
Completeness Estimation of Range Queries in Structured Overlays∗

Marcel Karnstedt, Kai-Uwe Sattler
Faculty of Computer Science and Automation

TU Ilmenau, Germany
{marcel.karnstedt|kus}@tu-ilmenau.de

Roman Schmidt
Ecole Polytechnique Fédérale

de Lausanne (EPFL), Switzerland
Roman.Schmidt@epfl.ch

Abstract
Range queries are a very powerful tool in a wide range of

data management systems and are vital to a multitude of ap-
plications. The hierarchy of structured overlay systems can
be utilized in order to provide efficient techniques for pro-
cessing them, resulting in the support of applications and
techniques based on range queries in large-scale distributed
information systems. But, due to the limited knowledge and
the usually best-effort characteristics, deciding about the
completeness of query results, e.g., getting an idea when
a query is finished or what amount of results is still miss-
ing, is very challenging. There is not only an urgent need
to provide this information to the user issuing queries, but
also for implementing sophisticated and efficient process-
ing techniques based on them. In this work, we propose a
method for solving this task. We discuss the applicability
and quality of our estimations, present an implementation
and evaluation for the P-Grid system and show how to adapt
the technique to other overlays.

1. Introduction
P2P systems and particularly structured overlays based

on distributed hashtables (DHTs) are recognized as a
promising infrastructure for large-scale distributed data
management. The main reasons are their effectiveness and
scalability as well as the predictable behavior. After the
first generation supporting only basic key lookups, recent re-
search efforts address also the problem of efficiently query-
ing range predicates [5, 8]. Typically, these approaches ex-
ploit the structure of the overlay (e.g., a tree structure) by
implementing some kind of multicast protocol. In this con-
text, a main challenge is to estimate the progress of query
processing, i.e., to answer the question which fraction of
the total query result is already received. The difficulties
are due to the purely decentralized nature of the structured
overlay, the lack of global knowledge (no peer knows how

∗The work presented in this paper was (partly) carried out in the frame-
work of the EPFL Center for Global Computing and supported by the Swiss
National Funding Agency OFES as part of the European project NEPO-
MUK No FP6-027705.

many peers are responsible for the queried key range), the
dynamics of the network (peers may leave the network dur-
ing processing a query), as well as the often used best-effort
strategy for query routing and answering.

However, estimating the completeness of a query result is
not only a helpful information for the user issuing the query,
but it is also needed for processing complex queries. For
instance, query operators like aggregation or ranking-based
queries (e.g., skyline queries [6, 10]) require to know when
all input data is arrived in order to calculate the aggregate
value or to sort the input.

In this paper, we propose a solution to this problem.
The objective of our work is to estimate the completeness
of range queries as a fundamental operator for more com-
plex query operators and to give guarantees on the quality
of this estimation. The idea is to map the completeness on
data level to a completeness on peer level, thus, estimating a
number of replies expected for each query. This, of course,
is still very challenging in the investigated systems. We have
implemented the proposed approach in our UniStore sys-
tem [11] which is based on the P-Grid overlay. But we show
also how the main idea can be applied to other DHTs, too.
UniStore supports complex structured database-like queries
and thus, strongly benefits from a method for estimating
query completeness. For instance, aggregation queries and
skyline queries internally rely on range queries. Results of
such queries can be processed after a satisfyingly signifi-
cant portion of the result data (e.g., 90%) is received, rather
than demanding for complete result sets. Due to the usually
parallelized processing of range queries in DHT overlays,
the decision whether a result set is complete or satisfyingly
large can only be made using a sophisticated method for
completeness estimation as proposed in this work. This will
not save bandwidth or processing power, as later replies are
still transmitted, but eliminates the need for static waiting
states and enables speedy processing of subsequent opera-
tors of complex queries.

The remainder of this paper is structured as follows: Sec-
tion 2 briefly discusses approaches for processing range
queries in overlay systems and introduces the technique pro-

posed in P-Grid. The actual approach for completeness esti-
mation based on this is presented in Section 3. Afterwards,
we discuss the technique’s applicability for other systems in
Section 4 and explain the user point of view on complete-
ness estimation in Section 5. Finally, we conclude the paper
by an evaluation in Section 6 and a summary.

