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Abstract

The theories used up to now to model theoretically and numerically nanos-
tructures, and more specifically semiconductor heterostructures, do not allow
to include efficiently at the envelope function level, in a k · p approach, the
effects imposed by a possible symmetry of the problem. The most elaborated
techniques available only allow to take into account the existence of a single
symmetry plane, or deal with global symmetry, but not with envelope func-
tions.
The most important part of this thesis deals with the development of a novel
formalism, very general, which allows to study the electronic and optical
properties of high symmetry nanostructures. This new Maximal Symmetriza-
tion and Reduction (MSR) formalism allows to maximally symmetrize the
eigenstates and significantly reduce the size of the spatial domain of solution.
The formalism was explicitly developed with the aim to study a C3v quantum
wire, with three symmetry planes at 120◦, and allowed to analytically justify
some numerical result obtained without an adapted theoretical formalism.
In addition, some other physical results related to the effects of symmetry
were highlighted and understood. To cite a simple example, it is possible to
demonstrate a perfect isotropy polarization with respect to two directions in
the cross-section of a wire. In addition, for some transitions new analytical
expressions were found for the polarization anisotropy between a direction in
the plane and a direction along the wire. The new formalism allows also to
understand, in much more details, a number of effects in a qualitative and
quantitative way, e.g. symmetry breaking effects.
For the example of the C3v wire, the conduction and valence bands are treated
separately in the k · p approximation, with respectively one (spinless) band
and four bands (describing the valence band mixing).
For the scalar wavefunction problem of the conduction band, we propose a
new systematic Spatial Domain Reduction (SDR) method. For every differ-
ent symmetry of the problem (irreducible representation), the independent
sub-domains can be identified and a reduced Hamiltonian on the minimal
domain can be obtained (numerical optimization).
For a spinorial problem, the spatial and spinorial (Bloch functions) parts,
have to be considered separately (both for operators and the eigenstates)
although treated simultaneously. Whatever the number of bands considered,
completely symmetrized bases can be chosen according to the symmetry
properties of the heterostructure. This approach allows to classify with re-
spect to the symmetry not only any spinorial states, but every one of their
spinorial components (envelope functions) separately. The physical under-
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standing as well as subsequent analytical treatment are considerably simpli-
fied. Finally we propose to apply the spatial domain reduction technique to
the spinorial components, which ensure to solve the spinorial problem on a
minimal domain with numerical optimization.
The proposed approach is valid in a much larger framework than k ·p theory,
and is applicable to arbitrary systems of coupled partial differential equa-
tions, e.g. strain equations in heterostructures or the Maxwell equations
describing an impurity state in a photonic band-gap.

Keywords:

Heterostructure, semiconductor band structure, quantum dot, quantum wire,
quantum well, nanostructure, photonic band-gap, solid state theory, sym-
metry, group theory, electronic properties, multiband k · p theory, optical
properties, finite elements method.
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Version abrégée

Les théories utilisées jusqu’à ce jour pour modéliser théoriquement et numéri-
quement les nanostructures, en particulier les hétérostructures semiconductri-
ces, ne permettaient pas d’inclure efficacement au niveau des fonctions enve-
loppe, dans un approche k · p , les effets imposés par une éventuelle symétrie
de la structure quantique. Les techniques les plus élaborées permettaient uni-
quement de prendre compte de l’existence d’un seul plan de symétrie, ou de
traiter les effets de symétrie globaux, mais pas au niveau des fonctions enve-
loppe.
La partie principale de cette thèse a ainsi consisté à établir un nouveau
formalisme, très général, permettant d’étudier les propriétés électroniques
et optiques de nanostructures avec un degré de symétrie élevé. Le nouveau
formalisme, appelé MSR, de l’anglais “Maximal Symmetrization and Reduc-
tion”, permet d’obtenir une symétrisation maximale des fonctions enveloppe
des états propres et une réduction significative du domaine spatial.
Le formalisme a été explicitement développé pour étudier un fil quantique
avec symétrie C3v, possédant trois plans de symétrie à 120◦. Ceci a permis
d’une part de justifier analytiquement les considérations numériques établies
précédemment sans l’utilisation d’un formalisme théorique adapté, d’autre
part de mettre en évidence et de comprendre d’autres propriétés physiques
découlant des contraintes imposées par la symétrie. Pour ne donner qu’un
exemple, il est possible de démontrer une parfaite isotropie de polarisation
par rapport à deux directions dans le plan du fil. Par ailleurs, pour certaines
transitions de nouvelles expressions analytiques ont pu être obtenues pour
l’anisotropie de polarisation (entre une direction dans le plan et l’autre selon
le fil). Nous montrerons que ce nouveau formalisme permet de comprendre
plus en détails, de manière qualitative et quantitative, plusieurs autres effets,
comme par exemple les brisures de symétrie.
Dans l’exemple considéré, les bandes de conduction et de valence sont traitées
de manière séparée dans l’approximation k · p avec un modèle à une bande
(sans spin) et, respectivement, quatre bandes (décrivant le mélange de bande
de valence).
Pour le problème scalaire de la bande de conduction, nous proposons une
nouvelle méthode systématique pour réduire le domaine spatial (Spatial Do-
main Reduction : SDR). Pour chaque symétrie du problème (représentation
irréductible), les sous-domaines indépendants sont identifiés et l’Hamiltonien
réduit sur le domaine minimal est obtenu (optimisation numérique).
Pour un problème de type spinoriel, les parties spatiale et spinorielle (fonc-
tions de Bloch) des opérateurs et des états propres doivent être considérées
séparément bien que traitées simultanément. Indépendamment du nombre de
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bande considéré, des bases complètement symétrisées peuvent être choisies
selon les propriétés de symétrie de l’hétérostructure. Cette approche permet
de classer en fonction de la symétrie non seulement les états mais aussi chaque
composante spinorielle (fonction enveloppe) des différents états, simplifiant
ainsi considérablement la compréhension et les développements analytiques
subséquents. La technique de réduction du domaine spatial est finalement
aussi appliquée aux composantes spinorielles, optimisant ainsi aussi le côté
numérique.
L’approche que l’on propose dans cette thèse a cependant un champ d’ap-
plication beaucoup plus large que la théorie k · p : elle est applicable à un
système arbitraire d’équations différentielles couplées, comme par exemple les
problèmes de contrainte pour les hétérostructure ou les équations de Max-
well qui décrivent un état d’impureté dans une bande interdite photonique
(“photonic band-gap”).

Mots-clés :

Hétérostructure, semiconducteur, structure de bande, bôıte quantique, fil
quantique, puit quantique, nanostructure, band gap photonique, théorie de la
matière de l’état solide, symétrie, théorie des groupes, propriétés électroniques,
théorie k · p multibande, propriétés optiques, méthode des éléments finis.
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Riassunto

I metodi teorici e numerici fino ad oggi utilizzati per modellizzare le nano-
strutture, ed in particolare le eterostrutture a semiconduttore, non permetto-
no di includere efficacemente al livello delle funzioni inviluppo, in un approc-
cio k · p , gli effetti dovuti ad eventuali simmetrie della struttura quantistica.
Le tecniche più elaborate finora disponibili consentivano solo la descrizione
di un unico piano di simmetria o di trattare gli effetti di simmetria a livello
globale, non a livello delle funzioni inviluppo.
Gran parte di questa tesi è stata quindi volta a sviluppare un nuovo for-
malismo, molto generale, per studiare le proprietà elettroniche e ottiche di
nanostrutture con un grado elevato di simmetria. Il nuovo formalismo MSR,
dall’inglese “Maximal Symmetrization and Reduction”, qui proposto, permet-
te di ottenere una simmetrizzazione massimale degli autostati, oltre ad una
riduzione del dominio spaziale.
Tale formalismo è stato specificamente sviluppato per studiare un “quantum
wire” (filo quantico) a simmetria C3v, che possiede tre piani di simmetria a
120◦, permettendo non solo la giustificazione analitica delle considerazioni
numeriche ottenute in precedenza senza l’utilizzo di un formalismo teorico
adeguato, ma anche la comprensione di altre proprietà fisiche imposte dalla
simmetria del problema. Per citare un solo esempio, è stato possibile dimo-
strare l’esistenza di una perfetta isotropia di polarizzazione rispetto a due
direzioni nel piano del filo. In aggiunta, si sono ottenute nuove espressioni
analitiche per l’anisotropia di polarizzazione (per una direzione lungo il filo e
l’altra nel piano ad essa perpendicolare). Questo nuovo formalismo permette
inoltre una comprensione sia qualitativa che quantitativa di differenti altri
effetti, come ad esempio la rottura di simmetria.
Nell’esempio considerato, le bande di conduzione e valenza sono trattate se-
paratamente nell’approssimazione k ·p con un modello rispettivamente a una
banda (senza spin) e a quattro bande (che permette di descrivere il “valence
band mixing”).
Per il problema scalare della banda di conduzione è stato sviluppato un
nuovo metodo sistematico per ridurre il dominio spaziale (“Spatial Domain
Reduction” : SDR) consistente, per ogni simmetria del problema (rappre-
sentazione irriducibile), nell’identificazione dei sottodomini indipendenti e
nell’ottenimento dell’Hamiltoniano ridotto sul dominio minimale (ottimizza-
zione numerica).
Per un problema di tipo spinoriale, le parti spaziale e spinoriale (funzioni
di Bloch) degli operatori e autostati devono essere separate ma trattate si-
multaneamente. A tal proposito, indipendentemente dal numero di bande
considerato, si possono scegliere in accordo con le proprietà di simmetria del-
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l’eterostruttura, delle basi completamente simmetrizzate. Ciò permette di
classificare, in funzione della simmetria, non unicamente gli autostati ma pu-
re ogni singola componente spinoriale (funzioni inviluppo) dei differenti stati,
semplificando cos̀ı considerevolmente la comprensione e gli sviluppi analitici
ulteriori. La tecnica di riduzione del dominio spaziale può infine essere ap-
plicata alle componenti spinoriali, ottimizzando la risoluzione numerica.
Tuttavia, l’approccio proposto ha un campo d’applicazione molto più va-
sto che la teoria k · p ed è applicabile ad un sistema arbitrario di equazioni
differenziali accoppiate, come ad esempio i problemi di costrizione per le ete-
rostrutture o le equazioni di Maxwell che descrivono uno stato d’impurità in
un bandgap fotonico.

Parole chiave :

Eterostruttura, semiconduttore, struttura a bande, quantum dot, quantum
wire, quantum well, nanostruttura, band gap fotonico, teoria della materia
nello stato solido, simmetria, teoria dei gruppi, proprietà elettroniche, teoria
k · p multibanda, proprietà ottiche, metodo degli elementi finiti.
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Chapter 1

Introduction

1.1 Objectives of the thesis work

At the origin, the aim of this thesis work was the study of the electronic
and optical properties of quantum wires (QWRs) and we started with a C3v

Vertical QWR (VQWR) self-formed on each side of pyramidal quantum dots
(QDs). An important aspect is that it serves as main channel for QD carrier
capture [1] and is quite influential on the electronic properties of this QD [2].
Quickly we realized that a beautiful feature of the VQWR was its high sym-
metry: three symmetry planes intersecting on the same vertical axis, leading
to a “triangular” symmetry (C3v group [3]). Indeed very little work was done
on the specific properties of such “high symmetry” quantum wires and we
were able to find in the literature only four theoretical articles dealing with
triangular QWRs [4–7]. A closer look revealed that equilateral triangular
QWRs, i.e. C3v QWRs, were addressed only in the work of Lassen [8], very
shortly, without any detailed considerations and numerical calculations.
The motivation of the study on this type of quantum structure is manifold.
From the scientific point of view, a good understanding of the VQWR is
very important to model a pyramidal QD (the VQWR is the main channel
for the electron capture) and from the didactical point of view we had an
original problem to start the study of electronic and optical properties of
quantum wires. We soon realized that for a “high symmetry structure” it is
not possible to reach a sufficient physical understanding without developing
new tools, which finally became the major aspect of this thesis.

Therefore, the central and more important part of the thesis is the devel-
opment of a new Maximal Symmetrization and Reduction (MSR) formalism
to study the electronic and optical properties of High Symmetry Heterostruc-
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2 Introduction

tures (HSH). It is important to note that in the following, we first present
the general formalism, and only then we use this novel tool to study the
electronic and optical properties of the C3v VQWR.

1.2 State of knowledge and limit of previous

methods

The study of low dimensional solid state nanostructures is a very interest-
ing and promising domain. Indeed, a good knowledge of the electronic and
optical properties of nanostructures like metallic [9] or semiconductor [10]
nanostructures, or photonic crystals [11], is now essential for many appli-
cations in advanced lasers, photonics and telecommunications. New truly
quantum applications like quantum cryptography may also make extensive
use of semiconductor quantum heterostructures like quantum wells, quantum
wires and quantum dots [12]. The quality of semiconductor quantum wires
and dots have been extensively improved during the last 15 years, and one
is now able to produce high quality structures with higher and higher sym-
metries (e.g. C6v quantum dots [13, 14]). In such a case a group-theoretical
approach is usually the most powerful tool for describing the effects issuing
from symmetry on the electronic states, as well as their optical properties.
However the problem is rather complicated since in heterostructures one must
take into account both the underlying microscopic crystalline structure and
the mesoscopic heterostructure confinement potential.

The theoretical study of low symmetry effects in semiconductor heterostruc-
tures (like quantum wires with Cs symmetry, e.g. T- and V-shaped quantum
wires [15, 16]) is already well developed [17] and has led to fundamental
conclusions regarding their electronic and optical properties. First, elec-
tronic and excitonic states can be labelled with respect to their characteristic
transformation properties under symmetry operations. Second, rigorous and
important selection rules were readily obtained on the basis of such a clas-
sification, useful even in a low symmetry case [17, 18]. The effects of lateral
confinement to the polarization anisotropy were largely studied [5, 19–22].
However, it should be pointed out that up to now only very little work has
been devoted to higher symmetries, for example C3v structures [2, 23], or
even C6v [24]. A particularity of HSH is to allow the existence of degenerate
states, related to 2D irreducible representations (irreps) [3, 25], and much
more complex eigenstate behavior under symmetry operations. In [26], the
author studied a C4v quantum wire and put in evidence the existence of an
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additional symmetry operation (leading to extra degeneracy in the spectra)
as a consequence of the separability of the potential in a model with infinite
barriers.

The electronic structure of semiconductor heterostructures are often stud-
ied in the frame of the k · p envelope function approaches [27], with at least
four bands for the valence band. In such a frame the behavior of the different
envelope functions (components of the spinorial eigenstates) under symmetry
operations illustrates our point: they are mutually coupled, which complicates
significantly their shapes. Up to now there has been very few attempts to
use an Optimal Bloch function Basis (OBB). In [17] for example the authors
tried to rely on the choice of an “Optimal Quantization Axis (OQA) direc-
tion” (a Bloch function basis which diagonalizes the component of angular
momentum in the chosen optimal direction). In fact we shall show in the
following that such a method is optimally adapted only in very low symme-
try cases like Cs structures! Moreover for a QWR with a higher symmetry
group, the previously defined OQA direction may be an improved choice only.

The use of group theory considerably simplifies the analytical treatment of
electronic and optical properties of low symmetry semiconductor heterostruc-
tures like T- and V-shaped QWRs (Cs symmetry group). Every conduction
band state is even or odd with respect to the symmetry plane and allows to
introduce irreducible representation classifications according to the symme-
try. For the valence band states, double group irreps are involved to classify
the spinorial eigenstates [17]. Finally, rigorous selection rules for the opera-
tors are obtained (e.g. forbidden transitions for the dipolar matrix elements)
and excitons as well can be labelled with respect to the symmetry [18].

Numerical computation of the eigenstates are optimized by the previous an-
alytical considerations: only one half of the spatial domain has to be used
and we solve a smaller different problem for every irrep of the group.

Since Cs is a subgroup of C3v, it would still be possible to use the previous
technique to obtain the electronic structure of the VQWRs but one should
note that:

− it is necessary to solve on the half plane whereas the minimal domain
could be smaller (numerical optimization!)

− one only obtains even/odd solutions with respect to a single symmetry
plane without classification with respect to all the C3v symmetries
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− it is not possible to find a true OQA direction which would allow to
obtain really nice symmetry properties for the components of a spinorial
problem

These problems are linked with the appearance of degenerate irreps for the
electronic states, where symmetry properties can not be found simultane-
ously with respect to every symmetry plane. In addition, we shall show that
only an improved formalism can allow more insight, and finally gives new
analytical expressions for some operators matrix elements.

In the literature, to the best of our knowledge there is no theory able to
include effects of discrete symmetry for the study of the envelope function
properties of HSH. In [28] the author proposes an interesting formalism to
calculate the band structure in the axial approximation, but for the valence
band this corresponds to partially neglect the crystal structure and approx-
imate the confinement potential by a cylinder: in their case the new contin-
uous symmetry group of the Hamiltonian is C∞ and not the point group of
the underlying bulk semiconductors.
Finally, we hope to convince the reader that, to obtain a rigorous analytical
description taking into account the microscopic crystal symmetry as well as
the macroscopic symmetry group of the heterostructure simultaneously with
optimized numerical solution for real HSH problems, we need to introduce
the new formalism developed below, which allows to obtain Maximal Sym-
metrization and Reduction for the envelope functions: the MSR formalism.

1.3 The new formalism: basic ideas

For scalar problems, like the single band k ·p spinless conduction band Hamil-
tonian, we propose a systematic Spatial Domain Reduction (SDR) technique.
The spatial domain is first decomposed in disjoint sub-domains, then one can
obtain for every irrep a different reduced Hamiltonian on the corresponding
reduced domain (only independent parameters are involved). The reduced
Hamiltonian reflects the coupling between different sub-domains and possible
non-trivial boundary conditions can be directly obtained.
With SDR there are many advantages: in particular by identifying the inde-
pendent parameters one can solve minimal optimized problems on the mini-
mal domain separately for every irrep of the group, and the different coupling
in the Hamiltonians are clearly highlighted.

For the spinorial functions (e.g. four bands k·p Luttinger Hamiltonian for the
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valence band with mixing), the basic ideas of the new formalism are three-
fold. First we explicitly separate the orbital (spatial 3D or Fourier space)
part and the spinorial part of the operators and spinorial states (where the
spinorial part is related to the Bloch function basis and not to the spin j = 1

2

of the electrons!). In particular, every spinorial component can be treated
as a scalar spinless function. Second, we choose, according to the symme-
try, the optimal fully symmetrized basis for both orbital space and spinorial
space, the Optimal Bloch function Basis (OBB), minimizing the coupling
between different spinorial components. With respect to this basis, every
envelope function can be decomposed in the simplest way with respect to
the symmetry. Third for every irrep we identify the independent parameters
(the orbital reduced domain) and apply the SDR to each scalar function to
obtain a reduced Hamiltonian.

The advantages of the new MSR formalism are manifold and have been
found to be greater than originally anticipated. Indeed, besides the pos-
sibility of performing SDR, we have found that there were many advantages
gained from the analytical point of view: first, the Hamiltonian operator
usually takes a simpler form in the adapted fully symmetrized basis. Second,
the spinorial components of eigenstates (as well as the components of any
operator in the spinorial basis) can be treated in the same way and easily
decomposed into parts, to which simple group irreps can be associated (and
for which “sub-selection rules” can be applied at an intermediate calcula-
tional level, further simplifying and enlightening the various couplings). In
this way simple analytical expressions were obtained for the operator matrix
elements, which allowed to find, for example, new analytical ratios in the po-
larization anisotropy that were previously unnoticed in the numerics. Other
weak symmetry breaking mechanisms were understood more deeply with this
technique at the analytical level. From the numerical point of view, with the
systematic SDR we found that we were able to solve the eigenvalues problem
independently for every irreps on a reduced solution domain, without the
need of caring for non-trivial boundary conditions, which however can also
be found systematically with the help of SDR.

We explicitly developed the MSR formalism with the aim of studying a C3v

VQWR (numerical resolution with a linear triangular finite elements code),
but nevertheless the new formalism is very general and can be adapted to
study other symmetry groups, heterostructure dimensionalities and even all
other nanostructures spinorial-like or vectorial-like problems, with resolution
in the real or Fourier space.
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1.4 Outline

In the next four chapters, we recall the most important theoretical and nu-
merical background concerning the heterostructures modelling. First in Ch.
2 we give a short introduction on the most important and basic group theory
concepts, essential to understand the following. In Ch. 3 bulk semiconduc-
tors, low dimensionality heterostructures and band structure calculations are
introduced. Finally, the optical properties of semiconductor heterostructures,
with the corresponding theoretical tools, are discussed in Ch. 4 and, in Ch.
5, the numerical methods are presented.
The aim of these chapters is to give a general overview and all the basic tools
necessary to understand the new MSR formalism.
For the readers mastering these basic concepts, Chs. 2-5 simply represent a
summary of most of the usual definitions and basic results needed later. In
the following chapters every non-standard or essential concept will be intro-
duced in details.

In Ch. 6, the limits of the previous methods for the high symmetry he-
terostructures are discussed in details and the basic concepts of the new
Maximal Symmetrization and Reduction formalism are presented.

In Ch. 7 the first part of the MSR formalism is presented: a systematic
Spatial Domain Reduction technique for the scalar functions.

In Ch. 8 the Maximal Symmetrization and Reduction formalism for High
Symmetry Heterostructures is developed. In Sec. 8.2 we first show how
to choose the optimal basis. In Sec. 8.3 the Spatial Domain Reduction
technique is applied to spinorial functions and in Sec. 8.4 the possible conse-
quences on matrix elements of operators and selection rules due to the new
formalism are evidenced.

In Ch. 9 the reader will find the most important analytical and numeri-
cal results of the study of a real C3v VQWR, all obtained with the help of
the new formalism. In particular, the conduction and valence band struc-
ture, as well as the eigenstates, are presented. The effects of symmetry and
classification of the eigenstates are highlighted.
The optical properties of the quantum structure are also of interest to us and
the dipolar interband transition spectra are computed at the center of zone
k = 0. Selection rules are analytically studied and some “missing transi-
tions” in the absorption spectra are identified. They are further understood
by introducing an approximate Zone Center (ZC) symmetry for the valence



1.4 Outline 7

band problem. The origin of these “missing transitions” can be explained
in a theoretical way by the introduction of a well symmetrized Hamiltonian,
with a restored D3h ZC symmetry group.
The qualitative and quantitative effects due to small symmetry breaking are
also studied. In particular, in the last part, a π-rotated structure and the
breaking of symmetry to Cs are discussed. Finally, theoretical and numer-
ical results are compared with experiment with a reasonably good agreement.

In Ch. 10, we intend to give the reader some intuitions about other symme-
try groups, and how the new formalism can be used. First the higher hexag-
onal symmetry group C6v and the approximate ZC group D3h are considered,
allowing to understand the effects of additional symmetry operations. The
pure rotation sub-groups Cn, corresponding to the important case where a
magnetic field is applied to a structure with higher symmetry, are shortly
studied (in this case every irrep is non-degenerate). Finally, as conclusion,
we apply the MSR formalism to the Cs group, showing how to make the link
with the old formalism.

In Ch. 11, a short conclusion summarizes the most important steps and
results of the proposed MSR formalism. Further applications to more com-
plicated problems (excitons or polarons for example) are also discussed.
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Chapter 2

Group theory background

In this chapter we present an introduction to the group theory. The main def-
initions and theorems essential to understand any group theory-based model
are presented and illustrated in the particular case of quantum mechanics
applications. Only standard concepts and notations are introduced in this
section (some interesting references are given in section 2.7).
In Sec. 2.5, we give an introduction on the group theory table for point group
given in the table book of Altmann [3], a powerful and indispensable tool for
people who want to apply group theory to study a physical problem.
In Sec. 2.6, explicit illustrations of the theoretical concepts defined this
chapter, and related to the symmetry properties, are presented.

2.1 Group theory: definitions and basic con-

cepts

In this section the basic concepts related to the general group theory applied
to the solid state physics are introduced. First, the concepts of group and
matrix representation of a group are mathematically defined, then some im-
portant definitions, properties and theorems related to the representations
are presented.

2.1.1 Group

A group (G, ·) is a set G = {gi}|G|i=1 of elements, where |G| is the cardinality
of the group, with a law · that has three properties:

• ∀g1, g2 ∈ G g1 ·g2 = g3 ∈ G. Then, the product of two elements belong
to the group and, for every group, one has a multiplication table.

9
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• The law has the associative property: (g1 · g2) · g3 = g1 · (g2 · g3)

• The identity E belong to the group: E ∈ G.

An equivalent expression of the third properties is that for every element, the
inverse belong to the group: ∀g ∈ G, g−1 ∈ G. In the following one simply
note g1g2 for g1 · g2.

2.1.2 Linear representation of a group: definition

The next important concept to introduce is the (linear) representations of a
group and some preliminary definitions are necessary.
First one defines a group homomorphism: (G, ·) and (H,×) are two
groups, then Φ : G → H is a group homomorphism if

∀gi, gj ∈ G , Φ(gi · gj) = Φ(gi)× Φ(gj). (2.1)

Then one says that the two group are homomorphic.
For a given group (G, ·), for every group homomorphism one obtains a homo-
morphic mapping onto a new group by considering the images with respect
to Φ: G = {gi} ⇒ H = {Φ(gi)}. In a more general way, one could associate
two or more different elements to g ∈ G: this means that the cardinality of
H can be higher with respect to the cardinality of G. This will appear clearly
in the following when one introduces the concept of double group of a group.

Finally, in the particular case if there exists a homomorphic mapping of
a group (G, ·) onto a group of non-singular d × d matrices D(g), one has
a d-dimensional (linear) representation (or matrix representation) of the
group, where the multiplication rule corresponds to the matrix multiplica-
tion.
This is an crucial point for application of group theory to quantum mechan-
ics: every element of a group can be represented by matrices and form a
homomorphic group.

2.1.3 Representation of a group: basic concepts

The concept of representation is essential to apply group theory in physics.
In this paragraph we introduce some important definitions and properties of
the matrix representation. In the last paragraph, we give a rigorous defini-
tion of matrix representation. In a more practical way, one refers to a set
of matrices D(g), representing the elements g of a symmetry group G and
satisfying the multiplication table of the group, as a d-dimensional matrix
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representation.

To give an example of matrix representation, one considers a 3D basis defined
by the vectors êx , êy , êz. By application of every element g ∈ G to the basis
(corresponding to a passive operation) one obtain a new basis ê′i. The two
basis can be related by introducing a rotation matrix ℜ = ℜ(g) ∀g ∈ G in
such a way that

ê′i =
∑

j

ℜji(g)êj (2.2)

The set of 3D matrix {ℜ(g)} satisfy the multiplication table of the group,
then forms a 3D representation of the group.

If every matrix D(g) is unitary, {D} form a unitary representation and
when one associates a different matrix D(g) to every g the representation are
called faithful. For a faithful representation, the homomorphic mapping is
a one-to-one mapping (isomorphism) and if one knows a matrix one imme-
diately identifies the corresponding element of the group.
For every non-singular matrix S (i.e. non-zero determinant ⇔ the inverse
exists), the set of matrices

{D′(g) = S−1D(g)S} (2.3)

form an equivalent representation and one notes D′ ≈ D. If one comes
back to the example of 3D representation presented above, if the êi basis
transforms like D(g), a new basis ǫ̂i +

∑
j Sjiêj transforms with an equivalent

representation {D′(g)} as given in (2.3). For every matrix representation, one
defines the characters of the representation as the traces of the matrices
and note

χ(g) = trD(g) (2.4)

Two equivalent representations have the same characters, then each repre-
sentation is characterized in a unique way by the set of numbers {χ(g)} and
corresponds to an infinite set of equivalent matrix representations. Indeed
the concept of matrix representation is strictly related to a specific choice of
the corresponding basis.
If a specific choice of basis vectors can be found in such a way that every
matrix D(g) has a block-diagonal form

D(g) =

(
D(1)(g) 0

0 D(2)(g)

)
(2.5)
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one has a reducible representation and the block-diagonal form is called
the reduced form of the representation. One formally notes

D ≈ D(1) ⊕D(2) (2.6)

and this means that the basis vectors of the first block cannot be coupled to
those of the second block by operations of the group. To give an example,
the rotation of an arbitrary basis {êx, êy, êz} are represented by 3D matrices,
but in the particular case of symmetry operation acting only in a plane, a
particular set of basis vectors with êx perpendicular to the plane and êy , êz
in the plane can be chosen (see Fig. 2.1). With respect to this basis, the
rotation matrices can be written in a 1× 2 block-diagonal form

ℜ3D =

(
1 0
0 ℜ2D

)
(2.7)

where êx in uncoupled and invariant with respect to every operation.

x

y

z

Figure 2.1: Schematic of optimal basis for 2D rotations

Finally, an irreducible representation (irrep) is a representation not
reducible: the corresponding basis vectors are mutually coupled by the sym-
metry operation with respect to every choice of basis.
For a given group, it exists an infinity of representations (from two represen-
tations a new representation can always be construct as in (2.5)), but only a
small number of irreducible representation. In the next paragraph, we intro-
duce the concept of table of characters characterizing every group G by a
list of the different irreps of the group with the corresponding characters.

2.1.4 Table of characters

Every group have only a small number of irreps, noted Γ in the following,
and every irrep is characterized by the characters χΓ(g) , ∀g ∈ G. In this
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paragraph we want to show how to construct in a simple way the character
table for a group.

First, one introduces the definition of class of a group: the elements g ∈ G
can be regrouped in disjointed subsets called (conjugacy) classes of the group.
Each class contains every mutually conjugate elements of G where g1, g2 ∈ G
are conjugated elements if exists an element g̃ ∈ G in such a way that
g2 = g̃−1g1g̃.
Every element of a class have the same character, then for a group, the num-
ber of irreps correspond to the number of class. The dimensions di of the
irreps Γi are related to the cardinality of the group h = |G|: ∑i d

2
i = h . To

give an example, for a group with six elements regrouped in three classes,
one has the dimensions d1 = 1, d2 = 1, d3 = 2.

A standard procedure to obtain characters for the irreps is presented in Bas-
sani (Ch 1) [29], but in a more practical way, in the point-group table of
Altmann [3] every information about classes and irrep can be found for every
group (more information about the Altmann tables are given in 2.5). In Sec.
2.6, some groups (Cs, C2v and C3v) are presented to illustrate the concept of
table of characters.

2.2 Application to the Schrödinger equation

In this section, one first applies group theory to a scalar Schrödinger equation
to obtain transformation laws of Hamiltonian and wave functions, then one
introduces the concept of symmetry group of an Hamiltonian and finally the
effects of symmetry and relation with irreps on the functions are presented.

2.2.1 Transformation laws

In a passive point of view, symmetry operations are computed on the basis
vectors {êi} and the new basis

ê′i =
∑

j

ℜjiêj (2.8)

is obtained by introducing a matrix ℜ. Considering a vector ~r, the compo-
nents r = (x1, x2, x3) with respect to {êi} and r′ = (x′1, x

′
2, x

′
3) with respect

to {ê′i} are related by
∑

i

xiêi =
∑

i

x′iê
′
i ⇒ r′ = ℜ−1r (2.9)
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Then a scalar function ψ(r) is described by a new mathematical function ψ′

with respect to the new basis. At a fixed point ~r, the functions have the
same value and this allows to express the new function as

ψ′(r′) = ψ(r) ⇒ ψ′(r′) = ψ(ℜr′) (2.10)

To formalize, for every passive operation g an operator ϑg−1 can be introduced
in such a way that

ψ′(r) = ϑg−1ψ(r) = ψ(ℜr) (2.11)

In the following, the prime label on r′ is omitted. Finally, with this notation,
one obtains the following transformation law for a scalar Hamiltonian H(r).

H ′(r) = ϑg−1H(r)ϑ−1
g−1 = H(ℜr) (2.12)

This transformation rule of Hamiltonians is easy understood considering that
the energy (matrix element of the Hamiltonian) is a scalar and is independent
of the choice of the basis: with the formal Dirac notation |ψ′〉 = ϑ |ψ〉, where
the index referring to the symmetry operation g is understood

E ′ = 〈ψ′|H ′ |ψ′〉 = 〈ψ|ϑ−1(ϑ︸ ︷︷ ︸
I

H ϑ−1)ϑ︸ ︷︷ ︸
I

|ψ〉 = 〈ψ|H |ψ〉 = E (2.13)

Finally, one defines the symmetry group of an Hamiltonian, as the group
G = {g} of the elements g keeping the Hamiltonian invariant

H ′(r) = H(r) (2.14)

or in a more rigorous way, the elements commuting with the Hamiltonian
[H, ϑg] = 0. For a general Hamiltonian H = − ~

2

2m
∆ + V (r), the kinetic part

is invariant with respect to every symmetry operations and the shape of the
potential is only invariant with respect to every symmetry operation of the
group.

2.2.2 Symmetry of the functions

Considering a scalar Hamiltonian H with symmetry group G, energy E and
wave functions |ψ〉 are solution of an eigenvalue problem

H |ψ〉 = E |ψ〉 (2.15)

With respect to an arbitrary symmetry operation g ∈ G, one obtains from

H |ψ′〉 = Hϑ |ψ〉 [H,ϑ]=0
= ϑH |ψ〉 (2.15)

= E |ψ′〉 (2.16)
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that the new function have the same energy E! This means that ψ′(r) belong
to the same eigen-space as ψ(r) and, for a d-degenerate eigenstate, one has
d linear independent functions ψi(r) with the same energy E forming a d-D
basis {ψi(r)}. The new functions ψ′

i(r) , i = 1, . . . d can then be decomposed
with respect to this basis by introducing matrices D(g) as

ψ′
i(r) =

∑

j

D⋆
ij(g)ψj(r) =

∑

j

Dji(g
−1)ψj(r) (2.17)

The set of matrices {D(g)} satisfy the multiplication of the group then from
a d-D representation of the group and, in particular, the d-D are irreducible
(except in the particular case of an accidental degeneracy, where the repre-
sentation can be reduced).

