tude of the vortex stretching vector that plays a funda-
mental role in the dynamics of the vorticity field. It is
bounded between 0 and 1. The final parameter, W¥*, is
also related to the vortex stretching mechanism. It is the
cosine of the angle between the vortex stretching and



JUNE 2007

the vorticity vectors and indicates how efficient the vor-
tex stretching mechanism is in stretching/compressing
the vorticity field (note that the vortex stretching vector
also changes the direction of the vorticity vector and
this mechanism is taken into account in V* but not in
W#). The parameter W* is also bounded between —1
and 1, with positive values indicating vortex stretching
and negative ones indicating vortex compression.

The boundedness of the parameters (6) is convenient
not only for the data analysis performed in the next
sections but also (and mainly) for future implementa-
tion in SGS models. The parameter A/z is special be-
cause in a simulation it would assume a finite number of
discrete values determined by the filter width and the
numerical grid. However, the local Richardson number
(4) can vary continuously and is not bounded. To ob-
tain a bounded parameter, the definition

Ri* = erf(Ri) (7)

is used here, where erf is the error function and Ri* is
bounded between —1 and 1.

In summary, the working hypothesis of this study is
that the Smagorinsky model can be improved by allow-
ing the coefficient to depend upon one or more of the
six dimensionless parameters. Equation (2) becomes

2 = f(AV/z, Ri*, S*, Q%, V¥, W), (8)

Note, however, that it is not possible to improve the
alignment between the real and the modeled SGS stress
tensor merely by changing the value of the coefficient.
The best one can hope for is to improve the model’s
accuracy in representing the energy transfer to smaller
scales.

b. Conditional averaging

When considering a functional relationship such as
Eq. (8), the question being posed is, “for a prescribed
set of parameter values (A/z, Ri*, S* Q% V* and W¥*)
what is the optimal value of the Smagorinsky coeffi-
cient?” An optimal value of the Smagorinsky coeffi-
cient is traditionally associated with the rate of dissipa-
tion of kinetic energy from the resolved to the unre-
solved range of scales. Specifically, as originally
proposed for data analysis by Clark et al. (1979), the
value of ¢? can be measured by requiring the Smagor-
insky model to match the measured dissipation. The
SGS dissipation is —T,-IS where 7; is the (SGS) stress
tensor defined as

ij>

Ty = wy — Wi, ©)

and g, is the filtered (or resolved) velocity field. If we
ask what the optimal value of the Smagorinsky coeffi-
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cient is given that the set of parameters (A/z, Ri*, S*
O*, V* and W*) take on particular values, it is natural
to evaluate the real and modeled averaged SGS dissi-
pations, conditioned on these particular parameter val-
ues. Equating these (real and modeled) conditional
SGS dissipations yields the value of ¢Z as a function of
the prescribed parameters according to

Syl I, )
(A%ISPIIT, I0,, . . )

(I, I, . . ) (10)

In Eq. (10), I, I, ... are dimensionless parameters
such as A/z, Ri*, §* Q% V* and W*. In practice, to
determine (I, IL,, ...), each one of the allowable
parameter ranges is divided in bins and the averages are
computed within each bin.

At this stage, it is useful to add a few remarks about
conditional averaging. Such averaging has been used
before in the context of SGS modeling to address the
challenges posed by the inherent variability and noisi-
ness of the small scales of turbulence. Conditional av-
eraging was used in analysis of experimental Particle
Image Velocimetry data to find the conditional SGS
force fields for particular features of the large-scale
field, such as regions of large strain-rate magnitude
(Meneveau and Katz 1999). As noted in several earlier
works, such as in the context of optimal estimation
theory (Adrian 1990; Langford and Moser 1999) and
chaotic dynamics (Machiels 1997) given a fixed state of
the large scales at a given time, it is expected that there
exists an infinite number of possible subgrid-scale
states. The best (optimal in order to reproduce the sta-
tistics and short-time behavior of the large-scale dy-
namics) among those is the “conditional average” with
respect to the fixed state of the large scales. The con-
ditional average should be done with respect to the
entire large-scale field, as discussed in Langford and
Moser (1999; see also Meneveau and Katz 2000). This is
impossible to carry out in practice since the large scales
are themselves a very high dimensional system. Thus in
practice one must choose a dynamically significant sub-
set of parameters, as we have done here. One may thus
regard the conditionally averaged Smagorinsky coeffi-
cient as statistically the best choice given the param-
eters identified in the large scales. This choice will best
reproduce the short-time evolution and probability
density function (PDF) of the kinetic energy in the re-
solved field in LES given the knowledge (selected pa-
rameters) at hand about the large scales in the context
of the Smagorinsky model. In this study, these argu-
ments are applied in the context of ABL data.
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3. Dataset and analysis procedures