2. Range Queries in Structured Overlays
Range queries were proposed in the past for several struc-

tured overlays [8], [5], [4, 3], [14, 13], [9, 15]. Like Uni-
Store, [7] proposes methods for range queries and advanced
query types on DHT overlays. But, this work lacks dis-
cussion about estimating query completeness. We base our
work on the approach presented in [8] using P-Grid [1] as
structured overlay network. P-Grid organizes nodes in a bi-
nary trie structure, which is a standard indexing structure
from databases to support among others range queries. A
key benefit of tries is that they cluster semantically close
data items which is a critical pre-condition for efficient pro-
cessing of range queries. Traditional DHTs such as Chord
or Pastry use uniform hashing functions to map application
keys to their identifier space. While this achieves good stor-
age load-balancing and efficient discovery of exact keys,
it is in conflict with preserving the semantic proximity as
it destroys existing relations among the application-specific
keys. Keys which are semantically close at the application
level are heavily fragmented in a DHT. We will now briefly
present the P-Grid overlay and its range query algorithm.
More details can be found in [8].

2.1. The P-Grid Overlay
In P-Grid peers refer to a common underlying binary

trie structure to organize their routing tables. Data keys are
computed using an order-preserving hash function to gener-
ate keys. Without constraining general applicability binary
keys are used in P-Grid. Each peer constructs its routing
table such that it holds peers with exponentially increasing
distance in the key space from its own position. This tech-
nique basically builds a small-world graph [12], which en-
ables search in O(log N) steps. Each peer p ∈ P is asso-
ciated with a leaf of the binary trie, i.e., a key space parti-
tion, which corresponds to a binary string π(p) ∈ Π called
the peer’s path. For search, the peer stores for each pre-
fix π(p, l) of π(p) of length l a set of references ρ(p, l) to
peers q with property π(p, l) = π(q, l), where π is the bi-
nary string π with the last bit inverted. This means that at
each level of the trie the peer has references to some other
peers that do not pertain to the peer’s sub-trie at that level
which enables the implementation of prefix routing.

Each peer stores a set of data items δ(p). For d ∈ δ(p)
key(d) has π(p) as prefix but it is not excluded that tem-
porarily also other data items are stored at a peer, that is,
the set δ(p, π(p)) of data items whose key matches π(p) can
be a proper subset of δ(p). Moreover, for fault-tolerance,

query load-balancing, and hot-spot handling, multiple peers
are associated with the same key-space partition (structural
replication), and peers additionally also maintain multiple
references σ(p) to peers with the same path (data replica-
tion).

Figure 1 shows a simple example of a P-Grid tree con-
sisting of 6 peers responsible for 4 partitions, e.g., peer F’s
path is 00 leading to two entries in its routing table: peer E
with path 11 at the first level and peer B with path 01 at the
second level. Further, peer F is responsible for all data with
key prefix 00. A search initiated at peer F for key 100 would
first be forwarded to peer E because it is the only entry in
F’s routing table at level 1*. As peer E is responsible for 11
and not for the key 100, peer E further forwards the query to
peer D, which can finally answer the query.

�

�� ������

	�� ��

��
���������

���������

�������		

�

�� ���

	�� ��

��
���������

���������

�������		

�� ������

		� ���

��
���������

���������

�������	�

�

	� �����

��� ���

��
���������

���������

��������	

�

	� ������

��� ���

��
���������

���������

��������	

�

	� ��
���

�	� ���

��
���������

���������

���������

		� 	��

	� ��

�	� ���

Figure 1. P-Grid overlay network

2.2. Range Queries
Range queries in P-Grid are first forwarded to an arbi-

trary peer responsible for any of the key space partitions
within the range, and then the query is forwarded to the
other partitions in the interval using this peer’s routing ta-
ble. The process is recursive, and since the query is split
in multiple queries which appear to trickle down to all the
key-space partitions in the range, it is called the shower al-
gorithm. The intuition of the algorithm is shown graphically
in Figure 2.

Figure 2. Range query illustration

In the course of forwarding, it is possible that the query is
forwarded to a peer responsible for keys outside the range.
However, it is guaranteed that this peer will forward the
range query back to a key-space partition within the range.