One obtains one of the main results of application of group theory to the
quantum mechanics: the energy levels and eigenstates of an Hamiltonian
with symmetry group G can be labelled with respect to the symmetry as

{
E = EΓ

ψ(r) = ψΓ
i (r)

(2.18)

where Γ represent the irreducible representation and i = 1, . . . , d is the part-
ner function index, labelling the different functions of the basis.
One notes that there are exactly the same transformations rules for the func-
tions (2.18) as for the êi basis vector presented above, and the matrices D(g)
depend of the choice of the basis.

A particular case is for the non-degenerate states related to a 1D irrep:
ψ′(r) and ψ(r) are simply linear dependent and the matrices correspond
to the character of the corresponding representation D(g) = χΓ(g). From
Eq. (2.10) and (2.17) one obtains the simple symmetry properties

ψ(ℜr) = χ⋆ψ(r) (2.19)

with respect to every operation g ∈ G. For the degenerate irreps, under a
symmetry operation the different basis functions are mixed

ψi(ℜr) =
∑

j

D⋆
ijψj(r) (2.20)

One always can find a function basis in which one (or more) matrix is diagonal
and obtain corresponding symmetry properties for every partner function

ψi(ℜr) = D⋆
iiψi(r) (2.21)
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but not with respect to every symmetry operation (the representation is
irreducible, then one can not diagonalize every symmetry operation at the
same time).

2.3 From single group to double group

In this section, we first quickly recall the definition of point group, then give
an introduction to the 3D rotation group SO(3) and spin group SU(2) before
introducing the concept of double group of a point group related to the spin
dependent problems. In conclusion, some important remark on the inversion
are presented.

2.3.1 The point group

In 3.1 a short introduction of the symmetry of crystal structure for the bulk
semiconductors is given. Here, one only recall that a point group is the group
composed of rotations and roto-inversions (improper rotations i.e. mirrors)
keeping invariant a given point.
In a constructive approach, matrix representations of improper operations
like σŝ, a mirror symmetry defined by its normal ŝ, can be obtained by factor
out the inversion i in such a way that σŝ = i C2(ŝ), where C2(ŝ) = R (π, ŝ)
is a π-rotation around the axis ŝ. For a 3D rotation, one obviously has the
spatial inversion ℜ (i) = −I3 corresponding to xi → −xi.

A pure rotational group is then a sub-group of the 3D rotational group SO(3)
and a more general point group, a sub-group of O(3) = SO(3) ⊗ Ci, where
Ci = {E, i} is the group of the inversion. One recalls that a sub-group H
of a group G, is a sub-set of G with the same (multiplication) law.
In the next section, one presents the SO(3) group. Three Euler Angles
parametrize every 3D rotation and allow to obtain an analytical expression
for the rotation matrices, then for every point group, one immediately obtains
the 3D representation giving the transformation rules for the basis vectors
{êi} by taking the corresponding subset of matrices.

2.3.2 The rotational SO(3) group

One defines the O(n) group as the group of the n × n orthogonal matrices
(MTM = I), where MT is the transposition of the matrix M . SO(n) is the
group of the special (|M | = 1) n × n orthogonal matrices and the SO(3)
group is isomorphic to the subgroup of the proper rotations.
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Every proper rotation can be parameterized by three Euler angles (α, β, γ)
as presented in Messiah (appendix C) [30]. By introducing the generators of
the rotation Ji one obtains an analytical expression for the matrices [30].

ℜ(αβ γ) = e−iαJze−iβJye−iγJz (2.22)

=

(
cos(α) cos(β) cos(γ)−sin(α) sin(γ) − cos(γ) sin(α)−cos(α) cos(β) sin(γ) cos(α) sin(β)
cos(β) cos(γ) sin(α)+cos(α) sin(γ) cos(α) cos(γ)−cos(β) sin(α) sin(γ) sin(α) sin(β)

− cos(γ) sin(β) sin(β) sin(γ) cos(β)

)

More information about the exponential form of the ℜ matrices can be found
in [25,31] (SO(3) is a Lie group and the generator of the rotation Ji are ele-
ments of the corresponding Lie algebra so(3): using an exponential mapping
one obtains the group elements from the algebra elements).

The 3D representation for the inversion is ℜ(i) = −I3 and by factor out
the inversion, every element of O(3) can be construct with the help of Eq.
(2.22).

2.3.3 The SU(2) group

SU(2) is the group of the special unitary (M+M = I2) 2 × 2 matrices and
correspond to the rotation matrices for a spinor j = 1

2
.

In the same way as Eq. (2.22) one obtains an explicit form for the rotation
matrices

W 1/2(α β γ) = e−iαJ
1/2
z e−iβJ

1/2
y e−iγJ

1/2
z =

(
e−

1
2 i(α+γ) cos(β

2 ) −e−
1
2 i(α−γ) sin(β

2 )
e

1
2 i(α−γ) sin(β

2 ) e
1
2 i(α+γ) cos(β

2 )

)

(2.23)
where the generators of the rotation are now related to the Pauli matrices

J1/2
x =

1

2
σx =

(
0 1

2
1
2

0

)
; J1/2

y =
1

2
σy =

(
0 − i

2
i
2

0

)
; J1/2

z =
1

2
σz =

(
1
2

0

0 − 1
2

)

(2.24)
One calls this matrices Wigner operator for j = 1

2
. There are two important

remarks concerning the SO(3) and SU(2) group:

• Both 3D ℜ and spin W matrices depend of the three Euler angles.
In other words, the 3D matrices depend on the spin matrices: ℜ =
ℜ(W 1/2).

• The rotation of 2π gives the identity for SO(3) (ℜ(2π) = I3) but
W 1/2(2π) = −I2) and a rotation of 4π have to be computed to ob-
tain the identity.
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In the next paragraphs, one justifies the expression ℜ = ℜ(W 1/2), introduce
the representation for the inversion and define the concept of double group
for the spin-dependent problems.

2.3.4 Link between SU(2) and SO(3)

The dependence between ℜ and W 1/2 matrices can be easily understood
by considering that the group SU(2) and SO(3) are homomorphic. More
precisely, a two-to-one homomorphic mapping of the group SU(2) onto the
group SO(3) exist. This means that ∀W ∈ SU(2), one has ℜ(W ) = ℜ(−W )
and the mapping can be chose so that

[ℜ(W )]ij =
1

2
tr
(
σiWσjW

−1
)

(2.25)

where σi are the Pauli matrices. In other words, to every rotation R, one
associates a 3D rotation matrix ℜ and two matrices

{
W 1/2,−W 1/2

}
for spin

j = 1/2 rotation matrices.

Considering a point group G, subgroup of pure rotation SO(3), one can
construct with Eq. (2.22) a 3D representation of the group: if g1g2 = g3 then
ℜ(g1)ℜ(g2) = ℜ(g3). In the same way, with Eq. (2.23) one constructs a set
of matrices {W (g)}, but W (g1)W (g2) = W (g3) or W (g1)W (g2) = −W (g3)
and this set of matrices do not form a representation of the group. In a rigor-
ous way, one calls a set of matrices with transformation rule W (g1)W (g2) =
ω(g1, g2)W (g3), where ω(g1, g2) is a phase term, a projective representa-
tion of the group.

2.3.5 The inversion

The symmetry operations of a point group are rotations and roto-inversion,
the next step is to introduce a matrix representationW 1/2(i) for the inversion.
First, one remarks that inversion commute with every rotation of SO(3),
then, according to the second Schur’s lemma (see Cornwell [25]), is a multiple
of the identity. Finally, it can be shown [29] that to the inversion i one can
associate W (i) = I2.

2.3.6 The double group

To restore the group property for the {W} matrices, one usually considers a

new group, the double group G̃ of G defined by

G̃ = {g, g̃ = −g} ∀ g ∈ G (2.26)
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This group has twice element and group properties is restored: W (g1)W (g2) =
W (g3) or W (g1)W (g2) = W (g̃3)

To conclude this paragraph, first one notes that G̃ is not the same group as
G and this new group contain some additional irreps. Finally:

• scalar function transform with the single group irreps

• spinorial states transform with the additional irreps of the double group

From the more practical point of view, instead of deal with g and g̃ one usually
associates W (g) or W (g̃) (arbitrary choice!) to the symmetry operation g
taking in the mind that some −1 appear in the multiplication table. In the
following, one takes the same conventions as Altmann [3] (more details are
given in Sec. 2.5) with, in particular, W (i) = +I2 for the inversion.

2.3.7 Transformation law for the “spinorial” Bloch func-

tion basis

In paragraph 2.3.4 one showed that exist a two-to-one homomorphic map-
ping of the group SU(2) onto the group SO(3) then an explicit dependence
ℜ(W 1/2) exist between 3D and spin matrices.
In 3.1.6 we will introduce the k ·p formalism to study energy band of semicon-
ductors and here we only recall that for a model describing the conduction
band involving spin of carriers, one will obtain 2 × 2 operator with respect
to a so-called Bloch function basis

∣∣1
2
,±1

2

〉
= |s〉 ⊗ |±〉 where |s〉 is a scalar

function and |±〉 is the spin j = 1
2

of the electrons.∣∣1
2
, m
〉

behaves in the same way as a state of a spin variable transforming

with the Wigner representation W 1/2 as

|j,m〉′ =
∑

n

W j
nm |j, n〉 (2.27)

but is essential to note that
∣∣1
2
, m
〉

are not spin variables but transform like
spin variables!
In a spin-dependent problem with spin-orbit coupling, one can not separate
the orbital and spinorial |±〉 part, but, and this is one of the main basic idea
of this PhD thesis, one can explicitly separate orbital and Bloch function
part. The Bloch function part is usual called spinorial part but is not related
to the spin j = 1

2
of the electron and ℜ and W 1/2 can be consider completely

independent.

In the same way, to study valence band,
∣∣3
2
, m
〉

Bloch function basis are
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involved transforming like a j = 3
2

4D spinor. In Messiah [30], analytical ex-
pression for Wigner operator for the valence band are presented and obtain

W 3/2(α β γ) =




e
1
2 i(−3α−3γ) cos3(β

2 ) −
√

3e
1
2 i(−3α−γ) cos2(β

2 ) sin(β
2 )√

3e
1
2 i(−α−3γ) cos2(β

2 ) sin(β
2 ) e

1
2 i(−α−γ)(cos3(β

2 )−2 cos(β
2 ) sin2(β

2 ))√
3e

1
2 i(α−3γ) cos(β

2 ) sin2(β
2 ) e

1
2 i(α−γ)(2 cos2(β

2 ) sin(β
2 )−sin3(β

2 ))
e

1
2 i(3α−3γ) sin3(β

2 )
√

3e
1
2 i(3α−γ) cos(β

2 ) sin2(β
2 )

√
3e

1
2 i(γ−3α) cos(β

2 ) sin2(β
2 ) −e

1
2 i(3γ−3α) sin3(β

2 )
e

1
2 i(γ−α)(sin3(β

2 )−2 cos2(β
2 ) sin(β

2 ))
√

3e
1
2 i(3γ−α) cos(β

2 ) sin2(β
2 )

e
1
2 i(α+γ)(cos3(β

2 )−2 cos(β
2 ) sin2(β

2 )) −
√

3e
1
2 i(α+3γ) cos2(β

2 ) sin(β
2 )√

3e
1
2 i(3α+γ) cos2(β

2 ) sin(β
2 ) e

1
2 i(3α+3γ) cos3(β

2 )


 (2.28)

2.3.8 Transformation law for spinorial functions

With respect to a spinorial Bloch function basis {|j,m〉}, wherem = j , . . . , −j,
eigenstates are represented by (2j + 1)-D spinorial functions as

ψ(r) = (ψj(r) , . . . , ψ−j(r))
T =

∑

m

ψm(r)|j,m > (2.29)

where every (envelope) function ψm(r) is a scalar function. For a conduction
band problem including spin, j = 1

2
and spinors have two components, for a

valence band problem, j = 3
2

and one deals with 4D spinors.
In the same as for scalar functions (2.11), one formally introduce an operator
ϑ(j) acting in the Bloch function basis space and the new spinorial state with
respect to a new basis obtained by (2.27) is given by

ψ′(r) = W−1ψ(r) (2.30)

where W = W j (the index j is omitted in the following).
Finally, for a spinorial state ψ one has two basis:

• The 3D basis {êi}, new basis is obtained with a 3D matrix ℜg1 according
to Eq. (2.8) and the new function by (2.10) by introducing an operator

ϑ
(3D)

g−1
1

• The (2j + 1)-D spinorial basis {|j,m〉}, new basis is obtained with a
(2j + 1) matrix Wg2 according to Eq. (2.27) and the new function by

(2.30) by introducing an operator ϑ
(j)

g−1
2

The two operators ϑ
(3D)

g−1
1

and ϑ
(j)

g−1
2

act in different spaces (3D space and Bloch

function (“spinorial”) space, then one can construct a total operator by ten-
sorial product as

ϑg−1
1 , g−1

2
= ϑ

(3D)

g−1
1

⊗ ϑ(j)

g−1
2

(2.31)
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In particular, one simply notes ϑg−1, g−1 = ϑg−1 . A fully transformation of a
spinorial function is given by a change of both basis and the new function is
given by

ψ′(r) = ϑg−1ψ(r) = ϑ
(3D)

g−1 ⊗ ϑ(j)

g−1ψ(r) = ϑ
(j)

g−1ψ(ℜr) = W−1ψ(ℜr) (2.32)

The general expression (2.20) giving the symmetry properties of a scalar
function can be immediately generalized to the spinorial problem and reads

ψ′
i
(r) = W−1ψ

i
(ℜr) =

∑

j

D⋆
ijψj(r) (2.33)

In the same way as in Eq. (2.12), one obtains the transformation law for the
Hamiltonian

H ′(r) = ϑg−1H(r)ϑ−1
g−1 = ϑ

(3D)
g−1 ⊗ ϑ(j)

g−1H(r)ϑ
−1 (j)
g−1 ⊗ ϑ−1 (3D)

g−1 = ϑ
(j)
g−1H(ℜr)ϑ

−1 (j)
g−1

⇒ H ′(r) = W−1H(ℜr)W (2.34)

To conclude this introduction to the transformation laws of spinorial states
and Hamiltonians, one recalls that the different components of the (2j+1)×
(2j + 1) Hamiltonian act only on the scalar (envelope) functions ψm(r) and
not on the basis vectors |j,m〉 (considered as “spin variables”): this is an
essential point because 3D space and Bloch function space are completely
independent (the total Hilbert space H⊗(2j+1) is constructed by tensorial
product from the scalar Hilbert space H ⊗ C2j+1) and allow to decompose
every operator in the form (2.31).
Finally, we note that Eqs. (2.11) and (2.32) give the transformation law for
scalar and spinorial functions respect to any new basis. Symmetry properties
(2.20) and (2.33) are valid only for symmetry operations g ∈ G

2.4 Wigner-Eckart theorem and selection rules

In this section, one introduces one of the most important theorems of group
theory: the Wigner-Eckart Theorem (WET) allowing to obtain rigorous ana-
lytical selection rules for matrix elements of operators only linked with sym-
metry properties of operators and states. To gives an example, to study
optical properties of heterostructures, one computes the dipolar matrix ele-
ments between a conduction and a valence band state and WET gives the
forbidden transition.
First, one recalls some useful definition (conjugated representation, prod-
uct of representations and irreducible set of tensorial operators) allowing to
understand the WET theorem. In section 2.6.4, an illustration of WET is
presented starting from the simple Cs group (even/odd functions).
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2.4.1 Conjugated representations

One consider the matrix representation {DΓ(g)} for a given irrep Γ of a group
G.
The set {(DΓ)

⋆
(g)} form a matrix representation of the conjugate repre-

sentation Γ⋆ of Γ: {DΓ⋆
(g)}.

Three cases are possible:

(a) Γ is a real representation: DΓ(g) = DΓ⋆
(g)

(b) Γ is a pseudoreal representation: the representations are complex but
equivalent DΓ(g) ≈ DΓ⋆

(g). One calls Γ a self-conjugated irrep

(c) Γ⋆ is not equivalent to Γ. One says that Γ and Γ⋆ are mutually con-
jugated irrep

The concept of conjugated irrep is very important in quantum mechanics.
First, in the Dirac notation a ket |ψ〉 represent a vector of an Hilbert space
H with transformation rule |ψ′

i〉 =
∑

j D
⋆
ij |ψi〉. A bra 〈ψ| is a co-vector (an

element of the dual space of the linear applications) with transformation rule
〈ψ′

i| =
∑

j Dij 〈ψi|, then transforming like the conjugated irrep.
Second, Hamiltonians are invariant with respect to an additional symmetry:
the time reversal symmetry, represented by an anti-unitary operator T . If
an eigenstate |ψ〉 transform like the Γ irrep, the function T |ψ〉 transform
with Γ⋆. Computing the conduction or valence band structure for a QWR,
the symmetry with respect to the time reversal can give some additional
degeneracy at the center of zone k = 0 (Kramers degeneracy). As presented
in Bassani [29], for the spinless eigenstates one has additional degeneracy for
the cases (b) and (c), and for the spin-dependent eigenstates for cases (a)
and (c).

2.4.2 Direct product of representations

The concept of product of representations is essential to understand WET.
The simple way to introduce this concept, is to consider two set of partner
functions: {ϕi} , i = 1, . . . dΓ1 and {φj} , j = 1, . . . dΓ2 transforming with Γ1

and, respectively, Γ2 irreps. To obtain the transformation rule of the function
product ϕiφj one considers a new basis, of dimension d = dΓ1dΓ2 , given by
every product of functions:

{ψ1 + ϕ1φ1, ψ2 + ϕ1φ2, . . . , ψd + ϕdΓ1
φdΓ2
} (2.35)
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This set of functions, transform with a new d-dimension representation noted
Γ1 ⊗ Γ2 and called the direct product representation. A matrix repre-
sentation can be explicitly constructed with the direct product of matrices
DΓ1⊗Γ2 = DΓ1 ×DΓ2 as

A× B =




A11B A12B . . .
A21B A22B . . .

...
...

. . .


 (2.36)

Two cases are conceivable:

• The direct product representation is irreducible Γ1 ⊗ Γ2 ≈ Γ3

• The direct product representation is reducible. A new basis of function
can be found block-diagonalizing the representation and one formally
notes Γ1⊗Γ2 ≈ ⊕iΓi, where i label the different irreps Γi appearing in
the reduction.

2.4.3 Irreducible set of Tensorial Operators (ITO)

One has introduced the transformation law for a function transforming with
the irrep Γ: ψΓ

i (r) =
∑

j D
Γ
ji(g

−1)ψΓ
j (r). In the same way a set of operators

{AΓ
i } with transformation rule

AΓ
i =

∑

j

DΓ
ji(g

−1)AΓ
j (2.37)

is called a set of Irreducible Tensorial Operators (ITO) transforming
with Γ.
The simples example of ITO is the Hamiltonian: H is invariant with respect
to every symmetry operation of the group, then H is an ITO transforming
with the identity irrep (1D irrep with every characters equal to 1, noted A1

in the Altmann notations [3], and existing for every group).

2.4.4 The Wigner-Eckart Theorem (WET)

Now one disposes of every definition to formulate and understand the Wigner-
Eckart Theorem (WET). The aim of the theorem is to analytically obtain
the selection rules for the matrix elements of an operator 〈ψ1|A |ψ2〉.
Label states and operator with respect to the irreps of the corresponding
symmetry group G, allow to formulate the WET:

〈
ψΓ1

1

∣∣AΓ3
∣∣ψΓ2

2

〉
= 0 ⇔ Γ1 don’t appear in the reduction of Γ3⊗Γ2 (2.38)
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The simplest way to understand the WET, is to consider the operator iden-
tity (A = I): the matrix elements simply correspond to the scalar product〈
ψΓ1

1

∣∣ ψΓ2
2

〉
= 0 if Γ1 6= Γ2 (no overlap between function with different sym-

metry).

An alternative expression of the WET is:
〈
ψΓ1

1

∣∣AΓ3
∣∣ψΓ2

2

〉
= 0 if the identity

irrep A1 do not appear in the reduction of Γ⋆1⊗Γ3⊗Γ2. The matrix elements
of the operator AΓ3 ,

〈
ψΓ1

1

∣∣AΓ3
∣∣ψΓ2

2

〉
, are scalar (simply a number) and a

scalar is always invariant with respect to every basis then belong inevitably
to the identity irrep A1.

2.5 Group theory tables

The Point-group theory table of Altmann [3] is a powerful and almost essen-
tial tool for people who want to practically apply group theory to a physical
problem: for every point-group, every important information is presented in
the corresponding tables.
In this subsection, one wants to give a short introduction to how to use and
find informations on this book (in the first part of the book a complete in-
troduction on the notations and tables in given). One presents the more
important tables, but additional tables, more complicated or not directly
necessary for this work, are too in the book (see introduction to the tables
of [3] for more informations).
In the first part a short description of the group is given (number of elements
|G|, classes |C|) and symmetry operations are separated into the correspond-
ing classes and graphically presented. In the first table parameters, the
Euler angles for every symmetry operation are given (inversion is factored
out).

2.5.1 Character table

In this table, the characters for every irrep are tabulated. One notes that
where are two different conventions for the name of the irreps: in the book of
Koster [32], the irreps are simply called Γ1 , Γ2 , Γ3, . . . and any information
on the irrep can be obtained from the name. On the other hand in Altmann
[3] some convention are made for the names.
For single group notations, one has, with eventually subscripts i = 1, 2 to
distinguish different irreps:

• A and B represent non-degenerate irreps, symmetrical and respectively
antisymmetrical with respect to the principal axis rotations
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• E doubly-degenerate irrep or a pair of non-degenerate mutually conju-
gated irreps (left superscript i = 1, 2)

• T triply-degenerate irrep

• F four-fold degenerate irrep or or a pair of doubly-degenerated mutually
conjugated irreps (left superscript i = 1, 2)

• H and I are five and six-fold-degenerate irreps

For double group, one has the same kind of notations A , . . . I but with al
half-integer subscript n/2, indicating that the corresponding representation
is spanned by spinor basis j = n/2.
Finally, for both simple and double group, additional prime and second on
every symbol represent symmetrical and antisymmetrical irreps with respect
to a horizontal symmetry plane, and additional g and u subscript represent
irrep even (gerade) or odd (ungerade) with respect to the inversion.

2.5.2 Multiplication table

For every group, one has a multiplication table g1g2 = g3. One recalls that,
for the double group, if one associates a matrix representation to every sym-
metry operation g according to some convention, g1g2 = +g3 or = −g3. In
factor table are displayed the correct factor ±1 to use.

2.5.3 Matrix representations

The matrix representation for a non-degenerate irrep simply correspond to
the character given in the corresponding table. For the degenerate irreps, in
the table Matrix representations a matrix representation is given for every
irrep. One recalls that a specific matrix representation {DΓ(g)} is related to
the choice of a set of basis functions and for another set of functions given
by the unitary transformation S, as presented above, one has an equivalent
matrix representation {S−1DΓ(g)S}.

2.5.4 Direct products of representations

In the direct product of representation table, the reduction of every
product of representation

Γ1 ⊗ Γ2 = ⊕iΓi (2.39)

is presented (intersection of the Γ1 row with the Γ2 column). For the products
Γ1⊗Γ1, the antisymmetrical part of the reduction is listed in curly brackets.
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One notes that Γ2⊗Γ1 = Γ1⊗Γ2, then only one is listed in the table. Finally,
it’s important to remark that in the product between two single group or two
double group irreps, only single group irreps are involved in the reduction!
In the same way, product of a simple with a double group irrep gives double
group irreps.

In the table Clebsch-Gordan (CG) coefficients, are presented the CG
coefficients corresponding to the linear transformation to obtain the new ba-
sis block-diagonalizing the reduction of the product Γ1 ⊗ Γ2. One recalls
that these coefficients depend on the choice of the basis functions, then for
different matrix representations one has different CG coefficients!

Finally, in the subduction (descent of symmetry) table, the effect of
a breaking of symmetry on the irreps is presented. An irrep of an higher
symmetry group usually becomes a direct product of irreps of the lower sym-
metry group.

2.6 Effects of symmetry: illustration of group

theory

In this section, one wants to use the basic group theory concepts presented
in Ch. 2 at the heterostructure level.
In the following, some group is presented in details to illustrate group theory
properties and finally the effects of high symmetry are pointed out and the
necessity to introduce a good formalism is emphasized.

2.6.1 Cs group

In this subsection, one illustrates the basic concept of group theory presented
above with a very single group: the Cs group. This group correspond to the
symmetry group of the V or T-shaped quantum wires (QWRs) and has only
two symmetry operations: the identity E and a vertical symmetry plane σ
as presented in Fig. 2.2.
For this group, one has two elements and two classes, then two 1D irreps,

noted A′ (the identity irrep, even with respect to σ) and A′′ (odd). For the
double group, four elements and four classes giving two additional mutually
conjugated 1D irreps iE1/2 as presented in 2.1. From multiplication table 2.1
(b), one can see that σσ = E, according to the character ±1 for the single
group irreps, and that σσ = −E for the double group according to character
±i!
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Figure 2.2: Schematic of a Cs V-shaped QWR

Cs E σ
A′ 1 1
A′′ 1 −1

1E1/2 1 i
2E1/2 1 −i

Cs E σ
E E σ
σ σ E

Cs E σ
E 1 1
σ 1 −1

(a) (b) (c)

Table 2.1: Character (a), multiplication (b) and factor (c) tables for Cs
group

Every irrep is 1D in Cs, then by taking the product of the characters, one
can immediately verify table 2.2. In the same way, by complex conjugation,
one immediately verifies that the iE1/2 are mutually conjugated irreps.

For the two single group irreps one obtains simply symmetry properties with
the help of expression (2.19): A′ are even and A′′ odd states with respect to
the vertical symmetry plane. In Fig. 2.3 one presents a schematic of the two
kind of solution.
The double group label for the 4D valence band spinorial states are global

labels not explicitly related to the different components. The symmetry of
spinorial states is introduced in Ch. 6 and the necessity of a new formalism
allowing to fully exploit symmetry properties is put in evidence.

Cs A′ A′′ 1E1/2
2E1/2

A′ A′ A′′ 1E1/2
2E1/2

A′′ A′ 2E1/2
1E1/2

1E1/2 A′′ A′
2E1/2 A′′

Table 2.2: Direct product of representation table for Cs group
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(a) (a)

Figure 2.3: Schematic of even (a) and odd (b) functions for a Cs V-shaped
QWR

2.6.2 C2v group

With respect to the Cs group presented in the last subsection, a C2v struc-
ture has two orthogonal vertical symmetry plane σx, σy in addition to the
identity (E) and rotation of π (C2) as presented in Fig. 2.4. For the single

y

yyyyyyyyyyx

Figure 2.4: Schematic of a C2v QWR

group one has four 1D irreps (A1, A2, B1, B2) and for the double group one
has an additional 2D irrep (see Tab. 2.3) For the scalar functions, nothing
more complicated that for the Cs case appear: one simply has four 1D irrep
corresponding to the four schematics presented in Fig. 2.5.

2.6.3 C3v group

The triangular C3v group display more higher symmetry with respect to C2v:
elements of the group are the identity (E), three vertical symmetry planes
σvi and two rotation of ±2

3
π C±

3 (see Fig 2.6 for a schematic).

In Ch. 9, the new formalism is explicitly applied to the study of C3v

QWRs self-formed at the center of pyramidal QDs. In this subsection, one
only presents the more important tables, very useful for the following, and
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C2v E C2 σx σy
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1
E1/2 2 0 0 0

Cs E C2 σx σy
E E C2 σx σy
C2 C2 E σy σx
σx σx σy E C2

σy σy σx C2 E

Cs E C2 σx σy
E 1 1 1 1
C2 1 −1 1 −1
σx 1 −1 −1 1
σy 1 1 −1 −1

(a) (b) (c)

Table 2.3: Character (a), multiplication (b) and factor (c) tables for C2v

group

y

yyyyyyyyyyx

y

yyyyyyyyyyx

(a) (b)
y

yyyyyyyyyyx

y

yyyyyyyyyyx

(c) (d)

Figure 2.5: Schematic of A1 (a), A2 (b), B1 (c) and B2 (d) functions for a
C2v QWR

σ
v1

σ
v2σ

v3

Figure 2.6: Schematic of a C3v QWR
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illustrate the different symmetries with the help of a schematic.

As presented in Tab. 2.4, even for the single group a degenerate irrep ap-
pear (in addition to two non-degenerates irreps) because in C3v there are six
elements regrouped in three classes: C3v =

{
(E), (C+

3 , C
−
3 ), (σv1, σv2, σv3)

}
.

One recalls that elements of a same class have the same character because
are mutually conjugated elements. How presented in Eqs. (2.20)-(2.21), for
the 2D irrep one can not diagonalize every matrix at the same time, then
one does not obtain simple symmetry properties for every operations. In
particular, from multiplication table 2.4, one obtains that [σvi, σvj ] 6= 0, then
two symmetry plane do not commute and corresponding matrices cannot by
diagonalized at the same time.
The matrix representation {DE(g)}

DE(E) =

(
1 0
0 1

)
DE(C+

3 ) =

(
−1

2
−

√
3

2√
3

2
−1

2

)

DE(C−
3 ) =

(
−1

2

√
3

2

−
√

3
2
−1

2

)
DE(σv1) =

(
1 0
0 −1

)

DE(σv2) =

(
−1

2
−

√
3

2

−
√

3
2

1
2

)
DE(σv3) =

(
−1

2

√
3

2√
3

2
1
2

)
(2.40)

it is those explicitly used in the analytical developments of Chs. 7 8 and 9.
As presented in Fig. 2.7, a particular and interesting choice consist to diago-
nalize σv1. Eigenvalues are ±1 according to a zero trace (character is 0) and
determinant −1 (improper rotation), then the first and second partner func-
tions of E, noted (E, i) , i = 1, 2, are respectively even and odd with respect
to σv1 vertical symmetry plane. We recall that the two partner functions for
E are closely dependent (see Eq. (2.17)) and in Ch. 9 we present a plot,
obtained from numerical resolution, of real partner functions satisfying Eq.
(2.17).
In the following one will introduce a novel formalism to study high symmetry
structures (Ch. 8) and a Spatial Domain Reduction (SDR) technique (Ch.
7) is developed allowing to obtain a minimal domain of resolution for every
irrep.
Another interesting choice for the matrix representation are those proposed

by Altmann: rotations are diagonal and mirrors anti-diagonal. This equiva-
lent representation do not mix different partner functions, but the matrices
are complex and real and imaginary part are mixed by symmetry opera-
tion (phase terms are involved). One wants to compute, for the conduction
band, a single band problem without spin. This problem is real, then is not
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C3v E C±
3 σvi

A1 1 1 1
A2 1 1 −1
E 2 −1 0
E1/2 2 1 0
1E3/2 1 −1 i
2E3/2 1 −1 −i

(a)

C3v A1 A2 E E1/2
1E3/2

2E3/2

A1 A1 A2 E E1/2
1E3/2

2E3/2

A2 A1 E E1/2
2E3/2

1E3/2

E A1 ⊕ {A2} ⊕E E1/2 ⊕ 1E3/2 ⊕ 2E3/2 E1/2 E1/2

E1/2 {A1} ⊕ A2 ⊕ E E E
1E3/2 A2 A1
2E3/2 A2

(b)

C3v E C+
3 C−

3 σv1 σv2 σv3
E E C+

3 C−
3 σv1 σv2 σv3

C+
3 C+

3 C−
3 E σv3 σv1 σv2

C−
3 C−

3 E C+
3 σv2 σv3 σv1

σv1 σv1 σv2 σv3 E C+
3 C−

3

σv2 σv2 σv3 σv1 C−
3 E C+

3

σv3 σv3 σv1 σv2 C+
3 C−

3 E

C3v E C+
3 C−

3 σv1 σv2 σv3
E 1 1 1 1 1 1
C+

3 1 −1 1 −1 −1 −1
C−

3 1 1 −1 −1 −1 −1
σv1 1 −1 −1 −1 1 1
σv2 1 −1 −1 1 −1 1
σv3 1 −1 −1 1 1 −1

(c) (d)

Table 2.4: Character (a), direct product of irreps (b), multiplication (c) and
factor (d) tables for C3v group
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(a) (b)

(c) (d)

Figure 2.7: Schematic of A1 function (a), A2 function (b), E partner function
1 (c) and E partner function 2 (d) for a C3v QWR

interesting for us to deal with complex matrices!

2.6.4 Illustration of the WET

In subsection 2.4 one has introduced the WET (2.38). Starting from the
single group Cs is very easy to understand this theorem only basing on sym-
metry considerations. By computing two generalizations one immediately
obtains the theorem for every group.
The functions given in Fig. 2.3 are even (A′) and odd (A′′) with respect to
the symmetry plane, then the scalar product

〈
ψA

′∣∣ ψA′′〉
= 0 because there

are no overlap between the functions.

