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Abstract 
 
 
The importance of outcome evaluation of a medical treatment in orthopedics is currently 

recognized.  In shoulder disease, a large variety of evaluation tools is employed to assess 

the results of the surgery.  However, even if the majority of these evaluations are largely 

widespread, none was accepted as a universal standard. Since 1990, few researchers have 

been evaluating the assumption that the movement analysis (with camera-based or 

electromagnetic systems) is likely to provide objective results. In clinical practice, these 

techniques are not always applicable for outcome evaluation of a treatment. The surgeons 

lack a convenient and simple method of evaluating in an objective way a patient’s 

activity and quality of life after a surgery of the shoulder. 

This project provides a new tool for the objective functional evaluation of shoulder 

pathologies, a tool that can be easily used by a doctor at a hospital and by the patient at 

home. It allows the measurement of the biodynamic changes as well as 3D kinematics of 

the treated shoulder by noting the effects of these changes on clinical results and on the 

patient’s daily activity. 

The project was split in four complementary studies. In the first study, a new ambulatory 

device allowing long-term monitoring of the shoulder movement using several inertial 

sensors (3D gyroscopes, 3D accelerometers) attached on the trunk, the humerus and the 

scapula’s spine was designed. By combining acceleration and angular velocity features of 

the both humerus during 9 tests, three kinematic scores for the functional assessment of 

the shoulder were presented to evaluate the shoulder function in patient before and after 

surgery. The kinematic scores objectively showed the shoulder improvement after 

surgery. 

In the second study, a new method was proposed to detect and quantify the dominant 

upper-limb segment during daily activity. The method was tested on healthy subjects 

(N=31) and a patient group (N=10, at baseline, 3, 6 and 12 months after surgery) while 

carrying the system during 8 hours of their daily life. The results showed the dominance 

of the arm during standing, sitting and walking periods for healthy subjects and the 
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quantification of the shoulder improvement after surgery, by taking into account the 

presence of the disease in the dominant or the non dominant arm. 

In the third study, 3D gyroscopes attached on the humerus were used to identify the 

movements of flexion-extension, abduction-adduction and internal/external rotation of 

the humerus and to identify the rates of adjunct (deliberate rotation) and conjunct 

rotations (inherent or automatic rotation) within each movement. The frequencies of each 

movement (number/hour) for the different ranges of the arm speed, as well as the rate of 

adjunct and conjunct rotations for each movement were estimated during daily activity in 

healthy and patient groups. The results provided the values of frequency of each 

movement and adjunct/conjunct rate based on the data obtained from the healthy group. 

In the pathological case, we found that the painful dominant shoulder of the patients lost 

its predominance in favor of the healthy shoulder, the non dominant shoulder. Patients 

had less pure internal/external rotations and performed less fast movements while after 

surgery these parameters presented no significant differences with the healthy group. 

In the fourth study, a new method of detecting the working level of the shoulder was 

presented. By measuring the arm elevation during motionless periods, we proposed a new 

score to evaluate the ability of working at a specific level for a definite duration. We 

showed that this score had an average of 100% (±31%) for healthy subjects while the 

working level of the painful shoulder was lower than the healthy shoulder and improved 

significantly after surgery (up to 87% at 6 months).  

 

This study provides preliminary evidence of the effectiveness of the proposed system in 

clinical practice and objectively assesses upper-limb activity during daily activity.  

 

Keywords: Ambulatory system, Outcome evaluation, Shoulder functionality, Upper-limb. 
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Résumé 
 
 
L'importance de l'évaluation de résultats d'un traitement médical dans l'orthopédie est 

actuellement reconnue. Dans les maladies de l'épaule, une grande variété d'outils 

d'évaluation sont utilisés pour évaluer les résultats de la chirurgie. Cependant, même si la 

majorité de ces évaluations est en grande partie répandue, aucune n'a été acceptée comme 

norme universelle. Depuis 1990, peu de chercheurs avaient évalué l’hypothèse que les 

systèmes (basés sur des caméras ou les systèmes électromagnétiques) de l'analyse de 

mouvement sont susceptibles de fournir des résultats objectifs. Dans la pratique clinique, 

ces techniques ne sont pas toujours applicables pour l'évaluation des résultats d'un 

traitement. Les médecins manquent d'une méthode pratique et simple pour évaluer de 

façon objective l'activité et la qualité de vie d’un patient après une chirurgie de l’épaule.  

Ce projet fournit un nouvel outil pour l'évaluation fonctionnelle objective des pathologies 

de l'épaule, un outil qui peut être facilement employé par un docteur dans un hôpital et 

par le patient à la maison. Il permet la mesure des changements de biodynamique comme 

la cinématique 3D de l'épaule traitée en notant les effets de ces changements sur des 

résultats cliniques et sur l'activité quotidienne du patient.  

Le projet a été séparé en quatre études complémentaires. Dans la première étude, un 

nouveau dispositif ambulatoire, permettant la surveillance à long terme du mouvement de 

l’épaule à l'aide de plusieurs capteurs inertiels (gyroscopes 3D, accéléromètres 3D) 

attachées sur le tronc, l'humérus et la partie supérieure de l'épine de l'omoplate 

(acromion), a été conçu. En combinant les accélérations et les vitesses angulaires de 

l'humérus pendant 9 tests, trois scores cinématiques pour l'évaluation fonctionnelle de 

l'épaule ont été présentés pour évaluer la fonction de l’épaule avant et après chirurgie. 

Les scores cinématiques ont montré objectivement l'amélioration de l’épaule après 

chirurgie. 

Dans la deuxième étude, nous avons proposé une nouvelle méthode pour détecter et 

mesurer le segment dominant des membres supérieurs pendant l'activité quotidienne. La 

méthode a été examinée sur les sujets en bonne santé (N=31) et un groupe patient (N=10, 

baseline, 3, 6 et 12 mois après chirurgie) tout en portant le système pendant 8 heures de 
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leur vie quotidienne. Les résultats ont montré la dominance du bras pendant des périodes 

debout, assis et de marche pour les sujets en bonne santé et la quantification de  

l'amélioration de l’épaule après chirurgie en tenant compte de la présence de la maladie 

dans le bras dominant ou non dominant.  

Dans la troisième étude, les gyroscopes 3D attachés sur l'humérus ont été utilisés pour 

identifier les mouvements de  flexion-extension, l'abduction-adduction et les rotations 

internes et externes de l'humérus et pour identifier dans chaque mouvement les taux de 

rotations adjointes (rotation délibérée) et de rotations conjointes (rotation inhérente ou 

automatique). La fréquence de chaque mouvement (nombre/heure) pour les différentes 

gammes de la vitesse de bras, comme le taux de rotations adjointes et conjointes pour 

chaque mouvement, a été estimé pendant l'activité quotidienne dans le groupe contrôle et 

les patients. Les résultats ont fourni les valeurs de la fréquence de chaque mouvement et 

les taux conjoints/adjoints basés sur les données obtenues à partir du groupe contrôle. 

Dans les cas pathologiques, nous avons constaté que l’épaule dominante et lésée des 

patients, a perdu sa prédominance en faveur de l'épaule saine, l'épaule non dominante. Ils 

ont eu moins de rotations internes et externes pures et exécutent moins de mouvements 

rapides tandis qu'après chirurgie, ces paramètres n'ont présenté aucune différence 

significative avec le groupe contrôle.  

Dans la quatrième étude, une nouvelle méthode pour détecter le niveau de travail de 

l'épaule a été présentée. En mesurant l'altitude du bras pendant des périodes immobiles, 

nous avons proposé un nouveau score pour évaluer la capacité de travailler à un niveau 

spécifique pour une durée définie. Ce score a eu une moyenne de 100% (±31%) pour les 

sujets en bonne santé tandis que le niveau de travail de l'épaule douloureuse était 

inférieur à l'épaule saine et a été amélioré sensiblement après chirurgie (plus de  87% à 6 

mois).  

 

Cette étude fournit l'évidence préliminaire de l'efficacité du système proposé dans la 

pratique clinique et pour évaluer objectivement l'activité des membres supérieurs pendant 

l'activité quotidienne. 

 

Keywords: Système ambulatoire, Evaluation des résultats, Epaule, Membres supérieurs. 
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Chapter 1 Introduction and outline of the thesis 
 

 

1.1 Introduction 

 

The human shoulder system involves four segments, the clavicle, the scapula, the 

humerus and the thorax1. Four joints may be distinguished (Figure. 1.1): 

 

• The sterno-clavicular (SC) joint, which articulates the clavicle by its proximal 

end onto the sternum. 

• The acromio-clavicular (AC) joint, which articulates the scapula by its 

acromion onto the distal end of the clavicle. 

• The scapulo-thoracic (ST) joint, which allows the scapula to glide on the 

thorax. 

• The gleno-humeral (GH) joint, which allows the humeral head to rotate in the 

glenoid fossa of the scapula. 

SCAPULA

CLAVICLE
STERNUM

THORAXHUMERUS

AC

GH ST

SC

Rotator cuff
muscles and
tendons hold
the shoulder
in place

the acromion is the top
part of the shoulder

The clavicle (collarbone)
is the bony link that holds
the shoulder to the body

The humeral
head is the
rounded top
(ball) of the
arm bone

The capsule
is a pocket
that provides
stability

The glenoid is
a shallow socket

The labrum is a
rim of cartilage to
which the capsule
attaches

The bursae is a
lubricating sac

 
Figure 1.1: Shoulder segments and joints 
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The complex and interactive actions of these joints and segments give to the shoulder 

the highest range of motion among all the other joints of the human body. This very 

large mobility of the shoulder joint is mandatory to place the hand (and the arm) in 

every position of the surrounding space. Accordingly, in outcome measurements, the 

shoulder function may be summarised to the assessment of the humeral position 

relatively to the thorax and ground, whatever is the mobility in each intermediate 

joints and segments2. 

In contrast to the hip joint, which more closely approximates a true ball and socket 

joint, the shoulder joint can be compared to a golf ball and tee, in which the ball can 

easily slip off the flat tee. The stability to the shoulder joint, provided by the bones, is 

highly dependent on surrounding soft tissues such as capsule ligaments and the 

muscles surrounding the rotator cuff to hold the ball in place. Whereas the hip joint is 

inherently quite stable because of the encircling bony anatomy, it also is relatively 

immobile. The shoulder, on the other hand, is relatively unstable but highly mobile, 

allowing an individual to place the hand in numerous positions. It is in fact, one of the 

most mobile joints in the human body. The bones of the shoulder are held in place by 

muscles, tendons, and ligaments. Tendons are tough cords of tissue that attach the 

shoulder muscles to the bone and assist the muscles in moving the shoulder. 