The main dataset used here comes from the Hori-
zontal Array Turbulence Study (HATS) field experi-
ment, already extensively documented (Kleissl et al.
2003, 2004; Sullivan et al. 2003; Horst et al. 2004) and
only briefly described here. The HATS field experi-
ment took place in the San Joaquin Valley, California,
in September 2000. Three setups of two horizontal ar-
rays of three-dimensional sonic anemometers with dif-
ferent spacings were used to allow for different filter
widths. The amount of data available and the geometric
characteristics of both arrays are detailed in Table 1.

The data are divided into short runs of approximately
13.5 min, Taylor’s hypothesis is used, and a horizontal
rotation of the coordinate system is applied such that
the x direction is aligned with the mean wind direction.
Only runs in which the required rotation angle was
smaller than 30° were used. The procedure for align-
ment is the same employed by Kleissl et al. (2003). The
basic filter width is chosen to be A = 23, (3, is the
horizontal distance between instruments in the lower
array). A Gaussian filter is applied in the streamwise
(x) direction and an approximated “top hat” filter in
the lateral (y) direction. As in Horst et al. (2004), con-
volution with the top hat filter is evaluated by the trap-
ezoidal integration rule. For A = 2§, this is equivalent
to weighted averages over 3 instruments. As shown by
Kleissl et al. (2004), the use of three sonics instead of
five [as thoroughly analyzed by Horst et al. (2004)] does
not significantly affect the results. No filter is applied in
the vertical direction. With the purpose of extending
the A/z range, in section 4a, setups 1 and 2 are also
filtered with A = 48, (in this case 5 instruments are used
for filtering in the lateral direction).

Gradients of the filtered velocity field are approxi-
mated by finite differences. Second-order schemes are
applied in x and y and first-order in z (for more detail
see Tong et al. 1999; Porté-Agel et al. 2001b; Kleissl et
al. 2003). From this dataset it is possible to measure the
SGS stress tensor under different stability conditions
and filter widths. For the filter width A = 28, (the one
mostly used in this work), the array yields measured
and modeled SGS stress at 5 lateral locations and re-
sults presented are averaged over them to improve sta-
tistical convergence.

Two secondary datasets are used to validate results
obtained from HATS: a pseudospectral forced direct
numerical simulation (DNS) of isotropic turbulence in
a cubic box of size 27 using (256)° nodes with Re, =
128, and random data with a Gaussian probability dis-
tribution function generated in the same grid as the
DNS (this last dataset is modified using spectral rescal-
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TABLE 1. Geometric description of arrays at the HATS field
experiment. Here z is the height of the lower array, g, is the
horizontal distance between instruments in the lower array, and §_
is the vertical distance between arrays.

Array
No. Data(h) z(m) §,(m) & (m) A(m) Az (-)
1 46.0 3.45 335 3.45 6.70 2.0
2 38.7 4.33 2.17 4.33 4.33 1.0
3 37.9 433 1.08 433 2.17 0.5

ing to have a —5/3 power spectrum). These datasets are
filtered with a 3D Gaussian filter with characteristic
wavenumber k. = 8, which corresponds to A /n ~ 35 in
the DNS (7 is the Kolmogorov microscale). Derivatives
are evaluated in Fourier space. In the DNS dataset
there are no solid boundaries or buoyancy effects, and
the main interest is to provide a comparison that vali-
dates the main results and extends them to a different
(simpler) flow condition. The random data are used to
determine whether a particular result has dynamic or
kinematic origin (i.e., whether it is unique to fields
obeying the Navier-Stokes equations or trivially valid
for an arbitrary random vector field).