• First generalization: for every group
〈
ψΓ1
i

∣∣ φΓ2
j

〉
=
〈
ψΓ1
i

∣∣ φΓ1
i

〉
δΓ1,Γ2δi,j,

then there are no overlap between two function with different symme-
try (different irrep or same irrep but different partner function). For
C3v (see Fig. 2.7) is easy to check that A1 and (E, 1) are even and
A2 and (E, 2) are odd with respect to σv1 (Cs is a subgroup of C3v!).
The zero overlap between Ai and (E, i) is not visual, but can be easily
verified numerically.
This result can be demonstrated analytically using transformation law
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for the functions (2.17) and the orthogonality theorem for matrix rep-
resentations ∑

g

DΓ1
ij (g)⋆DΓ2

kl (g) =
|G|
dΓ1

δΓ1,Γ2δi,jδk,l (2.41)

• Second generalization: for Cs, if
〈
ψA

′∣∣ ψA′′〉
= 0, then for every even

operator ϑA
′
one has

〈
ψA

′∣∣ϑA′ ∣∣ψA′′〉
= 0 because ϑA

′
don’t change the

parity of
∣∣ψA′′〉

. In the same way, for an odd operator
〈
ψA

′∣∣ϑA′′ ∣∣ψA′′〉 6=
0 because ϑA

′′ ∣∣ψA′′〉
is an even function.

If one comes back to the direct product of representation table 2.2, one
has A′ ⊗ A′′ ≈ A′′ and A′′ ⊗ A′′ ≈ A′

Finally, with the two generalizations, for every group
〈
ψΓ1

1

∣∣ϑΓ3
∣∣ψΓ2

2

〉
= 0 if

Γ1 don’t appear in the reduction of Γ3 ⊗ Γ2

2.7 References

Many interesting books are devoted to the application of group theory to
the quantum mechanics. To give a first specific reference, I recommend the
book of Cornwell [25]: in three volumes, is a very general and complete
introduction of group theory and applications to the physics. Some other
general references are the books of Inui [33], Lax [34], Bir-Pikus [35], Heine
[36] or Wigner [37].
In addition to these general books, some useful books have to be recom-
mended. First, Bassani [29] gives group-theory approach to solid state prob-
lems. Second, the Altmann [3] point group tables form a powerful (essential!)
tool for anyone who need to deal with point groups. Most notably in the
first part a very useful introduction to group theory is given. Finally, the
appendices of Messiah [30,38] constitute a very concise introduction to group
theory. In particular, useful analytical expressions to construct the Wigner
representations are given.
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Chapter 3

Band structure and
heterostructures

3.1 Bulk semiconductors

In this section we recall some essentials of the crystalline structure of bulk
semiconductors. The symmetry properties of the microscopic atomic struc-
ture have indeed crucial effects on the band structure and considerably sim-
plify the theoretical description of crystals:

• translation symmetry allows to introduce the Bloch theorem (by factor-
ing out in wave functions periodic functions with respect to the crystal
structure)

• rotations (and roto-inversions) allow to introduce in a rigorous way
effective mass Hamiltonians taking into account the symmetry of the
crystal.

3.1.1 The crystalline structure

An ideal crystal is formed by a 3 dimensional periodic array of identical
building blocks and every block, called basis, is formed by a an atom or a
group of atoms. In addition to the basis, one has to introduce three primitive
translation vectors ai (the Bravais lattice) in such a way that the atomic
arrangement in the crystal look the same in the points r and r′ = r+

∑
i niai

where ni are arbitrary integers. A crystal structure is finally defined by
adding a basis and a Bravais lattice.
Two interesting example are the diamond and zinc-blende structures. The
space Bravais lattice for the diamond is face-centred cubic (fcc) (see Fig. 3.1

35
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(a)) and the primitive basis structure has two identical atoms at (0 0 0) and
(a

4
a
4
a
4
) where a is the lattice parameter. The diamond structure, presented

in Fig. 3.1 (b), can be seen as two fcc structures displaced from each other
by a

4
of cube diagonal. The zinc-blende structure is similar to the diamond

structure, but the two fcc structure are composed of different atoms (Fig. 3.1
(c)). The more important difference between these two structures, is that
zinc-blende is no more invariant with respect to the inversion, but this break-
ing of symmetry has only a small effect on the band structure. To simplify
the analytical calculations of electronic eigenstates, zinc-blende structure like
GaAs semiconductors are often modeled assuming a diamond structure. The

(a) (b) (c)

Figure 3.1: Schematic of a fcc lattice (a) and the diamond (b) and zinc-
blende (c) structures

more general symmetry operation keeping the crystal invariant are given by
the product of a translation τ and a rotation (or roto-inversion) g. One for-
mally notes this operation {τ |g}. A pure non-translation operation is simply
noted g = {0|g} and a pure translation τ = {τ |E} where E is the identity
rotation. The set of pure rotational symmetry operations g with respect to
a fixed point is called point group.
To conclude, is interesting to note that the operation corresponding to the
inversion and keeping invariant the diamond structure, is not a pure spatial
inversion i = {0|i} but the spatial inversion followed by a translation: i =
{f|i}, where f =

(
a
4
, a

4
, a

4

)
.

3.1.2 Translational symmetry and Bloch theorem

A crystal is invariant with respect to the pure translation τn =
∑

i niai. For
a non-infinite crystal, with dimensions Niai , i = 1, 2, 3 where Ni ≫ 1 ∈ N

and ai the norms of the primitive lattice vectors ai, one introduces cyclic
boundary conditions τN1,0,0 = τ0,N2,0 = τ0,0,N3 = 0 to neglect the breaking of
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symmetry induced by the surfaces.
Taking into account every primitive translation, one obtains a a finite N =
ΠiNi-dimensional abelian (commutative) translation group F . The τn trans-
lation can be represented by the character

χm1,m2,m3(n1, n2, n3) = e−ikτn where k =
∑

i

mi

Ni
hi (3.1)

The hi = 2π
aj∧ak

ai·aj∧ak
are the primitive reciprocal lattice vectors satisfying the

condition hi · aj = 2πδij and the mi ∈ [0, . . . Ni − 1] , i = 1, 2, 3 label the
irreducible representation.
In the following, one only considers k in the first brillouin Zone (BZ), ob-
tained by bisecting the reciprocal lattice with perpendicular planes (and cor-
responding to the Wigner-Seitz cell for the reciprocal space).
From transformation law for scalar functions

ϑτ−1
n

ψ(r) =

{
χ⋆m1,m2,m3

(n1, n2, n3)ψ(r) = eikτnψ(r)
ψ(ℜτnr) = ψ(r + τn)

(3.2)

one obtains the transformation rules with respect to a translation. This
expression can be rewritten as

ψ(r + τn)e−ik(r+τn) = ψ(r)e−ikr
+ uk(r) (3.3)

where uk(r) is a function with the periodicity of the crystal. Finally one
obtains

ψ(r) = uk(r)e
ikr (3.4)

corresponding to a rigorous group-theory based approach to obtain the well-
know Bloch theorem. A simple way to illustrate this theorem is to consider
an electron moving in a mean field potential V (r) generated by the atomic
periodic structure of the crystal. The electronic wave function correspond to
a periodic function uk(r) modulated by plane wave eikr (slow variation part)
as presented in Fig. 3.2, where the zeros of the periodic function correspond
to the positions of the atoms.

3.1.3 Energy bands in a crystal

An effect of interaction between an electronic wave function and the periodic
potential of the crystal is that energy band and band gap appear. The sim-
plest way to understand the creation of bands is to consider the tight-binding
method (molecular bonding theory).
For two independent identical atoms the energy level are exactly the same,



38 Band structure and heterostructures

Figure 3.2: Schematic of Bloch decomposition of an electronic wave function

but when one approach the atoms (interaction) there are splitting of de-
generacy: bonding, always lower in energy, and anti-bonding orbitals are
generated by hybridization (see Fishman [39] for more details). A schematic
is presented in Fig. 3.3 for a A−A molecule, where A is an arbitrary atom.
If one considers an element of the column IV, the orbitals involved are S and
P . Two cases are conceivable: PB is higher with respect to SAB (a) and PB
is partially filled then conduction of carriers is possible and one has a metal,
PB is lower with respect to SAB (b) and PB is completely filled (SAB empty)
then conduction of carriers is not possible and one has an insulator.
A semiconductor is a particular kind of insulator with a small (≈ 1eV ) energy
gap between PB (corresponding to the the valence band) and SAB (conduc-
tion band): it is easy to excite (e.g. with a photon) a valence band electron
to the conduction band obtaining two partially filled bands.
By considering a crystal as set of atoms, due to the splitting of energy lev-
els one obtains some quasi-continuum of states corresponding to the energy
bands, possibly separated by energy gaps where any electronic state can be
found. An alternative interpretation can be found considering electrons in

S

P

S

P

SB

SAB

PB

PAB

S

P

S

P

SB

SAB

PB

PAB

(a) (b)

Figure 3.3: Schematic of A − A hybridization model: (a) metal and (b)
insulator
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the weak periodic potential approximation. With this approach one obtains
quadratic dispersion with respect to k energy bands and energy gaps are re-
lated to electronic wave functions with k = π

ai
diffracted by the crystal and

not transmitted.

3.1.4 The AlxGa1−xAs semiconductors

In the following we are interested to study III-V AlxGa1−xAs semiconductor-
based heterostructures: Al and Ga are elements of column III and As of
column V. In Fig. 3.4 the electronic band structures for the entire first
Brillouin Zone (BZ) for GaAs and AlAs, as well as for Si and Ge, bulk
semiconductor are presented and some particular high symmetry points are
highlighted (Γ , X , . . . ).

Figure 3.4: Band structure for the first BZ of Si, Ge, GaAs and AlAs [40]

With the aim to compute the optical properties of heterostructures, one needs
to obtain an analytical description of the Γ point, corresponding to the center
of the BZ (i.e. k = 0), where AlxGa1−xAs is a direct gap semiconductor
(minimum of the upper band and maximum of lower band are at the same
k) for small values of Al concentration (around x = 0.45).
More theoretical methods are available and in the following one explicitly
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focuses on the Kane k · p theory allowing to obtain simple effective mass
Hamiltonian near to the zone center k = 0 point.

3.1.5 Point groups and related definitions

In this part, one gives some group theory definitions needed to introduce the
concept of point group.
First, one recalls that the crystal is invariant with respect to some symmetry
operation {τ |g} where g is the rotational part (rotation or roto-inversion)
and τ a translation. Translational part has the form τ = ai + f where ai is
a primitive translation vector and f a fractional translation. In {τ |g}, one
first applies rotational part, then translational part. By defining the law
{τ2|g2}{τ1|g} = {τ2 + g2τ1 + τ2|g2g1}, the set of symmetry operation keeping
the crystal unchanged form a group: the space group of the crystal.
Neglecting the translational parts, the rotational part of the space group still
form a group: the point group of the lattice. Only 32 point groups are
possible because of the limitations imposed by the translational symmetry.
For the reciprocal space, one defines the symmetry operations Rk which leave
a vector k in the first BZ invariant modulo h

Rkk = k + h (3.5)

This operations form the small point group of k. Finally, the group of k,
called little group of k is formed by the operations {τ |Rk}. For a general
k point, only the identity satisfy expression (3.5), but for some special point
(the Γ , X , . . . points presented in Fig. 3.4) additional symmetry operations
appear. The more particular and, for us, very interesting, is the Γ point
corresponding to k = 0: any translation appear and the small point coincides
with the point group of the crystal!

3.1.6 The k · p approximation

The k · p formalism, very useful tool to obtain effective mass Hamiltonians
near to the Γ point (center of the first BZ k = 0), was developed by Badeen
and Seitz. Finally Shokley, Dresselhaus and Kane extended the theory to the
actual form and Luttinger and Kohn [41] obtain in a rigorous way effective
mass equations.
In the following one presents a simplified approach (see Rosencher [42,43] for
more details) to obtain effective mass Hamiltonians.
In the first part, of this subsection, one presents the theory neglecting spin
of electrons. The limit of this approximation for study the valence band
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is emphasized and finally the k · p theory for a spin-dependent problem is
discussed.

Spinless problem

We consider a scalar (spinless) crystal Hamiltonian

H0 =
P 2

2m
+ V (r) (3.6)

for an electron moving in a periodic potential V (r) describing the structure of
the crystal. According to the Bloch theorem one formally notes an eigenstate

|ψn,k〉 = eikr |Un,k〉 (3.7)

solution of the eigenproblem

H0 |ψn,k〉 = En,k |ψn,k〉 (3.8)

where n ∈ N label the energy levels.
First supposing one know the solutions |Un,0〉 at k = 0 and related to the
energy En,0 and corresponding to the function at the top or bottom of the
bands at Γ point (in the following, the index k = 0 is omitted if any confusion
is possible). One assumes that {|Un〉} form a complete basis and that for
every k near to 0 one can develop |Un,k〉 on the basis

|Un,k〉 =
∑

m

Cn,m |Un〉 (3.9)

where Cn,m = Cn,m(k).
Second, one explicitly uses the decomposition (3.7) in Eq. (3.8) to obtain

{
H0 +

~2k2

2m
+

~

m
k · p

}
|Un,k〉 = E |Un,k〉 ⇔ Hk·p |Un,k〉 = E |Un,k〉 (3.10)

by eliminating the exponential term. One note that for k = 0 we obtains
again H0 |Un〉 = E |Un〉
Finally, one explicitly introduces the development (3.9) in Eq. (3.10) and
projects on 〈UN | to obtain, for every N , the scalar equation

Cn,N

(
En +

~
2k2

2m
− E

)
+
∑

m

Cn,m
~k

m
PN,m = 0 (3.11)
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where one used

〈UN |H0 +
~2k2

2m
|Um〉 =

(
EN +

~2k2

2m

)
δN,m

〈UN |p |Um〉 + PN,m (3.12)

Up to now, no restriction of the dimension of the basis {|Un〉} was made. In
principle, the cardinality of the basis is infinite, but the method consist to
use only some mutually strong coupled bands and to take into account the
eliminated band as a perturbation. Then, one defines two sets: M are the
bands taken into account and M ′ the eliminated bands. This choice only
depends on the physical problem at hand and on the accuracy needed. Eq.
(3.11) can be rewritten as

Cn,N

(
En +

~2k2

2m
− E

)
+
∑

m∈M
Cn,m

~k

m
PN,m +

∑

m′∈M ′

Cn,m′
~k

m
PN,m′ = 0

(3.13)
For N = N ′ ∈ M ′, in Eq. (3.13) the last term can be neglected and one
obtains an expression for the coefficients Cn,N ′ (where the quadratic term in
k was also neglected):

Cn,N ′ =

∑
m∈M Cn,m

~k
m
PN ′,m

E −En
(3.14)

Finally, one inserts this expression in the equation for the relevant band
(3.13) and one obtains, for all N ∈M

Cn,N

(
En +

~
2k2

2m
− E

)
+
∑

m∈M
Cn,m

(
~k

m
PN,m +

~
2k2

m2

∑

m′∈M ′

PN,m′Pm′,N

)
= 0

(3.15)
The last set of |M | equations, can be rewritten as an |M |×|M | linear matrix
problem HC = EC where C is the vector with the coefficients. Only |M |
variable appear, but an infinite sum on m′ ∈M ′ still appear, and one has to
know every basis function |Un〉 to analytically calculate the Pm,n matrix ele-
ments. Nevertheless with group theory analysis of the Pm,n matrix elements,
a minimum number of independent parameter can be identified (effective
masses, Luttinger parameter, ...) and appear in the equations. These essen-
tial parameters are usually obtained by fitting experimental data.

A number of multiband k · p model are commonly used to compute the band
structure of semiconductor or heterostructures. By increasing the number
of bands, a bigger part of the BZ can be described with more accuracy, but
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at a numerical cost proportional to the CPU time and the required memory.
To give an example we present a four band model where the |S〉 represent
the conduction band function and |iX〉 , |iY 〉 , |iZ〉 the three fold degenerate
valence band functions (at k = 0, without spin). Every band is obviously
twice degenerate due to te spin of electrons.
One obtains the 4× 4 Hamiltonian

H=




|S〉 |iX〉 |iY 〉 |iZ〉
Ec + ~

2k2

2m0
+ γck

2 PKx PKy PKz

Ev + ~2k2

2m0
+ Lk2

x

+M
(
k2
y + k2

z

) Nkxky Nkxkz

Ev + ~
2k2

2m0
+ Lk2

y

+M (k2
z + k2

x)
Nkykz

C.C.
Ev + ~

2k2

2m0
+ Lk2

z

+M
(
k2
x + k2

y

)




(3.16)
where P = ~

m0
〈S|Pα |iα〉 , α = X, Y, Z is the Kane parameter, representing

the coupling between conduction and valence band. L , M , N are indepen-
dent parameters (see [44] for more details). A schematic of the band structure
obtained with this model is presented in Fig. 3.5 (a).
The effect of the eliminated bands is crucial for a correct description of the
band structure. Neglecting the correction due to the eliminate bands (the
last term Hamiltonian (3.13)), correspond to the replacement (γ → 1 , L→
0 , M → 0 , N → 0 in Hamiltonian (3.16)). In the corresponding band
structure presented in Fig. 3.5 (b), one can see a wrong curvature for the
|iX〉 , |iY 〉 bands.

To conclude, if one neglects the coupling between conduction and valence
band (P → 0), the Hamiltonian (3.16) breaks down to a scalar Hamiltonian
describing the conduction band and a 3×3 block describing the valence band.
A simple band spinless scalar Hamiltonian is sufficient to obtain conduction
states

En(k) = E0 +
~2k2

2m⋆
(3.17)

however for a correct description of the valence band the inclusion of the spin
is essential: the spin-orbit coupling split the six fold degenerate (including
spin) |iα〉 at k = 0 to a four fold degenerate valence band and a two fold
degenerate split-off band.
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(a) (b)

Figure 3.5: Schematic of band structure near k = 0 with a spinless k · p
model: with (a) and without (b) influence of eliminated bands

Model with Spin

In a spinless model, one started with the scalar Hamiltonian (3.6). The
necessary procedure to obtain an Hamiltonian including the spin, is to use
the relativistic Dirac equation for the electrons (for more details see Rose [45]
or Bassani [29]). By decoupling strong and weak components of the Dirac
spinor, in the non-relativistic approximation one obtains

H0 =
P 2

2m
+ V (r) +Hso (3.18)

Hso +
~

4m2c2
(∇V ∧ p) · σ

where σ are the Pauli matrices [30].
Hso couples two components of the Dirac spinor and its origin is the inter-
action of the electron spin magnetic moment with the magnetic field “seen”
by the electron.
The additional Hso gives two additional terms in the k · p Hamiltonian pre-
sented in Eq. (3.10):

Hso e
ikr |Un,k〉 = eikr

(
Hso +

~2

4m2c2
(∇V ∧ k) · σ

)
|Un,k〉 (3.19)
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The first additional term can be incorporated in the potential by defining
Ṽ = V +Hso and for the second one defines

π = p +
~

4mc2
σ ∧∇V (3.20)

One obtains an expression for the k ·p Hamiltonian with identical form as the
equation presented in (3.10) for the spinless problem and one applies the same
procedure to obtain effective mass Hamiltonian (Pn,m are simply replaced by
πn,m, matrix elements of the new potential). The four band spinless problem
correspond to a eight bands problem when one includes spin:

|S〉 → |S〉 ⊗ |+〉 , |S〉 ⊗ |−〉
|iα〉 → |iα〉 ⊗ |+〉 , |iα〉 ⊗ |−〉 (3.21)

However the Hamiltonian at k = 0 is no more the same and correspond-
ing eigenstates can be formally written as linear combination of the eight
functions introduced above. These functions are eigenstates of the total mo-
mentum operators J2 and Jm and one formally notes these functions

∣∣ 1
2
, m
〉

for the conduction band (2D),
∣∣3
2
, m
〉

for valence band (4D) and
∣∣7
2
, m
〉

for
split-off band (2D). In figure 3.6 one presents a schematic of band structure.

Figure 3.6: Schematic of band structure near k = 0 with a k · p model
including spin-orbit coupling

In the following, we shall use a four band model (Luttinger Hamiltonian) to
describe the valence band: the conduction and split-off bands are sufficiently
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well separated by the energy gaps Eg and ∆so to couple weakly to the valence
band in the region of interest. In the Luttinger Hamiltonian

HL = − ~2

m0




p+ q −s r 0
−s+ p− q 0 r
r+ 0 p− q s
0 r+ s+ p+ q


 (3.22)

the p, q, r, s operators depend on the choice of the corresponding {
∣∣3
2
, m
〉
}

basis (orientation of the crystal in an active point of view) and are quadratic
polynomial in k. The effective mass m⋆ in the conduction band is replaced
by three Luttinger parameters γi. The Luttinger Hamiltonian describe bulk
semiconductors with diamond structure, but in AlGaAs semiconductors, with
zinc-blende crystal structure, the lack of inversion symmetry has only a small
effect on the electronic states so that we can stay with the Luttinger Hamil-
tonian. A real zinc-blende Hamiltonian would include some linear terms in
k related to the lack of inversion symmetry [46].

To conclude, it is important to note that the Luttinger Hamiltonian de-
pends on the microscopic crystal structure of the bulk semiconductor [41].
Luttinger also developed an other phenomenological approach [47] solely
based on group theory to obtain the general form of the Hamiltonian for
diamond group.
With the help of the theory of the invariants [35], the Hamiltonian (3.22)
can be expressed in the equivalent way

HL =
∑

i

αif
Γi,1

i (kx, ky, kz)g
Γi,2

i (Jx, Jy, Jz) (3.23)

where f and g are polynomial functions depending only on the vector k and,
respectively, the Ji matrices. These functions transform like the Γi,1 and Γi,2
irreps and the reduction of Γi,1 ⊗ Γi,2 has to include the identity according
to an invariant theory. The αi constants correspond to the independent
parameters appearing in the Hamiltonian.
The ki depend on the choice of the 3D basis {êi} and the Ji matrices on
the Bloch function basis {

∣∣3
2
, m
〉
}. Finally, for êx = [100], êy = [010], êz =

[001] and a quantization axis oriented in the êz direction one obtains the
Hamiltonian

HL = − ~
2

m0

{
1

2
(γ1 +

5

2
γ2)k

2 − γ2

∑

i

k2
i J

2
i − γe

∑

	

kikj(JiJj + JjJi)

}

(3.24)
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where
∑

	
is the cyclic sum.

This Hamiltonian is the same as the one presented in Eq. (3.22), with the
quadratic polynomials

p = kx
γ1

2
kx + ky

γ1

2
ky + kz

γ1

2
kz

q = kx
γ2

2
kx + ky

γ2

2
ky − kzγ2kz (3.25)

r = −kx
√

3γ2

2
kx + ky

√
3γ2

2
ky +

{
kx
i
√

3γ3

2
ky + ky

i
√

3γ3

2
kx

}

s =

{
kx

√
3γ3

2
kz + kz

√
3γ3

2
kx

}
−
{
ky
i
√

3γ3

2
kz + kz

i
√

3γ3

2
ky

}

3.2 Discussion about the inversion

Representation of the inversion is a problematic generally not treated in the
literature. In particular, which is the symmetry properties of Bloch functions
with respect to the inversion?
In our case, we ignore the inversion symmetry breaking of GaAs (Td sym-
metry group of zinc-Blende structure), then the top valence band states of
GaAs are very well represented by four functions transforming like the part-
ner functions of a 4D irrep of the diamond group Oh. We formally note the
basis function

∣∣3
2
, m
〉
, where m = 3

2
, 1

2
,−1

2
,−3

2
as

∣∣∣∣
3

2
,±3

2

〉
= ± 1√

2
(|X〉 ± i |Y 〉)⊗ |±〉 (3.26)

∣∣∣∣
3

2
,±1

2

〉
= ± 1√

6
(|X〉 ± i |Y 〉)⊗ |∓〉 −

√
2

3
|Z〉 ⊗ |±〉

We can assume, without loss of generality [29], that spinors |+〉 and |−〉 are
even with respect to the inversion as presented in 2.3.5. Considering that
spatially-dependent functions |X〉 , |Y 〉 , |Z〉 are too symmetric with respect
to the inversion the Bloch function basis transform like the gerade 4D irrep
F3/2,g of the diamond group Oh. The basis is then even respect the inversion
and we have W 3/2(i) = I4.
On the other hand, if we consider the spin of electrons, the corresponding
2D Bloch function basis

∣∣∣∣
1

2
,±1

2

〉
= |S〉 ⊗ |±〉 (3.27)
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for the conduction band model is odd with respect to the inversion (|S〉 is
an odd function).
The j = 1/2 basis transform like the ungerade irrepE1/2,u ofOh andW 1/2(i) =
−I2.

To conclude this discussion about the inversion, it is important to note that
the real symmetry operation leaving the diamond structure invariant with
respect to the inversion is {i|τ}, where {0|τ} correspond to a translation of
a
4
(1, 1, 1), indeed the diamond structure is composed of two face-centred cubic

structures displaced of a
4
(1, 1, 1), with a the length of the cell. In a more con-

structive approach, the electronic wave functions for bulk semi-conductors
can be calculated including the translational part τ of the inversion as pre-
sented in [48]. However, the spatial dependence of the envelope functions
is not related to the crystalline structure but to the heterostructure and for
study the optical properties we are only interested on the inter-band transi-
tions. In this case, any modification is introduced with respect to the tradi-
tional functions and in the following we still formally note |S〉 , |X〉 , |Y 〉 , |Z〉
the corresponding electronic functions.

3.3 Low dimensional semiconductor hetero-

structures

In Sec. 3.1 we have described the basics of the crystal structure for bulk
semiconductors leading to k · p theory. In such an approach the electronic
wave functions in a crystal (3.4) are decomposed in a periodic part (micro-
scopic periodicity of the crystal) uk(r) modulated by a plane wave eik·r.
Let us now see how one create quantum confinement of the carriers by
“gluing” together different crystals with similar lattice constants and band
structure: the so-called heterostructures. Indeed bulk semiconductors
with compatible crystal structure and lattice spacing can be grown on top of
each other during epitaxial growth allowing even almost perfectly abrupt
interfaces. In a theoretical model, abrupt interfaces are represented by step-
functions, constant in every region with an infinite derivative at the level of
the junction.

There are three types of possible heterojunction between two bulk semi-
conductors as presented in Fig. 3.7, where the energy gaps between the
corresponding conduction and valence band for material i = 1, 2 are called
E

(i)
g . The AlxGa1−xAs heterostructures considered in this thesis correspond
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to type I heterojunctions and display very similar band structures (the band
structures of AlAs and GaAs are presented in Fig. 3.4 (c) and (d)).

1 2
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1 2
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1
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(a) (b) (c)

Figure 3.7: Schematic of type I (a), type II (b) and type III (c)

The heterostructures presented up to now have planar geometry, and in the
case of quantum confinement of the carriers they are called Quantum Wells
(QWs) and display quantum confinement in one direction. To obtain this
kind of quantum confinement of the carriers, one has to wait until the end of
1960’s, when novel epitaxial grown techniques appear and open the way to
the fabrication of high quality low dimensional structures and still nowadays,
QWs are commonly used in semiconductor lasers [49].
About fifteen years later, the improvement of fabrication techniques allow
to obtain quantum structures with additional confinement: two dimensional
confined Quantum Wires [50] and three dimensional confined Quantum Dots
(see [51] and its references for more details).

A quantum confinement along d directions correspond to a 3− d dimensions
free motion of the carriers and the wave vector k can always be separated
into two contributions: k = k⊥+k‖, where k‖ correspond to the wave vectors
for the free motion and k⊥ to the confined direction. For every dimension-
ality, the density of states (DOS) ρdD(E), corresponding to the number of
quantum states per unit energy available around a given energy E, has a
behavior completely different. For a direct gap bulk semiconductor (macro-
scopical 3D crystal without confinement, as presented in Fig. 3.8 (a), the
DOS is proportional to

ρ3D(E) ∼
√
E − Eg (3.28)

where Eg correspond to the energy at k = 0 (see Fig. 3.8 (b)).

In the following, we quickly present the three different kind of low dimension-
ality heterostructures (3.3.1-3.3.3) and finally in 3.3.4 an example of complex
connected structure coupling different dimensionality structures.
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Energy

DOS

(a) (b)

Figure 3.8: Schematic of a 3D bulk semiconductor (a) with the corresponding
DOS behavior (b)

3.3.1 2D Quantum Wells (QWs)

The Quantum Wells (QWs) are heterostructures with confinement with re-
spect to one dimension, corresponding to free motion of the carrier in 2D
as presented in Fig. 3.9 (a). The thickness of the QW is of the order of
magnitude of 10nm. Respect to the macroscopical size of the bulk semicon-
ductors, this mesoscopic dimension allow to obtain quantum effects due to
the confinement of carriers. The DOS is a step function

ρ2D(E) ∼
∑

n

Θ(E −En) (3.29)

where Θ is the Heaviside function, n labelling the different energy bands and
En correspond to the energy at k = 0.
The physics of QWs was a subject of very extensive research during fifteen

years (1975-1990). With respect to the bulk semiconductors, QWs have a
sharper density of states and are very useful in the fabrication of quantum
devices like lasers.

3.3.2 1D Quantum Wires (QWRs)

Compared to QWs, Quantum Wires (QWRs) have an additional confinement
with respect to a second direction (see Fig. 3.10 (a)). Due to the transla-
tional symmetry with respect to the non-confined direction, the shape of any
section is the same and strongly depend on the crystal structure of the bulk
semiconductors and on the growth direction. To give a few examples, for Al-
GaAs heterostructures one can obtain V-shaped QWRs or triangular QWRs
oriented, respectively, along the crystallographic direction [11̄0] and [111]. It
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(a) (b)

Figure 3.9: Schematic of a 2D Quantum Well (a) with the corresponding
DOS behavior (b)

is important to note that for an infinite heterostructure (translational sym-
metry) the mesoscopic symmetry of the heterostructure is D3h = C3v ⊗ Cs
because the structure is invariant with respect to an horizontal symmetry
plane σh. From the microscopic point of view, the symmetry group of the
full structure, corresponding to the small point group of the vector k intro-
duced in the Ch. 2, only display the C3v symmetry operations.
For the heterostructure invariant with respect to σh, +k and −k are related
by this additional symmetry operation and at the center of the Brillouin Zone
(BZ) k→ (k0 = 0)← −k and one obtains the so-called Zone Center (ZC)
symmetry group [17].
Finally, a QWR has a typical DOS corresponding to

ρ1D(E) ∼
∑

n

1√
E −En

(3.30)

and display a so called Van-Hove singularities at the band edge (see Fig. 3.10
(b)).
Application of QWRs to quantum devices allow to obtain improved lasers
with higher optical gain, low threshold currents and reduced temperature
sensitivity (see [52] and its references for more details).

3.3.3 0D Quantum Dots (QDs)

The Quantum Dots (QDs) are 0D structures because any free motion of
the carriers is possible as presented in Fig. 3.11 (a). The QDs are often
considered as artificial atoms, where the attractive positive atomic nucleus
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Energy

DOS

(a) (b)

Figure 3.10: Schematic of a 1D Quantum Wire (a) with the corresponding
DOS behavior (b)

is replaced by the 3D confining potential. The density of states

ρ0D(E) ∼
∑

n

δ(E − En) (3.31)

(see 3.11 (b)) simply represent discrete energy levels in the QD.
In addition to a reduced lasing threshold current and temperature stability,
the emission energies of a QDs can tuned in a broad range allowing to develop
a new generation kind of lasers (see [51] and its references).

Energy

DOS

(a) (b)

Figure 3.11: Schematic of a 0D Quantum Dot (a) with the corresponding
DOS behavior (b)

3.3.4 Complex connected structures

In the last subsections one has introduced separately the different dimen-
sionality heterostructures (QWs, QWRs, QDs). More complexes structures,
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involving different dimensionality can be fabricated. Some of them can be
very complicated. For example the AlGaAs pyramidal QDs grown in our lab-
oratory have a very rich environment where the dot is connected to lateral
(L) and vertical (V) QWRs and QWs as presented in Fig. 3.12.

VQWs

QDQD

LQWRs

LQWs

(a)                                                       (b)  

VQWR

Figure 3.12: Schematic of a AlGaAs pyramidal QD with connected structures
(a) and top view (b)

The theoretical and numerical modelling of this kind of structures is quite
difficult because it is necessary to model 1D and 2D structures simultaneously
and a brute-force approach is necessary to compute the whole structure in a
superbox.

3.4 Electronic properties of semiconductor het-

erostructures

In order to study the electronic structure of semiconductor heterostructures
many techniques have been developed (e.g. the tight binding, the orthogo-
nalized plane wave, the pseudopotential, the cellular, the Green’s function,
the quantum defect or the k · p methods) [29]. A method which is very
widespread is the envelope function approach based on the k · p theory.

In a first part, we shall quickly presents the historical approach [27] where one
starts from the bulk semiconductor effective mass Hamiltonian and builds an
heterostructure Hamiltonian with an empirical procedure. However, it is not
unique and one takes care only on the hermiticity.
In a second part, we shall introduce the exact envelope function theory of
Burt which is a better procedure allowing to solve all the methodological
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questions of the previous approach and lead to new physics, in particular at
the interfaces.
Finally, in the last part we shall present the conduction and valence band
Hamiltonian used in the rest of this thesis.