Ligaments attach shoulder bones to each other, providing stability. For example, the 

front of the joint capsule is anchored by three glenohumeral ligaments. The rotator 

cuff is a structure composed of tendons that work along with associated muscles to 

hold the ball at the top of the humerus in the glenoid socket and provide mobility and 

strength to the shoulder joint. Two filmy sack-like structures called bursae permit 

smooth gliding between bones, muscles, and tendons. They cushion and protect the 

rotator cuff from the bony arch of the acromion. 

The movements of the shoulder are: flexion-extension, abduction-adduction, internal-

external rotation. The movements of flexion-extension are made in the sagital plane 

around the transverse axis. 
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The movements of abduction-adduction are made in the frontal plane around the 

antero-posterior axis. The rotation of the arm on its longitudinal axis can be carried 

out in any position of the shoulder3 (Figure 1.2). 

a) b) c)

Figure 1.2: The movements of the shoulder are: a)  flexion-extension, b) abduction-adduction, c) 
internal-external rotation. 

 
1.2 Origins and causes of shoulder problems 

 

The shoulder is easily injured because the ball of the upper arm is larger than the 

shoulder socket that holds it. To remain stable, the shoulder must be anchored by its 

muscles, tendons and ligaments4. Although the shoulder is easily injured during 

sporting activities 5,6,7 and manual labor8,9, the primary source of shoulder problems 

appears to be the natural age-related degeneration of the surrounding soft tissues such 

as those found in the rotator cuff. The incidence of rotator cuff problems rises 

dramatically as a function of age and is generally seen among individuals who are 

more than 60 years old10,11. Overuse of the shoulder can lead to more rapid age-

related deterioration.  

 

Shoulder pain may be localized or may be felt in areas around the shoulder or down 

the arm. Disease within the body also may generate pain that travels along the nerves 

to the shoulder.  
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1.3 Shoulder pathologies 

 

The symptoms of shoulder problems, as well as their diagnosis and treatment, vary 

widely, depending on the specific problem. The following is important information to 

know about some of the most common shoulder problems. 

 

Dislocation 

 

The shoulder joint is the most frequently dislocated major joint of the body. In a 

typical case of a dislocated shoulder, either a strong force pulls the shoulder outward 

(abduction) or extreme rotation of the joint pops the ball of the humerus out of the 

shoulder socket. Dislocation commonly occurs when there is a backward pull on the 

arm that either catches the muscles unprepared to resist or overwhelms the muscles. 

When a shoulder dislocates frequently, the condition is referred to as shoulder 

instability. A partial dislocation in which the upper arm bone is partially in and 

partially out of the socket is called a subluxation4. 

 

Signs and symptoms: The shoulder can dislocate either forward, backward or 

downward. When the shoulder dislocates, the arm appears out of position. Other 

symptoms include pain, which may be worsened by muscle spasms, swelling, 

numbness, weakness and bruising. Problems seen with a dislocated shoulder are 

tearing of the ligaments or tendons reinforcing the joint capsule and, less commonly, 

bone and/or nerve damage. Preoperatively, patient's shoulder range of motions were 

90° flexion, 30° extension, 80° abduction, 5° external rotation and internal rotation12. 

 

Separation 

 

A shoulder separation occurs where the collarbone (clavicle) meets the shoulder blade 

(scapula). When ligaments that hold the joint together are partially or completely torn, 

the outer end of the clavicle may slip out of place, preventing it from properly 

meeting the scapula. Most often, the injury is caused by a blow to the shoulder or by 

falling on an outstretched hand8. 
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Signs and symptoms: Shoulder pain and, occasionally, a bump in the middle of the top 

of the shoulder (over the acromioclavicular (AC) joint) are signs that a separation may 

have occurred13,14. Lack of power or apprehension in abduction /external rotation may 

be observed8. 

 

Torn Rotator Cuff 

 

Rotator cuff tendons often become inflamed from overuse, aging or a fall on an 

outstretched hand or another traumatic cause. Sports or occupations requiring 

repetitive overhead motions or heavy lifting can also place a significant strain on 

rotator cuff muscles and tendons15. Over time, as a function of aging, tendons become 

weaker and degenerate. Eventually, this degeneration can lead to complete tears of 

both muscles and tendons. These tears are surprisingly common. In fact, a tear of the 

rotator cuff is not necessarily an abnormal situation in older individuals if there is no 

significant pain or disability15. Fortunately, these tears do not lead to any pain or 

disability in most people. However, some individuals can develop very significant 

pain as a result of these tears and they may require treatment16,17,18.  

 

Signs and Symptoms: Typically, a person with a rotator cuff injury feels pain over the 

deltoid muscle at the top and outer side of the shoulder, especially when the arm is 

raised or extended out from the side of the body8. Motions like those involved in 

getting dressed can be painful. The shoulder may feel weak, especially when trying to 

lift the arm into a horizontal position. A person may also feel or hear a click when the 

shoulder is moved. Pain or weakness on internal or external rotation of the arm may 

indicate a tear in a rotator cuff tendon8. The patient also feels pain when lowering the 

arm to the side after the shoulder is moved backward and the arm is raised15. The 

patient has loss of power. For the large rotator cuff tears, there is a paralysis15. 

 

Frozen Shoulder (Adhesive Capsulitis) 

 

As the name implies, movement of flexion abduction and internal/external rotation of 

the shoulder is severely restricted in people with a “frozen shoulder”19. This 

condition, which doctors call adhesive capsulitis, is frequently caused by an injury 

that leads to a lack of use due to pain. Rheumatic disease progression and recent 
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shoulder surgery can also cause frozen shoulder. Intermittent periods of use may 

cause inflammation8. Adhesions (abnormal bands of tissue) grow between the joint 

surfaces. There is also a lack of synovial fluid, which normally lubricates the gap 

between the arm bone and socket to help the shoulder joint move. It is this restricted 

space between the capsule and ball of the humerus that distinguishes adhesive 

capsulitis from a less complicated painful and stiff shoulder. People with diabetes, 

lung disease, rheumatoid arthritis, and heart disease, or those who have been in an 

accident, are at a higher risk for frozen shoulder. A frozen shoulder is more common 

among women than men. People between the ages of 40 and 70 are most likely to 

experience it8,20. 

 

Signs and symptoms: With a frozen shoulder, the joint becomes so tight and stiff that 

it is nearly impossible to carry out simple movements, such as raising the arm. 

Stiffness and discomfort may worsen at night8,21. The non dominant shoulder is 

slightly more likely to be affected20. 

 

Fracture 

 

A fracture involves a partial or total crack through a bone. The break in a bone usually 

occurs as a result of an impact injury, such as a fall onto the shoulder. A fracture 

usually involves the clavicle or the neck (area below the ball) of the humerus4,22,23. 

 

Signs and symptoms: A shoulder fracture that occurs after a major injury is usually 

accompanied by severe pain.  

 

Arthritis of the Shoulder 

 

Arthritis is a degenerative disease caused by either wear and tear of the cartilage 

(osteoarthritis) or an inflammation (rheumatoid arthritis) of one or more joints. 

Arthritis not only affects joints, but may also affect supporting structures such as 

muscles, tendons and ligaments. 

 

Signs and symptoms: The usual signs of arthritis of the shoulder are pain, particularly 

over the acromioclavicular joint, and a decrease in shoulder motion. Range of motion 
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may be severely limited in patients with marked osteoarthritis, but commonly the 

restriction is moderate8. 

 

1.4 Outcome evaluation 

 

Outcome research is a relatively new field of interest in orthopedics24. The rapidly 

rising cost of healthcare with its financial impact on the individual and national 

economy, and deficiencies in clinical research methods such as a patient-oriented 

evaluation, which are pain, functional and quality-of-life assessments, have stimulated 

the emergence of this concept. 

 

A large variety of scores with different designs are used to report the results of 

shoulder treatment making it difficult to compare the patient’s outcome25 and there is 

a need for additional development of an evaluation system, a need for a “gold 

standard” outcome measurement. 

 

The effectiveness of a shoulder arthroplasty, a rotator cuff repair or a glenohumeral 

stabilization in relieving pain and/or improving function has been well documented4,8. 

The influence of surgical procedures on quality-of-life must be positive. But health–

related quality of life encompasses not only pain and physical functioning, but other 

related domains such as social functioning and vitality. In addition, shoulder surgeons 

require now more subtle comparisons between two potentially efficient treatments 

(e.g. two types of prosthesis, arthroscopic vs. open surgery). Therefore, the use of 

instruments that have increased sensitivity and specificity in evaluating quality-of-life 

compared to traditional scoring systems is needed to enhance the surgeon’s ability to 

assess the overall outcome in patients after a shoulder treatment. 

 

Different techniques exist to assume the functional handicap of the patients and we 

review them in the next subsection. Their use, however, has been hindered by the long 

time required to perform the measurements, the limited information they provide and 

by their prohibitive cost in time and money. 

 

Despite the fact that the shoulder is necessary each time one wants to position the 

hand in the tridimensional space, this joint still remains one of the least explored 
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functionally. This paradox is due to two facts. Moving the shoulder is very easily 

accessible to a detailed clinical analysis. As a result, the diagnosis has been developed 

on a clinical basis. The indications for surgery have mostly been laid down several 

years ago and rely on analysis and experience. However effective in practice, this 

approach allows neither for the quantification of the spatio-temporal parameters when 

moving the shoulder, nor for the assessment of the physical activity of everyday life 

in a reliable way.  

 

Most quantitative approaches to shoulder movement analysis are dealing only with 

the measurements of the range of motion in a particular direction26,27,28, without 

paying attention to all the combinations of movements of the shoulder that are 

mandatory to place the hand in the space. In fact, the importance of knowing the 

combination of the adjunct rotation and conjunct rotation may be crucial to estimate 

the functionality of the shoulder before and after surgery (Chapter 5). They are just 

instrumented clinical examinations that improve the precision and accuracy of the 

measurement itself but miss all practical and quality-of-life implications such as the 

mobility (Chapter 4), the working level (Chapter 6), and the number of movement of 

flexion, abduction and internal/external rotation (Chapter 5) for patients.  

 

1.5  Objectives 

 

We aim to measure the kinematics of the shoulder in real life conditions and during a 

long period involving a high number of kinematics patterns. Our method might be 

seen as less accurate than stationary systems such as camera-based devices for angle 

and position estimations. Yet, this new approach will be much more effective in 

clinical outcome evaluation as it will provide information on the working level, 

movement of flexion abduction and internal/external rotation, mobility that are useful 

and adapted to the patient and his/her shoulder movements in daily situations. 