4. Results

a. Characterization of atmospheric stability

The first question to be addressed is whether the
effects of atmospheric stability on the Smagorinsky co-
efficient presented in terms of average quantities by
Kleissl et al. (2003) and Sullivan et al. (2003) can be
described instead by the local stability parameter de-
fined in Eq. (7). Figure 1a shows c(A/z, Ri*) calculated
using Eq. (10) with II; = A/z and II, = Ri* for the 3
arrays described in Table 1 as well as the version of
arrays 1 and 2 filtered with width 2A. This figure clearly
shows that the main effects of stability on ¢? are well
described also in terms of the local Ri*. The significant
decrease in the value of the coefficient for stable strati-
fication is apparent, in accordance with Kleissl et al.
(2003) and Sullivan et al. (2003). Note that although
there are small differences between each curve, the
general trend is very similar: there is a reasonable pla-
teau with constant high values of ¢ for unstable cases
and almost vanishing values for the strongly stable
cases. The transition between these two clear regions is
smooth and slightly different for different ratios A/z.
The trend reported by Kleissl et al. (2003) of higher
values associated with smaller A/z can also be clearly
seen in this figure. These results support the notion that
it is possible to characterize the effect of atmospheric
stability on ¢Z based on the local stability parameter as
defined in Eq. (7).
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F1G. 1. (a) The Smagorinsky coefficient as a function of the local stability parameter for different A/z ratios—single filtered
V:Alz = 0.5; *% Alz = 1; [J: A/lz = 2; and double filtered O: A/z = 2; A: A/z = 4. (b) Detail showing the division in stability categories
for A/z = 1. The categories are strongly unstable (SU), unstable (U), weakly unstable (WU), weakly stable (WS), stable (S), and

strongly stable (SS).

In Fig. 1b, results for setup 2 (also used in the fol-
lowing sections) for a smaller range of Ri* and with
smaller bins are shown. Based on this case, six stability
categories are defined (Table 2). Results in the next
sections are primarily averages within each of these cat-
egories.

b. Atmospheric stability and resolved velocity
gradient structure

In this section, the influence of stability and distance
from the surface on the resolved velocity gradient struc-
ture [characterized by the four dimensionless groups
defined in Eq. (6)] is documented. The first reason for
such analysis is to determine whether the invariants of
the velocity gradient tensor are sensitive to changes in
mean shear or distance from the ground and buoyancy.
The second reason is that the importance of the effect
of any parameter upon the average model is given by
two factors: the effect on the coefficient itself and the
probability distribution of the parameter. The approach
consists of calculating PDFs of each parameter condi-
tioned on Ri* and A/z. Figure 2 shows the PDFs for the
4 parameters corresponding to all 6 stability regimes
and A/z = 1. Also shown for comparison are the results
for DNS and random data.

Figure 2a displays the PDFs for the local strain state
S*. As explicitly noted by Lund and Rogers (1994) and
confirmed here, the PDF is flat for random data. The
prevalence of axisymmetric extension (S* = 1) found in
turbulent flow fields by Lund and Rogers (1994) and
Tao et al. (2002) is also confirmed for the DNS data and
is clearly a dynamic feature of turbulence (i.e., not
present in random data). The results for weakly un-
stable data also reproduce well the findings of Higgins
et al. (2003) for a dataset under (globally) weakly un-
stable conditions. Although the shape of the PDF is

very similar, clearly the peak is not as pronounced as
for DNS. This difference may be due to a different
Reynolds number, filter width, and/or effects of mean
shear and buoyancy. The other curves presented in Fig.
2a clearly show the differences of the structure of the
flow under stable and strongly stable conditions, when
the peak moves from axisymmetric extension to plane
shear at §* = 0. The reason for this change is that under
very stable conditions the turbulence is strongly sup-
pressed and even locally the flow is dominated by the
mean shear (note that §* = 0 is the strain state of the
mean flow).

The PDFs of W* are shown in Fig. 2b, characterizing
the distribution of alignment between the vortex
stretching and the vorticity vectors. The curves for DNS
and random data are similar to those presented by
Shtilman et al. (1993), who noted that the alignment
between these vectors is also a dynamic characteristic
of turbulence, and its asymmetry is associated with posi-
tive enstrophy generation. Once again the peaks are
less pronounced in the HATS dataset. Note that, like
S*, all the PDFs of W* are very similar and the main
differences appear for the strongly stable curve, where
the PDF displays a slight predominance of negative val-
ues. This is associated with a smaller or even negative
resolved enstrophy production under stable conditions.

TABLE 2. Stability categories as defined from Fig. 1b.

Category Ri*
Strongly unstable (SU) -1=Ri*<-03
Unstable (U) —0.3 = Ri* < —0.02
Weakly unstable (WU) —-0.02 =Ri* <0
Weakly stable (WS) 0 = Ri* <0.03
Stable (S) 0.03 = Ri* < 0.15
Strongly stable (SS) 0.15=Ri*=1
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At this point we are not able to explain the observation
of negative net enstrophy production under strongly
stable conditions.