Moreover, the P-Grid routing ensures that no key space par-
tition will get duplicates of the range queries. Algorithm 1
gives the pseudo code for the shower algorithm.

Algorithm 1 shower(R, lcurrent, p)
1: if π(p) ⊆ R then
2: return(d ∈ δ(p)|key(d) ∈ R);
3: end if
4: determine ll such that π(min(R), ll) = π(p, ll);
5: determine lh such that π(max(R), lh) = π(p, lh);
6: lmin = max(lcurrent, min(ll, lh));
7: lmax = max(ll, lh);
8: if lcurrent < lmax then
9: for l = lmin to lmax do

10: r = randomly selected element from ρ(p, l);
11: shower(R, l+1, r);
12: end for
13: end if

[8] also proposes a more intuitive algorithm which could
further be applied to any other structured overlay. The ba-
sic idea is to first find the lower (or upper) bound of a range
query and then sequentially forward the query along neigh-
bors till the upper (or lower) bound is reached. The simplic-
ity of using only one message has the disadvantages that (i)
losing the query message results in the immediate termina-
tion of the range query as no further peer is reached and no
further data will be returned; (ii) forwarding one message
sequentially along neighbors can result in a very long query
response time depending on the size of the queried range
and the number of peers involved. We will therefore focus
on the shower algorithm as its performance is considerable
better in terms of response time whereas requiring only a
slightly larger number of messages.

2.3. Query Completeness
Though it is guaranteed by the shower algorithm that all

peers receive exactly one range query message, it is cur-
rently not possible for the initiating peer to estimate the
number of peers concerned by a range query, i.e., estimat-
ing the number of response messages it has to expect. For
keyword based queries, a peer receives only one query re-
sponse by one peer in a structured overlay network as only
one peer (or any of its replicas) is responsible for the given
keyword. A peer is therefore able to determine when a query
finished and when it received all matching items to either
inform a user, start post-processing or initiate subsequent
queries. This is currently not possible for range queries in
structured overlay networks as the number of response mes-
sages depends on the number of peers in the target range,
which is usually not know for a peer. We will present in
the following section our approach to estimate this number
based on the local information available in a peer’s routing
table and corrected by intermediate peers forwarding range
queries or peers responding to range queries. We thereby as-
sume a load-balanced system where each peer holds approx-
imately the same amount of data. Load-balancing in DHTs

has been studied intensively as it is one of the main prin-
ciples of DHTs and [2] presents its realization for P-Grid
and evaluation on a real-world test-bed. Hence estimating
the number of responding peers is equivalent to estimating
the number of query hits expected to be retrieved by a range
query.

3. Completeness Estimation
Estimating the completeness of queries should intuitively

be bound to the data level: the user is interested in what
fraction of all expected result hits he already received. This
also holds for subsequent processing steps following the ex-
ecution of range queries. As briefly mentioned in the last
section, predicting completeness on data level is almost im-
possible without enormous costs. Fortunately, in a load-
balanced overlay system this completeness can be mapped
to completeness on reply level, because each reply should
deliver approximately the same number of results. This is
especially true for range queries, because no filtering steps
are applied – if a peer is responsible for a part of the range,
it will return all of its local data items. Moreover, we will
show that we are able to guarantee to identify the last query
reply when receiving it. Thus, a completeness of 100%
on reply level corresponds to a guaranteed completeness of
100% on data level. So, for subsequent operations that rely
on complete range query replies estimation on reply level is
absolutely satisfying. In order to show its applicability for
other situations, in Section 6 we show that completeness on
data level and reply level almost match. Note that, due to
the characteristics of sophisticated overlays, the majority of
queries will be answered completely.

In the following, we will introduce our basic approach
and the principles it is based on. An empirical evaluation as
well as thoughts on determining a quality of the estimation
in addition are presented in the subsequent sections.

3.1. The Proposed Method

We focus on the mentioned shower algorithm imple-
mented in P-Grid. In Section 4 we discuss the possibili-
ties for other systems to provide completeness estimation
for range queries and the applicability of our approach to
them.