 

The accuracy of such an ambulatory system will increase with the number of sensors 

used. However, we are restricted by ambulatory environment conditions, where the 

use of a large number of sensors and attachment tools represent a serious constraint 

for the subject's movement. We will have to find the best balance between the 

complexity and the accuracy of the new measuring system. Laboratory comparisons 
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with the current “gold standard” will be done to insure the reliability of the new 

ambulatory system in term of kinematic performances. 

 

Finally, as far as biomechanical aspects are concerned, we are not intending to present 

any shoulder model providing features related to ligaments and muscles activity. 

These features are surely important but they are not concerned with this study of 

outcome evaluation. Our objective is to provide significant kinematic parameters 

needed for the outcome evaluation of the patient’s shoulder during daily activity and 

to determine how these parameters change in a pathological case. These objectives 

will be reached by devising a configuration of sensors that allows the evaluation of 

the motor performance of the shoulder. 

 

1.6 Outline of the thesis 

 

The thesis is organized in eight chapters. 

 

The first chapter, Introduction and outline of the thesis, introduces the shoulder 

pathologies and the objectives. 

 

The second chapter describes the clinical shoulder’s questionnaires and provides an 

overview of the existent methodologies (Clinical score questionnaires, stationary 

systems, ambulatory systems) to assess the shoulder pathologies and provide outcome 

evaluation. 

 

In the chapter three, we propose a new ambulatory device based on inertial sensors for 

shoulder movement analysis. Then, objective scores derived from inertial sensors 

were described to evaluate objectively the shoulder function. 10 patients were studied 

before surgery and 3, 6 and 12 months after surgery. The results were compared to 

clinical questionnaires. 

 

Outcome evaluation in shoulder treatment should consider the movement of the 

dominant arm during daily activity. The fourth chapter presents a new method based 

on one of the kinematic score described in the chapter 3 to estimate the upper-limb 

dominant segment. 31 healthy subjects carried our ambulatory system during their 
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daily activity. The quantification of the upper-limb dominant segment during the gait, 

standing and sitting postures is described. 

 

The characterization of the number of the flexion, abduction and internal/external 

rotation is required to show how the dominant and non dominant shoulders move. The 

fifth chapter provides a method using 3D angular velocities of the humerus to detect 

the number of movements of flexion, abduction and internal/external rotation of the 

humerus. The combination rate of conjunct and adjunct rotation and the speed of the 

arm movements and the number of movements per hour during the daily activity were 

studied. 

 

The arm elevation allows a better evaluation of the shoulder performance. The arm 

elevation (known as the working level) is evaluated subjectively in clinical 

questionnaire. The sixth chapter presents an algorithm to estimate the actual working 

level of the shoulder during the daily activity. The working levels were separated into 

different levels to 0° to 160° per step of 20°. A new working level score, based on the 

duration and the frequency of the working levels reached, was developed. 

 

The seventh chapter shows the effectiveness of the proposed methods in clinical 

applications. 26 patients were studied at baseline and 3, 6 and 12 months after 

shoulder surgery for the short-term measurement. 10 patients were studied before and 

3, 6 months after shoulder surgery for the long-term measurement during daily 

activity.  

 

The last chapter presents the conclusion of this thesis and the perspectives for the 

future studies. 
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Chapter 2  Overview of the methodologies used to  
                              assess the shoulder function 
 
 

2.1 Introduction 

 

The importance of recognizing the result of a medical procedure has long been 

recognized in surgery and particularly in orthopedic surgery. Outcome assessment has 

been given new impetus during the past decade as the emphasis has shifted from the 

era of expansion and technical development to one of assessment and accountability. 

Variable definitions of outcome have been used previously to assess outcome after 

shoulder treatment. Some of these, such as the Constant score or the American 

Shoulder and Elbow Surgeons score are widely used, though none has been accepted 

as the universal standard. 

 

The difficulty lies in attempting to quantify a treatment result, which from the 

patient’s viewpoint is best expressed in subjective terms. A technical success from the 

surgeon’s standpoint may not necessarily have had a significant impact on a patient’s 

pain and quality of life and thus from his or her perspective is a failure. 

 

This imbalance has recently been addressed with the reporting of a large number of 

outcome scoring scales like the Short Form 36 (SF-36), the European Quality-of-Life 

Group 5 dimensions score (EQ-5D), the Disabilities of the Arm, Shoulder and Hand 

score (DASH), the Constant score or the Simple Shoulder Test (SST). But the 

increasing number of outcome measures for assessing the results of shoulder 

pathology treatment illustrates the need for an objective method of assessing the 

results i.e. a gold standard outcome measure. The choice of the ideal outcome 

measure to assess a shoulder pathology remains a complex issue. For example, should 

one put more emphasis on the patient’s overall improved well-being and pain status, 

or should more emphasis be placed on the technical success of the surgery? 

Movement analysis using sensors is a non invasive way to answer this dilemna. 
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The goal of this chapter is to show the existing instruments for the evaluation of the 

shoulder pathology and its functionality during daily activities. It will describe three 

different approaches : 1) the clinical scores, 2) the stationary systems and 3) the 

ambulatory measurement system. 

 

2.2 Clinical scores 

 

The clinical scores include the American Shoulder and Elbow Surgeons Evaluation 

Form (ASES), the Constant score, the Disabilities of the Arm, Shoulder and Hand 

score (DASH) and the Simple Shoulder Test (SST). We will discuss each of these 

scoring systems, commenting on their strengths and weaknesses. 

   

2.2.1 ASES Shoulder Evaluation Form 

 

The instrument consists of a physician assessment section1 and a patient self-

evaluation section. Evidence has been provided that the use of the self-evaluation 

section is independent from the clinical assessment2. The physician assessment 

section includes physical examination and documentation of range of motion, 

strength, and instability, and demonstration of specific physical signs. No score is 

derived for this section of the instrument. The patient self-evaluation section has 11 

items that can be used to generate a score. These are divided into 2 areas: pain (1 

item) and function (10 items). The response to the single pain question is marked on a 

10-cm visual analog scale (VAS), which is divided into 1-cm increments and 

anchored with verbal descriptors at 0 and 10 cm. The 10 items in the function area of 

the ASES include activities of daily living such as putting on a coat, etc. There are 

more demanding activities such as lifting 10 pounds above shoulder height and 

throwing a ball overhead. Finally, there are 2 general items: doing daily work and 

doing regular sport. There are 4 response options, from 0 (unable to do) to 3 (not 

difficult). Because of this, the responsiveness of the individual items is rather poor, 

especially in very active patients. As an example, if a patient found an activity 

somewhat difficult prior to treatment, he or she would have no difficulty whatsoever 

after treatment to improve by 1 category. The final score is tabulated by multiplying 

the pain score (maximum 10) by 5 (therefore the total possible is 50) and the 

cumulative activity score (maximum 30) by 5/3 (therefore the total possible is 50) for 
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a total of 100. Evaluation of the instrument has been undertaken in a population of 

patients with shoulder dysfunction, such as instability/dislocation or humeral 

fracture2. Test-retest reliability reached acceptable levels separately for the pain and 

the function dimensions, as well as for the total score (ICC=0.79, 0.82, 0.84, 

respectively)2. 

 

2.2.2 The Constant Score 

 

The Constant score3 has become the most widely used shoulder evaluation instrument 

in Europe. This scoring system combines physical examination tests with subjective 

evaluations by the patients (Table 2.1). The subjective assessment consists of 35 

points and the remaining 65 points are assigned to the physical examination 

assessment. The subjective assessment includes a single item for pain (15 points) and 

4 items for activities of daily living (work, 4 points; sport, 4 points; sleep, 2 points; 

and positioning the hand in space, 10 points). The objective assessment includes the 

range of motion (forward elevation, 10 points; lateral elevation, 10 points; internal 

rotation, 10 points; external rotation, 10 points) and power (score based on the weight 

that the patient can resist in abduction for a maximum of 25 points). The total possible 

score is therefore 100 points. The publication by Constant3 in which he describes the 

instrument does not include methodology about how it was developed and, more 

specifically, the rationale for the selection and relative weighting of the items. It is 

indeed unknown why the specific weights were assigned to the items (pain 15%, 

function 20%, range of motion 40%, strength 15%). The strength of this instrument is 

that the method for administering the tool is quite clearly described, which is an 

improvement on pre-existing tools.  

 

 This Constant score combines 4 items of function with 5 items of physical 

examination. As these measure fundamentally different attributes, they should be 

measured separately as opposed to being combined for a total score. 

 

This instrument is weighted heavily on range of motion (40%) and strength (25%). 

Although this may be useful for differentiating patients with significant rotator cuff 

disease or osteoarthritis, it is useless for patients with instability. In fact, all the 
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patients with instability of the shoulder scored nearly perfectly (95-100 points) despite 

having problems of sufficient magnitude that requested surgical intervention4.  

 

The reliability of this measurement tool has been evaluated on a limited basis4. 

Several authors tried to determine the clinical value of the Constant score4,5,6, which 

has gained an important role in the functional evaluation of the shoulder joint3,7. The 

Constant score shows a very high inter-observer reliability of 97% compared to other 

scoring techniques7. Conboy et al.4 measured the reliability on 25 patients with 

varying diagnoses of shoulder syndromes. They demonstrated that the 95% 

confidence limit between observers was 27.7 points and within observers was 16 

points. 

 

2.2.3 Disabilities of the Arm, Shoulder and Hand (DASH) 

 

The American Academy of Orthopaedics Surgeons (AAOS) along with the Institute 

for Work & Health (Toronto, Ontario, Canada) developed an outcome tool to be used 

for patients with any joint of the upper extremity. This instrument called the 

Disabilities of the Arm, Shoulder and Hand Measurement tool, or DASH, is made 

available by the AAOS (Table 2.1). A brief description of the methodology for the 

item generation and the initial item reduction phases has been published8. In 1999, the 

AAOS and Institute for Work & Health developed and published a User’s Manual for 

the DASH outcome measure9. The complete development and testing of the 

instrument is detailed in this manual. The DASH is a 30-item questionnaire designed 

to evaluate “upper extremity-related symptoms and measure functional status at the 

level of disability.” Disability is defined as “difficulty doing activities in any domain 

of life (the typical domains for one’s age/sex group) due to a health or physical 

problem”. Concepts covered by the DASH include symptoms (pain, weakness, 

stiffness, and tingling/numbness), physical function (daily activities, house/yard 

chores, shopping, errands, recreational activities, self-care, dressing, eating, sexual 

activities, sleep, and sport/performing art), social function (family care occupation, 

socializing with friends/family) and psychological function (self-image). The item 

generation was carried out by first reviewing the literature. Thirteen scales were 

combined to produce an initial pool of 821 items. Item reduction was carried out in 2 

Chapter 2: Overview of the methodologies used to assess the shoulder function

16



steps. Three members of the collaborative development group reviewed the original 

items. 