The PDFs for Q* presented in Fig. 2c also have some
interesting features because they contain information
about relative magnitudes of vorticity and strain rate.
However, these results must be examined carefully,
since the PDF for random data itself has a pronounced
trend toward strain-dominated regions. All other
curves should then be compared to the one for random
data. For stable datasets there is a strong shift of the
peak of the PDFs to O* = 0, corresponding to homo-
geneous shear, again the state of the mean flow (note
that for the mean flow one has |S|?> = |®|? and so
Q% = 0). In addition, the more unstable the dataset, the
more frequent strain-dominated regions appear (note
that the PDFs for unstable data peak in the negative
region of O* and those for stable cases do not). As one
moves to less unstable and then stable local conditions,
more regions dominated by vorticity are encountered.
The DNS data show a similar behavior in that they are
above the random data for Q* > 0 and below them for
O* < 0.

The PDF for V* is shown in Fig. 2d. Again the PDF
for random data is not flat. However, it is clear that
under unstable conditions, events with strong vortex

stretching become more frequent. This is also an ex-
pected result, since more stable conditions imply
smaller turbulent intensities and the statistics are domi-
nated by the two dimensional laminar flow where no
vortex stretching exists.

On the PDFs of $*, O*, and V*, the key feature is the
effect of the mean flow (W* is not defined for the mean
flow, since both its numerator and denominator van-
ish). The shape of the PDF will be determined by the
relative importance of the mean flow and the resolved
turbulence. Whenever the resolved turbulence domi-
nates, the PDFs are similar to those for the strongly
unstable conditions, meaning that axisymmetric exten-
sion prevails in the PDF of $* and the PDFs of O* and
V* are similar to those for random data (see strongly
unstable cases in Fig. 2). On the other hand, when the
mean velocity gradient is dominant, the PDFs peak at
the mean flow state (S* = 0, Q* = 0, and V* = 0).
Whether the resolved turbulence is able to overcome
the effect of the mean flow and dominate the statistics
of the invariants is determined by the amount of re-
solved turbulence, and consequently by the relation be-
tween the filter width and the integral scale of the tur-
bulence. Recall also that the integral scale in the atmo-
spheric boundary layer is related to the distance from
the surface and the atmospheric stability. To further
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investigate this issue the PDFs of V* for setups 1 and 3
are shown in Fig. 3. Here V* is chosen instead of S* or
Q* because the effects are more evident.

Comparison between the PDFs of V* for the three
setups makes evident the combined effects of Ri* and
A/z. The PDFs for the strongly stable case are domi-
nated by the mean flow independently of A/z (see Figs.
2d and 3a,b). It is interesting to compare the strongly
stable with the weakly stable regime. In the weakly
stable case, the resolved turbulence is strong enough to
overcome the mean shear for the well-resolved field
(i.e., A/z = 0.5 in Fig. 3b). However, as one decreases
the resolution by increasing the value of A/z (Figs. 2d
and then 3a), less turbulence is resolved and the PDF
moves toward the strongly stable limit. It is also clear in
Fig. 3a that even the strongly unstable case, when fil-
tered at a large scale as compared to the integral scale,
is dominated by the mean shear.

The results presented in this section clearly show the
effects of atmospheric stability and distance from the
ground on the structure of the resolved velocity gradi-
ent tensor. Most of these effects originate from the rela-
tive importance between the resolved turbulence and
the mean flow, a factor that changes with stability, dis-

3
<1:ijSij>Kz(u*)

tance from the ground, and filter width. To confirm this
interpretation of the trends, all the analyses presented
here were repeated removing the mean flow (not
shown). Indeed, the pronounced peaks for the strongly
stable cases at §* = 0, Q* = 0, and V* = 0 nearly
disappear. However, we stress that removing the mean
flow is not a practical approach in LES of highly non-
stationary and inhomogeneous ABL flows.

These results support the hypothesis that the local
structure of the resolved turbulent flow field is sensitive
to effects of mean shear, buoyancy, and proximity to
the ground, and that the local parameters defined in
section 2 can be used to characterize, at least in part,
these processes.

c¢. Effects on SGS dissipation

Before proceeding and analyzing the results for the
Smagorinsky coefficient, a comment is needed on the
conditional averages of the SGS dissipation [i.e., the
numerator of Eq. (10)]. From the high correlation be-
tween the SGS dissipation and the invariants 7, and /5
in isotropic turbulence (Borue and Orszag 1998), one
would expect both §* and W* to have a significant
impact on the measured dissipation. Figure 4a shows
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F1G. 4. Dependence of (a) SGS dissipation and (b) Smagorinsky dissipation on S*. For legend see Fig. 2.
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the SGS dissipation conditionally averaged on Ri* and
S* for A/z = 1. All curves are made dimensionless by
the inertial range scaling for dissipation kz/u3, where u,,
is the average friction velocity. As expected, regions of
high SGS dissipation are associated with positive values
of §* (except for the strongly stable case that displays a
minimum at S* = 0). The dissipation modeled by the
Smagorinsky model (without the coefficient ¢?) is
shown in Fig. 4b and displays the same qualitative be-
havior as the measured SGS dissipation except for the
stable and strongly stable cases. In these two cases the
spurious effects of the mean flow on the Smagorinsky
model result in an eddy viscosity that is too high.
Clearly these effects are predominant in regions where
the mean flow is stronger and S* ~ 0. Since the optimal
value of the Smagorinsky coefficient is determined by
the ratio between the quantities in Figs. 4a,b [see Eq.
(10)], the differences between modeled and measured
SGS dissipation cannot be described by a constant
value for c2.