A peer initiating a range query starts this query by pro-
viding the interval bounds of the desired range. Afterwards,
each intermediate peer responsible for routing the query,
forwards it to one or more sub-trees, depending on its own
path, the paths of peers from its routing table, and the paths
of the queried range. Thus, the crucial point is to estimate
the number of peers responsible for a certain key range. But,
due to load-balancing aspects, this is quite difficult. The
idea is to use all available path information in order to build
an estimated P-Grid trie. Based on this tree, we can deter-
mine a minimal number of replies expected.

In the following we will explain, how we can determine
the minimal number of replies from an estimated P-Grid trie.
Let

b1b2b3 . . . bx

denote the x bits that form the binary key of such a peer.
From this path, we can deduce the existence of at least x
other peers: Let bi denote the inverted bit bi. For each path

1: b1

2: b1b2

3: b1b2b3

. . .

x: b1b2 . . . bx−1bx

there must exist at least one responsible peer. Knowing
about several paths from peers in a range, the initiator can
deduce a minimal number of peers in that range. In order to
achieve this, the initiator builds a tree from those paths and
reflects to the minimal number of peers.

0 1

00 01 10 11

P4 P0
P3

P2

P1

00100 1101queried range

Figure 3. Estimating the P-Grid trie

Figure 3 illustrates this. The figure shows an example P-
Grid tree. Assume a query for the range 00100 − 1101 was
initiated. Further, the initiator P0 knows about four peers,
where the paths from P1, P2 and P3 are in the range. As ev-
ery peer has at least one reference to another peer for each
of the positions of its path, P0 must at least know about four
peers, each located in a different sub-tree. The part of the
tree the initiator can deduce from its local routing informa-
tion is shown in solid lines. The dashed lines indicate that
part of the tree not known to the initiator, which results in
a small error in this first estimate. The minimal number of
peers in the range estimated in this situation is 8, the correct
value is 10.

3.2. Estimation Refinement
The first estimation performed by the query initiating

peer is solely based on the routing information available at
that peer. The local routing table stores at least one reference
per level. In other words, we know about at least one peer
of each sub-tree a range query is sent to. For fault-tolerance
and load-balancing reasons structured overlays usually keep
multiple references at each level to remain operational dur-
ing peer churn or to select the least loaded peer for query

load-balancing. Therefore, the information a query initiat-
ing peer has about the structure and peers in a sub-tree in-
creases with the number of references per level.

But, the information gathered like this is still not com-
plete and the estimation might still be too small as some
peers remain “invisible” from the local point of view. There-
fore, initiating peers piggy-back with each query sent to a
sub-tree the estimate of peers considered in a sub-tree. For
example in Figure 3, the range query sent from peer P0 to
peer P3 also the contains the estimate that three peers build
the sub-tree 001*. As P0 only knows that P3 has path 00110,
it knows that there must be a peer 00111 and at least one
peer for 0010, though P0 does not know that the sub-tree
0010* actually consists of two peers. P3 is aware of this fact,
because P3’s routing table must contain at least one of the
peers from sub-tree 0010*, and can return the correct num-
ber of peers in sub-tree 001* with its query reply to peer P0.
P0 can then correct the estimate of query replies expected
for the initiated range query. Peers receiving a range query
with correct information do not have to “correct” the initial
estimate.

The required message overhead for our completeness es-
timation is therefore minimal as no additional messages
have to be sent and only small information are piggy-backed
with sent query and query reply messages. In case a range
query hits a peer outside the target range with an incorrect
estimate, the receiving peer can either react by replying with
a short acknowledgment message correcting the initial esti-
mate, or it forwards the incorrect estimate to target peers in
the range and the correction will be returned in the query re-
ply messages. In the first case, the query initiator can sooner
correct the estimated completeness at the cost of a small ex-
tra message, whereas in the second case the correction is
done at a later time with the reception of query results with-
out additional messages.

Applying the method as described above, we will never
over-estimate the number of expected replies. Moreover,
when a query is finished, we will always recognize this for
sure. This is possible because the paths of the replying peers
are analyzed. Thus, receiving these replies, we always know
for sure the actual size of the corresponding sub-tree.

3.3. Further Improvements
There was much research spent on designing overlay sys-

tems as much stable and reliable as possible. Thus, we can
even cache estimated trees once they are built. These cached
trees can later be used for subsequent queries. The trees
should then be adapted to changes in the overlay structure
registered – which may, of course, occur, but are expected to
be rather rare. In this way, we achieve a quite accurate and
satisfyingly exact completeness estimation, which is auto-
matically maintained with each query initiated.