 

Reliability, validity and responsiveness of the DASH have been evaluated in patients 

with disorders of all major areas of the extremity, i.e. shoulder, elbow, wrist and 

hand10,11,12,13,14. The test-retest reliability has been demonstrated in patients with 

shoulder pain and in those with elbow disorders (ICC = 0.92)14, as well as both 

proximal and distal upper extremity disorder populations (ICC = 0.96)11, which 

exceeds recommended standards for the test-retest reliability. 

 

The major criticism of this tool is that the item generation phase did not include 

interviews with patients with the conditions of interest. It has been well documented 

that physicians are poor judges of patient’s status and will be poor judges of what is 

important to patients. 

 

A problem with the DASH is that it has been found to correlate strongly with pain 

levels, which could lead to elevated scores in a population with multitrauma12. 

Acutely injured patients were excluded from the original evaluation study for the 

DASH11 and no study has specifically evaluated the use of the DASH in trauma 

populations. Nevertheless, the DASH is often used as a comparative standard in the 

design of joint-specific instruments for the upper extremity. 

 

This instrument is intended for patients with any condition of any joint of the upper 

extremity. The patients can complete the questionnaire before a diagnosis is 

established. 

 

Unfortunately, the broader scope of this instrument makes it less attractive to use in a 

clinical trial. Many of the items may seem irrelevant to patients with specific 

conditions. In addition, this instrument has been shown to be less responsive than 

other shoulder condition specific instruments making it less efficient as a research 

tool.15,16,17 
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2.2.4 The Simple Shoulder Test (SST) 

 

The SST consists of 12 questions with “yes or no” response options. The instrument 

combines subjective items and items that actually require the patient to perform a 

physical function (Table 2.1). For example, the patient is asked “Does your shoulder 

allow you to sleep comfortably?” which is subjective and “Can you lift 8 pounds to 

the level of your shoulder without bending your elbow?” which requires the patient to 

perform the maneuver. 

 

The item generation and reduction was based on Neer’s evaluation18, the ASES 

evaluation19, and observation of patients’ complaints by the instrument developers. 

This instrument is able to distinguish between patients with different diagnoses 

(osteoarthritis, rheumatoid arthritis, avascular necrosis, subacromial impingement, 

rotator cuff tears, frozen shoulder, traumatic anterior instability, and multidirectional 

instability) and a normal shoulder function. Some data on the SST following patients 

after rotator cuff repair indicates that the instrument can be used to determine what 

functional improvement the average patient obtains post treatment. The SST is 

unlikely to be sensitive to small but clinically important changes in patient function 

because of the dichotomous response options (yes or no). For the same reason, the 

instrument is likely have poor function to differentiate patients with varying severity 

of the same condition. 

 

That the 12-item SST with “yes” and “no” responses was somewhat more responsive 

than the 30-item DASH questionnaire was an unexpected finding. The validity of the 

SST has been supported in a variety of shoulder conditions, but previous authors have 

tended to focus on differentiating properties20,21,22,23,24,25. The SST is simple to 

administer and score, and carries a relatively low response burden, giving it an 

advantage in the clinical situation. 
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Table 2.1 Reviewed patient self-evaluation instruments for assessment of upper extremity trauma.26 

Instrument (time 
for patient to 
complete) 

Dimensions Number of 
items 

Advantages and 
disadvantages 

ASES (3min) 
 
 
 
 
Total 

• Pain 
• Instability 
• Activities of 

daily living 

6 
1 
10 
 
 
17 

• Not extensively used 
in trauma population.  

• Most often used in the 
assessment of rotator 
cuff or shoulder 
instability. 

Constant Score 
(10min) 
 
 
 
 
 
 
Total 

• Pain 
• Activities of 

daily living 
• Range of 

motion  
• Power 

1 
4 
 
4 
1 
 
 
 
10 

• The method for 
administering the tool 
is quite clearly 
described which is an 
improvement on pre-
existing tools.  

• It is not useful for 
patients with 
instability. 

DASH (6min) 
 
 
 
 
 
 
 
 
 
Total 

• Daily activities 
• Symptoms 
• Social function 
• Work function 
• Sleep 
• Confidence 

21 
5 
1 
1 
1 
1 
 
 
 
 
30 

• Most validated 
measure of extremity 
functional status.  

• Easy to use.  
• Use of the DASH has 

been found to strongly 
correlate with pain 
levels which may be 
problematic in a 
population with multi-
trauma. 

SST (3min) 
 
 
 
 
 
 
 
 
 
 
 
Total 

• Physical 
function  

12 
 
 
 
 
 
 
 
 
 
 
 
12 

• The instrument is able 
to distinguish between 
patients with 
abnormal and normal 
shoulder function.  

• The SST is unlikely to 
be sensitive to small 
but clinically 
important changes in 
patient function 
because of the 
dichotomous response 
options (yes or no).  
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2.3 Stationary systems 

 

The main categories of stationary systems are: 

 

1. Optoelectronic systems. 

2. Electromagnetic systems. 

3. Ultrasound systems. 

4. Electromyogram (EMG) systems. 

 

We will describe each system in the following parts. 

 

2.3.1 Optoelectronic systems 

 

The optoelectronic systems, such as Optotrak, Codamotion (Figure 2.1) or Vicon 

(Figure 2.2), are used for real-time 3D motion tracking and analysis. They give the 3D 

positions. They contain a sensor unit and small infrared light emitting diodes (LED’s) 

markers. The LED’s markers are placed on the subject to be analyzed. They are non-

invasive system. There are two kinds of markers: active (e.g Codamotion) and passive 

(e.g Vicon). 

          

a)

b)

                                
Figure 2.1 : Codamotion system                                                 Figure 2.2: Vicon system. 
a) sensors unit; b) small infrared light emitting  
diodes markers. 
 

Chapter 2: Overview of the methodologies used to assess the shoulder function

20



Several authors used optoelectronic systems for their studies. Triolo et al.27 used the 

Optotrack system for modeling the postural disturbances caused by the upper 

extremity movements. They described the design, validation and application of a 

dynamic 3D model of the upper-extremity in order to estimate postural disturbances 

generated by movements of the arms. Hébert et al.28 used the same device for 

measuring 3D scapular attitudes. They developed a method to obtain 3D scapular 

movements and assess their concurrent validity and reliability. Roux et al.29 used a 

six-camera optoelectronic system and markers on the head, trunk, arm, forearm, hand 

and shoulder girdle (Figure 2.3) to evaluate the kinematics of the shoulder and the 

upper limb. 

 

 
Figure 2.3: Led’s markers for the study of Roux et al.29 

 

 

Yang et al.30 evaluate with the Vicon system the motion quality of upper limb target-

reaching movements. They attached 3 markers on the humerus, 3 markers on the 

forearm and 3 markers on the hand (Figure 2.4). They found general indices for the 

quality measure of plane target-to-target movement. 

 
Figure 2.4: Top view of the set-up for the experiments Yang et al.30 
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Hingtgen et al.31 used the Vicon system to develop a 3D upper extremity kinematic 

model to obtain joint angles of the trunk, shoulder and elbow. They attached markers 

on the trunk, the shoulders, on the elbows and on the wrists (Figure 2.5). Their model 

can accurately quantify upper extremity arm motion in laboratory, which may aid in 

the assessment and planning of stroke rehabilitation. 

 

 
Figure 2.5: Local coordinate axes systems for the upper extremity model, 

(a) coronal view, (b) sagittal view of trunk axis. Markers are shown as 
black circles. 

 
 

Other studies used the Vicon system to evaluate the upper extremity motion during 

wheelchair propulsion32,33 to analyze the gait34,35,36,37,38 or to validate a new measuring 

system39. 
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2.3.2 Electromagnetic systems 

 

The electromagnetic systems such as Fastrak, Minuteman or Liberty (Figure 2.6) are 

for real-time 3D motion tracking and analysis. They give the 3D orientation (Euler, 

quaternion) and the segment position. 

 

a)

b)

 
Figure 2.6: Liberty system a) system unit and source; b) electromagnetic sensors. 

 

The Fastrak or Liberty system is adapted for laboratory measurement. The Minuteman 

system is the portable version of the Liberty system and allows long term 

measurements outside a laboratory, for example with a pocket PC-like computer. The 

system electronics unit contains the hardware and software necessary to generate and 

sense the magnetic fields, compute position and orientation, and interface with the 

host computer via RS-232 or USB. The source contains electromagnetic coils 

enclosed in a molded plastic shell that emit magnetic fields. The source is the 

system’s reference frame for sensor measurements (Figure 2.6 a)). The sensor 

contains electromagnetic coils enclosed in a molded plastic shell that detect the 

magnetic fields emitted by the source. It is a lightweight small cube, and the sensor’s 

position and orientation is precisely measured as it is moved. The sensor is a 

completely passive device, having no active voltage applied to it (Figure 2.6 b)). The 

update rate is 240 Hz per sensor. Besides their precision (< 1deg), these systems 

suffers from magnetic material in the environment.  

 

Meskers et al. 40 used an electromagnetic system to record and process a methodology 

to obtain complete 3D kinematics of the shoulder including joint rotations. Several 

authors41,42,43 developed a system to validate the assumption that the center of the 

rotation in the glenohumeral joint can be described based on the geometry of the joint. 
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They compared two methods of the glenohumeral rotation center detection. They 

concluded that the method to estimate the glenohumeral center of rotation as the 

center of a sphere through the glenoïd surface, with the radius of the humeral head, 

appears to be valid. Other authors used electromagnetic systems to evaluate the direct 

3D measurement of the scapula44,45 and to describe the 3D movement of the 

shoulder46,47,48,49. McClure et al.45 proposed a study to describe 3D scapular motion 

patterns during dynamic shoulder movement. Direct measurement of active scapular 

motion was accomplished by insertion of two 1.6-mm bone pins into the spine of the 

scapula (Figure 2.7). They found that during active scapular plane elevation, the 

scapula upwardly rotated (mean [SD] = 50° [4.8°]), tilted posteriorly around a medial-

lateral axis (30° [13.0°]) and externally rotated around a vertical axis (24° [12.8°]). 

Lowering the arm resulted in a reversal of these motions in a slightly different pattern. 

The mean ratio of glenohumeral to scapulothoracic motion was 1.7:1. 

 

 
Figure 2.7: Subject with magnetic sensors attached: thoracic sensor (a), scapular sensor attached to 

bone pins (via plastic guide) inserted into the scapula (b) and humeral sensor mounted on custom cuff 
applied to the distal humerus (c). The sensor mounted on the acromion (not labeled) was used for data 

related to another study. 
 