Similar analyses were performed for the other pa-
rameters (not shown). As expected, high SGS dissipa-
tion is associated with positive values of W* (vortex
stretching) and negative values of Q* (this is also ex-
pected because it is well known that dissipation occurs
primarily in regions of high strain, as opposed to re-
gions of high rotation). Again the exception is the

strongly stable case, for which the peak moves toward
Q* = 0. There is no clear trend of the dissipation with
V*. Therefore one can conclude that the SGS energy
transfer is affected by the alignment between vorticity
and vortex stretching vectors, rather than the magni-
tude of the vortex stretching vector itself. The general
form of these trends is qualitatively well predicted by
the Smagorinsky model, except when the mean flow
dominates the resolved turbulence.

d. Effects on Smagorinsky coefficient

In this subsection, the additional impact of local flow
parameters on the optimal value of the Smagorinsky
coefficient is documented (i.e., the dependence of ¢Z on
S*, Q% V* and W¥*). For simplicity it is convenient to
begin by analyzing each parameter independently,
which requires calculating c¢Z(A/z, Ri*, IT) using Eq. (10)
where II is any of the four parameters describing the
local structure of the velocity gradients.

Figure 5 shows the dependence of ¢ on each param-
eter (all results for setup 2 and A/z = 1). The effect of
S* on c? is presented in Fig. 5a. It is clear that not only
the strain state has an important effect on the value of
c? but also that this effect changes with atmospheric
stability. All the unstable regimes present a similar lin-
ear dependence, displaying an offset to higher values as
the flow becomes more unstable. The weakly stable
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case is still not very different from the unstable ones.
Once again, the main difference is the stable and
strongly stable cases that have a strong minimum at

* = (. This is another consequence of the important
effect of mean shear under these conditions and was
expected based on the results from the previous sec-
tion. Since the mean flow does not affect 7 (note that no
filtering is done in the vertical direction) but does affect
S, its effect is stronger on the denominator of Eq. (10)
than on its numerator, causing ¢? to decrease. Thus,
under very stable conditions, in regions where turbu-
lence is weak and the flow is mostly dominated by the
mean shear, ¢? decreases. Note in Fig. 2a that $* = 0 is
exactly the peak in the PDF of S* for this stability. The
peak of the PDF at S* = 0 and the low value of ¢ for
this state lead to the decrease in ¢? under stable condi-
tions (see Fig. 1). However, setting the coefficient to its
mean value everywhere under stable conditions would
be underdissipative in the regions where S* # 0.

The effect of W* on the Smagorinsky coefficient is
shown in Fig. 5b. The general trends are very similar to
those obtained for S*, although slightly weaker. There
is also a small difference in the strongly stable case,
where the minimum found at $* = 0 is not present at
W#* = 0. Note that for all parameters analyzed here, the
only region where ¢ becomes negative for the DNS

data is for W* ~ —1. This is a sign that the energy
backscatter is associated with regions of strong vortex
compression. This result is physically sound, since one
may imagine that the compression of vortex filaments
generates larger structures and the energy contained by
the filaments is then associated with larger scales. No
negative values of ¢? are found for the HATS data in
Fig. 5b and this issue will be further discussed with Fig.
6. The fact that the Smagorinsky model is fully dissipa-
tive, not allowing the backscatter of energy, has been
regarded as a deficiency in the model (Leith 1990; Ma-
son and Thomson 1992) but is an advantage from the
point of view of numerical stability and robustness.

Figure 5c shows the effect of Q* on ¢2. The results for
DNS have a clear trend of increasing coefficients for
regions of stronger vorticity. As Q* approaches 1, the
SGS dissipation goes to zero. The dissipation modeled
by the Smagorinsky closure also goes to zero, but too
fast. This is the cause for the increase in the value of ¢?.
Beyond Q* = 0.75, both dissipations are very small and
the value of the coefficient grows too large and is sus-
ceptible to errors (for this reason it is not plotted for the
HATS dataset). Figure 5d contains the analysis for V*.
In this case the trends are not strong.