The task of achieving complete query results is due to the
used overlay system, in this case the P-Grid overlay. Nev-

ertheless, incomplete results may occur in rather unstable
and unreliable large-scaled systems. This also effects the
completeness estimation, as, for instance, we will experi-
ence a difference in the static completeness concerning all
data that should be available, and the dynamic completeness
based on the results actually received. This should be in-
volved into completeness considerations. A nice aspect of
the method proposed here is that it allows for estimating the
size of results missing in this case.

4. Usability in other Overlay Systems
Our approach is based on a parallel resolution of range

queries in a binary trie similar to a prefix hash tree, whereby
in the case of P-Grid the depth of each sub-tree can be esti-
mated by the known nodes of this sub-tree stored in the local
routing table. To the best of our knowledge no other sys-
tem can already provide completeness estimation for range
queries. In this section, we briefly discuss the possibilities
for other systems to estimate the number of query replies
and the usability of our approach for them.

The approach for range queries in SkipGraphs [4, 3] is
the most similar one to the one of P-Grid as peers also
maintain routing information at multiple levels. Our pro-
posed method can also be used by SkipGraphs to estimate
the number of peers in other sub-trees. The only problem is
the number of peers remaining in the bucket layer below the
lowest interconnected skip-list level. But, as load-balancing
is in place, this number should be similar to the number of
buckets the current node is in.

Approaches like [14] and [13] are based on a prefix hash
tree where peers remain at each level of the tree, unlike in
P-Grid where peers only remain at the leaf level. The rout-
ing in this tree starts at the root level and trickles down the
tree from nodes to their children until all nodes in the target
range are reached. As we assume that nodes do not know
the exact number of their children, it is not possible for them
to estimate how many nodes will return results for a range
query. If this number can be estimated, the technique pre-
sented in this paper can also be adapted for completeness
estimation in systems based on prefix hash trees.

Finally, approaches forwarding a range query sequen-
tially along neighbors cannot estimate the final number of
nodes involved in a range query. This holds for CAN-based
systems presented in [9, 15] and the Chord-ring based sys-
tem Mercury [5].

5. Applying Completeness Estimation
In the last sections, we motivated the need for an ex-

act completeness estimation and proposed a technique for
achieving this on the physical layer. Now we will discuss
how the introduced method is applied internally and how
completeness information are presented to the user, used for
subsequent processing steps, respectively.

By applying the method as introduced, we can always de-
termine a minimal value for the number of replies expected.
With each reply received, we just compute the ratio

received replies
expected replies

.

By this, we are always able to provide a satisfyingly exact
estimation and identify the final reply for sure. With the
first replies this completeness value may be over-estimated,
because we expect less replies than finally received. But,
as Section 6 will show, the number of corrections needed
for determining an exact estimate is rather low. Moreover,
the final completion of a query can always be determined by
100%. Preferably we should also provide a corresponding
probability or intervals of (un-)certainty for all intermediate
replies.

One idea is to provide an expected average number rather
than the minimal number of replies. This can be achieved by
using information about the average depth of a P-Grid trie,
which could be taken from empirical studies. The minimal
number of replies could be used as a lower bound in this
case, and an estimated maximal number (again, based on
empirical studies) as an upper bound. Like this, we can eas-
ily provide a completeness estimate plus an interval of cer-
tainty. Of course, the value estimated for the maximal num-
ber of replies will rise suddenly when a query reply from an
unexpectedly deep sub-tree is received. It is a fact that the
quality of estimation is the worse, the more unknown sub-
trees we have and the higher they are located in the tree,
i.e., the shorter the known paths are. This can be even im-
proved if we base the completeness estimations on cached
estimation trees. These trees, built with queries already fin-
ished, usually reflect a relatively good view of the routing
trie. Even if we have no glue about the actual size of the
tree, we could still use, if available, an estimated number of
peers joining the system in order to determine upper bounds
for the number of expected replies and thus, provide good-
ness intervals.

Another conceivable approach is to compute a kind of er-
ror approximation. For instance, we could use the estimated
maximal tree depth in order to compute an additional quality
estimation. One suggestion for such a factor of uncertainty
εl is:

εl = 1− |Bl|
|Bl|+

∑
b∈Bl

2bmax−|b|
.