3.4.1 The envelope function approximation: historical
approach

The standard procedures to obtain effective mass Hamiltonians for hetero-
structures consists to separate slow and fast varying part of the electronic
wave functions, as had been done previously for example for magnetic field.
In short, it is enough to replace in the bulk effective mass equations obtained
in Sec. 3.1 the wave vector by derivative applying only on slowing varying
envelope functions and introducing heterostructure dependent functions:

• k = k‖ + k⊥ → k‖− i∇⊥: the wave vector components in the confined
directions (⊥ directions) are replaced by differential operators.

• Cnm → Cnm(r⊥): the coefficients of the development of the basis func-
tions become spatially-dependent with respect to the confined regions.

• E0 → V (r⊥): the energies at the top (bottom) of the bands are replaced
by the heterostructure potential.

• m⋆ → m⋆(r⊥): effectives masses depend on the position

To gives an example, one presents in the next two subsections the envelope
function Hamiltonians for the conduction (spinless single) band and four
band with valence band mixing (VBM) Luttinger Hamiltonian used in the
following.

3.4.2 The conduction band Hamiltonian

Eq. (3.17) represent the quadratic dispersion for the conduction band energy
of a bulk semiconductor. With the replacement rules presented above, one
obtains the Hamiltonian for the conduction band of an heterostructure

H(r⊥,k‖) = −∇⊥
~2

2m⋆(r⊥)
∇⊥ +

~2k2
‖

2m⋆(r⊥)
+ Vc(r⊥) (3.32)

where k‖ appear as parameter and Vc(r⊥) is the conduction band potential
for the heterostructure (step function with the bulk value of the correspond-
ing region). One notes that the symmetric form ∇⊥

~
2

2m⋆(r⊥)
∇⊥ ensure that

the Hamiltonian is an hermitian operator as well as the continuity of the
eigenstates.
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3.4.3 The valence band Hamiltonian

For a bulk semiconductor, the valence band with mixing and spin-orbit cou-
pling was described by the 4× 4 quadratic Hamiltonian

H(r⊥,k‖) = HL(r⊥,k‖) + I4Vv(r⊥) (3.33)

where HL(r,k) is the Luttinger matrix given by Eq. (3.22).
With the replacement rules, one obtains the Hamiltonian for an heterostruc-
ture. The potential term is diagonal (proportional to the identity matrix I4

in our particular case) and p, q, r, s operators are quadratic in ki. For bulk
semiconductor, one has p =

∑3
i,j=1 Pijkikj (and the same for q, r, s). For an

heterostructure the Pij are spatially-dependent and one needs to symmetrize
as presented in

p =
∑

i

kiPii(r⊥)ki +
∑

i6=j

1

2
(kiPij(r⊥)kj + kjPji(r⊥)ki) (3.34)

The last step is to replace ki → −i ∂
∂xi

for the confined directions. The
Pij, . . . , Sij coefficient depend on the choice of 3D basis and Bloch function
basis. In the literature are often presented the coefficient for a [001] or, in a
more general way, [hhk] quantization axis direction (see [53] for example).
The procedure is to start with correct coefficients and choose an optimal
basis. The simple procedure to obtain the new coefficients with respect to
the new basis, based on the Eq. (2.34), will be presented in details in the
following (Ch. 8).

3.4.4 The exact envelope function formalism

The initial point of the Burt exact envelope function formalism is the ini-
tial Schrödinger equation with the Hamiltonian H = − ~2

2m0
∆ + V (r), where

V (r) is the microscopic potential. The exact derivation of the effective mass
equations for the heterostructures have more advantages:

• It is a rigorous mathematical development

• One can obtain an explicit estimation of the neglected terms

• The symmetrization of the kinetic term appear naturally.

The technical development is very similar to those presented for the bulk
semiconductors k ·p formalism, but in the exact envelope function formalism
there are subtle differences concerning the starting point: in k · p formal-
ism one chooses as complete basis the {Un,0} functions, corresponding to the
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functions at the top or bottom of every band energy of the bulk semiconduc-
tor, and one assumes that these functions are the same in every region of the
heterostructure.
In the new formalism, the starting point is more general: one assumes that
the crystal has the same periodicity in every region of the heterostructure
and one chooses an (arbitrary!) complete basis {Un(r)}, simply noted {|Un〉}
in the Dirac notation, with the crystal periodicity. In the last step of the new
envelope function formalism, one will introduce again top or bottom of bands
functions, to obtain again the effective mass equations, but the formalism is
more general!

Every wave function ψ(r) can be developed on the complete basis |Un〉. One
notes Fn(r) the (unique and exact!) coefficients of the development and call
them the envelope functions

|ψ〉 =
∑

n

F (r) |Un〉 (3.35)

Let us formulate the eigenvalues problem H |ψ〉 = E |ψ〉, where H is the
Hamiltonian presented below, and develop on the basis functions to obtain,
for every n, ∑

m

HnmFm = EFn (3.36)

where Hnm are the matrix elements. One recalls that |Un〉 functions have the
periodicity of the crystal, then the matrix elements are defined by taking the
integrals over a unit cell (volume Vc)

Hnm = 〈Un|H |Um〉 =
1

Vc

∫

cell

U⋆
n(r)HUm(r)dr (3.37)

If one formally notes H = T + V , where T is the kinetic part, one has two
term to decompose on the basis: T |ψ〉 and V |ψ〉. The first one is very simple
to calculate, but for the second one needs to introduce some approximation
as presented in the following.

Kinetic term T |ψ〉
For a kinetic term T = − ~2

2m0
∆, with the decomposition (3.35) one simply

obtains

T |ψ〉 = − ~2

2m0

∑

n

{(∆Fn(r)) |Un〉+ 2 (∇Fn(r)) · (∇ |Un〉) + Fn(r) (∆ |Un〉)}

(3.38)
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By introducing the closure relation I =
∑

m |Um〉 〈Um| and the matrix ele-
ments

P nm = 〈Un|p |Um〉 = 〈Un|
~

i
∇ |Um〉

Tnm = 〈Un|T |Um〉 = 〈Un| −
~2

2m0
∆ |Um〉 (3.39)

one finally obtains

Tψ =
∑

n

(
− ~2

2m0
∆Fn(r)−

i~

m0

∑

m

pnm · ∇Fm(r) +
∑

m

TnmFm(r)
)
|Un〉

(3.40)
corresponding to the envelope function expansion of T on the basis.

Potential term V |ψ〉
The expansion of the potential is more complicated with respect to the kinetic
part. The reason is that the heterostructure potential does not have the
crystal periodicity as |Un〉, then the Fourier transform of the potential contain
every wave vector k+G, where k is vector in the first BZ and G a vector of
the reciprocal space.
With some tedious manipulations, presented in details in appendix 2 of Burt’s
article [54], one obtains

V ψ =
∑

n

[∑

m

∫
Vnm(r, r′)Fm(r′) dr′

]
|Un〉 (3.41)

where Vnm(r, r′), expressed as function of the Fourier components of the
potential and the basis vectors, is defined by

Vnm(r, r′) =
1

Vc

∑

kk′

∑

GG′

U∗
n,G+G1

Vk,G−G′Um,G′ ei(k1r−k′r′) (3.42)

where

k + k′ = k1 + G1 (3.43)

The effect of the non-periodicity of the heterostructure potential with respect
to the crystal structure give rise to a non-local expressions of the potential
Vnm(r, r′).

One recalls that Fourier decomposition of the basis vectors and envelope
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functions give

|Un〉 =
∑

G

Un,G |G〉

|Fn〉 =
∑

k

Fn,k |k〉 (3.44)

where G is a reciprocal vector and k is only in the first BZ.
To simplify the expression (3.42) for the potential, one makes the essential
assumption that envelope functions are slowly varying functions: this means
that only small values of the wave vector k are involved in the Fourier de-
compositions. From expression (3.43) one obtains that for small values of k
and k′, k+k′ still is in the first BZ and then G1 = 0. With this assumption,
one can rewrite the non-local potential as

V (loc)
nm (r, r′) = Vnm(r)∆(r− r′) (3.45)

where

∆(r− r′) +
1

Vc

∑

k

eik(r−r′) (3.46)

is the plane wave expansion of the delta functions restricted to the wave vec-
tors in the first BZ.
The expression (3.41) can then be reduced in the slowly varying approxima-
tion in the local expression

V ψ =
∑

n

[∑

m

∫
V (loc)
nm (r, r′)Fm(r′) dr′

]
|Un〉 =

∑

n

[∑

m

Vnm(r)Fm(r)
]
|Un〉

(3.47)
One notes that a local potential V (r) can always be separated in two part:

Vnm(r, r′) = V (loc)
nm (r, r′) + V (non−loc)

nm (r, r′) (3.48)

and, as presented in appendix 3 of [54], far from any interface, the non-local
part of the potential vanishes without making any approximation, therefore
the non-local part is non-zero only in the region of an interface.
In the following, one wants to do a last simplification to the potential: one
neglects the potential details at the interfaces. This correspond to consider a
potential

V (r) =
∑

i

θ(i)(r)V (i)(r) (3.49)

where θ(i)(r) is 1 in the region (i) and 0 elsewhere. This assumption allow to
approximate the local part of the potential in Eq. (3.47) by

Vnm(r) =
∑

i

θ(i)(r)V (i)
nm (3.50)
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neglecting small corrections due to the interfaces, where V
(i)
nm are constant

only depending on the bulk parameters, and the spatial dependance θ(i)(r)
only depend on the region of the heterostructure.

Envelope function equations

Finally, from Eqs. (3.40) and (3.47) one obtains rigorously the envelope
function equations

H |ψ〉 = E |ψ〉 ⇒ (3.51)

− ~2

2m0
∆Fn(r)−

i~

m0

∑

m

pnm · ∇Fm(r) +
∑

m

Hnm(r)Fm(r) = EFn(r) ∀n

valid in the assumption of slowly varying envelope functions and neglecting
interface details. where Pnm and Hnm(r) = Tnm + Vnm(r) take the local bulk
semiconductor value.

Effective mass equations

The envelope function equations (3.51) are valid for every basis {|Un〉} with
the periodicity of the crystal. To obtain effective mass equation, one first
makes a particular choice of basis, according to the standard envelope func-
tion formalism, by choosing eigenstates of the bulk semiconductor at k = 0,
with the assumption of same functions in every region of the heterostructure.
Second, according to the heterostructure dimensionality, one considers enve-
lope functions as

Fn(r) = eik‖r‖fn,k⊥(r⊥) (3.52)

and, finally, by eliminating the non-relevant bands (details are given in Burt’s
paper [54]), one obtains exactly the sames effective mass Hamiltonian pre-
sented above.
In the same way as for the k ·p Hamiltonians, to take into account spin-orbit
coupling one replaces p by π

3.4.5 Interface terms

As presented in the last subsection, one considers abrupt interfaces for the
heterostructure and completely neglect the microscopic details at the jonc-
tions.
The effects of these interface terms, the so-called Burt-Foreman terms, are
very small and add any additional theoretical or numerical difficulties (linear
term in k, corresponding to some new bulk parameters, are added to the
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quadratic polinomial p, q, r, s). For more details, see Foreman paper [55].
Finally, in the paper of Ram-Mohan [56], the author proposes a Lagrangian
formulation of the valence band structure, allowing to derive in an elegant
way the interface boundary conditions.

3.5 References

Good general introductions to the crystal structure are given, for exam-
ple, in the book of Kittel [57, 58] or Ashcroft [59]. In Bassani [29], a more
symmetry-based approach of the crystal structure is presented (discussion on
the inversion for the diamond structure, Bloch theorem justification).
For an introduction to the bulk semiconductors and low dimensional systems
as well as to the resolution methods to obtain the band structure, in par-
ticular the k · p method, some interesting book are the Rosencher [42, 43],
Bastard [27], Bassani [29], Davies [40], Harrison [60], Fishman [39] and
Vasko [61]. Finally, the PhD work (in french) of Fabienne Michelini [44]
was devoted to the multiband k · p methods.



Chapter 4

Optical properties of
semiconductor heterostructures

In this chapter we introduce the study of the optical properties of hetero-
structures by calculating the absorption spectra for interband transitions in
the dipolar approximation. In the second part, one introduces the concept
of exciton, bound state of a conduction and valence band state in Coulomb
interaction.

4.1 Absorption spectra

An interband transition, e.g. excitation from the valence band to the con-
duction band, can be induced by an incident plane wave, described by the
electric field

E = E0 cos(ωt− q · r)ǫ (4.1)

where q is the wave vector and ǫ the polarization. With Coulomb gauge
∇A = 0 one has the vector potential

A =
E0

2ωi

(
ei(q·r−ωt) − c.c.

)
ǫ (4.2)

In the Hamiltonian describing an electron, the effect of electric field can be
simply taken into account by a the transformation p→ p+eA to the electron
Hamiltonian H0 = H(A = 0):

H =
(P + eA)2

2m0
+ V (r) = H0 +

e

2m0
{p,A}+

e2A2

m0
(4.3)

In the linear absorption approximation, we only take into account the linear
term in A. Considering that with this choice of the gauge [A,p] = 0 one
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obtains the Hamiltonian

H = H0 +
e

m0

p ·A (4.4)

The interaction with light p · A can be considered as a time dependent
perturbation W (t) of the electronic Hamiltonian H0. Using standard time-
dependent approach, it is possible to obtain the probability of transition
Pif(t) between the initial state |i〉 and final state |f〉, where ωif =

Ei−Ef

~
.

Pif(t) =
1

~2

∣∣∣∣
∫ t

0

eiωfit
′ 〈i|W (t′) |f〉 dt′

∣∣∣∣
2

=
1

~2

(
eE0

2m0ω

)2 ∣∣〈i| eiq·rǫ · p |f〉
∣∣2
∣∣∣∣
∫ t

0

ei(ωfi−ω)t′dt′
∣∣∣∣
2

(4.5)

One calls
Mǫ,if + 〈i| eiq·rǫ · p |f〉 (4.6)

the optical matrix element.
One defines the density of transition probability

Pif + lim
t→∞

d

dt
Pif(t) (4.7)

and by introducing the definition of the Dirac function limt→∞
sinxt
x

= πδ(x)
one obtains

Pif =
2π

~

(
eE0

2m0ω

)2

|Mǫ,if |2 δ(Ef −Ei − ~ω) (4.8)

corresponding to the Fermi gold rule ensuring the energy conservation. Fi-
nally, one defines the probability of absorption of a photon γ by time unit
allowing the transition from a valence band to a conduction band by P (ω) =∑

i,j

∫
dkPijf(ǫi)(1 − f(ǫf )), where f(ǫ) represent the occupation of energy

levels. Assuming that initial energy level is full (f(ǫi) = 1) and final level
empty (f(ǫf) = 0), one obtains

P (ω) =
∑

i,j

∫
dkPij =

∑

i,j

∫
dk

2π

~

(
eE0

2m0ω

)2

|Mǫ,if |2 δ(Ef −Ei−~ω) (4.9)

The absorption α(ω) is simply proportional to the probability of absorption
(see [27] for the details)

α(ω) ∼ P (ω) (4.10)
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The last step is to evaluate the optical matrix elements Mǫ,if . Considering
only small values of the wave vector q (eiq·r ∼= 1, electric dipole approxima-
tion) and supposing slowly varying envelope functions F (i)(r) and F (f)(r),
for interband transitions one obtains

Mǫ,if =
∑

nm

〈
F (i)
n

∣∣ F (f)
m

〉
〈Un| ǫ · p |Um〉 (4.11)

The first term,
〈
F

(i)
n

∣∣∣ F (f)
m

〉
, is the spatial overlap between envelope functions

and the second,

Pǫ, nm + 〈Un| ǫ · p |Um〉 (4.12)

is called the Kane matrix.
To conclude this section, one notes that one nevertheless uses the concept
of dipolar-approximation even if one includes the spin-orbit coupling (p is
replaced by π).

4.2 Excitons

In this section one presents a model taking into account the Coulomb in-
teraction between a conduction band state and a valence band state (hole).
Without the electron-hole interaction, the energy Eγ of a photon necessary
to excite a valence band state to a conduction band state (or in a equivalent
way, to form a pair electron-hole with corresponding energies Ee and Eh) is
Eγ = ~ω = Ee − Eh. With the Coulomb interaction, a bound state e − h is
formed (center of mass and relative variables can be introduced to describe
the exciton) then, taking account of the energy due to the coulomb interac-
tion of the pair electron-hole, the energy of the photon will be smaller with
respect to Ee − Eh.

A simple way to formulate the excitonic problem, is to obtain separately the
electronic states |ψei 〉 , i = 1, . . . , Ne and hole states

∣∣ψhj
〉
, j = 1, . . . , Nh,

then construct tensorial product states
∣∣ψeiψhj

〉
+ |ψei 〉 ⊗

∣∣ψhj
〉

and define
excitonic states as

∣∣ψX
〉

=
∑

ij

Cij
∣∣ψeiψhj

〉
(4.13)
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The corresponding Hamiltonian can be constructed from the electronic and
hole Hamiltonian by adding Coulomb interaction as

HX = He ⊗ Ih + Ie ⊗Hh + Vcoul(re, rh)

Vcoul(re, rh) = − e2

4πǫ|re − rh|
Ie ⊗ Ih (4.14)

where Vcoul(re, rh) is the coulomb potential.

By introducing the elements of the Coulomb matrix

V i′j′

ij +
〈
ψei′ψ

h
j′
∣∣Vcoul

∣∣ψeiψhj
〉

(4.15)

and the electronic and hole energies Ee
i , E

h
j one transforms the eigenvalues

problem to a set of linear equations

HX
∣∣ψX

〉
= EX

∣∣ψX
〉
⇔ (Ee

i′ − Eh
j′)Ci′j′ +

∑

ij

V i′j′

ij Cij = EXCi′j′ ∀i′, j′

(4.16)
The only difficulty is to simplify the matrix elements of the Coulomb poten-
tial. Finally, by solving the matrix problem one obtains the excitonic energy
EX and the coefficient Cij of the development.

4.3 References

More information about the optical properties of the semiconductors and
heterostructures can be found in the books of Rosencher [42,43], Bastard [29],
Haug and Koch [62], Vasko [61], Harrison [60], Glutsch [63] and in the PhD
work of Fabienne Michelini [44].
Finally, excitons in triangular QWRs were studied in the frame of the Master
thesis, under our supervision, of Jérôme Comte and additional information
about the computational method can be found in the report [64].



Chapter 5

Numerical methods

The Finite Elements Methods (FEM) is a powerful mathematical formalism
allowing to transform a set of coupled partial differential equations to a gen-
eralized matrix eigenproblem, perfectly adapted in the aim of a numerical
resolution.
The basic idea of the method is to decompose the spatial domain into small
finite domains (meshing). To every node i of the mesh one associates a ba-
sis function |i〉 with value one on the node and zero on every other. An
eigenstate |ψ〉 solution of H |ψ〉 = E |ψ〉 can be approximated by the decom-
position on the basis functions

∑
i ψi |i〉. Finally, the coefficient ψi will be

solution of the matrix eigenvalue problem

Kψ = EMψ (5.1)

where the stiffness matrix K and mass matrix M represent the Hamiltonian
and the overlap of basis functions with respect to the basis: Kij = 〈i|H |j〉
and M = 〈i| j〉.

In this chapter, we quickly present the general theory of finite elements,
then we introduce the particular case of linear functions on 2D triangular
elements used in the following and show how to obtain stiffness and mass
matrices from the basis functions and Hamiltonian introducing the very use-
ful concept of master element (isoparametric element).
In the last part we introduce the numerical libraries used for numerical res-
olution of the linear problem.
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5.1 The Finite Elements Method (FEM): gen-

eral theory

5.1.1 Introduction to the physical problem

The FEM are very general methods well adapted to study 1D, 2D and 3D
problems. In the following, one explicitly illustrates the method in the frame
of the resolution of a 2D eigenvalues problem

H |ψ〉 = E |ψ〉 (5.2)

where H is a second order differential operator and ψ(r) ∈ H = L2(R2)
is an element of the Hilbert space H, solution of Eq. (5.2) on the domain
Ω ⊂ R

2 with boundary conditions∇⊥ψ(∂Ω) = 0 (normal derivative zero, cor-
responding to Neumann conditions). One notes that in our physical problem
Ω correspond to the convergence domain, to be chosen enough big to ensure
convergence of eigenstates, allowing to solve the problem on Ω considering
that the eigenstate is analytically zero outside. In this case, one could choose
Dirichlet boundary condition ψ(∂Ω) = 0.
To gives an example, the eigenstates of a QWR surrounded by a bulk semi-
conductor are localized in the wire and decreasing exponentially to zero out-
side (tunnel effect due to finite barriers). The FEM formalism is more general
and can be used to solve non-zero derivative boundary conditions or bound-
ary conditions on the function (in particular Dirichlet conditions).
An alternative useful technique to impose ψ(∂Ω) = 0 consisting to construct
the mass and stiffness matrices with Neumann conditions and eliminating the
nodes corresponding to the boundary (eigenfunction is supposed to be zero!)
at the time of the numerical resolution of the problem. Another method
to force the value of a function to zero on a node, is the so-called penalty
method and consisting to modify the final stiffness matrix obtained with the
zero derivative boundary conditions by replacing the Kii element by a very
big element forcing the solution to converge to zero.
Finally, one has chosen to construct the matrices for Neumann conditions,
and eventually apply in a second step Dirichlet conditions without modify
the construction of the matrices. These techniques only impose an additional
assumption on the eigenstates: every function with ψ(∂Ω) = 0 have too zero
derivative. This is not restrictive considering exponential decreasing of the
eigenstates!
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5.1.2 Weak formulation

The first step in the FEM formulation, is the weak formulation of the prob-
lem: one chooses a set H of smooth test functions satisfying the boundary
conditions. One obtains a variational statement of the problem (5.2) by
multiplying the equation by v ∈ H and integrating on Ω as in

∫
dΩ(H − E)ψv = 0 (5.3)

This correspond to the weak formulation because the differential equation is
satisfied in the sense of weighted average (for every test function v).
In the standard formulation (5.2) of the problem, one assumed that ψ satisfy
the equation in every point of Ω and that ψ, ψ′, ψ′′ are well defined. This
is a strong assumption and not always satisfied. To give an example, for a
second order differential equation with point-source Lψ(r) = δ(r), the second
derivative ψ′′ is not well defined. In the weak formulation, the equation
become

∫
dΩLψ(r)v(r) =

∫
dΩδ(r)v(r) = v(0): the right-hand side is now

well defined (v is a smooth function). Computing by part integration, only
first order ψ′ appear in the equation.

5.1.3 Galerkin approximation

The H space of test functions v is an infinite dimension space (to give an
example, by computing the Fourier decomposition of the function, an infinity
of eik·r basis functions are involved). The Galerkin approximation consist to
approximate v ∈ H by vN ∈ HN , where HN is N-dimensional space. Let
be êi , i = 1, . . . , N a basis of HN allowing to decompose the approximate
function as vN =

∑
i viêi. In the same way, if one finds an approximate

solution ψN =
∑

i ψiêi of ψ one obtains the Galerkin approximation of (5.3)

∫
dΩ(H − E)ψNvN =

∑

i

vi

{
∑

j

ψj

(∫
dΩêiHêj − E

∫
dΩêiêj

)}
= 0

(5.4)
Expression (5.3) stand for every vN ∈ HN then for every vi one has expression

∑

j

ψj

(∫
dΩêiHêj

︸ ︷︷ ︸
Hij

−E
∫
dΩêiEêj

)

︸ ︷︷ ︸
Mij

= 0⇔
∑

j

Hijψj = E
∑

j

Mijψj ∀i

(5.5)
Finally one obtains the N ×N linear matrix problem

Kψ = EMψ (5.6)
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The matrix K and M are called stiffness and mass matrices and represent,
respectively, the Hamiltonian with respect to the N-dimensional basis and
the non-orthogonality of the basis.

5.2 FEM: computation of matrix elements

In the following one explicitly illustrates the computation of the matrix ele-
ments Hij for a scalar quadratic Hamiltonian

H =
∑

α,β

∂αfα,β(r)∂β +
∑

α

(fα(r)∂α + ∂αfα(r)) + f(r) (5.7)

where ∂α are partial derivatives with respect to xα and the f•(r) are arbitrary
functions. By computing part integrations, one can rewrite using boundary
conditions

∫
dΩêi∂α (fα,β(r)∂β êj) = −

∫
dΩ (∂αêi) fα,β(r) (∂β êj)

∫
dΩêi∂α (fα(r)êj) = −

∫
dΩ (∂αêi) fα(r)êj (5.8)

Then the partial derivative in the Hamiltonian H , only acts on the basis
vectors êi. To explicitly compute the stiffness matrix K and mass matrix M ,
one has to choose an analytical expression for the basis vectors and compute
the integrations.

5.2.1 Meshing and basis function

In the following one wants to solve on a triangular domain Ω, then one
chooses a regular symmetric meshing with triangular elements respecting
the geometry of the problem as presented in Fig. 5.1 (the reason will appear
clear in the following Ch. 7). One explicitly chooses first order (linear) basis
functions êi: for every node i, the function êi is a pyramid with value 1 on
i and 0 on the neighbor. The 2D basis functions are a generalization of the
well know linear hat-functions of the 1D case (see Fig. 5.2). The analytical
form of the basis functions is know, then a priori one can explicitly calculate
every Hij and Mij elements, but for every node one has a different expression
to calculate because the shape of the elements is not the same (already with
our regular mesh but in particular for a non-regular meshing!).
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Figure 5.1: Schematic of the triangular mesh

i i+1i-1

êi êi+1êi-1

Figure 5.2: Schematic of 1D hat-functions

5.2.2 The master (isoparametric) element

To compute only one time the integrations, one introduces the concept of
master element (isoparametric element) Ω̂: in every element appear three
sides (planes), one of every function related to a corner of the element. For ev-
ery element one introduces a change of variable, translation and deformation
of the shape of the element, to the master element x = x(η, µ) , y = y(η, µ),
where the master element is presented in Fig. 5.3. The corresponding planes
have a very simple form π1(η, µ) = 1− η−µ , π2(η, µ) = µ , π3(η, µ) = η and
integrals are computed once in the master elements, then with the transfor-
mation of variables one expresses the value for the specific element (details
of the technique and explicit equations are given in any book of FEM, for
example Becker [65] or Ram-Mohan [66]).
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η

μ

(0,1)

(0,0) (1,0)

Figure 5.3: Master element for 2D triangular elements

5.2.3 Gauss-Legendre integration

In the master element one has three kind of integration to compute (where
f(r) is an arbitrary function):

(1)
∫
dΩ̂êif(r)êj

(2)
∫
dΩ̂êif(r) (∂β êj)

(3)
∫
dΩ̂ (∂αêi) f(r) (∂β êj)

The first assumption is that finite element are enough small to consider
f(r) ∼= const in every element. Finally, êi is a linear basis vector, then êiêj
is a second order polynomial (êi(∂β êj) and (∂αêi)(∂β êj) are respectively first
order polynomial and constant expression). A second order polynomial can
be calculated in an exact way with a third order Gauss-Legendre integration

∫∫
dΩ̂ g(r) =

∫ 1

η=0

∫ 1−η

µ=0

dηdµg(η, µ) =

3∑

i=1

pig(ηi, µi) (5.9)

where (ηi, µi) = {(1
6
, 1

6
), (1

6
, 2

3
), (2

3
, 1

6
)} are the Gauss points and pi = {1

6
, 1

6
, 1

6
}

are the weights.

5.3 Numerical computation and resolution of

the linear problem

In the last sections 5.1 and 5.2 one has introduced the basic concepts of the
finite elements computations (finite elements basis, master element, stiffness
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and mass matrices, Gauss-Legendre integration) allowing to transform a dif-
ferential equation H |ψ〉 = E |ψ〉 in a linear matrix equation Kψ = EMψ.
The last step is to compute a (numerical) resolution of the linear problem.
Two main artifices are necessary to optimize the computation: structure the
matrices and use a well adapted algorithm (ARPACK numerical library) for
the resolution.

5.3.1 Structured matrices

Two functions êi and êj have non-zero overlap only if i and j are close
neighbors, then only some Kij and Mij can be different to zero and have
to be calculated. With a judicious choice of the numbering of the nodes, the
matrices M and K can be structured in the so-called band form.

K =

0

0

This have more advantages:

• only non-zero elements have to be calculated

• the zero elements do not have to be taken into account (from the nu-
merical point of view, one has to deal with smaller matrices)

• efficient algorithms are especially developed for matrix in band-form
(smaller CPU time)

In the following, for the numerical computation one used a band storage
for the matrices. An alternative storage method, indispensable if banded
matrices are to big, are matrices in a sparse form: matrices are not structured
but only non-zero elements are stored in a vector.

5.3.2 Resolution of a linear problem: ARPACK li-

brary

Using of an optimized and suitable algorithm, with the corresponding sub-
routine, it is essential to minimize the time of resolution (CPU time).
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To give an example, from the analytical point of view, the simplest way to
solve H |ψ〉 = EM |ψ〉 is first to calculate the inverse M−1 and construct
(M−1H) |ψ〉 = E |ψ〉, then to diagonalize (M−1H) to obtain eigenvalue and
eigenstates . . . but this is absolutely not optimized numerically!
Fortunately, numerical libraries allowing to compute basic linear algebra op-
erations and solve generalized eigenproblems still exist. First, the BLAS (Ba-
sic Linear Algebra Subprograms) are optimized routines computing scalar,
vector and vector-vector operations (BLAS level 1), matrix-vector operations
(level 2) and matrix-matrix (level 3). Based on the BLAS 1,2 and 3, the LA-
PACK (Linear Algebra PACKage) library are a set of subroutines solving
the most commonly linear algebra problems.
For our particular problem (large size generalized eigenproblem, with struc-
tured matrices and only some eigenstate to be calculated (lower confined
energy levels)), the standard numerical libraries are not optimized and one
uses the ARPACK (ARnoldi PACKage) subroutines, based on the Arnoldi
implicit restarted method (iterative procedure), and allowing to considerably
reduce the CPU time. The ARPACK subroutines are more complicated to
use with respect to the standard LAPACK: in particular some part of the
routines has to be computed by the user. This may appear penalizing, but
however allow to personalize the routines for every different problem!
The general theory of the Arnoldi algorithm or numerical details on the
ARPACK libraries can be found in the user guide [67].

5.4 References

The standard procedure as well as complete presentation to the Finite Ele-
ments Method (FEM) can be found, for example, in the books of Becker [65]
or Ram-Mohan [66]. For a very short introduction to the 1D finite elements
and more details on the standard technique on numerical integration, see the
the appendix of Ram-Mohan [66] or the book of Rappaz [68].



Chapter 6

From low to high symmetries:
a new formalism

The aim of this chapter is to introduce in a simple way the problematic
related to the difference between low and high symmetry and demonstrate
the need of our new MSR formalism.

We shall first recall fundamental results on low symmetry heterostructures [17].
They will also be of direct use in MSR. Second we will show explicitly the
limitations of these techniques, in particular that they do not allow to reach
maximal symmetrization of envelope functions in the case of higher symme-
try heterostructures, which thus represent a main challenge! These results
will form an essential basis for the systematic study of transformation laws
presented in Ch. 2 and the development of the cornerstone of the MSR in
Sec. 8.2).

Multiband k ·p Hamiltonians (see Sec. 3.4) are very useful tools for the study
of the electronic structure in semiconductor heterostructures [27]. Such mod-
els indeed allow to introduce all the relevant physics close to a high symmetry
point of the band-structure, whilst keeping maximum simplicity. For III-V
zincblende semiconductors like AlGaAs/GaAs it is possible for many appli-
cations to treat separately the conduction and the valence band problems.
It should be stressed that the method presented in the following can be gen-
eralized to extended k · p models, treating simultaneously more bands (e.g.
conduction and valence bands, or valence and split-off bands) or including
magnetic field, Burt-Foreman terms, strain, . . .

73
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6.1 The effects of low symmetry: scalar func-

tions

Let us now assume that we deal with a typical QWR geometry, and define
the coordinate system according to r⊥ = (y, z) (see Fig. 6.1). The first

r
ǁ

z

y

[110]

[110]

[001]

Figure 6.1: View in perspective of a typical V-shaped AlxGa1−xAs QWR,
with coordinate system. The central part is typically pure GaAs, the sur-
rounding bulk part is typically x = 30%.

two eigenstates of the stationary solutions of the Schrödinger equation for
a typical V-shaped QWR are shown on Fig. 6.2. The ground state wave

(a) (b)

Figure 6.2: Contour plots of conduction band envelope functions of the first
two electronic states in a typical V-shaped QWR (a) Even function (ground
state); (b) Odd function (first excited state). The V-shaped QWR GaAs
potential well is shown with a doted line, the vertical quantum well with
x ≈ 20% is also visible.

function ψ
(e)
k‖

(r⊥) is even with respect to the symmetry plane operation σ :

r⊥ = (y, z) 7→ σr⊥ = (y,−z), whilst the first excited state wave function
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ψ
(o)
k‖

(r⊥) is odd, i.e.

ϑσ−1ψ
(e)
k‖

(r⊥) = ψ
(e)
k‖

(σr⊥) = +ψ
(e)
k‖

(r⊥)

ϑσ−1ψ
(o)
k‖

(r⊥) = ψ
(o)
k‖

(σr⊥) = −ψ(o)
k‖

(r⊥) (6.1)

Despite the trivial aspect of these observations, they are important to ap-
preciate the case of holes that will be discussed below. It is also clear that
these relations translate into stringent conditions on the wave function on
the symmetry axis:

∂zψ
(e)
k‖

(y, z = 0) = 0

ψ
(o)
k‖

(y, z = 0) = 0 (6.2)

Such relations are obviously extremely useful because they play the role of
boundary conditions when solving numerically on the left or right halfplane
which is the natural reduced domain of solution of the stationary Schrödinger
equation. In a finite difference, or finite element approach it is easy to obtain
odd and even solutions separately by solving two times the eigenproblem
with different Dirichlet/Neumann boundary conditions on the symmetry axis
boundary.