These analyses were repeated for setups 1 and 3 to
determine the effect of A/z on the results described so
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far. The general form of the dependence does not
change much, but the dependence on both §* and W*
becomes more pronounced as A/z decreases while the
dependence on Q* and V* does not. The effect of A/z
on S* for different stability conditions is illustrated in
Fig. 6. Figure 6a is the case for unstable data and is
representative of any local unstable condition. For the
largest ratio A/z = 2 the dependence is very weak, and
it becomes stronger as the ratio is decreased. Although
the dataset used does not allow for smaller ratios, one
expects that farther from the ground (i.e., for small
enough ratios of A/z) the trend becomes independent of
A/z. More negative values of the coefficient are found
as A/z decreases, consistent with the results of Sullivan
et al. (2003), who noticed stronger backscatter when the
turbulence is better resolved. Figures 6a,b also show the
clear association of backscatter (negative values of c?)
with negative values of S*. Backscatter is also associ-
ated with negative values of W* (not shown) and this
relation will be explained in the discussion about the
joint PDFs of §* and W* (following Fig. 8).

Figures 6b,c for the weakly stable and the stable re-
gimes help illustrate the relation between the resolved
turbulence and the effects of mean flow. It is clear that
for weakly stable cases, if enough energy is resolved,
turbulence dominates the statistics and the trend of ¢? is
similar to the one for unstable cases (e.g., A/z = 1 and
A/z = 0.5 in Fig. 6b). However, if the filter is large and
the resolved turbulence is not strong compared to the
mean shear, the trends are similar to those for the
strongly stable case (e.g., A/z = 2 in Fig. 6b). The same
effect is seen for the well-resolved stable case in Fig. 6c.
Once again, in the strongly stable case (Fig. 6d) the
turbulence is so weak that even for the well-resolved
case the mean shear dominates and there is no A/z
dependence on the curves for c2. The effects of A/z on
the trends for W* are similar to those presented here
for S* and there is almost no effect on O* and V* (not
shown).

Although this issue is not analyzed here, part of this
dependence of ¢? originates from the misalignment be-
tween S and 7. It is well known that when the SGS
stress tensor is decomposed into Leonard, cross, and
Reynolds contributions (see Germano 1986), some of
the alignment properties are characteristic of the
Leonard term only (Tao et al. 2002; Higgins et al. 2003).
To determine whether the results reported so far origi-
nate from the Leonard term only, each term is calcu-
lated using the Germano decomposition: the Leonard
term given by £; = i
Gy =
term given by R, = wu;

— i, the cross term given by
= du; + wuiil; — i ;= Ll,fu:,-, and the Reynolds
— ;. In the last two ex-
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pressions, u; is the subgrid velocity obtained by sub-
tracting the resolved part from the full velocity field.
The same procedure of calculating conditional aver-
aged values of ¢? is repeated, using first L; and then
(¢; + ®;;) instead of 7; in Eq. (10). The first part, ()",
represents the contribution of the Leonard term to the
dependence found for the Smagorinsky coefficient, and
the second one, (c?)%, is the remainder contribution. In
this way, the coefficient is decomposed into ¢Z = (c2)*
+ (c?)®, and effects from the trivial Leonard part can be
isolated. Figure 7 shows this decomposition as a func-
tion of S* for different atmospheric stabilities and A/z
= 1. As expected, since the filter width and the integral
scale are of the same order, the contribution from the
Leonard term is small. Figure 7a shows the compari-
sons for the unstable case, which is very similar to the
strongly and weakly unstable cases (not shown). The
dependence of the Leonard part on S* is stronger, but
the remainder part also contributes to the total result.
Data for the weakly unstable case shown in Fig. 7b are
also similar to the unstable cases. For the stable and
strongly stable cases shown in Figs. 7c,d, the contribu-
tions from the Leonard term are almost negligible and
the trends are mostly determined by the remainder
part. However, the Leonard part still presents trends
qualitatively similar to the remainder. Decomposition
for the other parameters is similar and is not shown
here. The results suggest that most of the observations
made here for the Smagorinsky model could also be
useful for mixed models [i.e., any of the many variants
of the mixed model originally proposed by Bardina et
al. (1980)].