Bl is the set of all paths known to the initiator overlapping
the queried range, Bl represents the minimal set of paths b
predicted to be still missing in the range – in other words,
the number of sub-trees we know overlapping the range but
we still miss any information from. bmax stands for the
assumed maximal path length/tree depth (∀b ∈ Bl ∪ Bl :
bmax ≥ |b|). Assuming bmax = 5 in the small example
from Section 3.1 we would predict a factor of uncertainty
ε = 1 − 3

3+(2+1+4+2+8) = 0.85. On the first look, this

seems to be an unjustified high value – but, at this point, we
only know of three peers among at least eight in the range,
which is only 37.5%.

As one example for applications that will benefit from the
proposed method for completeness estimation we refer to
UniStore [11]. UniStore is a light-weight system for univer-
sally storing and managing structured data in a distributed
manner based on a structured overlay. Range queries are
only a part of the variety of query processing techniques
supported by UniStore. There is a need to provide exact
completeness estimation for all of these types. An example
for processing techniques relying on range queries and an
exact completeness estimation are skyline queries [6, 10].
One step during the processing of these queries is to ini-
tiate range queries for each of the queried attributes – and
continuing with subsequent processing steps after all (or a
satisfyingly large fraction) range query replies are received.
Other supported operators that rely on range queries are ag-
gregates. For instance, the average of an attribute is deter-
mined by initializing a range query for the attribute. This
is possible because the values are inserted into the storage
system by applying a hashing function on the attribute name
concatenated with its value. Note that P-Grid uses a prefix-
preserving hashing approach, so all items for one attribute
are stored in a continuous range.

6. Evaluation
The focus of the following evaluation is to show the ap-

plicability, exactness and quality of the proposed complete-
ness estimation. These aspects are not directly depending
on the size of the network, but rather on the size of the con-
structed overlay trie. This, in turn, also but not exclusively
depends on the network size. We created a local and re-
liable but real environment consisting of 61 nodes. These
nodes were physically distributed over 20 machines, each
running up to 4 instances listening on different ports. As the
environment was stable, we were able to use a low replica-
tion factor, lowering the number of replicas responsible for
one path in the P-Grid trie. This resulted in a wider and
deeper tree. Thus, the results are also significant for larger
scaled networks, where usually a higher replication factor is
used. We used two environments, the first with a replica-
tion factor of 2, the second with a factor of 1. In unreliable
systems, this factor will be set to 5 or higher compensating
frequent joins and leaves of peers. Our evaluation focuses
on the completeness estimation of range queries and we as-
sume that P-Grid guarantees the availability of at least one
peer per partition even in very dynamic or unreliable setups
like PlanetLab.

We inserted 48 data items from each of the peers, result-
ing in a total of 2928 data items. The used string data taken
from IMDB (http://www.imdb.com/) represents in-
formation about movie titles and shows a skewed heavy-tail
key distribution (power-law like). The average number of

leafs, maximal path length and the average path length were
32, 8 and 5 for a replication factor of 1. For a factor of 2,
the values were 19, 6 and 4.5, respectively. The resulting
P-Grid trie was not balanced. Almost 40% of the leafs were
located under key prefix 0 and the tree was deeper and wider
under key prefix 1.

In order to evaluate the influence of the number of refer-
ences for one level of the local routing table we built three
environments, using a maximal number of references of 1,
3 and 5. A query mix of three different range queries, in-
volving different parts of the trie and therefore resulting in
a different number of replies, was run. Query q1 asks for all
index entries with prefix 10 (range 100...0-101...1), q2 for
all with prefix 11 and q3 uses an empty prefix, thus querying
the whole trie. Each query was initiated 10 times, each time
on a randomly chosen node. In the following, we present
and discuss the results of the described experiments.

 q3−% 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

fr
ac

ti
o
n

 o
f

re
su

lt

reply nr.