6.2 The effects of low symmetry: envelope

functions of spinorial problems

Let us now turn to the valence band which display much less trivial behav-
ior. In this case we shall use for illustration the minimal four band Luttinger
Hamiltonian [27,41,47,53] which is required when one wants to have a good
estimate of the optical polarization anisotropy. It also provides a fairly good
description of the QWR valence subband energy dispersion close to the Γ
zone-center.
The corresponding envelope Luttinger Hamiltonian H (r⊥, k) for the QWR
valence band is given in (3.33) and in the following we simply note k =
k‖ = kx. The corresponding eigenstates are 4D spinorial functions (related
to j = 3/2) and each component is a k-dependent scalar function of r⊥ (enve-
lope functions). At this stage a few comments are in order. First the actual
form of the p, q, r, s coefficients is a function of the Bloch function basis cho-
sen. One usually define a cartesian frame with the z-axis oriented along an
[hhk] direction [53], and one chooses a Bloch function basis which diagonal-
izes the Jz component of the quasi-angular momentum. It is important to
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point out that the actual shape of each envelope function is basis-dependent
even if the expectation value of any (scalar) physical quantity is basis inde-
pendent. This fact, which was not recognized for a long time, complicates a
lot the question of the symmetry of the envelope functions in the presence of
valence band mixing.

The existence of a symmetry group for an Hamiltonian allows to classify
the eigenstates and deduce the degeneracies as well as the possible transfor-
mation properties of each kind of eigenstates. It is just a very elementary
application of basic group theory to the Hamiltonian [29]. However the anal-
ysis of the symmetry of individual envelope functions requires more work.
In Ch. 8 we shall examine in detail transformation properties of both scalar
and spinorial sets of functions, thus it is important to give an intuitive jus-
tification and introduction to this extensive effort, and we shall first discuss
in this subsection the effects of symmetry in the simplest case of a single
symmetry plane (Cs symmetry), already quite well-known (see [17], and sub-
sequent works [18, 69–71]). Then we shall enlighten in detail the difficulties
involved in applying the elementary concepts to higher symmetries. This will
both develop intuition and understanding, and demonstrate that one needs
a completely new theory. In a spinless case like the conduction band, group
theory does not bring much for the trivial Cs symmetry. As presented in the
last section, the solutions classify naturally into the even and odd wave func-
tion shown in Fig. 6.2 corresponding respectively to the A′ and A′′ (irreps)
of the Cs group.
The case of the valence band eigenstates is much more complex because
of their spinorial character. Even if one knows from group theory that they
classify into the two double group irreps iE1/2, i = 1, 2, there is no simple pre-
scription for the envelope functions, and, indeed, even their symmetry depend
on the basis chosen! In the early works on the subject [19,21] the “standard”
basis chosen was generally the one diagonalizing Jz with Jz aligned with the
[001] crystalline direction as in a quantum well (i.e. the vertical direction Jy
with the choice of notation in Fig. 6.1). This was quite justified since the
shape of a V-shaped quantum wire is close to a deformed quantum well, and
many qualitative features of the optical absorption spectrum can be under-
stood on the basis of such an analogy [19, 21]. However with such a basis
one obtains the ground state envelope functions shown in Fig. 6.3 where
we clearly see that none of them is either symmetric or antisymmetric with
respect to the symmetry plane!
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Figure 6.3: Contour plots of valence band envelope functions of the ground
state of symmetry 1E1/2 in a typical V-shaped QWR, when the Bloch func-
tions diagonalize Jy corresponding to the [001] crystal direction (same QWR
and same states as in Fig. 6.2 (a-d) m = 3/2, 1/2,−1/2,−3/2 function com-
ponents respectively.

However there are still symmetry relations that can be formulated as follows:

ψ
1E1/2

k,m (y, z) = ψ
1E1/2

k,−m(y,−z)
ψ

2E1/2

k,m (y, z) = −ψ
2E1/2

k,−m(y,−z) (6.3)

Such symmetry relations, which only couple ±m wavefunctions, do not en-
force the individual symmetry of every envelope function! Moreover they are
not so convenient from the numerical point of view, in particular because they
do not allow to directly reduce the domain of solution on the half-plane! The
clue to this problem was found in [17] by choosing a different Bloch function
basis which diagonalize Jz along the [110] crystalline direction as in Fig. 6.1.
In such a case one finds the following symmetry of the envelope functions

ψ
1E1/2

k,m (y, z) = (−1)j+mψ
1E1/2

k,m (y,−z)
ψ

2E1/2

k,m (y, z) = (−1)j+m+1ψ
2E1/2

k,m (y,−z) (6.4)

In Fig. 6.4 we display the contour plots for the same ground state as in
Fig. 6.3. Although seemingly different, this representation of the eigenstate
carries exactly the same physics, i.e. gives the same expectation value for
any physical observable. The basic reason for the behavior as a function
of m of the envelope functions in Eqs. (6.4), compared to Eqs. (6.3), which
might seem surprising at first, can be explained in very simple terms by the
behavior of angular momentum components through a planar reflection σ:
indeed the sign of the in-plane components of the angular momentum are
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σ σ

σ σ

Figure 6.4: Contour plots of valence band envelope functions of the ground
state of symmetry 1E1/2 in a typical V-shaped QWR, when the Bloch func-
tions diagonalize Jz corresponding to the [110] crystal direction (same QWR
as in Fig. 6.2 (a-d) m = 3/2, 1/2,−1/2,−3/2 function components respec-
tively.

reversed, while the perpendicular component is conserved, i.e.

ϑσ−1Jϑ−1
σ−1 = −J + 2Jz êz (6.5)

Therefore it is obvious that if one uses a Bloch basis that diagonalizes Jz ev-
ery envelope function will be mapped onto itself (either in a symmetric way
or antisymmetric way), whilst the +m and −m components will be mapped
onto each other if one diagonalizes Jy.

Transformation rules for the envelope functions

For the spinorial states one has a global double group label and the transfor-
mation rule are given by Eq. (2.32). A spinor has then a global symmetry but
one does not have a priori symmetry properties for every scalar component !
The origin is related to the W matrix mixing different spinorial component
under application of a symmetry operation. The {W}Wigner representation
depend on the choice of the basis vectors {|j,m〉} and an optimal choice of
the basis is essential to obtain minimal coupling schemes.

For a low symmetry group like the Cs group presented above, the concept
of “optimal quantization axis” (OQA) direction allows to obtain an opti-
mal Bloch function basis and the OQA direction is defined by the normal
to the symmetry plane. With respect to this basis, every matrix W become
diagonal, then the 4D Wigner representation is in the reduced form

W = 1E1/2 ⊕ 2E1/2 ⊕ 1E1/2 ⊕ 2E1/2 (6.6)
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This is not astonishing because for the double group of Cs one has only two
1D irreps, then every 1D irrep is equivalent to 1E1/2 or to 2E1/2 and every
degenerate irrep can be reduced.
Starting from the transformation law (2.33), for a 1D irrep and considering
the W matrices in the diagonal form (6.6), one obtains transformation law
for every component m

ψ′(r) = W−1ψ(ℜr) = χΓ ⋆ψ(r) ⇒ ψm(ℜr) =
(
W ⋆
mmχ

Γ
)⋆
ψm(r) (6.7)

where W = W (g), ℜ = ℜ(g) and χΓ = χΓ(g) depend on the symmetry
operation g as presented in Ch. 2.
It is very simple to understand this last equation if one note that:

• In (6.7) there are no coupling between different spinorial components

• ψ(ℜr) is very similar to the symmetry equation for a scalar function
given in (2.19)

• According to the reduction of the Wigner representation, Wmm = χ
iE1/2

where i = 1 or 2, then
(
W ⋆
mmχ

Γ
)

is the character of the direct product of
representations iE⋆

1/2⊗Γ = jE1/2⊗Γ, j 6= i because mutually conjugated

• The direct product of two double group irreps is always reducible into
single group irreps. From table 2.2:
iE1/2 ⊗ iE1/2 ≈ A′′ and iE1/2 ⊗ jE1/2 ≈ A′.

Finally, one obtains exactly an equation of the form (2.19) giving symme-
try properties for a scalar function. Scalar components of 1E1/2 and 2E1/2 are
alternatively (even,odd,even,odd) and (odd,even,odd,even) functions, and in-
troducing single group labels one obtains

ψ
1E1/2 =




ψA
′

ψA
′′

φA
′

φA
′′


 ψ

2E1/2 =




ψA
′′

ψA
′

φA
′′

φA
′


 (6.8)

where, for every iE1/2, the ψΓ , φΓ are independent functions because no cou-
pling exist. In a rigorous way, it would be necessary to introduce a iE1/2 label
to the scalar functions because ψΓ and φΓ for 1E1/2 and 2E1/2 are different
functions (except possibly additional degeneracy due to time reversal sym-
metry at the center of the zone).

Then, by explicitly consider the separation of spinorial and spatial basis,
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with respect to an optimal quantization axis, in addition to a global double
group label for the spinorial eigenstate, one obtains single group classification
for every component. This is one of the more important results of this thesis
work.
In Ch. 8, we shall deal in details with well-adapted bases, which simplify the
problem.
In the next section, we shall quickly demonstrate the difference between low
and high symmetries and show that new tools need to be found to obtain
the optimal Bloch function basis.

6.3 From low to high symmetry

The previous discussion showed that a careful choice of basis allows, in the
case of Cs, to symmetrize individual envelope functions. Will this be possible
in the case of higher symmetry? We intend to show in this section the partial
adequacy of the approach suggested in [17], where we introduced the concept
of optimal quantization axis (OQA). In the previous section we considered
as an example the practical case of a QWR, although similar considerations
would have held for QDs. Here we shall take quantum dots as examples.
Let us first discuss the next higher symmetry, a C2v = C2 ⊗ Cs [3] quantum
dot as depicted on Fig. 6.5 (it is a fairly common shape for pyramidal InAs
QDs). For compatibility with the axes used in this paper we shall denote its
two mutually perpendicular symmetry planes σy and σz. It is clear that since
Cs is a sub-group of C2v, we still can use the same basis diagonalizing σz,
and can reduce the problem to the half-domain. However it is desirable to
use the additional symmetry with respect to σy to further split the domain
of solution. The problem do not arise with electrons, since the two sym-

Figure 6.5: Schematic of a C2v QD

metry plane operations commute (see subsection 2.6.2), and therefore one
can diagonalize simultaneously the two symmetry plane operations σy and
σz, and get simultaneous good quantum numbers linked with these discrete
symmetries. However problems immediately arise with holes, since in the
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valence-band one has no alternative but to work with a 4 band k · p model.
From the previous qualitative discussion, we immediately see that if we take
the quantization axis along z, the envelope functions of the spinor will be
alternatively even/odd with respect to z, but will obey a symmetry relation
coupling +m and −m with respect to y (c.f. Eq. (6.3). Therefore it will
not be immediately possible to solve on the half domain with respect to y.
Oppositely if one chooses the y basis, the symmetry relations with respect
to z will become badly behaved.
At a more fundamental point of view, such a behavior can be traced back
to the fact that in this case the set of symmetry operators follow the multi-
plication table of the double-group. Indeed the general commutator can be
written as

[σy, σz] = C2

(
1 + (−1)2j+1

)
(6.9)

Therefore when j is half-integer (here j = 3/2), it is never possible to di-
agonalize simultaneously both symmetry operations. This is also related to
the appearance of a 2D irreps (E1/2) for the double group and the fact that
the corresponding unitary representation is not scalar but formed by 2 × 2
matrices DE1/2(g), g ∈ C2v.
As a result of this analysis we suggested in [17] that the optimal basis was the
one diagonalizing the projection of angular momentum along the third axis
(the so-called OQA), which was along the intersection of the two planes, and
which would allow to treat σy and σz on an equal footing. It turns out that
it does not really solve the problem: the rotation C2 = σyσz is diagonalized
in this case, but it is far from obvious how to solve on the quarter of the
domain.
Even more interesting (and more problematic!) is the next higher symmetry:
C3v symmetry with three symmetry planes, like in Fig. 6.6. Such a case is
also of practical interest [2, 23]. The reference axes of the crystal and their

Figure 6.6: Schematic of a C3v QD

x, y, z label are shown in more detail in Fig. 6.7, together with the three
vertical symmetry planes σvi, i = 1, 2, 3.
As presented in subsection 2.6.3, in the C3v group, there are two 1D irreps
A1 and A2, and a 2D irrep (E), even for the single group, adding clearly
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[110]
[111]

[112]

Figure 6.7: Axes and cross section of the AlxGa1−xAs C3v QD

a supplementary difficulty: there are two basis function (partner functions)
for the subspace related to degenerate eigenvalues and the corresponding 2D
matrix representation explicitly depend on the basis functions. The 1D single
group irreps A1 and A2 are respectively even and odd with respect to all the
symmetry planes. Therefore, for electrons it is straightforward to see that for
some eigenstate one can compute easily the solutions on 1/6 of the domain
by imposing respectively Neumann or Dirichlet boundary conditions on the
two symmetry planes. However, for states belonging to the degenerate E
irrep, although we can choose a representation in which any basis function
is even or odd with respect to one symmetry plane, however it will not be
possible to diagonalize simultaneously any two of the mirrors at the same
time since none of them commute, as can be seen in the multiplication table
given in Table 2.4.

Therefore in a C3v heterostructure we already have for a conduction electron
the same problem as we had for holes in the valence-band of a C2v hetero-
structure: we cannot solve on a reduced domain more than one half! For
holes in C3v the problem is similar as for holes in C2v: there are a 2D ir-
rep among the additional double group irreps (the 1D mutually conjugated
iE3/2 , i = 1, 2 and the 2D faithful self-conjugated E1/2).

To give a last example of an even higher symmetry group, there is also the
hexagonal C6v structures. A schematic of QD with C6v symmetry is presented
in Fig. 6.8 and a characteristic of this group is that double group display only
2D degenerate irreps. Such structures have been discussed in the literature
with the help of group theory [24], however the symmetry properties of the
envelope functions have not yet been studied and will be given in Sec. 10.1.

To summarize, the concept of quantization axis direction is a spatial visu-
alization of the pure rotation of the original spinorial basis in which the
Luttinger Hamiltonian was formulated: to each 3D rotation of the quantiza-
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Figure 6.8: Schematic of a C6v QD

tion axis direction, defined by three Euler angle α, β, γ [30], a 2j+1 spinorial
basis rotation matrix W (α, β, γ) can be associated. This is however a limited
choice of basis, and our analysis has revealed that it was not really optimal in
the sense that maximal symmetrization of the envelope functions could not be
achieved in the case of higher symmetry. Moreover computation on a reduced
domain did not appear possible. In the following, a radically new approach
for HSH is presented which will fulfill these goals. The optimal spinorial basis
is obtained by a more general unitary transformation corresponding to the
reduction (block-diagonalization) of the spinorial representation and related
to the choice of double group labelled basis functions.
Finally, the limit between low and high symmetry group can be identified
with the presence of a 2D irrep. This require to deal with degenerate eigen-
states and the Wigner representation (transformations of Bloch function ba-
sis) can not be diagonalized but only block-diagonalized.
The existence of inversion or symmetry plane is essential to have degener-
ate irreps for point groups, indeed the sub-groups Cn, n ∈ N of the pure
rotational group SO(3) are abelian (commutative) groups and every irrep
is non-degenerate. In Fig. 6.9 (a) we present the more general shape of a
C4v quantum structure, with the four vertical symmetry planes represented
by dashed lines. In Fig. 6.9 (b), a slightly deformation of the C4v struc-
ture is represented. This new shape only present the C4 symmetry group
(only rotation symmetry are still displayed). Although we do not know of
any real structure having such a symmetry it should be pointed out that the
reduction of symmetry due to an external on-axis magnetic field in a C4v

structure leads also to a reduced C4 symmetry group! This has recently been
studied by [72] in the case of InAs quantum dots, however here also group
theory is just used to split the problem according to the main irreps, without
any care about the envelope function symmetries. Moreover the problem is
formulated in a plane wave basis, which give rise to full matrices during the
numerical solution, which is quite a significant waste of computer time and
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memory space compared to real space methods like finite difference of finite
elements. In contrast, the novel MSR method, that we will present in the fol-
lowing chapters, also separates the eigenvalue problems associated with each
irrep but also keeps the sparse matrix structure of the numerical problem
(when formulated with a finite differences or elements approach), moreover
it reduces significantly the domain of solution, therefore it is convenient and
maximally efficient from the numerical point of view as well.

(a) (b)

Figure 6.9: General shape of quantum structure with symmetry (a) C4v ;
(b) C4

6.4 Optimal Bloch function basis

As we pointed out in the last section, high symmetry groups are related to
the occurrence of degenerate irreps (for the double group of C2v and even for
the single group of C3v). The concept of OQA direction, deriving from the
physics of Quantum Wells (QWs), is useful only for study Cs QWRs like the
V-shaped wires that can be seen like a deformed QW. For higher symmetry
group, with additional (non-commuting!) symmetry planes, the lateral as-
pect is close to one and QWR cannot be considered as deformation of QWs,
then any optimal direction of the quantization axis can be found.
We introduce the new concept of fully symmetrized Bloch function basis ac-
cording to the heterostructure symmetry, the Optimal Bloch function Basis
(OBB). The basic ideas and full development are presented in Ch. 8, but the
core of the method consists in changing the basis so as to replace the Wigner
representation by a block-diagonal representation.
With this reduced form of the “Wigner” representation the coupling between
different components is minimized and simple symmetry properties for the
envelope function can be found. This technique of block-diagonalization of
the Wigner representation can appear a posteriori trivial but is absolutely
not taken for granted without the explicit separation of spatial and Bloch
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part of the operators.

The optimal basis block-diagonalizing the representation is in general not
obtained by a rotation but by a more general unitary transformation and
the new basis will no anymore be formed by the eigenstates of any genera-
tor of the rotations (operator Ji). This is in agreement with the fact that
point group involving improper rotations are not sub-groups of SO(3) and
the block-diagonal representation is no more formed by Wigner matrices.
The initial basis was labelled |j,m〉, where j and m are quantum numbers for
the rotations related to J2 and Jz operators, whilst the new fully symmetrized
basis with respect to the point group does not have the rotation symmetries
but transform with the double group of the reduced microscopic symmetry
of the heterostructure. The corresponding new quantum numbers are j → Γ
and m→ i where i is the partner function index of the double group irreps Γ.

Finally, the expression (6.7) allowing to introduce single group labels for
the scalar functions can be generalized without difficulties to the HSH: the
general technique is presented in Ch. 8 but the basic idea is still the reduc-
tion of the direct product of two double group irreps to single groups irreps.
The choice of fully symmetrized basis according to the heterostructure sym-
metry group is one of the most important point of the new formalism (and
of this PhD thesis) and is absolutely essential to obtain a simpler description
of the physical phenomena.

6.5 High symmetry: a new formalism

In the following two chapters, we propose a general Maximal Symmetrization
and Reduction (MSR) formalism perfectly adapted to the study of spinorial
or scalar HSH problems.
The heart of the MSR formalism is threefold. First an explicit separation of
the orbital part (spatial 3D or eventually in Fourier space) from the spinorial
part of the states. In particular, every spinorial component can be treated as
an individual scalar function. Second we choose, according to the symmetry,
the optimal fully symmetrized bases, both for spinorial space (the Optimal
Bloch function Basis (OBB)) and orbital space, which minimize the coupling
between different spinorial components. Third for every irrep we identify
the independent parameters (the orbital reduced domain) and compute a
systematic Spatial (or Fourier) Domain Reduction (SDR) to obtain a re-
duced Hamiltonian with respect to the reduced domain.
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Let us now shortly detail the different procedures of the proposed MSR tech-
nique.
In Ch. 7 we first treat the scalar problems, like the single band k · p spinless
conduction band Hamiltonian. The method reduces to a systematic SDR
procedure which involves two fundamental steps: first the spatial domain
is decomposed into a minimal number of disjoint sub-domains which map
into each other through symmetry operations (including borders as separate
domains), second we project the set of domains for every irrep. This last
step allows to identify for every irrep the minimal domain for any function
of a given symmetry and to obtain a reduced Hamiltonian on the minimal
(reduced) domain.
In Ch. 8 we present the formalism for the spin dependent problems, like the
4 × 4 k · p Luttinger Hamiltonian describing the valence band in diamond
semiconductors. First we seek the optimal basis (OBB) allowing to block-
diagonalize the corresponding Wigner matrix representation. Therefore by
choosing the OBB, we have enforced a minimal coupling between different
spinorial function components, furthermore it can be proved that every com-
ponent can be decomposed in a simple way into single groups irreps labelled
spinless functions. At this stage, the SDR technique is therefore applicable,
and reduced Hamiltonians can be obtained for the spinorial problem.

Finally, in Ch. 9, the new formalism applied to the study of electronic and
optical properties of the C3v Vertical Quantum Wire (VQWR).



Chapter 7

Spatial Domain Reduction
(SDR) technique for the scalar
functions

We present here the general theory of the spatial domain reduction (SDR),
the first part of our new MSR formalism. In this chapter the SDR technique
is developed for a scalar function (the application to the spinorial problems is
presented in the next chapter). This method, although completely general, is
illustrated by taking the example a C3v QWR (in Ch. 9 the method applied
at length to a real C3v structure and all relevant analytical and numerical
results are discussed in detail). The generalization to other groups or other
heterostructures with different dimensionality only needs some small modi-
fications to the technique, and will be clear to the reader at the end of the
section. This SDR technique is perfectly adapted to all real space methods
like Finite Elements Methods (FEM) or Finite Differences (FD), however the
technique can be easily adapted to perform Fourier space reductions.
We consider an arbitrary domain with the C3v symmetry (see Fig. 2.6), which
is the “superbox” containing the nanostructure of interest. The Hamiltonian
of the system is obviously invariant under all the operations of the C3v sym-
metry of the problem.

The presentation of the method is decomposed in three different steps. First,
the spatial domain is decomposed into disjoint sub-domain according to the
symmetry, then for every irrep the minimal independent sub-domains (the re-
duced domains) are obtained, and finally the corresponding reduced Hamilto-
nians are systematically constructed. Of a particular interest is the reduction
for the 2D irrep E, where some additional subtleties have been addressed.

87
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7.1 Decomposition in disjoint sub-domains

We consider an arbitrary domain of symmetry C3v and represented as a trian-
gle. Eigenstates are represented by a vector of dimension N , corresponding
to the total number of nodes of the meshing (e.g. values of the states on
the nodes in a FD or FEM problem with Lagrange elements). The aim of
the method is to choose the best numbering of the nodes according to the
decomposition of the spatial domain. The only condition we have to impose
to the mesh, is to be symmetric with respect to every operation g of C3v.
We obtain the decomposition of the domain in 13 disjointed parts by sepa-
rating the center, the six edges and the six internal sub-domains (Fig. 7.1).
In our specific 2D problem, (Fig. 7.1) correspond to the section of the QWR
and for a 3D problem, (Fig. 7.1) represent the projection of the convergence
domain.

Center

Edge 1

Edge 2

Sub-domain1

Figure 7.1: Decomposition of a spatial domain with symmetry C3v in 13
disjoint parts

Every eigenstate can then be decomposed in the following vectorial form

ψ =




ψ0

ψEd1
ψ1

ψEd2
...
ψ6




(7.1)

This decomposition of the vector ψ could seem simplistic, but is essential
because the independent variables appearing in the problem will be brought
together into the sub-domains presented above and allow to express in a
compacted form the reduced variables.
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7.2 Minimal independent sub-domains

For every irreps, to obtain the minimal independent sub-domains, we have
to introduce the projector P Γ

µ on the partner function µ of the irrep Γ

P Γ
µ =

dΓ

|G|
∑

g∈G

(
DΓ(g−1)

)∗
µµ
ϑg−1 (7.2)

Every function can be decomposed as

ψ =
{∑

Γ,µ

P Γ
µ

}
ψ =

∑

Γ,µ

ψΓ
µ (7.3)

where ψΓ
µ = P Γ

µ ψ.
In particular, a function transforming like Γ, partner function µ, satisfied the
condition

P Γ
µψ

Γ
µ = ψΓ

µ (7.4)

and allow to identify the relations between the variables. In an equivalent
way, this means that ψΓ

µ is eigenstate of the operator P Γ
µ (Hamiltonian and

projector operator commute) with eigenvalue 1. The condition of a mesh
invariant under every operation of the group G imply that we can introduce,
for every operation g, a permutation matrix M = M(g) in such way that the
transformation ϑg−1ψ can be rewritten as

ϑg−1ψ = M−1ψ (7.5)

For each sub-domain, we can choose the internal numbering according to
the other in such way that the N -D representation of the group {M} can
be written as 13 × 13 block-matrices but we require that the full meshing
is invariant with respect to every symmetry operation of G. Considering
disjoint sub-domains, we obtain 13× 13 permutation matrices. Every block
is simply a unitary matrix with dimension the length of corresponding the
vectors ψ0, ψEdi or ψi. For an arbitrary internal numbering of the sub-
domains (not invariant respect the symmetry operations), we still obtain
13 × 13 permutation block-matrices but every block is not an identity but
another permutation matrix.
For example the matrix corresponding to the vertical mirror σv1 (see Fig. 2.6),
where we formally note 1 every identity matrix and omit the zero blocks reads

M(σv1) =




1
1

1
1

1
1

1
1

1
1

1
1

1




(7.6)



90 SDR technique for the scalar functions

For every irreps we obtain the minimal independent parameters number and
define a reduced vector ψΓ

Red on the corresponding reduced domain. For A1

and A2 with Eq. (7.4) we obtain

ψA1 =




ψ0

ψEd1
ψ1

ψEd2
ψ1

ψEd1
ψ1

ψEd2
ψ1

ψEd1
ψ1

ψEd2
ψ1




, ψA2 =




0
0
ψ1
0

−ψ1
0
ψ1
0

−ψ1
0
ψ1
0

−ψ1




(7.7)

and the corresponding reduced vectors

ψA1
Red =

(
ψ0

ψEd1
ψ1

ψEd2

)
, ψA2

Red = ψ1 (7.8)

For both A1 and A2 the minimal domain correspond to one sixth of the
structure. An additional information can be found for A2: the function
is zero on each edge, then we only need to solve the problem in the sub-
domain 1. Starting from the reduced variables (7.8) we dispose of enough
information to rebuilt the full eigenstates (7.7). This is the more important
interest of the SDR technique: only the independent sub-domains are finally
taken into account and we obtain analytical expressions for the dependent
parameters. Finally, from the numerical point of view we only solve on the
minimal domain.

For the 2D irrep E, the most interesting and less intuitive case, we first have
to choose which equivalent matrix representation we need. The 3D rotation
matrix ℜ form a 3D reducible representation of the C3v group, reducible to
A1 ⊕ E, already in the desired block-form and we simply take this matrix
representation for E (explicitly given in Eq. (2.40)). This representation is
real, and the matrix representing σv1 is diagonal (the first and second partner
functions even and odd with respect to σv1).
For every partner function, one has a different projector operator PE

1 and



7.2 Minimal independent sub-domains 91

PE
2 as presented in Eq. (7.2)) which allow to obtain both partner functions:

ψE1 =




0
ψ1,Ed1

ψ1,1

ψ1,Ed2

ψ1,2

− 1
2
ψ1,Ed1

−ψ1,1−ψ1,2

−2ψ1,Ed2

−ψ1,1−ψ1,2

− 1
2
ψ1,Ed1

ψ1,2

ψ1,Ed2

ψ1,1




, ψE2 =




0
0

ψ2,1

ψ2,Ed2

ψ2,2

ψ2,Ed3

−ψ2,1+ψ2,2

0
ψ2,1−ψ2,2

−ψ2,Ed3

−ψ2,2

−ψ2,Ed2

−ψ2,1




(7.9)

We note that for every partner function considered separately, the reduced
domain is one third, however the two partner functions can be related by the
symmetry operations, therefore we need to consider one of them! The inde-
pendent parameters are related to the irrep E and allow to re-built entirely
each partner function.

For this 2D irrep, we shall see that non-trivial and non-intuitive bound-
ary conditions appear. They will by systematically obtained in the following
with the SDR formalism, however the simple decomposition into sub-domains
(7.9) do allow to easily understand the boundary conditions on the third edge.
First, for the first partner function we obtain

ψ1,Ed3 = −1

2
ψ1,Ed1 (7.10)

corresponding to a non-local boundary condition on the function.
For the second partner function there is also non-local boundary conditions
but on the derivative of the function. First we note that the behavior of the
normal derivative of the partner function i on an edge j can be connected
to the difference between the left and right internal sub-domains: ψ′

i,Ed j ∼
ψi,j−1 − ψi,j , where we assume ψi,0 = ψi,6. To give an example, ψ′

1,Ed 1 =
ψ′

1,Ed 4 = 0 because the first function is even respect to the σv1 plane. Finally,
for the second partner function we obtain ψ′

2,Ed 3 = ψ2,1 and ψ′
2,Ed 1 = −2ψ2,1

corresponding to boundary condition

ψ′
2,Ed 3 = −1

2
ψ′

2,Ed 1 (7.11)

In addition to the non-trivial boundary conditions, from Eqs. (7.9) we obtain
the very nice analytical result that both partner function are analytically zero
in the center ψ1,0 = ψ2,0 = 0! This exact result was not recognized in the
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numerics before and fully justifies our approach.

To continue with our new SDR technique, let us consider the first part-
ner function ψE1 in (7.9). It would be advantageous to reduce on one sixth
of the domain as for the non-degenerated Ai irreps. This can be achieved by
introducing the coupling between first and second partner functions, which
allows to replace the ψ1,2 variable of the first partner function by ψ2,1, vari-
able of the second partner function related to the first internal domain. Such
a substitution can be computed using the σv3 symmetry operation and the
transformation rule (2.17)

ψ1,2 → DE(σv3)11 ψ1,1 +DE(σv3)21 ψ2,1 = −1

2
ψ1,1 +

√
3

2
ψ2,1 (7.12)

Finally one obtains the vector for the first partner function on one sixth of
the domain

ψE1 =




0
ψ1,Ed1

ψ1,1

ψ1,Ed2

− 1
2
ψ1,1+

√
3

2
ψ2,1

− 1
2
ψ1,Ed1

− 1
2
ψ1,1−

√
3

2
ψ2,1

−2ψ1,Ed2

− 1
2
ψ1,1−

√
3

2
ψ2,1

− 1
2
ψ1,Ed1

− 1
2
ψ1,1+

√
3

2
ψ2,1

ψ1,Ed2

ψ1,1




. (7.13)

The reduced vector for E representation on one sixth of the domain which
couple both partner function components is then

ψERed =

(
ψ1,Ed1

ψ1,1

ψ2,1

ψ1,Ed2

)
(7.14)

In the same way, the second partner function can be decomposed and ex-
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pressed as function of the same reduced parameters given in (7.14):

ψE2 =




0
0

ψ2,1√
3ψ1,Ed2

1
2
ψ2,1+

√
3

2
ψ1,1√

3
2
ψ1,Ed1

− 1
2
ψ2,1+

√
3

2
ψ1,1

0
1
2
ψ2,1−

√
3

2
ψ1,1

−
√

3
2
ψ1,Ed1

− 1
2
ψ2,1−

√
3

2
ψ1,1

−
√

3ψ1,Ed2

−ψ2,1




(7.15)

For this 2D irrep, the expression of ψE1 and ψE2 on one sixth is more compli-
cated with respect to the 1D irreps and not intuitive, however the fact that
one is able to carry out the process to the end, including the derivation of
non-trivial boundary conditions, demonstrate the power of the approach.
One desires, however, to achieve more: to be able to directly solve for the
relevant part only instead of solving everywhere and cutting the wave func-
tion into relevant pieces. This can be done by cutting also the Hamiltonian
matrix into relevant pieces. This is what we shall achieve in the next two
sections.
The last steps are then to construct the more general Hamiltonian and then,
for every irrep, obtain the reduced Hamiltonian corresponding to the inde-
pendent variables.