Fayad et al.44 attached Liberty sensors, one on the chest, one on the acromion and one 

on the humerus (Figure 2.8). They obtained a full 3-D kinematic description of the 

scapula achieving a reliable, complex 3-D motion during humeral elevation and 

lowering. Their results were almost the same as the work of McClure et al. but with 

the non invasive way. 
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Figure 2.8: Magnetic sensor position of Fayad et al.44 study. 

 

Finley et al.50 used the same sensors configuration as Fayad et al. to evaluate the 

effect of the sitting posture on 3D scapular kinematics. Other authors used an 

electromagnetic measuring system to evaluate the shoulder movements during 

wheelchair propulsion51 and for gait analysis52,53,54. 

 

2.3.3 Ultrasound systems 

 

The ultrasound-based motion analysis systems such as the Zebris system are used to 

measure the spatial coordinates of markers. The measurement head with three 

transmitters, emitting ultrasound signals at specific intervals, which are recorded by 

the active markers (the measurement frequency being 100 Hz), is located in front of 

the person (Figure 2.9). With the knowledge of the ultrasound speed, the distance 

between each marker and the measurement head, i.e. the location of transmitters, can 

be calculated from the time delay of the transmission. With the knowledge of the 

distance between the active markers and each of the three transmitters of the 

measurement head and the spatial coordinates of the transmitters, the spatial 

coordinates of the markers can be calculated using the method of triangulation any 

time during the measurement. 

 

 
Figure 2.9: Zebris Ultrasound system. 
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Illyés et al.55,56 described a method to analyze shoulder joint movements using the 

Zebris ultrasound system. They attached triplet of markers on the clavicle, scapula, 

upper arm, lower arm and thorax (15 markers in total) (Figure 2.10). 

 

 
Figure 2.10: Measurement arrangement for the study of Illyés et al.55 

 

They characterized the motion of the humerus and the scapula relative to each other 

by their rotation as well as the relative displacement between the rotation centers of 

the scapula and the humerus. But the main problem of this study was that the 15 

markers were connected to the main unit, making it cumbersome. 

 

We have also used a Zebris ultrasonic motion capture capture system as a reference to 

compare gyroscopes data during gait57. We compared data from a gyroscope attached 

on the shank to the angular velocity calculated from the data of the Zebris markers 

(Figure 2.11). 
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Figure 2.11: (a) Positions of the gyroscope and Zebris markers. (b) Angle θ definition: 0° is defined 

when the subject is motionless and calibrated with the system Zebris positions marker 1: (y1, z1); 
positions marker 2: (y2, z2). 

 
 

 
Figure 2.12:  Shank antero-posterior rotation and its angular velocity for (a) cycle stair descent. (b) 

Cycle stair ascent. (c) Cycle walking on the flat. Each case signal measured with gyroscope is 
compared with angular velocity estimated from ultrasonic reference system (Zebris). A positive peak of 

angular velocity is observed during stance phase for stair ascent only. 
 

We showed that the gyroscope measured sufficiently accurately the shank rotation 

and particularly the magnitude of the angular velocity at foot-flat compared to the 

reference motion system (Figure 2.12). It can be observed that, during stance, the 

shank angle increased for stairs ascent (leading to a positive angular velocity) while, 

during stairs descent and walking the shank angle decreased (negative angular 
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velocity). The difference between stairs ascent, stairs descent and walking was always 

visible at the time of foot-flat. 

 

 
Figure 2.13: 3D angles for ten typical seconds of treadmill walking of a healthy subject. The 

continuous line corresponds to the reference system angles, and the dotted line to the system proposed 
by Favre et al.58 

 

Favre et al.58 compared the 3D knee angles measured by the Zebris system to the 3D 

knee angles measured by the 3D gyroscope of the thigh and the shank. The precisions 

obtained were, respectively 2.5°, 2.1°, and 2.7° for the flexion-extension, the internal-

external rotation and the abduction adduction (Figure 2.13). 

 

2.3.4 EMG systems 

 

Electromyography (EMG) is a recording technique using skin or needle electrodes for 

evaluating muscular activities. EMG is performed using an electromyograph that 

detects the electrical potential generated by muscle cells when they are excited. 

 

The amplitude of the electromyogram signal is estimated of 0.1 to 5 mV, and its 

bandwidth of 0-10kHz. The EMG systems are used in laboratory (Bagnoli desktop 
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EMG system, Motion Lab EMG system, DataLINK EMG system, MyoSystem, 

Zebris EMG system) or ambulatory (MyoMonitor, RSI protector, InnoSense, 

DataLOG EMG system, TeleMyo, MyoGuard) to estimate the activity of the different 

muscles (Figure 2.14). Needle and skin electrodes used for EMG are illustrated in 

Figure 2.15. Surface EMG electrodes (instead of fine-wire electrodes) are now used in 

order to avoid pain or restriction of movements, and the reliability of these 

electromyographic data has been established59. 

 

a) b)

 
Figure 2.14: EMG systems, a) Bagnoli desktop EMG system, b) Myomonitor ambulatory EMG system 

(Delsys). 
 

 

a) b) c)

 
Figure 2.15: Electrodes for EMG systems, a) needle electrode, b) surface electrode (patch), c) surface 

electrode (parallel-bar EMG electrode, single and double differential models). 
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Electromyographic studies have been used to analyze the role of shoulder muscles 

activities, in rotator cuff tears60,61, shoulder instability62, impingement syndrome63, 

rehabilitation programs64, with various kinds of elementary arm movements analysis 

(such as flexion, abduction, internal/external rotation) or complex movements 

analysis65 since the pioneering work of Inman66. Kelly et al.60 evaluated the 

differential firing patterns of the rotator cuff, deltoid and scapular stabilizer muscle 

groups in normal control subject and in patients with symptomatic and asymptomatic 

2-tendon rotator cuff tears. They used the Motion Lab system to collect the 

electromyographic activity of 12 muscles. They found that the asymptomatic patients 

had significantly greater (p<0.05) subscapularis activity than symptomatic patients 

during the internal rotations task. Illyés et al.61 compared the muscle activity of 

patients with multidirectional shoulder instability with the control group during pull, 

forward punch, elevation and overhead throw. Signals were recorded by surface EMG 

(Zebris EMG system) from eight different muscles (Figure 2.16). The results gave rise 

to the assumption that the centralization of the glenohumeral joint and the reduction 

of instability are attempted to be ensured by the organism through increasing the role 

of rotator cuff muscles and decreasing the role of the deltoid, biceps brachii and 

pectoralis maior muscles. 

 
Figure 2.16: Location of surface EMG electrodes, Illyés et al.61 

 

Lin et al.59 used an electromagnetic measuring system and surface electromyography 

systems to analyze 3D shoulder complex movements during functional tasks and 
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compare motion patterns between subjects with and without a shoulder dysfunction. 

They found a significant alteration in shoulder complex kinematics and associated 

muscular activities for the group with shoulder dysfunction relative to the group 

without shoulder dysfunction. EMG signal is affected by the bone position, muscle 

length and muscle contraction velocity67. Therefore, maximal voluntary electrical 

activity or maximal voluntary contraction is usually recorded and normalized in order 

to be able to compare patients at different times. Relations between EMG and force 

directions or muscle strength68 have been studied and used to compare patients before 

and after shoulder surgery69 or when they perform difficult tasks over their heads, 

such as construction workers70. David et al.68 used combined EMG and isokinetic 

strength analysis in healthy subjects to identify activation patterns of several muscles 

acting on the shoulder joint during isokinetic internal and external rotation. They 

found a strong association between electrical activity and moment production of the 

mouvement in the subscapularis and infraspinatus (R2 = 0.95 and 0.72, respectively) at 

the low and high angular velocities. Sporrong et al.70 used the MyoGuard ambulatory 

EMG system to map the muscular engagement and postures of construction workers 

undertaking ceiling fitting and to compare these results to those from the laboratory 

studies. The EMG data showed that nearly 50% of the work was spent with trapezius 

activity that exceeded that of the reference contraction used and that the time spent in 

muscular relaxation was 10%. 

 

In the current literature, shoulder EMG is used in order to appreciate the muscles 

activities of a known upper limb action or pathology.  

 

2.3.5 Conclusion 

 

Since 1990, few authors have been tested the hypothesis that movement analysis was 

susceptible of providing objective and quantifying evidences of treatment evaluation. 

But all these measurement tools are accessible nowhere else than in a few research 

institutes. They are often complex, allowing only range of motion or power analysis. 

In the current practice, these techniques are not applicable for routine evaluation of 

patient outcomes. The physicians lack a convenient and simple method to reliably 

assess the activity and the daily shoulder performance of their patients before and 

after shoulder treatment. 
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Furthermore, standard motion capture systems can be very expensive and the use of 

markers tends to make them cumbersome. As a result, fielding these techniques 

typically requires a dedicated laboratory whose cost is often prohibitive, which has 

hindered the use of such measuring systems. Although these systems provide 

complete kinematics, they are complex, necessitate specially trained personnel and 

require a relatively long time for the measurement implementation and the data 

analysis. The most important disadvantage of these systems is that the subject must 

stay inside a closed and restrained volume. 

 

2.4 Sensors for ambulatory technologies 

 

The ambulatory systems compared with the stationary systems are usable in 

laboratory, but also outside the laboratory, they are compact and lightweight. These 

ambulatory systems are composed of a central unit: “datalogger”, and one or more 

inertial sensors. Sensors used in ambulatory sytems are mainly : either composed of 

electrogoniometer, accelerometer, gyroscope, or magnetometer. In the following, 

some of the main features of the accelerometer, gyroscopes and magnetometer and 

ambulatory systems are presented. 

 

2.4.1 Electrogoniometer 

 

A goniometer is an electrical potentiometer that can be attached to a limb to measure 

a joint angle (Figure 2.17).  

 

 
Figure 2.17: Electrogoniometer attached to the knee. 
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Currently, electrogoniometers, either potentiometer-based or flexible ones, have been 

applied to measure the range of motion  for the wrist and the forearm71,72,73,74 or the 

knee75 and shoulder strength76. Goniometer have practical limitations. Main issues are 

sensor attachment and the need for a range of devices to fit different-sized limbs. 

They are vulnerable to breakage where they cross a joint. Other common issues are 

difficulties in alignment with the joint, the determination of joint centres of rotation, 

the restriction of movement by the device or incomplete decoupling of the 

measurement of motion in the two planes (cross-talk)71. The size, weight and physical 

location of the goniometer can be critical.  

 

2.4.2 Accelerometers 

 

Miniature accelerometers are often used to analyze human movement77,78,79. Recently, 

several methods based on accelerometry were developed to measure the arm 

movement80, to  track the upper limb  motion81,82 and to monitor the daily activity83. 