With this knowledge of the role played by each indi-
vidual parameter, the next step is to combine them and
determine their joint PDFs and the values of ¢ (A/z,
Ri*, §*, O* V* W#*). At the present stage, the amount
of data required to ensure converged statistics in each
bin in the six-dimensional space is impractical. Instead
we apply a more practical approach, selecting the two
most relevant out of the four velocity gradient param-
eters. We select §* and W* because they have already
been directly associated with the energy transfer
mechanisms in the literature (Borue and Orszag 1998),
they present nearly evenly distributed PDFs (meaning
that all states occur with a reasonable frequency), and
they also have a strong effect upon the value of ¢? (see
Figs. 5a,b). Although the dependence on W* is not as
strong in Fig. 5b, it is much stronger for setup 3 (A/z =
0.5). The other possible choice would be Q* instead of
W+, However, most of the influence of Q* on the co-
efficient occurs in its positive range, where the number
of points is not large and the dissipation is usually low.
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Therefore, in what follows, the joint PDFs of S* and
W+ and the behavior of the coefficient c2 (A/z, Ri*, §*,
W#) are studied.

Figure 8 displays the changes of the joint PDFs of S*
and W* as the atmospheric condition changes from
strongly unstable to strongly stable stratification. Most
of the points are concentrated around the diagonal
W* = §* This is a kinematic artifact since it is repro-
duced in random data as well (shown in Fig. 9). How-
ever, the PDF for random data shows a significant
probability in the entire plane and is antisymmetric
with relation to the axis S* = 0, meaning that both
extrema (S* = W* = 1and S* = W* = —1) are equally
probable. The dynamic feature of turbulence is mani-
fested in the strong predominance of the §* = W* =1
state in the data. For the strongly unstable case, the
peak at §* = W* = 1 is clear, but a significant level of
probability density also exists at other values (although
still lower than for the random data). As one moves
toward less unstable data, the distributed probability
decreases and most of the points concentrate around
the main curve. The DNS result (not shown) is very
similar to the weakly unstable case, although with a
more pronounced peak. As one keeps moving toward
weakly stable and then stable cases, the strength of the
peak decreases as the entire curve becomes more

equally distributed. The strongly stable case is very dif-
ferent; there is a strong concentration around S* = 0
but an almost even distribution along the entire range
of W,

The relation between S* and W* has a simple expla-
nation. For incompressible flows, $* has the sign of the
intermediate eigenvalue of S. It is well known that the
vorticity vector is preferentially aligned with the inter-
mediate eigendirection (Ashurst et al. 1987; Tao et al.
2002; Higgins et al. 2003). As a consequence, when the
intermediate eigenvalue is negative (i.e., $* < 0), the
vorticity will more likely be in a compressing direction
and W#* < 0. Similarly, for a positive intermediate
eigenvalue (i.e., S* > 0), the vorticity will more likely
be in a stretching direction and W* > 0.

The simultaneous dependence of ¢? on S* and W* is
presented in Fig. 10 for all six stability regimes. As can
be seen in Fig. 8, most of the S*-W* plane has a low
density of points. To provide reliable statistics, larger
bins were used to capture the joint dependence and
results were interpolated to generate the smooth varia-
tions shown in Fig. 10. The progressive changes in the
values of ¢ from the strongly unstable to the strongly
stable cases are clear. The average value of the coeffi-
cient decreases and its distribution on the plane also
changes considerably. As the atmosphere becomes
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more stable the effects of mean shear become stronger.
This can be identified in the figure by the marked low
values of the coefficient in the regions dominated by
the mean flow (i.e., near §* = 0) for the stable regimes.
It is clear that if both parameters are taken into account
instead of only one, a better representation of the mea-
sured dissipation can be achieved.

e. Factorization of joint dependence

The results presented so far provide evidence for the
complex behavior of the Smagorinsky coefficient when
more than one parameter is considered. An important
question is whether the observed joint dependence
could be factored, that is, if it can be written as the
product of functions that depend individually on the
parameters [as was proposed, e.g., in the functional
form of Eq. (14) in Kleissl et al. (2003)]. In general, one
would like to assess whether, for example, a depen-
dence ¢ = f(I1,, II,) can be factorized as ¢Z = fi(Il;)
f>(I1,). A convenient method to elucidate the possibility
of such a factorization is to take the logarithm of the
measured joint function and evaluate partial deriva-
tives. Specifically, we evaluate
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FIG. 9. Joint PDFs of S* and W* for random data. Also illus-
trated are three types of flow deformation [axisymmetric contrac-
tion (S* = —1), plane shear (S* = 0), and axisymmetric extension
(§* = 1)] and the vortex compression (W* = —1) and vortex
stretching (W* = 1) mechanisms.
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d
o, log[ (I, I1)] = g,(I1;, IT,)

Jd
8_1_[2 log[ f(I1;, I1,)] = g (11}, IL). 1)