 q1−%
 q2−%

 0

Figure 4. Completeness on data level

The first figure shows the correspondence between com-
pleteness on data level and on peer level. Figure 4 shows
the percentage of the final result received with respect to the
number of replies received. We exemplary chose one of the
described network environments (replication factor 2, maxi-
mal references 5) – in the other settings results look similar.
The plot shows that especially for the two queries resulting
in less answers the development of the result size is almost
linear. For the query involving the whole P-Grid trie the last
query replies contain larger fractions of the result than ear-
lier replies. Even if P-Grid implements a sophisticated load-
balancing, there might exist keys a particular high number
of data items is mapped to. P-Grid’s load-balancing tech-
nique splits high frequented key space partitions more fine-
granular than others, but does not “split” single keys. Thus,
some peers are still responsible for a higher number of items
than others. Due to the locally used storage system, the ans-
wer time correlates to the amount of data to be processed
locally. Therefore, replies from these peers arrive with later
replies, resulting in a higher increase of the result size with
the final answers. A perfect mapping would be indicated by
a straight line. The figure shows that the mapping from com-
pleteness on data level to the completeness on reply level is
satisfyingly realistic in load-balanced overlay systems.

Figure 5 shows the number of replies we estimated using
the proposed technique with each reply received. Addition-

completeness
 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est
 q3−est

 0

(a) replication:1, maxref:1

completeness
 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est
 q3−est

 0

(b) replication:1, maxref:3

completeness
 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est
 q3−est

 0

(c) replication:1, maxref:5

completeness 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est
 q3−est

 0

(d) replication:2, maxref:1

 q3−est

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est

 5

(e) replication:2, maxref:3

completeness

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

re
p
ly

 n
r.

reply nr.

 q1−est
 q2−est
 q3−est

 0

(f) replication:2, maxref:5

Figure 5. Estimated number of replies with corrections

ally, the straight line represents the actual completeness on
reply level. The figure clearly shows that our method always
estimates the number of replies correctly at the end. More-
over, it gets evident that only a small number of first replies
is needed in order to determine a correct value in the end. As
expected, the higher the number of references for each level
of the routing table, the more exact the initial estimation and
the less corrections are needed. The figure also shows that in
this case the size of the temporary errors is smaller than with
lower references per level. The differences in the number of
replies for identical queries are due to the need for starting
networks with different parameters from scratch every time.
By this, and the application of a random-walk strategy in
order to build the P-Grid trie, this results in, only slightly,
different overlay trees.

The smaller the part of the trie involved into range query
processing the less information is needed in order to achieve
exact estimations. For the first two queries, even the settings
using a replication factor of 1 and/or a maximal number of
references per level of 3 and 1 are quite satisfying. As sub-
trees are queried more probably than the whole tree, this
shows that the proposed method provides quick and exact
estimations even with low information. This also indicates
the effectiveness for larger scaled and unreliable systems
where, in turn, more information shall be contained in the
local routing tables.

Summarizing, we can state that for each of the consid-
ered cases we only need a fraction of replies in order to
achieve an exact completeness estimation. As the method
goes along with very low additional effort, this proves its
powerfulness for trie structured overlays in general.

The last figures show the relative completeness

(estimated #replies
final #replies) estimated with each reply. Thus, it illustrates

the ratio of error correction. Moreover, this time the queries
were run on two different networks for each setting, each
of them run for a different time before starting queries. Re-
sults from the hence four runs were averaged. Thus, effects
of slightly different overlay tries are eliminated. Figure 6
shows that the ratio of correction is always almost equal
for each of the used environments. Following, independent
from the query actually initiated, completeness estimation is
comparably good and corrections provide equally good im-
provements with respect to the size of the final result. The
figures also show that the initial estimate is good for all tests,
but it is better if more references are stored at each routing
table level. As expected, an error correction can be recog-
nized only for the first query replies and converges to 0 for
later replies. Another important observation is that the esti-
mation for the queries with less replies are very exact with
little information and that the corresponding plots approach
each other with rising numbers of references.

All in all the proposed method for completeness estima-
tion is absolutely satisfying. The initial estimation, based
on no further knowledge than the local one, is quite good
for any type of query and environment. Even if this first es-
timate is erroneous, only a small amount of replies is needed
in order to determine an exact estimate.

In the presented experiments, we omitted any dynamics,
which is of course a natural ingredient of P2P systems. But,
providing complete results under churn is a task the overlay
is responsible for, not the system layered on top of it, like
UniStore. If the overlay guarantees complete results, which
modern overlay systems achieve by applying adequate repli-
cation algorithms, the proposed approach will work correct,

 q3−est

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35

#
re

p
li

es
:

es
t.