 

The recent progress in Micro Electro Mechanical Systems (MEMS) has provided new 

miniature and low power accelerometers which are promising as wearable and 

ambulatory technology. 

 

The accelerometer is normally placed on the part of the body whose movement is 

being studied. For example, accelerometers are attached to the thigh or shank to study 

the leg movement during walking84 or to the wrist to measure Parkinsonian 

bradykinesia and tremor in Parkinson disease85. 

 

Accelerometers are often used to measure body segment inclination (relative angle to 

vertical). Using several accelerometers provide the relative inclination of one segment 

to another and an estimation of the body posture needed for physical activity 

monitoring83. Combined with other inertial sensors, accelerometers can also provide 

3D body segment orientation80. 

 

Triaxial accelerometers with signal conditioning circuits are now integrated on a 

single chip. These sensors can be battery powered and are well adapted tools for long-
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term ambulatory measurements. An example of tri-axial accelerometers including 

conditionning module is presented in Figure 2.18. 

 

2.4.3 Gyroscopes 

 

Rotations are always present in human movements. Angular rate sensors or 

gyroscopes can measure these rotations. A gyroscope consists of a vibrating element 

coupled to a sensing element, acting as a Coriolis sensor. The Coriolis effect is an 

apparent force that arises in a rotating reference frame and is proportional to the 

angular rate of rotation. 

 

Several studies used gyroscopes to analyze the gait57,58, monitor the daily 

activity83and track upper limb motion81,82. 

 

Typically, the orientations of a body segment can be determined by integrating the 

angular velocity measured by the gyroscopes. However, small offset error in the 

gyroscope signal will introduce large integration errors (drift). The principles for 

measuring orientation of a moving body segment fusing gyroscopes and 

accelerometers have been described by Favre et al.54. 

 

An example of tri-axial gyroscsopes including conditionning module is presented in 

Figure 2.18. 

 

 
Figure 2.18: Tri-axial accelerometer and tri-axial gyroscope including conditioning module. 
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2.4.4 Magnetometer 

 

The magnetometer is an instrument for measuring the direction and/or intensity of 

magnetic fields (Figure 2.19).  

 

 
Figure 2.19: 3D magnetometer from Intersense. 

 

Sensitive to the earth's magnetic field, a magnetometer gives information about north 

magnetic and therefore an absolute reference in the horizontal plan. It can be used to 

correct the drift of rotation around the vertical axis, when using a gyroscope. Zhou et 

al.81,82 used 3D magnetic sensors, 3D gyroscopes and 3D accelerometers to track the 

three degrees of orientations of upper limb segments. Although, the system was not 

used in a ambulatory setup, they demonstrated the practicality of these sensors fusion 

for orientation tracking in real-time. However, ferromagnetic materials around the 

magnetometer will disturb the local magnetic field and will therefore distort the 

orientation measurement. This interference impedes applications such as ambulatory 

motion monitoring where magnetic field distorsion is presented in the environment. 

 

2.4.5 Ambulatory systems 

 

Xsens system 

 

The Xbus Master from Xsens (Figure 2.20) is a lightweight (330g) and portable 

device that controls several Motion Trackers (MTx). The Xbus Master samples digital 

data from the MTx‘s and supplies power to the MTx’s. Each motion tracker is 

composed of 9 sensors: 3D accelerometers, 3D gyroscopes and 3D magnetometers. 
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Figure 2.20: Xbus Master of Xsens. 

 

The Xbus Master can be connected to a PDA or PC via a serial cable or a wireless 

connection. The MTx’s provides 3D orientation as well as kinematic data: 3D 

accelerometer, 3D gyroscope and 3D magnetometer.  Several studies used the Xsens 

system to estimate upper-imb orientation 81,82,86or gait87. Luinge et al.86 described a 

method to measure the orientation of the lower arm with respect to the upper arm with 

the Xsens system. They found that the accuracy of the method was limited by the 

accuracy of the sensor to segment calibration.   

 

Delsys system 

 

The Myomonitor system from Delsys (Figure 2.14 b)) is an EMG system for 

ambulatory applications. This device can be linked to EMG sensors, a 3D 

accelerometer, a 3D gyroscope, EKG sensors, respiratory sensors, a goniometer and 

footswitch. Two systems are available: a wireless system that sends data over a 

wireless local area network (WLAN) or an autonomous datalogger. They control up 

to 16 channels. 
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SULAM system 

 

The Strathclyde Upper-limb Activity Monitor (SULAM)88,89,90 consisted of a pressure 

transducer, adapted to function as an electro hydraulic activity sensor, which used 

atmospheric pressure as a reference. The activity sensor consisted of a small pressure 

sensor attached to a length of fine fluid-filled tubing open at the free end (Figure 

2.21). 

 

 

 
Figure 2.21: The Strathclyde Upper-Limb Activity Monitor (SULAM) and datalogger (left) and the 

SULAM being worn by participant (right). The SULAM was attached to the outer aspect of both upper 
limbs along the following reference points: acromion process, lateral epicondyle and lateral border of 

the radius. 
 

By attaching the transducer to the shoulder and the free end of the tube to the wrist, 

the output signal was related to the vertical displacement of the wrist relative to the 

shoulder. Because the activity sensor measured the vertical displacement, it was not 

affected by precise anatomic location or orientation unlike accelerometers. This 

device needs a calibration, so that when the free end of the tube was at the same level 

of the sensor, the output signal was adjusted to zero. 
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KinetiSense system 

 

KinetiSense is a small lightweight wireless device that integrates motion detection 

and electromyography (Figure 2.22). 

 

 
Figure 2.22: KinetiSense sytem (CleveMed). 

 

3D accelerometers and 3D gyroscopes provide 3D motion while two channels of 

EMG record muscle activity. The KinetiSense hardware is comprised of two small 

lightweight units connected by a thin flexible cable, the Command Module and the 

Motion Sensor. The system includes the Bluetooth radio for wireless real-time data 

transmission, a memory card long term monitoring and a re-chargeable battery. The 

Command Module can be clipped to a belt or band and the Motion Sensor positioned 

on the body where the motion monitoring is desired. 

 

MiniSun IDEEA system 

 

MiniSun system is an ambulatory system for energy expenditure and physical activity 

monitoring (Figure 2.23). 
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Figure 2.23: MiniSun  system. 

 

The system has been used for physical activity assessment, gait analysis, energy 

expenditure estimation, and functional capacity evaluation91,92,93. Each set of sensors 

includes orthogonal accelerometer to measure inclination of body segments and 

movement (acceleration) in 2 orthogonal directions. 

 

DynaPort MiniMod system 

 

The DynaPort MiniMod is a modular wireless system consisting of small ambulatory 

monitors and a remote control unit for synchronization and event logging (Figure 

2.24).  

 

 

 

 
Figure 2.24: MiniMod system (DynaPort) with two inertial modules. 
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The MiniMod consists of three orthogonally mounted accelerometers and a local 

memory card for data storage. The unit is powered by two AAA 1.5 V batteries. Data 

is collected at 100 Hz and stored on the SD card. It is designed for monitoring human 

posture, balance, energy consumption and gait parameters94,95. 

 

Physilog system 

 

The Physilog is a portable data logger for long-term recording designed by the 

EPFL-LMAM (Figure 2.25).  The device weigths 215 grams (batteries included) 

and can record up to 16 channels with 16 bits resolution (0−3V). The sampling 

rate configuration for each channel is programmable between (0.001−1500Hz). 

The data is stored on a removable SD memory card. The Physiolog datalogger can 

operate continuously up to 24 hours on rechargeable batteries.  

 

The Physilog system has been used for human movement analysis in daily 

conditions or in labs to characterize the changes in moving ability in terms of type 

of pathology: osteoarthritis, balance, pain and movement disorder. 

 

 
Figure 2.25: Physilog system. 

 

Several clinical fields involving the locomotion system and especially 

orthopedics58,96,97,98, elderly people study99,100,101,102, neurology85, gait 

analysis57,103,104,105,106 and quality of life83,107,108 are concerned. The ambulatory 

system designed in this study was based on the Physilog system and it is described 

in Chapter 3. 
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Other systems 

 

Bussman et al. used an accelerometry-based upper-limb activity monitor to study the 

physical activity. The activity monitor is based on long-term (>24 h) ambulatory 

monitoring of signals from body-fixed accelerometers and consists of four 

accelerometers, a portable data recorder and a computer with analysis 

programs109,110,111,112. 

 

The Table 2.2 shows the comparison between different ambulatory systems. 

 

2.5 Conclusion 

 

We described three different ways of outcome evaluation in shoulder treatment. First, 

the clinical questionnaires such as DASH, SST and Constant are the most common 

tools used to evaluate the functionality of the shoulder. Although the time to complete 

the questionnaires is short for the patient, they give subjective scores. Second, the 

stationary systems based on camera, magnetic field and ultrasound system are 

accurate for the 3D orientation of body segments, but they are unable to give an 

evaluation during outdoor measurements and during daily activity. Finally, the 

ambulatory system which is the best solution for outdoor and long-term 

measurements but they have not been used for the shoulder function evaluation.  

 

In this thesis, by using ambulatory monitoring and the adequate configuration of 

inertial sensors, we will provide new tools for the evaluation of the shoulder function. 

The type of movement and its intensity and the working level of the arm will be 

studied in the framework of protocols including short-term measurements at hospital 

and long-term measurements during daily activity.  
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Chapter 3 New devices and kinematic scores for the  
                              shoulder function assessment 
 
 

Abstract - A new method of scoring for the functional assessment of the shoulder and 

a new device to record shoulder movements of patients for long periods during a day 

are presented. 3D accelerometers and gyroscopes attached on both humerus, both 

spines of scapula (acromion) and on the thorax were used to differentiate a healthy 

from a painful shoulder. The method was first tested on 10 healthy volunteer subjects 

without any shoulder pathologies. Then, the system was tested on 10 patients with 

unilateral shoulder pathology (rotator cuff disease, osteoarthritis) before and after 

surgery (3, 6 months). To evaluate the system, 9 tests based on the Simple Shoulder 

Test (SST) were performed on each shoulder for each patient. Three scores were 

defined: the P score was based on the angular velocities and the accelerations of the 

humerus; the RAV score was based only on the angular velocities of the humerus; the 

M score was based on the sum of all moments of the humerus. Our kinematic scores 

indicated significant differences between baseline and follow-up (p<0.05) and 

differentiated patients with varying severities of the same condition. Our results 

showed a reliable technique of evaluating the shoulder pathology and surgery. 

 

3.1 Introduction 

 

We have described, in chapter 2, different assessment methods for judging the 

functional outcomes of shoulder procedures1. Some of these (such as the Disabilities 

of the Arm and Shoulder score (DASH)2 and the Simple Shoulder Test score (SST)3) 

are widely used, though none has been accepted as the universal standard. Albeit 

validated, these instruments give only subjective scores and therefore give an 

incomplete answer on patient’s shoulder evaluation. 