7.3 The structure of the full Hamiltonian

Let us construct the more general 13 × 13 block-form scalar Hamiltonian
matrix applying on the vectorial expression of eigenstates (7.1). This Hamil-
tonian has to satisfy two conditions:

• respect the connectivity between sub-domains

• be invariant with respect to the symmetry operations of the group
(operator transforming like A1 irrep)

First, one seeks the most general matrix operator on the full domain respect-
ing the connectivity between sub-domains Hc. Then, in the same way as for
the eigenstates, an A1 operator satisfying the connectivity rules can be found
through the use of projectors on A1 irrep since an Hamiltonian is necessary
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invariant under the symmetry operations of the group:

Hc =
1

|G|
∑

g∈G
M(g)HcM(g)−1 (7.16)

This procedure leads to the most general Hamiltonian respecting the natural
connectivity between the nodes of each domain:

H=




H0 H0Ed1 H01 H0Ed2 H01 H0Ed1 H01 H0Ed2 H01 H0Ed1 H01 H0Ed2 H01

Ht
0Ed1 HEd1 HEd11 HEd1Ed2 0 0 0 0 0 0 0 HEd1Ed2 HEd11

Ht
01 Ht

Ed11 H1 H1Ed2 0 0 0 0 0 0 0 0 0

Ht
0Ed2 H

t
Ed1Ed2 H

t
1Ed2 HEd2 Ht

1Ed2 H
t
Ed1Ed2 0 0 0 0 0 0 0

Ht
01 0 0 H1Ed2 H1 Ht

Ed11 0 0 0 0 0 0 0

Ht
0Ed1 0 0 HEd1Ed2 HEd11 HEd1 HEd11 HEd1Ed2 0 0 0 0 0

Ht
01 0 0 0 0 Ht

Ed11 H1 H1Ed2 0 0 0 0 0

Ht
0Ed2 0 0 0 0 Ht

Ed1Ed2 H
t
1Ed2 HEd2 Ht

1Ed2 H
t
Ed1Ed2 0 0 0

Ht
01 0 0 0 0 0 0 H1Ed2 H1 Ht

Ed11 0 0 0

Ht
0Ed1 0 0 0 0 0 0 HEd1Ed2 HEd11 HEd1 HEd11 HEd1Ed2 0

Ht
01 0 0 0 0 0 0 0 0 Ht

Ed11 H1 H1Ed2 0

Ht
0Ed2 H

t
Ed1Ed2 0 0 0 0 0 0 0 Ht

Ed1Ed2 H
t
1Ed2 HEd2 Ht

1Ed2

Ht
01 Ht

Ed11 0 0 0 0 0 0 0 0 0 H1Ed2 H1




(7.17)
where every Hij is a block coupling the i sub-domain to j (dimension of Hij

depend on sub-domains i and j). The coupling Hii are simply noted Hi.
One notes here the natural repetition of blocks that appear due to the sym-
metry of the problem!
Even if the formalism is more general, in our numerics we have used only first
order Lagrange finite elements, and in this case there is no coupling between
the center and internal domains, therefore in the following we have used the
particular case where H01 = 0 in the Hamiltonian (7.17).

7.4 The reduced Hamiltonians

The fact that for every irrep there are only a few independent sub-domains
on the sixth (reduced domain) and that the Hamiltonian can be similarly
broken up into pieces, let us think that it is possible to obtain a correspond-
ing reduced Hamiltonians.

To this end, we introduce a rectangular reduction matrix SΓ
µ in such a way

that
ψΓ
µ = SΓ

µψ
Γ
Red (7.18)

For every irrep (and every partner functions) one has therefore a different
matrix.
With finite elements one transforms a differential eigenvalues problem into
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a linear equation system HψΓ
µ = EΓMψΓ

µ where H and M are respectively
the stiffness and mass matrices and EΓ are the eigenvalues related the Γ
irrep. The stiffness matrix H correspond to the Hamiltonian expressed in
the corresponding basis (e.g. FEM basis) and has the block-form presented
in (7.17). The mass matrix M represent a possible non-orthogonality of the
basis vectors and has the same block-structure. The scalar product reduces
to 〈ψ|φ〉 = ψ+Mφ, where ψ and φ are the vectors (7.1) corresponding to the
decomposition of the scalar function with respect to the basis.
Defining a reduced mass matrix

MΓ
Red =

1

dRed

(
SΓ
µ

)−1
MSΓ

µ (7.19)

where dRed represent the reduction factor, we obtain that ψΓ
Red is well normal-

ized on the reduced domain ψΓ+
MφΓ = dRedψ

Γ+

RedM
Γ
Redφ

Γ
Red. The reduction

factor represent the ratio between full and reduced domain. For Cn and Cnv
groups, simply correspond to the cardinality of the group, dRed = |G|, but
for other groups can be slightly different.
According to (7.19) we define the reduced Hamiltonian on one sixth of the
domain

HΓ
Red =

1

dRed

(
SΓ
µ

)−1
HSΓ

µ (7.20)

and finally obtain the reduced problem on the sixth of the full domain

HΓ
Redψ

Γ
Red = EΓMΓ

Redψ
Γ
Red (7.21)

This equation show that the reduction procedure not only leads to a solution
of the problem on a reduced domain, but also that one obtains different
eigenvalue problems for each irrep, which amounts to sort out from scratch
all eigenvalues and eigenvectors according to their symmetry.
Let us now have a look at the different reduced Hamiltonians issuing from
Eq. (7.21)

Reduced Hamiltonian for A1

For A1 we have the reduced Hamiltonian given by

HA1
Red =




1
6
H0

1
2
H0Ed1 0 1

2
H0Ed2

1
2
HEd1 HEd11 HEd1Ed2

H1 H1Ed2

C.C. 1
2
HEd2


 (7.22)

The factor 1/2 appearing in front of the HEd1 and HEd2 in the diagonal are
simply understood: since one has a symmetric meshing of the full structure
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and since we take into account only a half of a domain, there is only a half
contribution to the matrix element! This correspond to a Neumann condition
to the eigenfunctions (zero normal derivative). The same argument apply to
the factor 1/6 for the central element H0.

Reduced Hamiltonian for A2

For A2 irrep, the reduced Hamiltonian has obviously only one block

HA2

Red = H1 (7.23)

Eigenstates are zero on every edge (Dirichlet condition) and only need to
solve for the first internal sub-domain.

Reduced Hamiltonian for E

Finally, let us consider the degenerate irrep E. The reduced Hamiltonian on
the sixth of the domain reads

HE
Red =

1

2

( 1
2
HEd1 HEd11 0 HEd1Ed2

H1 0 H1Ed2

H1

√
3H1Ed2

C.C. 2HEd2

)
(7.24)

By far this is the less trivial case and the
√

3H1Ed2 block represent the non-
trivial coupling between the two partner functions (coupling of ψ1,Ed2 with
ψ2,1). In the same way, one could have started with the second partner
function and obtained a similar reduced Hamiltonian with respect to other
reduced variables. The only important requirement is that starting from the
reduced variables in ψERed, one should be able to reconstruct the two vectors
ψE1 and ψE2 on the full domain.

7.5 Conclusion

The two Eqs. (7.22)-(7.24) represent the reduced Hamiltonians which allow
to compute the electronic states of the conduction band of a triangular QWR.
We restricted to first order Lagrange finite elements presented in Ch. 9,
however higher order require only the consideration of H01.
It should be pointed out that this new method allow to considerably reduce
the size of matrices (∼ N2) and CPU time(∼ N3) by solving three smaller
problems. The dimensions of the three matrices are N

6
for the Ai irreps and

N
3

for the E irrep. The theoretical CPU time become

N →
(

2
1

63
+

1

33

)
N3 ∼= N3

22
(7.25)
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and is then reduced by a factor 22!
We have clearly seen that the SDR method allows to obtain in a systematical
way non-trivial boundary conditions with respect to reduced (minimal!) do-
mains for each irrep of the group. However it is not necessary to implement
such boundary conditions in a non-local way as well as for the analytical
conclusions about ψ0 = 0 for some state.
The SDR technique, directly leads to reduce eigenvalue problems for each
irreps as given in Eq. (7.21). This is very useful in computing more complex
objects, since the symmetry of every state is known a priori and it becomes
trivial to use selection rules!
It is important to note also that the SDR technique is very general and ap-
plies to every symmetry group, it is not dependent on the dimensionality
of the problem (e.g. the previous treatment apply to C3v quantum dots di-
rectly) as well as for all other real space resolution methods. For Fourier
space resolution (plane wave decomposition) or Hermite FEM, some modi-
fication to the formalism have to be computed, but the general approach is
the same.
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Chapter 8

The MSR formalism for
spinorial problems

In this chapter we develop the formalism for the spinorial-like problems.
In the first section, we present the transformation rules of the Luttinger
Hamiltonian. In Sec. 8.2 we discuss the choice of the optimal bloch function
basis. We shall see that the use of a well symmetrized basis allows to exploit
the SDR technique presented in Ch. 7 to compute a spatial reduction of the
spinorial problem (see Sec. 8.3).
In Sec. 8.4, the advantages of the new formalism to study the optical prop-
erties of heterostructures are evidenced by computing the matrix elements of
operators.

8.1 The Luttinger Hamiltonian: transforma-

tion rules

As presented in Sec. 3.4, the conduction and valence band of a semiconductor
heterostructure are described by quadratic Hamiltonian in the wave vector k
where the components corresponding to the confined directions (y and z in
Fig. 6.7) are simply replaced by a differential operator k⊥ = (ky, kz) = −i∇⊥
(see Eqs. (3.32) and (3.33)).
The more general form (without magnetic fields and interface terms) for a
scalar quadratic Hamiltonian (e.g. Hamiltonian describing conduction band)
is

H(r,k) = H0(r) + kt C(r)k (8.1)

99
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where C(r) is the “matrix” (tensor) of coefficients and H0(r) a scalar opera-
tor. In the case of magnetic field or interface terms, the method is still valid,
but some additional terms can appear in the Hamiltonian. By generalization
of transformation rule (2.12) we obtain the new Hamiltonian

H ′(r,k) = H(ℜr,ℜk) = H0(ℜr) + ktC′(r)k (8.2)

where
C′(r) = ℜ−1C(ℜr)ℜ (8.3)

In the following, the k will be always considered as the vectorial components
of the wave vector.
It is easy to understand equation (8.3) when C is independent of r: ktCk
is a scalar, invariant under a passive transformation and k the vectorial
components of wave vector, then C is a tensor two times covariant and
for this kind of tensors, transformation law gives C ′ij =

∑
rsℜ−1

ir ℜ−1
js C

rs =∑
rsℜ−1

ir C
rsℜsj.

For the 4D Luttinger Hamiltonian describing the valence band H(r,k), every
component Hij(r,k) is a quadratic scalar operator in k transforming like Eq.
(8.2)

H ′(r,k) = W−1H(ℜr,ℜk)W

⇒ H ′
ij(r,k) =

∑

r,s

W−1
ir Hrs(ℜr,ℜk)Wsj (8.4)

where, as usually, the dependence on the symmetry operation W = W (g)
and ℜ = ℜ(g) is omitted.

8.2 The fully symmetrized basis and the sep-

aration of spinorial and spatial parts

In this section we introduce the concept of fully symmetrized basis related
to the explicit separation of orbital and spinorial part for operators and
eigenstates. How introduced in Ch. 6, with an Optimal Bloch function Basis
(OBB) respecting the symmetry of the group, the coupling between different
envelope functions can be minimized and one can decompose in the simplest
way every scalar component into single group irreps.
We recall that for a spin dependent problem, like the valence band with
valence band mixing (VBM) Luttinger problem, we have to define two basis:
the 3D basis {êi} and the Bloch function spinorial basis {|j,m〉}. Question
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is: how to choose the best Bloch function basis? Or in an equivalent way,
how to choose the best equivalent matrix representation?
Defining a unitary matrix S in such a way that new basis vector are given by
|j,m〉′ =

∑
n Snm |j, n〉, the new Wigner operators and the new Hamiltonian

respect the new basis become

W ′(g) = S−1W (g)S

H ′(r,k) = S−1H(r,k)S (8.5)

Up to now, one simply considered the concept of optimal quantization axis
direction, well adapted only to the study of quantum wells (QWs) and low
symmetry Cs QWRs. In our approach, we want to choose the new basis
explicitly in according to the symmetry of the quantum structure by intro-
ducing a double group label for every basis vector (the fully symmetrized
basis), then we need more general unitary transformation than a rotation
and the new fully symmetrized basis functions are no more eigenstates of
any generator of the rotations (operator Ji) but transform with the double
group irreps. We make a unitary transformation which goes from basis func-
tions labelled by (j,m) towards new basis functions labelled by true quantum
numbers (Γ, µ), where Γ and µ are the double group irrep and partner func-
tion index for the Hamiltonian symmetry group. The Wigner representation
is in a completely reduced form, then every matrix is block-diagonal and the
couplings between different spinorial components under symmetry operations
are minimized according to Eq. (2.32).
For the C3v group, the eigenstates describing the conduction band in a model
including spin of the electrons are 2D spinors related to j = 1/2. The
corresponding Wigner representation is then 2D and equivalent to the E1/2

irrep (then is no more reducible and the corresponding Bloch basis is already
fully symmetrized with respect to the symmetry). For the Luttinger problem,
describing the valence band, eigenfunctions transform like a spinor with j =
3/2: the Wigner representation is 4D and from the traces of the matrices
we deduce that the representation is reducible to 1E3/2 ⊕E1/2 ⊕ 2E3/2. With
respect to the fully symmetrized Bloch function basis

{∣∣1E3/2

〉
,
∣∣E1/2, 1

〉
,
∣∣E1/2, 2

〉
,
∣∣2E3/2

〉}
(8.6)

where the partner function index is implicit for non-degenerate irreps iE3/2,
the matrices have the reduced block-diagonal form given by

WRed(g) =




χ
1E3/2(g) 0

DE1/2(g)

0 χ
2E3/2(g)


 (8.7)
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χ
iE3/2(g) are the characters of the 1D irrep iE3/2 and DE1/2(g) a 2D matrix

representation for E1/2 that we can fix without restraint by choosing the two
partner functions. In the following we explicitly choose, according to the
product of representations E ⊗ 2E3/2 ≈ E1/2

DE1/2(g) = DE(g)χ
2E3/2(g) (8.8)

where DE(g) is the 2D representation for the single group irrep E presented
in (2.40) (motivation will appear clear in the following).

An alternative way to understand the decomposition of the Wigner represen-
tation into the block-diagonal form (8.7), is to consider the diamond group
Oh, symmetry group of the Luttinger Hamiltonian for the underlying bulk
semiconductor. With respect to Oh, a spinor j = 3/2 transform like the 4D
F3/2,g irrep. However C3v is a sub-group of Oh and subduction tables (see
Sec. 2.5) from Oh to C3v gives [3] F3/2,g → 1E3/2 ⊕ E1/2 ⊕ 2E3/2.

Finally, we note that the 3D matrix representation {ℜ} is already in a re-
duced block-diagonal form A1 ⊕ E for C3v with the basis presented in Fig.
6.7 (êx is invariant with respect to every symmetry operations of the group
and êy,êz are mutually coupled according to E irrep), then we implicitly
have chosen the basis according to the symmetry of the heterostructure in
the same way as for the Bloch function basis!
The fully symmetrized 3D and Bloch function basis (with corresponding ma-
trix representation completely reduced), are the well adapted basis to study
the electronic properties of heterostructures. In particular, as presented in
the following, every component of a spinorial state can be decomposed in
the simplest way with respect to the symmetry (single group-labelled scalar
functions) because the Block-diagonal Wigner operators minimize the cou-
pling between different components.

The 4 × 4 Luttinger matrix (3.22) describing the j = 3/2 valence band
depend on some p, q, r, s scalar operators quadratic in k.
With respect to the fully symmetrized basis, the Luttinger Hamiltonian is ex-
pressed in a very simple form. In particular, every p, q, r, s operator transform
like single group representations: p and q are scalar operators transforming
like A1 and (r, s) form a set of irreducible tensorial operator (ITO) trans-
forming with the irrep E (see Ch. 9 for more details and explicit form of the
operators).
To obtain these decompositions, we start from the invariance law under
symmetry operations for the Hamiltonian (2.14) and, with expression (2.34)
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where the spinorial and spatial part of the operators are explicitly separated,
(8.4) allow to obtain

ϑ
(3D)

g−1 H(r,k)ϑ
−1 (3D)

g−1 = ϑ
−1 (j)

g−1 H(r,k)ϑ
(j)

g−1

⇔ H(ℜr,ℜk) = WH(r,k)W−1 (8.9)

The left hand side of (8.9) corresponds to a single group transformation and
allows to obtain the desired symmetry properties for the components.

In the same way, from the symmetry properties for spinor (2.33) we obtain
again scalar function transformation laws for every component

ϑ
(3D)

g−1 ψ
Γ

µ
(r) =

dΓ∑

ν=1

[
DΓ(g−1)

]
νµ
ϑ

−1 (j)ψΓ

ν
(r)

⇒ ψΓ
µ,i(ℜr) =

dΓ∑

ν=1

d∑

j=1

[
DΓ(g−1)

]
νµ
Wijψ

Γ
ν,j(r) (8.10)

where i = 1, . . . , 4 are the components related to the basis

{∣∣1E3/2

〉
,
∣∣E1/2, 1

〉
,
∣∣E1/2, 2

〉
,
∣∣2E3/2

〉}
(8.11)

The effects of the minimal coupling schema of WRed due to a fully sym-
metrized basis appear evident.

To illustrate this last essential expression, we consider the first component
(related to

∣∣1E3/2

〉
basis function) of the non-degenerate irrep Γ = 2E3/2. Eq.

(8.10) reduce to the simple uncoupled expression

ψ
2E3/2

1 (ℜr) = χ
2E3/2(g)⋆χ

1E3/2(g)ψ
2E3/2

1 (r) =
(
χ

2E3/2(g)χ
1E3/2(g)⋆

)⋆
ψ

2E3/2

1 (r)

(8.12)
Considering that iE3/2 are mutually conjugated irreps and 2E3/2⊗ 1E⋆

3/2 ≡ A2

(see table 2.4), we obtain that ψ
2E3/2

1 (r) transform like the single group irrep
A2. In a similar way, we obtain that the last component transform like A1

and the two central functions like the 2D E

ψ
2E3/2(r) =




ψA2(r)
ψE1 (r)
ψE2 (r)
ψA1(r)


 (8.13)
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To generalize, for each irrep Γ, the scalar component related to the Bloch

functions
∣∣∣Γ̃, µ

〉
transform like Γ⊗ Γ̃⋆ and the introduction of the generalized

Clebsch-Gordan coefficients allows to write

ψ
bΓ
µ,i(r) =

∑

Γs,µs

CΓ,eΓ⋆,Γs

µ,eµ⋆, µs
ψΓs
µs

(r) (8.14)

where ψΓs
µs

are scalar functions transforming like the single group irrep (Γs, µs).

In an equivalent way, this correspond to a fixed variance development: Γ̂ is a

possible symmetry of the envelope functions related to a
∣∣∣Γ̃, µ

〉
basis function

only if Γ belong in the reduction of Γ̂⊗ Γ̃.

For the 1E3/2 irrep we obtain the similar decomposition

ψ
1E3/2(r) =




ψA1(r)
−ψE2 (r)
ψE1 (r)
ψA2(r)


 (8.15)

For the double group irrep E1/2 it is a little more complicated to introduce a
single group label for every component due to the two-dimensionality of the
irrep.
For the first components: Wigner operators are block-diagonal with dimen-

sions of blocs 1, 2, 1, then from (8.10) we obtain that
(
ψ
E1/2

µ=1,1, ψ
E1/2

µ=2,1

)
form a

pair of two partner function for the irrep E (and we have exactly the same

for the fourth components ψ
E1/2

µ,4 ). This result can be easy understood con-
sidering that the representation product iE3/2 ⊗E1/2 ≈ E, for i = 1, 2.

In the same way, the four functions ψ
E1/2

1,2 , ψ
E1/2

1,3 , ψ
E1/2

2,2 , ψ
E1/2

2,3 form a basis for
the 4D representation E1/2 ⊗E1/2 and this representation can be reduced as
E1/2 ⊗ E1/2 ≈ E ⊗ E ≈ A1 ⊕ A2 ⊕ E. In others words, this representation
reduction correspond to decompose the central components, using projector
operators, into the corresponding single group irreps.
Finally, by introducing the corresponding Clebsch-Gordan coefficients of the
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reduction we obtain

ψE1/2

1
(r) =




−φE2 (r)
1√
2

(
ψA1(r) + ψE1 (r)

)
1√
2

(
ψA2(r)− ψE2 (r)

)

ϕE1 (r)




ψE1/2

2
(r) =




φE1 (r)
− 1√

2

(
ψA2(r) + ψE2 (r)

)
1√
2

(
ψA1(r)− ψE1 (r)

)

ϕE2 (r)


 (8.16)

As presented above, Cs is a sub-group of C3v. A1 and (E, 1) are even irreps
and A2 and (E, 2) odd irreps with respect to the σv1 symmetry plane and
the spinor components still are (even,odd,even,odd) or (odd,even,odd,even)
with respect to this plane. This is related to the particular choice of basis
functions diagonalizing DE(σv1). In this section, we have introduced the con-
cept fully symmetrized basis corresponding to the basis reducing the Wigner
representation. With respect to an optimal spinorial basis, every component
can be decomposed in a simple way introducing single group labels. To con-
tinue from this point, we have to couple the choice of optimal basis with the
Spatial Domain Reduction technique developed in Ch. 7: each single group
function appearing in the double group spinors decompositions (8.13)-(8.16)
can be treated as an independent scalar function.

8.3 Reduction of a spinorial sets of functions

In Ch. 7, we presented the methods to compute a spacial domain reduction
for a spinless problem and in the last section how to choose an optimal bloch
function basis for a spin dependent problem.
In this, we finally apply the SDR to a spin dependent problem. Spinorial
components of the double group irreps are labelled with single group irreps
as presented in Eqs. (8.13)-(8.16).
In a FEM decomposition of the spinorial problem, the vector representing
a Γ eigenstate ψΓ = (ψ1, ψ2, ψ3, ψ4) is composed by 52 blocks (four scalar
vectors with 13 blocks corresponding to four vectors (7.1)). To reach the
SDR, we construct the reduced vector on a sixth of the structure taking into
account reduced variables for every functions (single group irreps labelling)
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appearing in the spinor

ψ
2E3/2

Red =




ψA2
Red

ψERed

ψA1
Red


 ψ

1E3/2

Red =




ψA1
Red

ψERed

ψA2
Red




ψ
E1/2

Red =




φERed

ψA1
Red

ψERed

ψA2

Red

ϕERed




(8.17)

For the degenerate E1/2 irrep, E appear three times, then φERed, ϕ
E
Red, ψ

E
Red are

independent (uncoupled) variables and in Eq. (8.17), the reduced variables
of E obviously appear three times.
The last step before carrying out reduced Hamiltonians is to construct the
more general valence band Luttinger Hamiltonian (i.e. A1 operator respect-
ing the connectivity of the spatial domain). We showed in Sec. 8.2 that in
Luttinger Hamiltonian p, q, r, s operators can be decomposed, in a similar
way as for the spinorial states, with respect to the single group irreps. In
particular, for C3v, p, q are A1 operator and (r, s) an ITO transforming with
E irrep.
The most general form for p and q operators are then given by Eq. (7.17)
with the replacement H t

ij → H+
ij considering that our valence band Luttinger

Hamiltonian is a complex operator. To obtain r and s operators, we start
from the scalar connectivity Hamiltonian and apply the projectors on E:

Hc =
2

|G|
∑

g∈G
DΓ
ii
∗(g)M(g)HcM(g)−1 (8.18)

with i = 1, 2 for r, s respectively.
We construct the 52 × 52 block-form Hamiltonian, then, as for the scalar
functions, we determine the reduction matrices SΓ

i (7.18) and obtain reduced
matrices MΓ

Red , HΓ
Red given by Eqs. (7.19) and (7.20).

Reduced Hamiltonians for the non-degenerate irreps iE3/2

For the non-degenerate irreps iE3/2 we obtain the reduced Hamiltonians

H
2E3/2

Red =




HA2

Red(p+ q) CA2−E(r, s) 0
2HE

Red(p− q) CE−A1(r, s)

C.C. HA1
Red(p+ q)


 (8.19)
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H
1E3/2

Red =




HA1
Red(p+ q) CA1−E(r, s) 0

2HE
Red(p− q) CE−A2(r, s)

C.C. HA2
Red(p+ q)


 (8.20)

where in the diagonal, HA1

Red , H
A2

Red , H
E
Red are the same reduced Hamiltonians

as for the conduction spinless problem and only depend on p+ q or p− q.
The non-diagonal coupling terms

CE−A1(r, s) =

( 1
2
rEd10

1
2
rEd1 rEd11 rEd1Ed2

0 r1Ed1 r1 r1Ed2
0 s1Ed1 s1 s1Ed2

2rEd20 rEd2Ed1+
√

3sEd2Ed1 rEd21+
√

3sEd21 2rEd2

)
(8.21)

CE−A2(r, s) =

( −sEd11
−s1
−r1√

3rEd21−sEd21

)
(8.22)

only depends on the r and s operators and reflect the coupling between the
different envelope functions still present in the Luttinger Hamiltonian (3.22).
If we neglect this coupling, the reduced Hamiltonian is block-diagonal and
each block is a scalar Hamiltonian.

We note that r and s are not self-adjoint operator, then CAi−E 6= C+
E−Ai

but CAi−E = CE−Ai
(rij → rji, sij → sji), where rij and sij are the blocs

appearing in the r, s operators.

Reduced Hamiltonian for the degenerate irrep E1/2

With the same reduction technique, for the 2D E1/2 irrep we obtain the
reduced Hamiltonian

H
E1/2

Red =
1

2




2HE
Red(p+q) 1√

2
CE−A1

− 1√
2
CE−E

1√
2
CE−A2

0

H
A1
Red(p−q) 0 0 1√

2
CA1−E

2HE
Red(p−q) 0 1√

2
CE−E

H
A2
Red(p−q) − 1√

2
CA2−E

c.c. 2HE
Red(p+q)


 (8.23)

The coupling terms CE−Γ and corresponding CΓ−E are the same appearing
in the reduced Hamiltonians (8.19) and (8.20). The additional block CE−E
is given by

CE−E(r, s) =




1
2
rEd1 rEd11 −sEd11 rEd1Ed2−

√
3sEd1Ed2

r1Ed1 r1 −s1 r1Ed2−
√

3s1Ed2

−s1Ed1 s1 −r1 −s1Ed2−
√

3r1Ed2

rEd2Ed1+
√

3sEd2Ed1 rEd21−
√

3sEd21 −sEd21−
√

3rEd21 −4rEd2





(8.24)
Finally we note that, by coupling the choice of optimal Bloch function basis
and spatial domain reduction technique, from the decomposition of envelope
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functions with respect to the symmetry we can introduce reduced domains
and finally obtain reduced Hamiltonians for double group problems. The
reduced Hamiltonians are block-diagonal and their structure is as follows:
diagonal blocks correspond to scalar Hamiltonians HΓ(p±q) and off-diagonal
coupling blocks CΓ1,Γ2(r, s) only depend on the operators (r, s). Irreps Γ1,Γ2

represent a coupling between a scalar function with symmetry Γ1 with a Γ2

function.
As result of the explicitly separation of spinorial and spatial part, in the dou-
ble group Hamiltonians, everything depend only on the single group irreps
A1, A2 and E.
The analytical developments can appear tedious, but correspond to a sys-
tematic procedure that can be easily computed and automated on a personal
computer with a program like Mathematica [73].

In the next section, we present an interesting physical application of the new
MSR formalism: computation of the matrix elements of an operator. The
effects of a decomposition of envelope functions with respect to the symmetry
will appear evident and allow to obtain simple analytical expression for the
matrix elements.

8.4 Selection rules and matrix elements with

the MSR formalism

In this section, we apply the MSR formalism to the computation of matrix
elements of operators. The Wigner-Eckart Theorem (WET) presented in Sec.
2.4 allow to obtain the selection rules for operators. With our formalism,
we obtain the same selection rules predicted by WET, but in addition we
obtain simple expressions for the amplitude of transitions by introducing
single group decomposition of the envelope functions.

The WET gives selection rules for an operator transforming like an irre-
ducible representation Γ of a group AΓ

µ, where µ is the partner operator
index of the ITO (see Eq. (2.37)). The generalized Wigner-Eckart Theorem
(gWET) gives information about the amplitudes by factorizing

〈
ψΓ2
i

∣∣AΓ
k

∣∣ψΓ1
j

〉

into “reduced matrix elements” only dependent on the the irreps and the
Clebsch-Gordan (CG) coefficients (see 2.5.4).
With our formalism, we separate the spinorial and spatial part of

〈
ψΓ2
i

∣∣AΓ
k

∣∣ψΓ1
j

〉

and refine the result using additional single group selections rules.
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In the following, we formally note a spinor

∣∣ψΓ
〉

=
∑

i

|ψi〉 ⊗ |Γi, µi〉 (8.25)

where {|Γi, µi〉} correspond to the fully symmetrized Bloch function basis
and |ψi〉 are the corresponding envelope functions.
As presented in Sec. 8.2, every envelope function can be systematically
decomposed into a set BΓ

i of single group irreducible representations:

|ψi〉 =
∑

Γj∈BΓ
i

b
Γj

i

∣∣∣ψΓj

i

〉
(8.26)

where b
Γj

i are some constant related to the CG coefficients and the partner
function label µj is omitted.
A matrix element of an operator AΓ (the µ label is understood in the follow-
ing) can be expressed as

〈
φΓ2
∣∣AΓ

∣∣ψΓ1
〉

=
∑

i,j

〈φi|AΓ
ij |ψj〉 (8.27)

where AΓ
ij = 〈Γi, µi|AΓ |Γj, µj〉 is a matrix operator transforming like Γ and

representing AΓ in the Bloch function basis.
Every scalar component AΓ

ij can be labelled with a single group irrep and
according to a fixed variance development, each scalar term 〈φi|AΓ

ij |ψj〉 of
Eq. (8.27) have to be zero or belong to the identity representation A1.
To illustrate this last argument, one can consider the Luttinger Hamiltonian
(3.22): it is a matrix operator expressed with respect to the Bloch function
basis representing an Hamiltonian. Each component depend on the p, q, r, s
scalar operators and present the corresponding single group symmetry. The
symmetry of the envelope functions of the eigenstates of the Luttinger Hamil-
tonian are in agreement with a fixed variance development (for C3v, see Eqs.
(8.13)-(8.16)).

A more particular and interesting case is when every AΓ
ij is simply a constant.

This allow to introduce in expression (8.27) the overlap of spatial function
belonging to the same irrep according to the representation orthogonality
rule 〈

φΓ1
i

∣∣ψΓ2
j

〉
= δΓ1,Γ2

〈
φΓ1
i

∣∣ψΓ1
j

〉
(8.28)

where δΓ1,Γ2 is intended as δΓ1,Γ2δµ1,µ2 .



110 The MSR formalism for spinorial problems

Finally, we obtain

〈
φΓ2
∣∣AΓ

∣∣ψΓ1
〉

=
∑

i,j

AΓ
ij 〈φi |ψj〉 (8.29)

=
∑

i,j

AΓ
ij

∑

Γk∈(B
Γ1
j ∩BΓ2

i )

bΓk
i

∗bΓk
j

〈
φΓk
i

∣∣∣ψΓk
j

〉

With the new MSR formalism, the expression for the matrix elements of
an operator take then a very simple analytical form because only overlap
of scalar functions with the same symmetry are involved and usually BΓ1

j ∩
BΓ2
i = ∅ or contain only a very small number of terms.

In 9.2.3 the dipolar matrix elements are computed in the frame of the C3v

symmetry group and the expression (8.29) allow to considerably simply the
expression of the polarization isotropy. A perfect polarization isotropy in the
plane can be analytically proven and some analytical ratio between parallel
and orthogonal directions are obtained.

8.5 Discussion

In this chapter we tackled the spinorial problem by showing that an optimal
chosen fully symmetrized basis allows to apply the SDR to every component.
This technique, called MSR, was illustrated with the case of C3v symmetry
and in the next chapter we apply the new formalism to study a real C3v

VQWR numerically.
Nevertheless it is important to note that the MSR formalism is not restricted
to this problem but can be easily generalized to any other more general vec-
torial, spinorial or tensorial-like problem, also with different dimensionality
(3D QDs), different symmetry groups. It is also applicable to various nu-
merical methods, whether they would be in the spatial domain (e.g. finite
differences) or the Fourier domain, or any other basis. The approach is even
not limited to linear problems provided one accounts for proper products of
representations. The essence is to symmetrize separately the bases in the
spinorial-like space and the real-coordinate-like space.

In our frame (electronic structure of heterostructures), it is clear that any
number of bands can be accounted for. Similarly, strain (including the sepa-
rate strain equations), Burt-Foreman interface terms [54,55,74], or the pres-
ence of an external field like a magnetic field can be also taken into account.
The choice of fully symmetrized basis presented in Sec. 8.2 only depends on
the symmetry group considered (some additional illustrative examples will
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be given in Ch. 10).

Let us now compare in more details our method with the work of Vuk-
mirovic et al. [72, 75]. In [72], a method for resolution into symmetrized
plane waves decomposition is suggested for a C4 pyramidal QD, however
this is most useful for strongly coupled periodic structures like found for
example in [75] for C6 hexagonal QD superlattices. In this paper the au-
thor define N-dimensional representation of the rotation operators on the
full coupled Fourier-Spin space (no separate symmetrization). With projec-
tion operators a “symmetry adapted basis” can be found (diagonalization
of the representation) and as expected in this basis, the Hamiltonian can
be block-diagonalized. For a Cn group, this method allow to separate the
Hamiltonian into n blocks of equivalent sizes and reduce the necessary com-
putation time. The limitations of this approach are however evident. First,
it is well adapted only for the rotation sub-groups Cn where every irrep of
the simple and double group are 1D. As we have seen earlier even for small
groups like C2v, degenerate eigenvalues could appear. Indeed in [75] the au-
thor study a C6v problem (every double group irreps is 2D) but only exploit
the C6 symmetry (with only 1D irreps) by neglecting the vertical symmetry
planes and they cannot describe in this frame optimally the degeneracy of
eigenstates. Of course in the presence of a magnetic field this would be the
correct approach, but additional lifting of degeneracies would occur. Second,
the approach of [72, 75] does not separate orbital and spinorial contribu-
tions (double group irreps appear in the reduction). Therefore the symmetry
properties of the structure are taken into account only at the last step before
numerical resolution and no single group classification of envelope functions
can be obtained or a domain reduction achieved. The new MSR method is
however also applicable in this case. For a k · p Hamiltonian the optimal
Bloch function basis is of course the same and only the spatial domain re-
duction has to be replaced by introducing the concept of a “reduced plane
waves basis”. In [76], we have introduced such a procedure to work with a
reduced domain in Fourier space (see Fig. 6c of [76] for the reduced Fourier
domain for every irreps of the C3v group).
We would like to end by stressing that the advantages of the new MSR
formalism are manifold and have been found to be greater than originally
anticipated. Indeed besides the possibility of performing SDR we have found
that there were many advantages gained from the analytical point of view:
first the Hamiltonian operator usually takes a simpler form in the adapted
fully symmetrized basis, second the spinorial components of eigenstates (as
well as the components of any operator in the spinorial basis) can be treated
in the same way and easily decomposed into parts to which simple group
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irreps can be associated (and for which “sub-selection rules” can be applied
at an intermediate calculational level, further simplifying and enlightening
the various couplings).