If the factorization is possible, g, (II;, IL,) is only a
function of II,. As an example, we consider the joint
dependence of ¢Z on Ri* and §*. This joint dependence
is measured from the data using additional bins for Ri*,
and results are shown in Fig. 11a. The goal is to deter-
mine whether the joint dependence can be factorized as
cA(Ri*, S*) = f,(Ri*)f5(S*). In Figs. 11b.c, the deriva-
tives with respect to Ri* and S* of the logarithm of
c2(Ri*, §*) are shown. If the factorization is possible,
the functions in Figs. 11b,c should depend only on Ri*
and S*, respectively. Although most of the dependence
in Fig. 11b is actually on Ri* (partially supporting the
possibility of factorization), Fig. 1lc is clearly not a
function only of S*. The conclusion is that ¢Z(Ri*, $*)
cannot be properly represented by the product f;(Ri*)
f (%)

It is also of interest to determine whether for a given
stability range, the joint dependence on §* and W* (i.e.,

Fig. 10) can be factorized. Three illustrative cases are
shown in Fig. 12. Figures 12a—c are the derivatives with
respect to S* for the unstable, weakly stable, and stable
cases and Figs. 12d—f are the derivatives with respect to
W for the same stabilities. For the factorization to be
possible, the fields in Figs. 12a—c should be functions
only of $* and in Figs. 12d—f only of W*. This is clearly
not the case. The same conclusion holds for the other
three stability regimes not shown here.

5. Discussion

In this work several locally defined dimensionless pa-
rameters have been introduced and used to character-
ize important local mechanisms of turbulent ABL
flows. A priori analysis of data measured in the atmo-
spheric surface layer and direct numerical simulation of
isotropic turbulence have been used to show that these
parameters have a marked impact upon the optimal
value of the Smagorinsky coefficient.

Results presented here clearly show that the local
Richardson number is efficient in capturing the effects
of local atmospheric stability upon the value of the
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Smagorinsky coefficient. This is an important result be-
cause previous parameters used to characterize such
effects are defined based on average quantities and re-
quire strong assumptions, such as homogeneity and/or

stationarity. In addition, the ratio between filter width
and distance from the surface was used to characterize
the influence of the ground surface. The Richardson
number and distance from the ground characterize the
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integral scale of the turbulence, and by introducing the
filter width one obtains a good description of how much
of the turbulence is resolved.

To further characterize the influence of the local
structure of the resolved turbulent field on the Smago-
rinsky coefficient, a set of dimensionless parameters
based on the invariants of the velocity gradient tensor
were defined. These parameters measure local proper-
ties such as strain state, balance between vorticity and
strain, and relative magnitude of vortex stretching and
its efficiency in changing the enstrophy. Probability
density functions were used to study how the atmo-
spheric stability affects the structure of the resolved
velocity gradient tensor. Results show that the shape of
the PDFs is mostly determined by the relative impor-
tance of the mean shear and the resolved turbulence.
Under strongly stable stratification, the resolved turbu-
lence is not able to dominate over the effect of the
mean shear, identified by the peaks at $* = 0, Q% = 0,
and V* = 0. For the other stable regimes, the position
of the peak depends on the amount of resolved turbu-
lence (i.e., the relation between integral scale and filter
width).

By requiring the Smagorinsky model to match the
measured SGS dissipation on a conditional average
sense, the dependence of the optimal values for the
coefficient upon the four parameters used to character-
ize the local structure of the turbulent flow field is de-
termined. When compared to the values usually em-
ployed in LES, the dependence found is actually quite
strong. Most of the discussion has centered on compar-
ing the resulting values to the theoretical value deter-
mined by Lilly (1967) (¢, = 0.17 or ¢Z = 0.03) and the
empirical one used by Deardorff (1970) (¢, = 0.1 or
¢2 = 0.01). As can be seen in the results presented here,
the optimal values exceed this range in both directions
depending on the local structure of the resolved turbu-
lent field.

The results suggest that one can improve the perfor-
mance of the Smagorinsky model in predicting the SGS
dissipation by including the dependence of the coeffi-
cient on dimensionless parameters to characterize the
local structure of the turbulence. The agreement be-
tween many of the results obtained for the DNS of
isotropic turbulence and the complex atmospheric data
(where mean shear and buoyancy coexist) suggests that
these trends are quite robust. However, the joint de-
pendence was shown to require functional descriptions
that are not amenable to factorization. This complicates
the task of parameterization when many parameters
are involved. Nevertheless, these results may be useful
in reformulating the dynamic model based on condi-
tional averaging rather than averaging over homoge-
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neous directions (Germano et al. 1991) or over
Lagrangian time histories (Meneveau et al. 1996). Such
proposed new dynamic models will be the focus of fu-
ture work.
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