 

Objective assessments like radiographs4,5 provide a static estimation of the range of 

movement of the shoulder girdle but do not measure its dynamic functionality. This 

chapter proposes a different approach: measuring 3D kinematics from body-fixed 

sensors using an ambulatory recording device.  
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In this chapter, we had two aims: finding objective parameters (scores) for the 

assessment of the shoulder function based on body-fixed inertial sensors and 

evaluating the effectiveness of these parameters to quantify the difference of 

kinematics between a healthy and a painful shoulder. By validating such approach, we 

provide to the clinician a system to assess the shoulder’s function and to find 

objective scores of their patients. 

 

3.2 Methods 

 
3.2.1 Materials 

 

3.2.1.1 Sensors and signals 

 

To record and analyze the movement of the shoulder girdle, five sites on the upper-

limb were selected (Figure 3.1 a)): two sites on the anterior posterior part of the 

humerus, two sites on the superior part of the scapula’s spine (acromion) and one site 

on the trunk. The site on the trunk was used to record physical activity based on the 

method of Najafi and al.6 (see Chapter 4, 4.2.2 Body posture detection). The site on 

the humerus allowed the measurement of the movement of flexion, abduction and 

internal/external rotation, as it will be shown in this thesis. Fayad et al.7 validated the 

attachment of the acromion-fixed sensors. They demonstrated that the average motion 

pattern of surface method was similar to that measured by the invasive technique8. 

Each site is composed by 3 MEMS gyroscopes and 3 MEMS accelerometers. All 

sensors in this study were miniature, solid-state devices (Figure 3.1 b)). 
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Figure 3.1: a) Position of the inertial sensors module including a 3D gyroscope and a 3D 

accelerometer. b) The sensitive axes of the 3D gyroscopes and 3D accelerometers. 
 

The measured and selected range for each of the inertial sensors in the mentioned sites 

was evaluated in a laboratory condition and was presented in Table 3.2. 

 
Table 3.2: The measured and selected range of each inertial sensor on the body. 

        
Sensor site  Sensor type Signal range Selected range 
Humerus 3D gyroscopes ±305°/s ±400°/s 
Humerus 3D accelerometers ±3.2g ±5g 
Acromion 3D gyroscopes ±280°/s ±400°/s 
Acromion 3D accelerometers ±2.7g ±5g 

Trunk 3D gyroscopes ±271°/s ±400°/s 
Trunk 3D accelerometers ±2.2g ±5g 

 

Movements of the humerus, the scapula and the thorax were recorded by 3D 

gyroscope units (Analog device, ADXRS 250, ± 400 °/s) and 3D accelerometer units 

(Analog device, ADXL 210, ± 5g). Each module included three uni-axial gyroscopes 

assembled in the three perpendicular axes of pitch, roll, and yaw inside and three uni-

axial accelerometers measuring the frontal, lateral and vertical accelerations. 
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3.2.1.2 Signals recording 

 

All signals were recorded using the Physilog (Figure 2.25) portable data-logging 

system. It converted the analog signals to digital with an 16 bits A/D. Each Physilog 

data-logger could record 16 channels. As the number of the individual sensors was 

high (15 gyroscopes and 15 accelerometers), two synchronized Physilog systems were 

used. To store the data, the Physilog systems were equipped with a 512 Mbytes 

memory card (MMC or SD card). We used a sampling rate of 200 Hz to increase the 

temporal resolution. The signal from the sensors were amplified and low-pass filtered 

(cutoff frequency: 17 Hz) to remove any electronic noise9,10. The sensors and their 

conditioning electronics were packaged in a very small box (25x25x13 mm). With 

this regard, our proposed system appears especially promising: the sensors have low 

power consumption (112 mA) and the standard battery allows to record up to 8h. All 

of the data-analysis tasks were performed in MATLAB. In this thesis, we used only 

the sensors on both humerus and on the trunk. Different future applications of the 

scapula sensors are described in the chapter 8 (8.2 Future researches). 

 

3.2.1.3 System architecture 

 

The concept of the two synchronized Physilog systems (Physilog 1: Master; Physilog 

2: Slave) were based on the integration of all the elements needed for shoulders 

ambulatory recording. Each Physilog system was a complete data-logger integrated 

with up to 16 inertial sensors with enough internal memory and battery to 

continuously record shoulder movements up to 8 hours. 

 

Figure 3.2 shows a block diagram of both Physilog systems’ architecture. Each 

system contains: 

• A dedicated rechargeable NiMH battery. 

• A flash memory with a capacity of 512 Mbytes (MMC or SD card). 

• A one channel, 16 bits A/D converter with a 200Hz sampling rate. 

• A precision, quartz based internal clock 

• A Start/Stop button. 
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• 15 inertial sensors: 9 gyroscopes, 6 accelerometers, (Physilog 1); 6 

gyroscopes, 9 accelerometers, (Physilog 2). 

• Analog amplifiers and interface circuits. 

• Anti-aliasing filters (a RC filter with a cut-off frequency of 17 Hz) to limit 

band-width of the analog signals. 

• An 8 bits micro-controller. 

• An 15x1 channels multiplexer (MUX). 

• A LED to show the state of the system. Blinking in green when the system is 

recording. Blinking in red in case of errors. Red when being charged and 

green when the battery is fully charged. 

• A synchronization cable. An 8 bits serial code is sent from the Physilog 1 

(Master) to the Physilog 2 (Slave) to define the start, the stop and the 

acquisition periods. 

 

Data acquisition

DC /DC
Converter

Ubat 3.3V 5V
Battery

2..4V
640mA/h
(NimH)
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3.3V

16 bits
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Converter Micro
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Flash

Memory

512MB
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Clock
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15x1
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Amplifiers
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Anti
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Inertial modules

15 15 15
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Figure 3.2: The internal architecture of the Physilog systems. 
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3.2.2 Subjects 

 

10 healthy subjects (25.1 years old ± 4.1) and 10 patients with unilateral pathological 

shoulder (7 rotator cuff disease (7 rotator cuff repair) / 3 osteoarthritis (3 prosthetic 

shoulder arthroplasty): 4 women, 6 men: 62.4 years old ± 10.4) were studied. Nine 

tests representing some movements of daily activity based on the Simple Shoulder 

Test were carried out for both shoulders (Table 3.1) before surgery, 3 and 6 months 

after surgery. These tests were also carried out twice with one year interval on the 

same healthy subjects. Each test lasted 20 seconds and was video filmed for further 

validation of the movements and estimation of the false movements.  

 
Table 3.1: Summary of the 9 tests carried out for painful and healthy shoulders. The subject was in 

standing position. 
    

Tests  Description 
1 Rest position 
2 Hand to the back 
3 Hand behind the head 
4 Object ahead 
5 Carrying 4kg in abduction 
6 Carrying 8kg along the body 
7 Hand to the opposite shoulder 
8 Change a bulb 
9 Object on the side (Elbow in 90°, ext/int.rotation 

 

As described earlier, one module was fixed by a patch on the humerus (Figure 3.3). 

This way, the sensors measured the anterior elevation-extension, abduction-adduction 

and internal-external rotation of the shoulder.  
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Figure 3.3: a) Position of the inertial sensors module including 3D gyroscope and 3D accelerometer. 
b) Position of the reference markers for abduction/adduction (yaw), flexion/elevation (pitch) rotation. 
c) Position of the reference markers for internal and external rotation (roll). The reference markers 

from the reference system were used for assessing our kinematic system. 
 

The Simple Shoulder Test and the Disabilities of the Arm and Shoulder Score were 

filled out by each subject to estimate the validity of our method. 

 

3.2.3 Angles estimation  

 

Internal and external rotational movements (roll), extension and anterior elevation 

movements (pitch) and abduction and adduction movements (yaw) were estimated 

from 3D accelerometers and 3D gyroscopes. The accelerometers measure the gravity 

component, and using this feature, it is possible to measure the segment orientation 

when it is motionless11. Drift and DC components of the angular velocities were 

removed using wavelet transformation and considering the initial and final orientation 

of the segment based on the acceleration signals. The 3D angles were obtained after 

integration of the three angular velocities. Figure 3.4 shows the flow chart of the 3D 

angles estimation.  
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Figure 3.4: Flow chart for the angles estimation. Angles were estimated from the integral of angular 
velocity and by considering initial and final orientation of the accelerometers. 

 

As a reference system, a Zebris CMS-HS ultrasound-based motion measurement 

system was used12. In this study, two ultrasound receivers were attached over the 

same segment (humerus) (marker 1, marker 2). Spatial marker positions (x, y, z) were 

recorded and used for calculation of orientation angles of the humerus. 

Synchronization between the reference and the Physilog systems was performed by 

electrical trigger. The angle data obtained by the body-fixed sensors were down 

sampled to 100Hz for comparison purpose. The flexion/extension and 

abduction/adduction angles of the humerus were estimated using the spatial 

coordinates of the microphone markers on the humerus (Figure 3.3 b)). The 

internal/external rotation angles of the humerus were estimated using the spatial 

coordinates of the microphone markers on the radius (Figure 3.3 c)). Basic 
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movements like anterior flexion-extension, abduction, adduction and internal/external 

rotation were performed with our system and the reference system on 10 healthy 

subjects to assess the accuracy of our angles estimation method.  

 

3.2.4 RAV score algorithm 

 

Our second method consisted of providing a score by estimating the difference of 

kinematics between the healthy and the painful shoulder. It was based only on the 

angular velocities of the humerus. The 3D range of angular velocity (RAV) was 

calculated by the difference between the maximum and the minimum of angular 

velocity (deg/s) measured by 3D gyroscopes during each test in internal and external 

rotational (roll), flexion/extension (pitch) and abduction/adduction (yaw) directions 

for each subject. The RAVr parameter was estimated as the average of the sum of the 

RAV in the three axis of rotation.  

 

( )
3

)_(
,,∑

= yawpitchroll
velocityangularrange

RAVr      (Equ. 3.1) 

The difference between a healthy and a painful shoulder (ΔRAVr) was expressed as 

the percentage of RAV of the healthy shoulder (ΔRAVr). 

 

ΔRAVr= (RAVhealthy - RAVpainful)/ RAVhealthy      (Equ. 3.2) 

 

The RAV score is defined as the average of the ΔRAVr over all 9 tests. 