Chapter 9

Application to C3v vertical
quantum wires: analytical and
numerical results

A novel formalism, presented in Chs. 7 and 8, has been developed with the
aim of study a C3v Vertical Quantum Wire (VQWR).
The basic concepts related to the semiconductor heterostructures and C3v

group were introduced in the preceding chapters (Chs. 3 and 2).

In this chapter, we first introduce more in detail the quantum structure
studied and the analytical model used, then the more important analytical
and numerical results are presented.

9.1 C3v VQWR and pyramidal QDs

Among the different types of QDs, tetrahedral QDs grown by organometallic
chemical vapor deposition (OMCVD) in inverted tetrahedral pyramids pat-
terned onto (111)B GaAs substrate occupy a special position: it is possible
to make regular arrays, they have a high ground to first excited states sep-
aration energy, and display a simultaneous low inhomogeneous broadening.
The way in which they are incorporated in a solid state matrix gives a rich
environment (see Fig. 3.12 for a schematic), consisting of many quantum
structures connected to the dot (a vertical and three lateral QWRs, three
lateral and three vertical QWs), which strongly influences the electronic and
optical properties.

113
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9.1.1 Motivation for the study

A complete study of the pyramidal QD taking into account the real geometry
and the connected structures was performed by Fabienne Michelini [2], but
any rigorous study of the VQWR, that serves as main channel for QD carrier
capture and is the most influential for the electronic properties of the QD,
was up to now at our knowledge never computed. As presented above, a
beautiful feature of the VQWR is its high symmetry: three symmetry planes
intersecting on the same vertical axis, leading to a “triangular” C3v symme-
try.
The study of the C3v VQWR, envisaged as a small and original exercise to im-
prove calculations techniques for this PhD thesis, showed a more interesting
problem that conceived and finally allowed to:

• show the limit of the current resolution technique in the case of an High
Symmetry Heterostructure (HSH)

• develop a new very general Maximal Symmetrization and Reduction
(MSR) formalism for study HSH (see Chs. 7 and 8)

In addition, a new analytical and numerical method [77] for study coupled
structures with different dimensionality like (0D QDs-1D VQWRs has been
developed in the frame of a Master thesis under our supervision (see the
Master thesis of Guillaume Tarel [78] for an introduction of the method).

9.1.2 Fabrication of pyramidal QDs

Pyramidal QDs are, with the complex connected quantum structures, self-
formed structures grown by OrganoMetallic Chemical Vapor Deposition (OM-
CVD) in inverted tetrahedral pyramid patterned onto (111)B GaAs sub-
strate.
The first step is to construct a mask on the substrate and by anisotropic
chemical attack, inverted pyramids are obtained. The second step is to grow
the heterostructure by MOCVD: the constituents, in the vapor phase, are
deposed in atomic layers to form the quantum structure.

For a review of details about grown and experimental techniques see for
example [79,80] or the experimental PhD thesis reports at EPFL of Ducom-
mun [51] or Baier [81]. For more information about structural and optical
properties of a pyramidal QD see Hartmann [23], and for a theoretical model
of the structure Michelini [2].
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9.1.3 Model of VQWR

We explicitly model the 2D AlxGa1−xAs C3v QWR structure corresponding
to a triangular-like vertical quantum wire (VQWR) (6% concentration of alu-
minium) connected to three vertical quantum wells (VQWs) (20%Al, width
L = 22/

√
2nm ∼= 15.55nm) where the VQWR electronic wavefunctions may

spill out. Outside there is a barrier containing 30% of Al. We note that
the concentration of Al in the different parts of the quantum structure are
determinated by the growth mechanism.
The model for the complex C3v-QWR cross section is shown in Fig. 9.1.

112 [ ]
y

1 10[ ]
z

111[ ]
x

L =15.55 nm 6% Al

20% Al

30  Al%

σν1

σν2σν3

Figure 9.1: Model of the cross section of the AlxGa1−xAs C3v-QWR

Conduction and valence band

To compute electronic properties, we solve separately in the frame of the
k · p approximation the Γ6 conduction band (single band spinless problem,
see 3.4.2) and the Γ8 valence band (four band with mixing Luttinger Hamil-
tonian, see 3.4.3).
As presented in Fig. 9.1, the x = [111] direction correspond to the parallel
direction and the confined orthogonal directions are y = [112̄] and z = [1̄10].
For the valence band, the p, q, r, s quadratic polynomials, function of the Lut-
tinger parameters γi = γi(r⊥), explicitly depend on the 3D basis and Bloch
functions basis: for x = [100] , y = [010] , z = [001] and quantization axis
in the z direction, we have the parameters given in Eq. (3.25), still in the
symmetrized form, where kx → k , ky → −i∂y , kz → −i∂z .
As presented in Ch. 3, the eigenstates of the k · p conduction band Hamil-
tonian are the envelope functions ψ(r⊥). In a more rigorous way, we should
introduce a subband index n and the k = kx as parameter: ψnk (r⊥) (in the
following, these index will be omitted if not explicitly necessary). Finally,
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the full electronic conduction band wave function is given by

Ψn
C,k (r) = ψnk (r⊥) eik x uC (r) (9.1)

where uC (r) is the corresponding Bloch function.
In a similar way, for the valence band we have four envelope functions
ψnk,m (r⊥) and the wave functions reads

Ψn
V,k (r) =

−3/2∑

m=3/2

ψnk,m (r⊥) eik x uV,m (r) . (9.2)

For any other 3D or Bloch function basis, the new coefficient can be obtained
with the rigorous procedure introduced in details in Eq. (8.4).
Finally, in Table 9.1 we present the numerical values for the effective mass,
Luttinger parameter and band parameters (bulk parameters) as function of
the aluminium concentration x. The conduction and valence band confine-

Table 9.1: Material parameters used in the calculation [19]

Symbol Parameter Unit AlxGa1−xAs
Eg energy gap eV 1.519 + 1.247x

∆Ec/Ev band offsets 68/32
me electron mass m0 0.0665 + 0.0835x
γ1 Luttinger parameter 6.790− 3.000x
γ2 Luttinger parameter 1.924− 0.694x
γ3 Luttinger parameter 2.681− 1.286x

ment scalar potentials are obtained from the energy gap and band offset:
Vc(x) = 68

100
1.247x and Vv(x) = − 32

100
1.247x. The energies obtained from

these Hamiltonians correspond to the confinement energies of the electrons
and holes. We fix the zero of the energies at the top of the valence band, then
energies of the holes are negative and we have to add the constant energy
gap 1.519 eV to obtain the energy of the electrons in the conduction band.

Analytical computation

The matrix (analytical) manipulations presented in the last two chapters
can appear very tedious but can be computed and automated in a simple
way using, for example, a program like Mathematica (see Wolfram [73] for
an introduction). For different groups, there are only some small and non-
fundamental modification to do to the analytical code (notebook).
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Numerical computation

The numerical computation of the electronic states was done by writing a
Fortran 90 finite elements code (see for example Delannoy [82] for an in-
troduction to the numerical techniques in Fortran 90). As introduced in
the following, symmetry properties of the structure are explicitly taken into
account in the numerical resolution by a rigorous theoretical study (MSR
formalism in Chs. 7 and 8). Finally, numerical resolution of the linear prob-
lem is computed with the help of the ARPACK library using banded matrices.

9.2 Analytical and numerical results

In this section we present the most important analytical and numerical re-
sults of the study of the C3v quantum structure presented in the last section.
First, in 9.2.1 we discuss the effects on the Luttinger Hamiltonian of the
choice of an optimal basis and the additional time-reversal symmetry as well
as its effects on the spinorial states.
Second, in 9.2.2 the band structures and eigenstates for both conduction and
valence band problem are given.
Subsection 9.2.3 is dedicated to the optical properties: two main features will
be of interest: 1) spectra of interband dipolar transition matrix elements at
Zone center (ZC), 2) complete absorption spectra for free (non-interacting)
carriers. Matrix element spectra (at k = 0) are known to give a very good
understanding of the general shape of experimental PLE absorption spec-
tra [19] but we will see that matrix element spectra at k = 0 are not so good
in C3v quantum wires, since some lines may be missing. We will show that
the absent peaks are justified theoretically when one accounts for an approxi-
mate ZC symmetry (σh operation). This result opens a novel question which
are treated in the subsequent subsection 9.2.4: what is the degree of validity
of the Hamiltonian obtained neglecting ZC symmetry breaking? We will too
putting in evidence the advantages of our new formalism to understand the
effects of a breaking of symmetry or additional symmetries.
Finally, in 9.2.5 the properties of a (hypothetic) similar structure such that
the C3v VQWR profile is oppositely oriented with respect to the bulk crystal
structure, a parametric study as a function of the wire width and a compar-
ison with the experience are presented.
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9.2.1 The Luttinger Hamiltonian and additional time-

reversal symmetry

OBB and Luttinger Hamiltonian

In the last chapter we have introduced the optimal Bloch function basis for
a C3v structure (8.6). With respect to this basis, the Wigner operators have
the block-diagonal form presented in (8.7) and the p, q, r, s polynomial take
the simple form

p = kx
γ1

2
kx + ky

γ1

2
ky + kz

γ1

2
kz

q = −kx γ3 kx + ky
γ3

2
ky + kz

γ3

2
kz (9.3)

r = ky b ky − kz b kz + (kx a ky + ky a kx)

s = − (ky b kz + kz b ky) + (kz a kx + kx a kz)

where

a =

(
2i+

√
2
)
γ2 +

(
i−
√

2
)
γ3

2i
√

3

b =

(
2i+

√
2
)
γ3 +

(
i−
√

2
)
γ2

2
√

3
(9.4)

With respect to the fully symmetrized Bloch function basis, the Luttinger
Hamiltonian is considerably simpler than what a straightforward choose of
basis would give, for example Eq. (3.25). In particular, (r, s) operators
transform like the E irrep, then only two independent parameters a and b
can appear.
We note that in Eqs. (9.3) and (9.4) we omitted the spatial dependence
of the Luttinger parameters γi = γi(r⊥). In a problem including magnetic
field or Burt-Foreman interface effects, additional terms in the Hamiltonian
appear.

Time reversal symmetry

It is well-known [34] that time-reversal symmetry is responsible for the sym-
metry of the bulk valence-band structure around zone-center E (k) = E (−k),
and in particular of the degeneracy at zone-center (ZC) where two bands al-
ways cross. This is a consequence of Kramers two-fold degeneracy for half
integer spin particles. Time reversal symmetry is necessarily represented by
an antiunitary operator which we formally write as K = UK0 where K0 is
the complex conjugation operator and U a unitary 4× 4 operator. Starting



9.2 Analytical and numerical results 119

from a quantization axis direction [1̄10] (see Fig. 9.1), we can construct the
time reversal operator using the properties K−1J(j)K = −J(j). We obtain
an antidiagonal matrix operator K represented by

K =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
K0 (9.5)

In the sane way, the form of the U operator can be obtained from the action
of −iσyK0 on the Bloch function basis (3.26).
In a new Bloch function basis, the p, q, r, s structure of the Luttinger Hamil-
tonian is preserved if the time reversal operator keeps the same form. To
obtain the OBB, we need to block-diagonalize the Wigner representation. In
the corresponding reduction matrix free parameters can appear, correspond-
ing to the phase of some terms, that we have to fix in order to take invariant
the form of time reversal operator K.
It is then easy to check that similarly the QWR Luttinger Hamiltonian sat-
isfies the expected symmetry

K−1H (k, r)K = H (−k, r) (9.6)

where we have explicitly separated the k component along the wire axis.
The main interest is that time reversal symmetry applied to the envelope
functions of any eigenstate (defined by the four quantum numbers n,Γ, µ, k)
leads to the symmetry relation

ϑK−1ψ
(Γ,n)
(µ,k),m (r) = (−1)m+ 1

2

(
ψ

(Γ∗,n)
(µ∗ ,−k),−m (r)

)∗
(9.7)

where (Γ, µ) and (Γ∗, µ∗) are defined as conjugate subbands under time-
reversal. 1E3/2 and 2E3/2 are 1D mutually conjugated irreps and the func-
tions cross at k = 0. The 2D self-conjugated irrep E1/2 is degenerate for
every k due to the spatial C3v symmetry and the two partner functions cross
at k = 0. Finally, at ZC, every eigenvalue is degenerate due to the additional
time-reversal symmetry.

9.2.2 Band structure and electronic states

Electronic states

The conduction band structure of our typical C3v QWR is presented in
Fig. 9.2, where the origin for the energies is set at the top of the valence
band. As introduced in the theoretical part, we obtain the energy subbands
corresponding to each irrep by solving the corresponding eigenproblem. The
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A1 and A2 subbands are non degenerate, and the E subbands are twice de-
generate. In this simple model without spin-orbit coupling in the conduction
band the electron spin simply doubles further the degeneracy of each sub-
band. The ground state is naturally an A1 state and the first excited state

A1

E
A2

 0  0.1  0.2  0.3  0.4  0.5
k [111]   [n     m           -1         ]

 1.58

 1.6

 1.62

 1.64

 1.66

 1.68

 1.7

E 
   

 [e
V

]

Figure 9.2: Conduction band for the AlGaAs C3v-QWR

a degenerate E state. Fig. 9.3 (a) displays a contour plot of the ground
state (A1) at the center of the Brillouin zone k = 0, Fig. 9.3 (b) display the
first A2 state, and Fig. 9.3 (c)-(d) the two basis functions of the degenerate
first excited state (E). We highlighted the sixth of the structure (minimal
domain) used in the numerical resolution.
As presented in Eqs. (7.7), it is easy to rebuild, according to the symme-
try properties, the functions related to the 1D irreps Ai on the full domain
starting from the sixth. For the degenerate irrep E, this procedure is not
intuitive, but can be analytically computed with the help of the expressions
obtained in (7.13) and (7.15) during the reduction computed with the SDR
technique.
The position of the continuum linked with delocalized states in the three
vertical QWs is around 1.6998 eV : its symmetry is associated with degenerate
A1⊕E representations, due to the natural 3-fold degeneracy of the unconfined
QW states. The 3-fold degenerate state cannot be converged with a 2D
code, however a simple way to obtain an approximation of the limit of the
continuum is to enlarge the numerical convergency domain. The A1 and
E eigenvalues converge asymptotically to the correct value as presented in
Fig. 9.4. It is interesting to note that the confined A2 state appears only at
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(a) (b)
       

(c) (d)

Figure 9.3: (a) First A1 state (ground state), (b) First A2 state, and (c),(d)
first degenerate E state (first excited electronic state)
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Figure 9.4: Convergency of the 3-fold QW state corresponding to the limit
of the continuum
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relatively high energy. A2 state appears at high energy because the symmetry
of A2 corresponds to relatively high azimuthal oscillation of the wavefunction
and there is a significant amount of azimuthal confinement due to the lateral
QWs.

Hole states

In Fig. 9.5 (a) we show the valence band structure of the C3v-QWR. The
bands corresponding to the E1/2 irrep are off course degenerate for every
value of k and those belonging to

(
1E3/2,

2E3/2

)
are mutually degenerate at

the center of Brillouin zone due to the time reversal symmetry. Every com-

2E3/2

1E3/2

E1/2

 0  0.1  0.2  0.3  0.4  0.5
k [111]   [n     m           -1

         ]

    -34

    -33

    -32

    -31

  -30

    -29

    -28

    -27

    -26

     -25

E 
   

 [m
e

V
]

Figure 9.5: Valence band (only first energy levels) for the AlGaAs C3v-QWR

ponent of the eigenstates 1E3/2,
2E3/2 and E1/2 can be separated into single

group A1, A2 and E functions as presented in Eqs. (8.13), (8.15) and (8.16).
For the conduction band, we obtained that ground state have A1 symmetry
and first excited state E symmetry. For hole states, ground state and first
excited state are both E1/2. Eigenstates are of course normalized to one,
but if we calculate the relative contributions to the norm due to each single
group irreps, we obtain that for ground state the norm of the A1 component
is around 0.957 and for the first excited state, norm of the E components is
0.999. Up to now, the concept of Heavy Holes (HH) and Light Hole (LH)
character, related to the choice of an optimal quantization axis (OQA), was
routinely used to describe a valence band state, but this HH/LH character
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explicitly depend on the Bloch function basis and take a physical sense only
if a convention for the Bloch function basis is imposed. With our new MSR
formalism, for the high symmetry heterostructures convention is given by
taking the fully symmetrized basis and the single group norm ratio naturally
appear as characterization of the spinorial state imposed by the symmetry of
the heterostructure. However, in low dimension structures like the V -shaped
quantum wires, the HH-LH character remains an interesting concept when
the vertical quantization axis, corresponding to the OBB, is used. These
structure is reminiscent of a deformed quantum well, and the mixing can
be directly related to the lateral deformation (pinching) effect in the V -
wings [19].

The shape of the corresponding Ai and E functions for the ground and first
excited state are very similar to the firsts Ai and E electronic states pre-
sented in Fig. 9.3.
Time reversal symmetry gives an addition degeneracy for the mutually con-
jugated iE3/2 eigenstates at the ZC and obviously connects the envelope
functions at k = 0 according to Eq. (9.7).
In the same way as for the conduction band, we can determine the first
non-confined state (continuum QWs states) for a spin dependent problem
considering the representation product of A1⊕E with E1/2. We obtain a six-
fold degenerate state 1E3/2⊕2E3/2⊕E1/2⊕E1/2 with energy around −49meV .
There are 48 confined subbands (8 1E3/2, 8 2E3/2 and 16 degenerate E1/2).
The first bands are represented in Fig. 9.5.

9.2.3 Optical properties

Dipolar transitions

We are now interested on the study of the optical properties and optical selec-
tion rules. The oscillator strength of any interband dipolar optical transition
is proportional to the square of the momentum matrix elements in direction
d (d = x, y or z). From Eqs. (4.11) and (8.29) we express the square of
optical matrix element as

Mnc,nv

d (k) =
∣∣∣
〈
Ψnc
C,k

∣∣ P̂d
∣∣Ψnv

V,k

〉∣∣∣
2

=

∣∣∣∣∣
∑

ic,iv

〈
ψnc
C,k,ic

∣∣ψnv
V,k,iv

〉
(Pd)ic,iv

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

Γi,µi

∑

ic,iv

〈
ψΓi,nc

C,µi,k,ic

∣∣∣ψΓi,nv

V,µi,k,iv

〉
(Pd)ic,iv

∣∣∣∣∣

2

(9.8)
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where P̂d is the d-component of the momentum operator and (Pd)ic,iv are the
elements of the Kane matrix for the corresponding d direction. To study the
optical properties we need to take into account of the spin j = 1/2 for the
conduction band and the technique for construct j = 1/2 spinors from our
spinless model is presented in the following. The envelope functions related
to the symmetrized basis are simply labelled by ic = 1, 2 for the conduction
states and iv = 1, 2, 3, 4 for the valence states. Finally

〈
ψΓi,nc

C,µi,k,ic

∣∣∣ψΓi,nv

V,µi,k,iv

〉
=

∫
d2r⊥

(
ψΓi,nc

c,µi,k,ic
(r⊥)

)∗
ψΓi,nv

v,µi,k,iv
(r⊥) (9.9)

represent the overlap integrals between conduction and valence envelope func-
tions. In the following we use the shorthand notation ψΓi,nc

C,µi,k,ic
= ψΓi

C,µi
for

the scalar functions and, in the same way as in Eqs. (8.13)-(8.16), we in-
troduce additional labels to distinguish different functions transforming with
the same irrep.

In order to identify allowed and forbidden transitions (selection rules), it
is most convenient to apply the Wigner-Eckart Theorem (see Sec. 2.4) for
point groups. To this end it is necessary to know the C3v irreps associated
with the momentum matrix operators P̂d and then with the Kane matrices.
Since dipolar operator transforms like a vector, we obtain [3] that Px and
(Py, Pz) form two sets of irreducible tensorial operators (ITO) which are as-
sociated with the irreps A1 and E respectively. For the Kane matrices (4.12),
represented by a 2 × 4 matrix, we can directly verify this properties using
the transformation law

ϑg−1Pi =
(
W J=1/2

)−1
PiW

J=3/2 (9.10)

Within the irrep E various choices of ITO’s are possible: P± = 1√
2
(Py ± iPz)

is also an interesting set corresponding to circularly polarized optical fields
and related to a matrix representation of E in which σv1 is antidiagonal and
for g = σv1 we obtain: P ′

+ = +iP−, P ′
− = −iP+. The generalized WET

(gWET) [25] would provide further selection rules (with respect to WET),
when certain Clebsch-Gordan coefficients vanish and these selection rules will
be different for the two sets of ITO’s just mentioned and depend upon the
basis used.
For C3v, the basis presented in Fig. 9.1 automatically reduce the 3D rotation
representation and the linear polarization is the best choice respecting the
symmetry of the problem. In Ch. 10, some others groups are studied with
the MSR formalism. The sub-group Cn , n = 4 of the pure rotation group
SO(3) is present and we showed that reduction to a diagonal form of the
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3D representation is computed by introducing circular polarization with the
basis {êx, êσ+ , êσ−} where êσ± = 1√

2
(êy ± iêz).

Conduction band j = 1/2 spinors

Up to now the classification of conduction states has been made made with-
out taking into account spin (i.e. without the double group irreps). Since
the electron spin factors out in a trivial manner every energy bands is twice
degenerate and it might seem trivial to build the corresponding double-group
spinors on the basis of the single group envelope functions. The Bloch basis
related to j = 1/2 transform like the irrep E1/2 (Wigner operators W j=1/2).
For every single group irrep Γs, we obtain the corresponding double group
irreps Γd by considering the representation product Γd = Γs ⊗ E1/2. The
C3v direct product table 2.4 predicts that Ai ⊗ E1/2 ≈ E1/2 for i = 1, 2
and E ⊗ E1/2 ≈ E1/2 ⊕ 1E3/2 ⊕ 2E3/2. In opposition to the valence band,
corresponding to j = 3/2, in the electronic j = 1/2 conduction band, the
Wigner representation is equivalent to the irrep E1/2. As discussed in Sec.
3.2, Wigner operators for conduction and valence band have different parity
with respect to the roto-inversion (inversion is factorized out). In principle
Wigner representation still correspond to the OBB for j = 1/2 (the repre-
sentation is irreducible and no reduction is needed for the conduction band),
but, in the same way as in Eq. (8.8), we nevertheless choose the equivalent
representation given by W j=1/2(g) = DE(g)χ

2E3/2(g) corresponding to the
central 2× 2 block of the reduced matrix W j=3/2(g) (see Eq. (8.7)).
The advantage is that conduction band decomposition simply correspond to
the two central components of the valence band eigenstates presented in Eq.
(8.13)-(8.16). To associate single group irreps to double group irreps, we
consider as zero the functions corresponding to the other irreps.
For the 1D irreps A1 and A2 we obtain

ψE1/2(A1)

1
(r) =

(
ψA1 (r)

0

)
, ψE1/2(A1)

2
(r) =

(
0

ψA1 (r)

)
(9.11)

ψE1/2(A2)

1
(r) =

(
0

ψA2 (r)

)
, ψE1/2(A2)

2
(r) =

(
−ψA2 (r)

0

)
(9.12)

To the two-dimensional irrep E we must now associate four degenerate
spinors in accordance with the direct product table. The first two are asso-
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ciated to the 2D E1/2 and the last two to the 1D iE3/2

ψE1/2(E)

1
(r) =

1√
2

(
ψE1 (r)
−ψE2 (r)

)

ψE1/2(E)

2
(r) =

1√
2

(
−ψE2 (r)
−ψE1 (r)

)
(9.13)

ψ
1E3/2(E) (r) =

1√
2

(
−ψE2 (r)
ψE1 (r)

)

ψ
2E3/2(E) (r) =

1√
2

(
ψE1 (r)
ψE2 (r)

)
(9.14)

and immediately appear that these four spinor are linearly independent.

WET selection rules

We are now in a position to formulate a complete list of selection rules. First
using the double group irreps for the electrons, and the WET, we find that
in the x-direction only Γ − Γ transitions are allowed (Px is a A1 operator).
In other words the iE3/2-

jE3/2, i 6= j and E1/2-
iE3/2 transitions are forbidden

for i = 1, 2. On the same way, WET applied to a E operator gives that
iE3/2 − jE3/2 ∀ i, j = 1, 2 are selection rules for a perpendicular direction (in
the plane). It is however often interesting to remain with the single group
representations for the electrons (A1, A2 and E), because of the absence of
spin-orbit coupling. The transposition of the previous selection rule predicted
by the WET gives that

• Ai− jE3/2 , i, j = 1, 2 are forbidden transitions in the parallel x polar-
ization

• there are no simple WET selection rules for the E−Γ transitions (∀ Γ)

Application of MSR formalism

With our decomposition into single group irreps of the spinorial components,
every WET and gWET selection rules can be directly obtained computing
the square of the modulus of dipolar matrix elements (9.8).
The Kane matrices corresponding to our j = 1/2 and j = 3/2 OBBs are
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given by

Px = P0

(
0
√

2/3 0 0

0 0
√

2/3 0

)

Py = P0

(
0 −i/

√
6 0 1/

√
2

1/
√

2 0 i/
√

6 0

)

Pz = P0

(
−1/

√
2 0 i/

√
6 0

0 i/
√

6 0 1/
√

2

)
(9.15)

where
P0 = 〈S| P̂x |X〉 = 〈S| P̂y |Y 〉 = 〈S| P̂z |Z〉 (9.16)

is the Kane matrix element.

For every irrep, we obtain the dipolar matrix elements MΓc,Γv

d with corre-
sponding selection rules, where i and l = 1, 2

M
Ai,

lE3/2
x = 0 , M

Ai,E1/2
x =

2

3

∣∣〈ψAi
c

∣∣ψAi
v

〉∣∣2 , ME,Γv
x =

4

3

∣∣〈ψEc
∣∣ψEv

〉∣∣2

(9.17)

M
Ai,lE3/2
y = M

Ai,lE3/2
z =

1

2

∣∣〈ψAi
c

∣∣ψAi
v

〉∣∣2

M
Ai,E1/2
y = M

Ai,E1/2
z =

1

6

∣∣〈ψAi
c

∣∣ψAi
v

〉∣∣2 (9.18)

M
E,lE3/2
y = M

E,lE3/2
z =

1

3

∣∣〈ψEc
∣∣ψEv

〉∣∣2

M
E,E1/2
y = M

E,E1/2
y =

∣∣〈ψEc
∣∣φEv
〉∣∣2 +

∣∣〈ψEc
∣∣ϕEv
〉∣∣2 +

1

3

∣∣〈ψEc
∣∣ψEv

〉∣∣2

Moreover, we simply noted
〈
ψEc
∣∣ψEv

〉
=
〈
ψEc,1

∣∣ψEv,1
〉

=
〈
ψEc,2

∣∣ψEv,2
〉

and is un-
derstood that in MΓc,Γv

α the valence band envelope functions ψΓc
v are related

to the Γv spinor!

With the particular form of Py and Pz given in Eq. (9.15), in the per-
pendicular plane we obtain MΓ1,Γ2

z = MΓ1,Γ2
y for every couple of irreps Γ1,Γ2

corresponding to a perfect isotropy of polarization in the plane.

The M
Ai,lE3/2
x = 0 correspond to the selection rule still obtained with the

WET theorem.
Finally, we note that in this picture remarkable analytical ratios appear be-
tween parallel/orthogonal directions and these predictions are a specific fea-
ture of the full symmetrization of the envelope functions allowing to replace
the scalar product between envelope functions with scalar product between
function with the same symmetry.
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Dipolar matrix element spectra

Spectra of squared interband dipolar transition matrix elements at ZC are
known to usually give a very good understanding of the general shape of
experimental PLE absorption spectra [19]. Figs. 9.6 (a) and 9.6 (b) show
such calculated spectra for the parallel x direction (along the C3v-QWR axis)
and for the y direction in the perpendicular plane respectively where, to
discuss the symmetry properties of transitions, only the lowest electronic
and hole eigenstates are taken into account and only the most important
enc −hnv transitions are labelled. In Fig. 9.7, we present, without labelling,
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Figure 9.6: Square of the optical matrix elements for nc = 1, ..., 7 and nv =
1, ..., 5 (a) x−polarization (|| direction, along the wire) (b) y−polarization
(⊥ direction, in the plane)

the full spectra including all confined states (3 A1, 1 A2, 3 E and 8 1E3/2,
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8 2E3/2, 16 E1/2). A first remarkable feature is a strong optical anisotropy of
the ground transition between parallel and perpendicular linear polarization
directions. This result is sound and was anticipated on the basis of the fact
that the C3v-QWR has a lateral aspect ratio close to one, resulting, for the
ground subband, in equally strong confinement effects in the two orthogonal
lateral directions, and therefore equally strong band mixing and polarization
anisotropy. We also see that the ground subband absorption is stronger for
a parallel polarization, as expected.

Polarization anisotropy

Concerning the polarization anisotropy, Eqs. (9.17) and (9.18) allow to ob-
tain some simple analytical conclusions: due to the ratio aspect close to one,
Py and Pz play the same role in the spectra and we obtain a perfect polariza-
tion isotropy in the plane. In Fig 9.8, we present the polarization anisotropy
between a parallel and orthogonal direction, given by

Ax−y(nc, nv) =
[Mx(k=0)]nc,nv

−[My(k=0)]nc,nv

[Mx(k=0)]nc,nv
+[My(k=0)]nc,nv

(9.19)

Every selection rule in the x direction give rise a−1 in the anisotropy spectra,
but we remark a lot of transitions corresponding to 0.6. Comparing the
simple expressions (9.17) and (9.18) for parallel and orthogonal directions,
we can analytically justify the 0.6 polarization anisotropy: this correspond
to transitions Ai − E1/2 and E − lE3/2 four times stronger in x direction
as predicted by our new MSR theory. The only non constant anisotropy
transitions, are the E − E1/2 (separately presented in Fig. 9.9).
It should be pointed out that in V-groove QWRs the polarization anisotropy
(for the lowest transitions) is very different [19], since only one perpendicular
polarization is very anisotropic. This is due to the fact that the V-groove
geometric structure is reminiscent of an anisotropic quantum well with a
weak lateral confinement.

9.2.4 Additional symmetries and symmetry breaking

Missing transitions in dipolar spectra

The only real selection rules in the optical matrix spectra are those obtained
in Eq. (9.17), namely Ai− lE3/2 transitions for i, l = 1, 2 in the x polarization
(i.e. e1 − h3, e1 − h4,...).
The absence of the forbidden transitions is clear in Fig. 9.10 (a) and (b)
or (c), where we present the spectra (x-direction) for the first A1, A2 and
E electronic states, where the E − Γ and A2 − Γ are shifted to match with
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Figure 9.7: Square of the optical matrix elements (full spectrum) (a)
x−polarization (|| direction, along the wire) (b) y−polarization (⊥ direc-
tion, in the plane)
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the e1 − h1 transition. We see however in Fig. 9.6 that there seems to
be remaining some “forbidden transitions”, for example e1 − h2 (A1 − E1/2

transition) in both x and y direction, or e2 − h1 (E − E1/2 transition) in x
direction.

Approximated ZC-symmetry

We now intend to explain the “missing” lines seen in dipolar transitions. We
remark that the valence band Hamiltonian in not invariant with respect to a
perpendicular σh symmetry plane since the microscopic structure of diamond
did not present such a symmetry, then the quantum structure do not display
the so-called Zone-Center (ZC) symmetry group at the center of Brillouin
zone.
However one of the first idea that may come to mind is to test whether we may
still have an approximate ZC symmetry, so that a symmetrized Hamiltonian
with respect to σh

Hsym (k, r) =
1

2

(
H (k, r) + ϑσ−1

h
H (k, r)ϑ−1

σ−1
h

)

=
1

2

(
HL (k, r) + ϑσ−1

h
HL (k, r)ϑ−1

σ−1
h

)
+ V (r)

(9.20)

would describe well the missing lines. Let us now investigate step by step
the symmetry of Hsym (k, r). First it is possible to prove that all previous
symmetry operations are kept since the second term of Eq.(9.20) is invari-
ant because σh commutes with all symmetry operations of C3v. Second the
additional symmetry of Hsym (k, r) can be written as

Hsym (k⊥, k, r) = W−1 (σh) H
sym (k⊥,−k, r) W (σh) (9.21)

which is typical of ZC-symmetry, restored by this procedure. Eq.(9.21) holds
because in the second line of Eq.(9.20) we have used the fact that the confine-
ment potential Vv(r⊥) is invariant with respect to σh, and because in the Lut-
tinger part the spatially-dependent Luttinger parameters γl(r⊥), l = 1, 2, 3
are also strictly invariant, therefore on this term only the spinorial part of
ϑσ−1

h
and the inversion of k are relevant.