/f
in

al

reply nr.

 q1−est
 q2−est

 0.7

(a) maxref:1

 q3−est

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35

#
re

p
li

es
:

es
t.

/f
in

al

reply nr.

 q1−est
 q2−est

 0.75

(b) maxref:3

 q3−est
 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30 35 40

#
re

p
li

es
:

es
t.

/f
in

al

reply nr.

 q1−est
 q2−est

 0.86

(c) maxref:5

Figure 6. Estimated relative number of replies with corrections

as shown above. Moreover, in recent time the super-peer
approach, relying on a fraction of all peers which are rather
reliable and robust, gains boosted attention. Referring to
this, the static network used in our tests corresponds to such
robust super-peers. The only point where minor errors may
occur is if a peer crashes right after receiving and acknowl-
edging a query, but before replying to it, which is rather un-
likely. Nevertheless, we are preparing more complex exper-
iments including dynamics. By this we will evaluate the ro-
bustness of the used overlay in combination with complete-
ness estimation for all operators supported by UniStore.

7. Conclusion
In this work, we faced the problem of completeness es-

timation in structured overlay systems, where knowledge is
usually bounded locally. We motivated the need of an exact
estimation for both, user and internal requirements. Beside
the limited knowledge, the problem of completeness esti-
mation is quite challenging due to the natural aim of the
investigated systems to parallelize a query as much as pos-
sible. This gets especially obvious for efficient approaches
of range query processing. The proposed method solves this
task for several system architectures, while being low-effort
but though exact. Thus, it represents an efficient and power-
ful technique for modern distributed data- and information
systems.

Main aspects of our ongoing work are the integration of
the approach into a sophisticated completeness estimation
supported by complex systems like UniStore and the inves-
tigation of further algorithmic improvements as well as an
extended analytical and empirical evaluation. Currently we
are developing measures and formulas suited to determine
quality and goodness of the estimation.

Acknowledgments
We would like to thank Thomas Kreyling for his valuable

contribution to the development of a basic approach and his
implementation work.

References
[1] K. Aberer. P-grid: A self-organizing access structure for p2p

information systems. In CoopIS’01, pages 179–194, 2001.

[2] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. In-
dexing data-oriented overlay networks. In VLDB’05, pages
685–696, 2005.

[3] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balanc-
ing and locality in range-queriable data structures. In ACM
PODC, pages 115–124, 2004.

[4] J. Aspnes and G. Shah. Skip graphs. In ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 384–393, January 2003.

[5] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. SIGCOMM
Computer Communication Review, 34(4):353–366, 2004.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE’01, pages 421–432, 2001.

[7] B. Daniel, P. Hurley, R. Pletka, and M. Waldvogel. Bringing
efficient advanced queries to distributed hash tables. In Local
Computer Networks (LCN’04), pages 6–14, 2004.

[8] A. Datta, M. Hauswirth, R. Schmidt, R. John, and K. Aberer.
Range queries in trie-structured overlays. In P2P’05, pages
57–66, 2005.

[9] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range
selection queries in peer-to-peer systems. In CIDR’03, 2003.

[10] M. Karnstedt, J. Müller, and K. Sattler. Cost-Aware Sky-
line Queries in Structured Overlays. In ICDE Workshop on
Ranking in Databases (DBRank’07), pages 285–288, 2007.

[11] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller,
M. Hauswirth, R. Schmidt, and R. John. UniStore: Query-
ing a DHT-based Universal Storage. In ICDE’07 Demon-
strations Program, pages 1503–1504, 2007.

[12] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. Technical Report 99-1776, Cornell Computer
Science, October 1999.

[13] C. Y. Liau, W. S. Ng, Y. Shu, K.-L. Tan, and S. Bressan.
Efficient range queries and fast lookup services for scalable
p2p networks. In DBISP2P’04, pages 93–106, 2004.

[14] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and
S. Shenker. Brief announcement: Prefix hash tree. In ACM
PODC, page 368, 2004.

[15] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi.
A peer-to-peer framework for caching range queries. In
ICDE’04, page 165, 2004.