We can view the symmetric second term of Eq.(9.20), ϑσ−1
h
H (k, r)ϑ−1

σ−1
h

, as

the Hamiltonian of the same problem expressed in σh-symmetric coordinates,
therefore we can deduce that it has the same energy spectrum. However it
should be pointed out that the role of k and −k (and the corresponding eigen-
functions) is exchanged. The respective eigenfunctions, although linked by
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Figure 9.10: Square of the optical matrix elements (a) x−polarization, for
nc = 1 (A1) and every hole state (b) x−polarization, with nc = 2 (E) and
every hole state, with the whole spectrum shifted such that the first optical
transition is aligned to the ground transition e1−h1 (c) x−polarization, with
nc = 7 (A2) and every hole state, with the whole spectrum shifted such that
the first optical transition is aligned to the ground transition e1− h1
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time reversal, are slightly different. However it is important to notice that the
new symmetric Hamiltonian has a slightly different spectrum, with different
eigenfunctions, although we sum two Hamiltonians with same spectrum!
The new p, q, r, s parameters for the symmetrized Hamiltonian are easy ob-
tained and exactly correspond to the original parameters presented in (9.3)
where a and b parameter are simply replaced by asym = Re(a) and bsym =
i Im(b), with Re and Im respectively the real and imaginary part.
In Fig. 9.11 we present the band structure of the symmetrized Hamiltonian
compared with the band dispersion of the normal Hamiltonian. At k = 0
the energy difference for the first subband is extremely small (0.017 meV )
and at k = 0.5 nm−1 still very small (0.365 meV ). For the higher subband
dispersions the discrepancy is increased, as can be seen in Fig.(9.11), but the
results at k = 0 still stay quite accurate and we conclude that the lack of σh
symmetry has only a small influence on the results. Let us now investigate
whether the restoration of a symmetry by the symmetrization (9.20) provides
enough selection rules to explain the “missing” transitions in the spectra.
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Figure 9.11: Comparison of band structures for the normal and symmetrized
problem

The symmetry group of the symmetrized Hamiltonian Hsym is the tensorial
product D3h = C3v⊗Cs. It should be remarked that our construction makes
D3h a symmetry group of Hsym (k) only for k = 0, i.e. a ZC-symmetry
group (and the ensuing selection rules hold only at k = 0). D3h is however
a symmetry of the total Hamiltonian (when one considers all the k values
simultaneously, because σh operation connect +k and −k sub-blocks).
The irreps of the single group D3h are two sets of representations (A′

1, A
′
2, E

′)
and (A′′

1, A
′′
2, E

′′) analogous to the C3v representations but respectively even
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and odd under σh. For the double group the situation is significantly dif-
ferent since all representations are two-dimensional and bear different names(
E1/2, E3/2, E5/2

)
[3].

Let us now study the selection rules associated with optical interband tran-
sitions on the basis of the classification of every eigenstate of Hsym(k) by
the irreps of D3h. To this end, it is first useful to obtain the double group
representations of conduction band states, which, with spin, transform like
A′
i ⊗ E1/2 ≈ E1/2 for i = 1, 2 and E ′ ⊗ E1/2 ≈ E3/2 ⊕ E5/2. The scalar elec-

tronic functions, transform like the even (with respect to σh) irreps. In fact,
at the particular point k = 0, σh act on the wave functions in a trivial way.
For valence-band states, subduction tables give the descent of symmetry for
D3h → C3v, E3/2 → 1E3/2 ⊕ 2E3/2, E1/2 → E1/2 and E5/2 → E1/2. The Px
operator transform like A′′

2 (even with respect to σv1, odd with respect to
σh) and (Py, Pz) like E ′ (even with respect to σh), then in the same way as
for C3v group, using WET we obtain that the only permitted transition in x
direction are E1/2−E5/2 , E5/2−E1/2 , E3/2−E3/2. In y direction, permitted
transitions are Γi − Γj where i 6= j = 1, 3, 5. Every irreps of D3h is self-
conjugate (real irreps), then if Γi − Γj transition are permitted, Γj − Γi are
permitted too. With the single group irreps label, we obtain the following
selection rules for D3h:

• for a polarization along the x-axis A′
i−E3/2 (corresponding to the WET

selection rule for C3v group obtained in precedence), A′
i−E1/2, E

′−E5/2

with i = 1, 2 are forbidden

• for a polarization in the perpendicular plane A′
i−E1/2 with i = 1, 2 are

forbidden

Therefore there are many more selection rules that the A′
i− lE3/2 , i, l = 1, 2

transitions obtained before applying WET to C3v symmetry. The other ab-
sent peaks in the spectra presented in Fig. 9.7, are real selection rules only
if we neglect the lack of horizontal symmetry plane.
Every E1/2 irreps of C3v group split into E1/2 or E5/2 in D3h but, how may
we distinguish them? This is what we intend to understand with MSR for-
malism.

MSR and description of the approximate ZC symmetry

With the new MSR formalism, in the same way as for C3v one can decompose
into single group functions every spinorial component. The OBB for D3h

allow to reduce Wigner representation to E5/2 ⊕ E3/2 and OBB is labelled
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{∣∣E5/2, 1
〉
,
∣∣E5/2, 2

〉
,
∣∣E3/2, 1

〉
,
∣∣E3/2, 2

〉}
. With respect to this new basis, the

Luttinger Hamiltonian take a different block-diagonal form

HL = − ~2

m0

(
(p−q)I2 A

A+ (p+q)I2

)
; A =

( −s+ r
r+ s

)
(9.22)

To construct the Ei/2 irreps, we first directly obtain the matrices correspond-
ing to g ∈ C3v, then, for the additional σh operation, we reduce the Wigner
operator allowing to obtain

DE1/2(σh) = ( 0 1
−1 0 ) = −DE5/2(σh) = −DE3/2(σh) (9.23)

and then construct the σhg matrices.
The decomposition into single group irreps (where we consider zero every
function related to the odd A′′

1, A
′′
2, E

′′ and expressed with respect to the
same basis as for C3v in such a way that eigenstates can then immediately
be compared with those given in Eqs. (8.13)-(8.16)) reads

ψE3/2

1
(r) =




ψA
′
1(r)

−ψE′
2 (r)

−ψE′
1 (r)

ψA
′
2(r)


 , ψE3/2

2
(r) =




−ψA′
2(r)

ψE
′

1 (r)
−ψE′

2 (r)
ψA

′
1(r)


 (9.24)

ψE1/2

1
(r) =




−ψE′
2 (r)

ψE
′

1 (r)
−ψE′

2 (r)
ψE

′
1 (r)


 , ψE1/2

2
(r) =




ψE
′

1 (r)
−ψE′

2 (r)
−ψE′

1 (r)
ψE

′
2 (r)


 (9.25)

ψE5/2

1
(r) =




ψE
′

2 (r)
ψA

′
1(r)

ψA
′
2(r)

−ψE′
1 (r)


 , ψE5/2

2
(r) = −




ψE
′

1 (r)
−ψA′

2(r)
ψA

′
1(r)

ψE
′

2 (r)


 (9.26)

We note that when we break the σh symmetry:

• the E3/2 functions became independent (1E3/2(C3v) and 2E3/2(C3v))

• comparing E1/2 and E5/2 to E1/2(C3v) (8.16), we remark that the central
part 1√

2

(
ψAi + ψEi

)
are split in D3h into ψA

′
i (see 9.26) and ψEi (see

9.25)!

In C3v the lack of σh symmetry has only a small effect, then every eigenstate
will have very small Ai part or very small E part. We note that ground state
correspond to a E5/2(D3h) and display a character 96%A1! The first excited
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state is a E1/2(D3h) with a very small %A1.
In a more rigorous way, every E1/2 state can be identified using the transfor-
mation law with respect to the S+

3 and S−
3 symmetry operations (different

character with respect to E1/2(D3h) and E5/2(D3h)) and every “missing” tran-
sitions in the spectra Fig. 9.7 can be explained: every (D3h) selection rule
correspond to a very small (“missing”) transition in the C3v group when the
lack of σh has only a small effect on the energy and wave functions!
Finally we obtain the new “selection rules”

A′
l − E1/2 ⇒ (e1 − h2 , e3 − h2 , . . . ) (9.27)

for all directions and

E ′ −E5/2 ⇒ (e2 − h1 , e4 − h1 , . . . ) (9.28)

for the x direction.
Then, every E1/2(D3h) state correspond to a “missing transition” related to
a A′

i− or E− transition.

This simple analysis of this approximate ZC symmetry group D3h, shows
that with the help of the MSR formalism one can understand in a qualitative
and quantitative way the effects of an approximate symmetry at the envelope
function level!

Absorption spectra and ZC-like lines

A further word of caution is in order concerning these “missing transitions” in
the spectra of matrix elements. Although the C3v-QWR absorption spectrum
is dominated by k = 0 matrix elements thanks to singularity of the 1D density
of states, it does also involve contributions from k 6= 0 tails. On Fig. 9.12
we see the tail of the matrix element in the x-polarization, for transitions
e1 − h1 and e1 − h2, as a function of k. Outside zone-center the matrix
element of the “missing” transitions increases to a value that is comparable
to another transition. It is interesting to see also that our symmetrized
Hamiltonian (9.20) mimics also well the dependence of this matrix element
as a function of k (it becomes non-zero since D3h is not anymore a symmetry
group outside ZC). In Fig. 9.13 we compare the e1 − h1 and e1 − h2 matrix
elements for the C3v and symmetrized D3h Hamiltonians. As a result of this
analysis we can predict that in a C3v-QWR absorption spectrum there should
be in principle shallow observable absorption lines, that we call ZC-like lines,
corresponding the “missing” transitions in dipolar matrix element spectra at
k = 0. Moreover, such transitions, in spectra computed without the electron-
hole Coulomb interaction, will not display the typical features of a singular
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Figure 9.12: Matrix element in the x-polarization, for transitions e1−h1 and
e2 − h2 as a function of k
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1D density of states (DOS), but will have an asymmetric bell shape. To
confirm this prediction we display on Figs. 9.14(a) and (b) the absorption
spectra in the x and y polarization, computed using the golden-rule formula

Pif =
2π

~

(
eE0

2m0ω

)2∑

i,f

|Mǫ, i,f |2 δ (Ef − Ei − ~ω) (9.29)

therefore absorption coefficient as function of the photon energy reads

α(Eγ) ∼
∑

i,f

∫
dk
|Mǫ, i,f |2
Eγ

δ (Ef − Ei − ~ω) (9.30)

In Fig. 9.15, we present a typical contribution of the shallow optical bands
linked with ZC-like lines and compare with standard transition displaying
the singularity due to the 1D DOS. The question whether ZC lines appear in
QWRs with different lateral symmetry than C3v is relevant. We would like
to point out that similar lines should appear also in all QWRs with higher
lateral symmetry than Cs presenting a ZC (or an approximate) symmetry
group giving additional selections rules at k = 0. For example, already in
C2v QWR’s, a related effect was found in [17] where the authors discus the
e1 − h2 transition in Cs versus C2v QWRs.

C3v symmetry breaking down to Cs symmetry

In the C3v single group, we have two 1D irreps Ai and a 2D irrep E. A1 is
even with respect to the vertical mirror σv1 and A2 is odd. From Eq. (2.20)
applied to the σv1 operation, we obtain symmetry properties with respect
to z → −z: ψA1(y,−z) = ψA1(y, z) and ψA2(y,−z) = −ψA2(y, z). For the
2D irrep E, we can choose the two partner functions respectively even and
odd with respect to σ1 as presented in Eq. (2.40). In the same way, valence
band states are (even,odd,even,odd) or (odd,even,odd,even) with respect to
σv1 (see Eqs. (8.13)-(8.16)). Obtaining parity conditions with respect to a
symmetry plane is not amazing considering that Cs is a subgroup of C3v.
Let us shortly discuss the effect of breaking the C3v symmetry of the problem
by removing the QW wing oriented along the y-direction (see Fig. 9.1). The
resulting structure keeps only the symmetry subgroup Cs ⊂ C3v, like the
T-shape and V-shape QWRs already discussed in the literature [17]. Every
irrep of Cs is 1D and every single and double band split into two different
band. In the Fig. 9.16 conduction band of the Cs symmetry is presented.
Comparing to C3v results (Fig. 9.2), splitting of the E subbands into two
distinguished bands is clearly shown. In the same way, in the valence band,
the degenerate E1/2 subbands become split.
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Figure 9.14: Optical absorption. The dotted line correspond to the sym-
metrized Hamiltonian. (a) x−polarization (b) y−polarization
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Two other effects should by now be obvious: the “ZC-like lines” turn into
normal transitions with a singular density of states, and the polarization
anisotropy evolve a bit toward the different polarization anisotropy of V-
shape QWRs.

9.2.5 Additional study

The oppositely oriented C3v structure and C6v group

The preceding discussion on ZC symmetry has critically showed the impor-
tance of the rotation C2, the component of σh = iC2 that breaks the in-
variance under the horizontal symmetry plane in Luttinger Hamiltonian. A
natural question arises then whether the oppositely oriented C3v structure,
presented in Fig. 9.17, is significantly different from the original one presented
in Fig. 9.1. In such a structure the bulk crystal and the C3v heterostructure
are oppositely oriented with respect to each other, but still retain overall a
C3v symmetry. Let us write the new total Hamiltonian as

HC2 (k, r) = HL (k, r) + V (ℜ(C2)r⊥) (9.31)

111[ ]

x

112 [ ]
y

1 10[ ]
z

Figure 9.17: Model of the opposite oriented structure

We recall that potential only depend on r⊥ then is invariant with respect
to σh. Using i = σhC2 we rewrite the new Hamiltonian as HC2 (k, r) =
HL (k, r) + V (ℜ(i)r⊥) To progress at this point let us make one essential
additional assumption: we consider that the Luttinger parameters are not
anymore spatially-dependent γl(r⊥) ≡ γl, l = 1, 2, 3. At the and of this sub-
section, we discuss the effects of spatially dependence of Luttinger parameters
by a numerical calculation and show that this effect is negligible in our C3v

structure (strong confinement due to the heterostructure potential). Finally,
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using the invariance of the Luttinger part with respect to the inversion, we
obtain

HC2 (k, r) = ϑi−1 H (k, r) ϑ−1
i−1 (9.32)

and the new Hamiltonian for the oppositely oriented structure is obtained by
application of the inversion to the original Hamiltonian then has the same
spectrum as the original structure. Therefore, we have analytically proven
that if the Luttinger parameter are not spatially-dependent the oppositely
oriented C3v structure has exactly the the same band structure. The re-
spective eigenfunctions can also be obtained without further calculations by
symmetry.
Another way to understand the invariance of the energy values is to rewrite
the new Hamiltonian as

HC2 (k, r) = HL (k, r) + ϑ3D
C−1

2
V (r⊥)ϑ3D

C−1
2

−1 (9.33)

= ϑ3D
C−1

2

(
ϑ3D
C2
HL (k, r)ϑ3D

C2

−1 + V (r⊥)
)
ϑ3D
C−1

2

−1

where ϑ3D correspond to the spatial part of the operator (see Ch. 2). Always
in the assumption of Luttinger parameters spatially-independent, application
of ϑ3D

C2
to Luttinger part simply correspond to replace a by −a in the Lut-

tinger operators r, s defined in (9.3) and we obtain ϑ3D
C2
HL (k,k⊥, r)ϑ

3D
C2

−1 =
HL (−k,k⊥, r). The band structure is symmetric with respect to k → −k
and obtain same energy levels.
In our case we computed the calculation with constant Luttinger parameter
(x = 0.06 corresponding to the Al% of the VQWR). comparison between
constant and variable parameters is presented in Fig. 9.18. For example, a
numerically estimation of the energy difference due to the spatial dependence
of the Luttinger parameters gives, for the first subband, at k = 0 0.024meV
(around 0.07% error) and at k = 0.5 0.081meV (∼ 0.22%). This negligible
difference also justifies our choice to ignore the Foreman contributions (inter-
face terms). In the same way, for the conduction band we obtain very small
difference considering the effective mass as a constant. At k = 0 and k = 0.5
we obtain respectively 0.623meV, 0.04% and 1.24meV, 0.07%.

To conclude, what occurs when we consider a new potential, symmetrized
with respect to C2,

1
2
(V (r⊥) + V (ℜ(C2)r⊥))?

This potential correspond to a heterostructure presenting a C6v symmetry
group. The elements of this group can be constructed from C3v by {g, gC2}
where g ∈ C3v. For the single group, to every irrep of C3v correspond two
irreps of C6v (same dimension, respectively even/odd with respect to C2).
For the double group, we have three irreps E1/2, E3/2, E5/2. In the same way
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Figure 9.18: Valence band (only first energy levels) for the AlGaAs VQWR
with constant and position dependent parameters

as D3h, subduction table given by Altmann [3] gives E1/2(C6v)→ E1/2(C3v),
E5/2(C6v)→ E1/2(C3v) and E3/2(C6v)→ 1E3/2(C3v)⊕ 2E3/2(C3v).
The MSR formalism can of course by applied to the C6v group and allow to
obtain the reduced states and Hamiltonian for both the single and double
group irrep on the minimal domain corresponding to 1/12. In Sec. 10.1 more
details about the C6v group are given.

Parametric Study and comparison with experience

Some parameters of the structure shown in Fig. 9.1 are in reality not very
well known, and one needs indirectly fit them. To this end we present in
Fig. 9.19 the dependence of the e1 − h1 energy and amplitude of transition
as a function of the Al concentration of the VQWR, keeping the other pa-
rameters of Section 9.1 constant. The dependence as a function of the width
L of the lateral QWs is also presented in Fig. 9.19. Clearly, increasing the
concentration or decreasing the width have identical effects. Although the
transition energy increases, the behavior of the oscillator strength indicates
an overall decrease of quantum confinement, due to the spreading of the
wavefunction in the nearby barriers. The width-dependence of the quantum
confinement is due to the non-trivial geometry of the potential landscape.
We recently compare our theoretical and numerical results with experimental
photoluminescence (PL) spectra obtained in our laboratory at EPFL (labora-
tory of physics of nanostructures). As presented in [83], taking into account
a rigid shift (theoretical model do not include excitonic effects), the tran-
sitions obtained theoretically in the dipolar approximation are in excellent
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Figure 9.19: Dependence of e1 − h1 transition energy (a) and amplitude of
transition (x polarization) (b), as a function of Al VQWR concentration
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agreement with the PL spectra.



Chapter 10

Application of MSR formalism
to some other group

In this chapter we discuss the application of MSR formalism to some other
group: C6v is an higher symmetry group as C3v with hexagonal symmetry
quickly introduced in 9.2.5, D3h correspond to the center of zone group for
C3v and Cn are the pure rotational sub-groups (without roto-inversions). The
last example presented is the Cs group, where we explicitly show that our
MSR formalism reduce to the old techniques for low symmetry groups.
We do not carry out the reduced Hamiltonians but discuss the symmetry of
envelope functions by taking into account optimal choice of Bloch function
basis and 3D spatial basis.

10.1 C6v group

C6v is an higher symmetry group with respect to C3v presenting a 6 fold
axis and some real structure like the wurtzite-based GaN/AlN QDs [24, 84]
display hexagonal symmetry (see Fig. 6.8 for a schematic of an hexagonal
QD).
We can explicitly construct C6v from C3v by adding the π-rotation C2: G =
{g, gC2} ∀g ∈ C3v. We have four 1D and two 2D irreps (Ai, Bi and Ei ,
i = 1, 2) for the single group, half of these are even, and the other half is odd
with respect to the new operation C2. For the double group, we have three
2D irreps (Ei/2 , i = 1, 3, 5).

As presented in Sec. 3.4, for the valence band Luttinger Hamiltonian every
p, q, r, s operators is considered as a second order polynomial in k. We note
P,Q,R, S the corresponding 3 × 3 “matrices” of coefficients in such a way
that p = ktPk , ... , s = ktSk. In C3v, (r, s) form an ITO transforming with
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the E irrep and the corresponding matrix representation of the ITO can be
written, from Eq. (9.3) as

RC3v =
(

0 a 0
a b 0
0 0 −b

)
SC3v =

(
0 0 a
0 0 −b
a −b 0

)
(10.1)

where a = a(r) and b = b(r) are some spatially dependent constant, depend-
ing on the Luttinger parameters given in (9.4) and describing the hetero-
structure, therefore invariant respect to the C6v symmetry operations.
In C6v, we write r = r1 + r2 and s = s1 + s2, where (ri, si) are ITOs trans-
forming like Ei irreps and we obtain

RC6v
1 =

(
0 ã 0
ã 0 0
0 0 0

)
RC6v

2 =

(
0 0 0
0 b̃ 0
0 0 −b̃

)
(10.2)

SC6v
1 =

(
0 0 ã
0 0 0
ã 0 0

)
SC6v

2 =

(
0 0 0
0 0 −b̃
0 −b̃ 0

)
(10.3)

where the ã = Re(a) and b̃ = iIm(b) are related to the E1 and, respectively,
E2 ITO.

The effects of the increasing of symmetry C3v → C6v appear clearly: first
the parameters a and b are simplified, second every parameter is related to
a different irrep Ei.
Another way to explicitly obtain the C6v Luttinger Hamiltonian from the C3v

Hamiltonian, is to symmetrize the Hamiltonian with respect to the C2 op-
eration, considering spatial dependent Luttinger parameters invariant with
respect to the C6v symmetry operations, as

HC6v(r,k) =
1

2

(
HC3v(r,k) + ϑC−1

2
HC3v(r,k)ϑ−1

C−1
2

)
(10.4)

For C6v the Wigner representation reduce to E1/2 ⊕ E3/2 and the Luttinger
Hamiltonian expressed in the 1/2,−1/2, 3/2,−3/2, basis becomes as

HL = − ~2

m0

(
(P−Q)I2 A

A+ (P+Q)I2

)
; A =

(−s+ r
r+ s

)
(10.5)

The decomposition of the valence band states (still re-expressed with respect
to the +3/2,+1/2,−1/2,−3/2 basis allowing to immediately compare the
result with the C3v decompositions given in (8.13)-(8.16)) into single group
irreps is given by

ψE1/2

1
= 1√

2




−ψE1
2 − ψE2

2

ψA1 + φE1
1

ψA2 − φE1
2

ψE1
1 + ψE2

1


 , ψE1/2

2
= 1√

2




ψE1
1 − ψE2

1

−ψA2 − φE1
2

ψA1 − φE1
1

ψE1
2 − ψE2

2



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ψE3/2

1
= 1√

2




−ψA1 − ψB1

−ψE1
2 − ψE2

2

ψE1
1 − ψE2

1

ψA2 + ψB2


 , ψE3/2

2
= 1√

2




−ψA2 + ψB2

ψE1
1 + ψE2

1

ψE1
2 − ψE2

2

−ψA1 + ψB1




ψE5/2

1
= 1√

2




ψE1
2 + ψE2

2

ψB1 + φE2
1

ψB2 − φE2
2

−ψE1
1 − ψE2

1


 , ψE5/2

2
= 1√

2




ψE1
1 − ψE2

1

−ψB2 − φE2
2

ψB1 − φE2
1

ψE1
2 − ψE2

2


 (10.6)

where the argument r of functions is omitted from now.

The different components indicate, according to the subduction table C6v →
C3v [3], that E1/2 and E5/2 are related to E1/2(C3v) and E3/2 to 1E3/2⊕ 2E3/2.
The reduced Hamiltonians can be calculated using the reduction formalism
presented above.

10.2 D3h group and study of approximated

symmetries

In the last chapter, a C3v-symmetry Quantum Wire was studied with the
help of the new MSR formalism. At the mesoscopic point of view, due to the
translation invariance with respect to the x-direction (see Fig. 9.1), the het-
erostructure display a D3h = C3v⊗Cs = {g, gσh} ∀g ∈ C3v symmetry group,
where σh is the horizontal symmetry plane, but the microscopic atomic struc-
ture of AlGaAs is not invariant with respect to σh. The minimal common
symmetry is C3v and the Hamiltonian do never display the so called zone
center (ZC) symmetry D3h at k = 0. Studying a well symmetrized Hamil-
tonian with respect to σh (restoring the ZC symmetry) we showed that the
lack of symmetry has only a small influence on the energy and eigenstates.
In 9.2.4, we have presented how effects of an approximate symmetry can be
understood in a qualitative and quantitative point of view using the new
formalism and that the study of an approximate symmetry group can be a
useful tool to better understand and interpret the physical and numerical
results.
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10.3 The Cn groups: subgroups of the rota-

tions group

The subgroups of the pure rotation group SO(3) Cn , n ∈ N are important
groups corresponding to the symmetry of Hamiltonians with any symme-
try plane (roto-inversion). A typical example of Cn Hamiltonians, are Cnv
structures in presence of magnetic field. in fact, Cn groups are cyclic and
commutative (abelian) groups, then every simple and double group irreps
are non degenerate (according to the splitting of degeneracy due to magnetic
field). In this case, the reduction of 3D and Wigner representation is equiva-
lent to a diagonalization of the representations. In [72,75], the author study
C4v and C6v QDs with and without magnetic field even using Cn models (no
spatial-spin separation is computed and diagonalization of representation are
computed for block-diagonalize the full Hamiltonian just before the numer-
ical result). Even in this simple Cn case, using fully symmetrized basis and
spatial reduction allow to obtain some analytical and numerical simplifica-
tions.

We present as example the C4 symmetry group, a typical QD section is
presented in Fig. 6.9 (b), which has four single group irreps A,B, iE and
four double group irreps iE1/2,

iE3/2 , i = 1, 2. The iE, iE1/2,
iE3/2 are self

conjugated irreps and even for the spinless problem we have an additional
degeneracy at the center of zone k = 0 due to time reversal symmetry.
In the OBB, the Wigner operators are of course diagonals. The 3D rota-
tion representation constructed with Eq. (2.22) has the block diagonal form
A⊕ (1E ⊗ 2E). The 2× 2 block can be reduced to 2E ⊕ 1E with the optimal

3D basis given by
{
êx, êσ+ = 1√

2
(êy + iêz) , êσ− = 1√

2
(êy − iêz)

}
and corre-

sponding to a circular polarization in the plane.

In the fully symmetrized 3D and Bloch basis, we obtain very simply de-
composition of spinorial eigenstates and selection rules.
For j = 3/2, we reduce the Wigner representation to 1E3/2 ⊕ 1E1/2 ⊕ 2E1/2 ⊕
2E3/2 and obtain the spinorial decomposition for the iE1/2

ψ
1E1/2 =




ψB

ψA

ψ
2E

ψ
1E


 ψ

2E1/2 =




ψ
2E

ψ
1E

ψA

ψB


 (10.7)
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and iE3/2 components

ψ
1E3/2 =




ψA

ψB

ψ
1E

ψ
2E


 ψ

2E3/2 =




ψ
1E

ψ
2E

ψB

ψA


 (10.8)

For j = 1/2, we reduce the Wigner representation to 1E1/2⊕ 2E1/2 and, in the
same way as for C3v, for every irreps the spinors decomposition correspond to
the central part of the corresponding j = 3/2 decomposition. With respect
to the 3D and spinorial symmetrized basis, the Kane matrices are given by

PA
x = P0

(
0
√

2/3 0 0

0 0
√

2/3 0

)

Pσ+ = P0

(
0 0 1/

√
3 0

1 0 0 0

)

Pσ− = P0

(
0 0 0 1
0 −1/

√
3 0 0

)
(10.9)

We obtain that the only permitted transition between a conduction and a
valence band state are jEm − iEn and iEm − jEm transitions, where i = 1, 2
for, respectively, σ−, σ+ polarization, j 6= i and m 6= n = 1/2, 3/2. Of course
only Γ− Γ transitions are permitted in x direction.

10.4 Return to the Cs group

We developed the new formalism for study HSH. For a Cs low symmetry
heterostructure like T or V-shaped QWRs, the novel formalism reduce to
the old resolution technique: choose an “optimal quantization axis” perpen-
dicular to the symmetry plane σ. This particular choice allow to diagonalize
the Wigner operator related to the vertical symmetry plan W (σ) and obtain
even/odd envelope functions (single group irreps A′, A′′ are 1D). However
Cs = {E, σ} and the basis diagonalizing σ correspond to the OBB in which
Wigner representation is completely reduced to 1E1/2 ⊕ 2E1/2 ⊕ 1E1/2 ⊕ 2E1/2

(double group irreps iE1/2 , i = 1, 2 are 1D). In this particular case, the di-
agonalization of the Wigner representation can be computed with a rotation
matrix parametrized by the three Euler angles (α, β, γ) an corresponding to a
“3D rotation” ℜ(α, β, γ) of the quantization axis direction. Considering the
3D basis presented in Fig. 9.1, for a vertical plane normal to the êz direction,
the 3D representation is reduced to A′ ⊕ A′ ⊕ A′′. The j = 3/2 states are
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decomposed as

ψ
1E1/2 =




ψA
′

ψA
′′

φA
′

φA
′′


 ψ

2E1/2 =




ψA
′′

ψA
′

φA
′′

φA
′


 (10.10)

where, for every iE1/2, ψ
Γ and φΓ are different function with the same sym-

metry and, as usual, the j = 1/2 states decomposition correspond to the
central part of j = 3/2 functions. The dipolar transition operators Px and
Py in the symmetry plane are even with respect to σ (A′) and the operator Px
perpendicular to the axis is odd (A′′). The odd A′′ operator Px only couple
mutually conjugated bands (MΓ,Γ

x = MΓ,Γ
y = 0 then Γ−Γ are selection rules)

and the even A′ operators Px, Py only allow Γ− Γ transitions.



Chapter 11

Conclusion and outlook

11.1 Conclusion

We developed a novel Maximal Symmetrization and Reduction (MSR) for-
malism for wavefunctions in solid-state nanostructures (Chs. 7-8) and ex-
plicitly exploited this new tool to study the electronic and optical properties
of a C3v Vertical Quantum Wire (VQWR).
The heart of the new theoretical formalism consists in bringing the analy-
sis of the effects of heterostructure symmetry at the envelope function level.
The method is very general, well adapted to solve High Symmetry Heter-
ostructure (HSH) scalar or spinorial-like problems and independent of the
dimensionality of the heterostructure.
For scalar problems, we developed first a systematic Spatial Domain Reduc-
tion (SDR) technique: it allows, for every different symmetry of the problem
(irrep), to find the independent sub-domains (independent variables) and to
obtain a reduced Hamiltonian involving only the independent sub-domains
(minimal reduced domain). From the theoretical point of view, this allows to
highlight the symmetry properties of eigenstates and the coupling between
a minimum set of independent variables in the Hamiltonians. In addition
we were able to obtain explicitly the non-trivial boundary conditions on the
reduced domain. From the numerical point of view, it is possible to solve
smaller optimized problems for every irreps: the size of the matrices are min-
imized, whilst the band structure can be conserved. As a result, the compu-
tation time (CPU time) can be considerably reduced (by a factor 108/5 ∼= 22
for C3v) as well as the memory requirements.
For spinorial-like problems, we first explicitly separate the spatial and spino-
rial part of the operators and we choose optimal basis in both spaces accord-
ing to the symmetry of the problem (symmetry group of the Hamiltonian).
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With respect to the optimal spinorial basis, the coupling between compo-
nents is minimized and allows to introduce in the simplest way single group
decompositions of the scalar envelope functions (spinorial components) and
of the operators like the Hamiltonian. In the last step we compute the SDR
for every scalar function appearing in the decomposition of the components.
The advantages of a full symmetrization of the basis are manifold. First, the
Hamiltonians display the simplest form and the introduction of single group
labels for every component allows to explicitly highlight the effects of cou-
pling between different components. Second, the amplitudes of the matrix
elements of any operator with a given symmetry take a very simple form due
to the additional single group selection rules which can be used.
Symmetry breaking or eventual approximated symmetries can be understood
at the envelope function level in a qualitative and quantitative way. The
study of more complicated subsequent problems, like the excitonic or po-
laronic problems, involving envelope functions and other operators, can be
considerably simplified.
It is also essential to note that it is not necessary to use a symmetrized code.
The projectors allow to symmetrize the eigenstates after numerical resolution
and the method can be used as post processing.

11.2 Outlook

The MSR formalism was developed with the aim of studying a C3v VQWR
but the method is so general that it can be adapted to study many other
problems. Beside trivial generalizations to other dimensionality (e.g. quan-
tum dots) or different symmetry groups, other interesting problems related
to nanostructures with high symmetry properties can be studied with MSR
formalism. To give an example, the resolution of Maxwell equations in a
photonic band-gap: the Bloch function basis related to an half integer j for
the electronic band structure of a heterostructure is replaced by j = 1 (3D
basis!) in a photonic band-gap. The “spinorial” basis functions transform
in this instance with the single group irreps (optimal basis can be used, al-
lowing to decompose the scalar components with respect to the symmetry
before apply SDR). The method can also be applied to tensorial strain equa-
tions, and even to an arbitrary set of non-linear partial differential equations
having a given global symmetry.
Finally, the formalism is independent of the technique used for the numerical
resolution (e.g. finite elements, finite differences or decomposition into plane
waves). Additional numerical optimization can be reached, for example, us-
ing adaptative or irregular meshing in the reduced domain.
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Rev. B, 72:75356, 2005.

[73] S. Wolfram. The mathematica book. Wolfram media, Campaign, USA,
1996.

[74] M. G. Burt. J. of Phys.: Cond. Mat., 11:R53, 1999.
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