 

[ ] [ ]%1001 9

1
∗Δ−= ∑ =Test

RAVrmeanscoreRAV      (Equ. 3.3) 

 

3.2.5 P score algorithm 

 

The main idea was to observe the relationship between the accelerations and the 

angular velocities of the humerus. Figure 3.5 shows the difference between the 

healthy and the painful side for one axis and a patient. In order to estimate the 

difference between both sides, we calculated for each test the surface inside the curve 

for both sides. The simplest estimation of this surface was to calculate the area of the 
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rectangle, which circumscribes the curve corresponding to the product of the 

acceleration range by the angular velocity range (Figure 3.5).  

 

)()(Pr
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velocityangularrangeonacceleratirange
yawpitchroll∑ ⋅=    (Equ.3.4) 
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Figure 3.5: Humerus acceleration as a function of its angular velocity for a patient. a) The trace 
represents the humerus acceleration vs. angular velocity for the healthy side. b) The trace represents 
the humerus acceleration vs. angular velocity for the painful side. The rectangle, which circumscribes 

the curve, corresponds to the product of the acceleration range by the angular velocity range (Pr). 

 

We calculated this surface for each axis for both sides and added these to obtain a 

parameter called Pr for a healthy and a painful side. By considering that the product of 

the angular velocity and the acceleration is related to the power of the movement, we 

can therefore assume that P is a power dependent quantity. This parameter can also be 

considered as the control of the humerus velocity by its acceleration. 

 

The difference between the Pr parameter of a healthy and a painful side relative by the 

healthy side was considered as ΔPr parameter.  

 

ΔPr=(Phealthy-Ppainful)/Phealthy        (Equ. 3.5) 

 

The P score is defined as the average of the ΔPr over all 9 tests. 
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Comparing to RAV where only angular velocities were used, the P score used both 

the angular velocities and the accelerations of the humerus. 

 

3.2.6 M score algorithm 

 

Our last score considered the difference of moments M
r

 between the healthy and the 

painful shoulder; it was based on the angular velocities ω
r

 of the humerus and the 

anthropometrics data of the patient. Van den Bogert et al. expressed the equation of 

the sum of all moments on a body segment13. M
r

was defined as the moment of the 

humerus (Equation 3.7), I as the inertia matrix (Equation 3.8). 
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Using the mathematical definition of the moment of inertia from Vaughan et al.14 and 

the anthropometrics data of the patient (length of the humerus: Lh, circumference of 

the biceps: Ch, mass of the humerus: m), the relationship of the moment of inertia 

about flexion/extension (Ipitch), the moment of inertia about abduction/adduction 

(Iyaw) and the moment of inertia about internal/external rotation (Iroll) can be 

derived. 
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       (Equ. 3.9) 

 

We used this method to evaluate the difference between the healthy and the painful 

shoulder, calculating the maximum of the norm of the moment (noted by || ||) during 

each test for each shoulder.  
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ΔM =max||M healthy || - max||M painful ||     (Equ. 3.10) 

 

The difference between the healthy and the painful shoulder was expressed as the 

percentage of the moment of the healthy shoulder. 

 

Mhealthy
MMr

max
Δ

=Δ        (Equ. 3.11) 

 

The M score is defined as the average of the ΔMr over all 9 tests. 
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1
∗Δ−= ∑ =Test

MrmeanscoreM      (Equ. 3.12) 

 

A subject with a total mobility of his/her shoulder will have a M score, a RAV score 

and P score of 100% and a patient without any mobility of his/her shoulder will have 

a M score, a RAV score and a P score of 0%. 

 

3.2.7 Statistical analysis 

 

The Wilcoxon matched pairs signed rank sum test was used as a non-parametric 

hypothesis test to show if there were significant differences (at a significance level 

5%) between baseline vs. 3 months, and baseline vs. 6 months for 10 patients. The 

Wilcoxon rank sum test was also used as a non-parametric hypothesis test to show if 

there were significant differences between baseline vs. 10 control subjects, 3 months 

vs. 10 control subjects and 6 months vs. 10 control subjects. 

 

To estimate the reliability of the measurements, the interclass correlation (ICC) of the 

two tests (one year interval) on healthy subjects was calculated for each score. 
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3.3 Results 

 

3.3.1 Angles estimation  

 

Figure 3.6 shows the angles of the basic movements for the reference system Zebris 

and the inertial sensors. The proposed method gave an accurate estimation of the 

shoulder angles.  The results of all the tests (Table 3.3) were very close to those of the 

reference system presenting a small average error in RMS (5.81°), mean (1.80°) and 

standard deviation (4.82°) of the difference signal, reflecting accurate and precise 

estimation respectively; and excellent correlation coefficient (0.99) values reflected 

highly linear response. 
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Figure 3.6: Angles estimation compared to the reference system Zebris. a) Flexion, extension. b) 
Abduction, adduction. c) Internal external rotation. Dashed line: reference system. Solid line: inertial 

sensors. 
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Table 3.3: Comparison between the humerus angles obtained by the inertial sensors and the reference 
system for 10 subjects. The error represents the RMS, mean and SD of the difference between reference 

and our measuring device. ‘r’ represents  the Correlation Coefficient between the two measuring 
system. 

  Flexion/Elevation Abduction/Adduction Int./Ext rotation 

Subject Error, deg  Error, deg  Error, deg  

  RMS mean SD r RMS mean SD r RMS mean SD r 

S1 2.50 -0.45 2.47 0.9986 2.95 -2.20 1.97 0.9968 3.19 0.58 3.13 0.9983

S2 5.64 -3.08 4.72 0.9936 3.83 3.34 1.88 0.9940 2.38 -0.95 2.19 0.9972

S3 4.86 6.25 3.36 0.9888 5.53 -4.08 3.63 0.9994 5.72 -1.90 5.39 0.9865

S4 7.49 6.48 7.29 0.9970 9.61 8.59 6.37 0.9653 8.04 -3.97 6.69 0.9491

S5 7.25 6.02 6.90 0.9945 5.21 2.54 3.63 0.9880 7.99 1.32 7.88 0.9829

S6 7.17 4.40 5.16 0.9953 8.97 6.55 8.52 0.9863 6.25 -5.92 4.61 0.9657

S7 6.59 4.42 5.01 0.9962 1.41 0.48 1.33 0.9993 3.71 -4.49 3.57 0.9739

S8 8.66 2.95 7.16 0.9984 3.62 0.31 3.58 0.9976 5.82 2.25 3.37 0.9950

S9 6.56 5.16 6.44 0.9975 7.80 7.98 5.55 0.9849 6.50 2.68 6.10 0.9971

S10 10.03 4.26 9.09 0.9989 1.12 0.09 1.10 0.9991 7.81 4.32 6.51 0.9933

Mean 6.68 3.64 5.76 0.9959 5.01 2.36 3.76 0.9911 5.74 -0.61 4.94 0.9839

 

3.3.2 P score 

 

Figures 3.7 a1) and b1) show the comparison of the Pr parameters between a patient 

and a control subject for the nine realized tests. It can be observed that for the patient 

(Figure 3.7 (a1)) the P parameter is higher for the healthy side than the painful side 

for all tests. But for the healthy subject (Figure 3.7 (b1)), the Pr parameter is 

approximately equal between the right and the left shoulder for each test. Table 3.4 

shows the P score for a healthy subject. The P score for the healthy subjects ranged 

from 85% to 97% (mean: 92%), which is twice compared to patients before surgery 

(Table 3.4, 3.5). 

 

Table 3.4 shows all the results in comparison with the baseline (before surgery). The 

Wilcoxon matched pairs signed rank sum test indicates that significant differences 

were found between the P score at baseline vs. the P score at 3 months and the P score 

at baseline vs. the P score at 6 months (p<0.05).  
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Table 3.4: DASH, SST, P score, RAV score and M score for patients before surgery (baseline) and 3, 6 
months after surgery. NS indicates that no significant differences were found at 5%. The DASH (30 is 
“very good mobility” and 150 is “very bad mobility”), SST (0 is “very bad mobility” and 12 is “very 

good mobility”) 

                        
Patients 1 2 3 4 5 6 7 8 9 10 Wilcoxon Test 

Rav Score baseline 42 80 69 70 66 5 50 64 84 59   
Rav Score 3months 87 94 79 98 76 81 62 60 94 76 p=0.0039 
Rav Score 6months 87 93 93 94 70 95 54 66 97 76 p=0.0020 
P score baseline 28 75 57 62 48 3 36 38 67 48   
P score 3months 70 74 82 91 67 61 42 39 88 59 p=0.0059 
P score 6months 76 67 98 93 58 97 33 39 87 69 p=0.0195 
M score baseline 22 51 48 42 36 22 15 25 55 25   
M score 3months 64 90 59 37 65 63 31 44 69 64 p=0.0041 
M score 6months 66 83 97 44 52 70 23 42 86 60 p=0.0020 
Dash baseline 137 91 47 74 93 75 93 128 79 47   
Dash 3months 137 101 34 49 80 74 115 78 50 65 NS 
Dash 6months 94 93 34 32 81 54 110 72 54 38 p=0.0273 
SST baseline 0 7 9 5 1 5 1 1 4 6   
SST 3months 0 3 11 11 6 6 1 3 5 2 NS 
SST 6months 5 4 11 10 6 9 1 3 7 10 p=0.0234 
 

Table 3.5: DASH, SST, P Score, RAV Score and M Score for healthy subjects. For all the healthy 
subjects : the SST was 12 and the DASH was 30. In brackets: difference between the first measurement 

and the one year measurement (Δ(1-2)) . 

        
Subjects P score, % RAV score, %  M score, % 

1 91(7) 94(5) 91(2) 
2 96(-12) 99(-14) 87(3) 
3 93(-4) 98(-4) 88(3) 
4 94(3) 98(-1) 82(2) 
5 96(-3) 91(5) 97(-9) 
6 93(-11) 95(5) 86(12) 
7 97(-13) 95(-8) 95(-15) 
8 90(10) 96(1) 93(-3) 
9 93(5) 93(6) 72(17) 

10 98(-9) 96(-9) 89(5) 
    

Mean Δ(1-2) -2.7 -1.4 0.7 
STD Δ(1-2) 8.5 7.1 9.4 

ICC 0.8 0.8 0.78 
 

The P score average was 46%, 67% and 72% respectively at baseline, 3 month and 6 

months after surgery. Figure 3.8 a) shows the improvement of the P score after 

surgery in comparison to the baseline values and the control subjects. 

 

We observed that there were significant differences between the P score at the 

baseline vs. the P score of the healthy subjects and the P score at 3 month vs. the P 
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score of the healthy subjects, but no significant differences were found between the P 

score at 6 month vs. the P score of the healthy subjects (p=0.074). 
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Figure 3.7: Pr parameter for a patient (a1)) and a control subject (b1)). RAVr parameter for a patient 
(a2)) and a control subject (b2)). Mr parameter for a patient (a3)) and a control subject (b3)) 
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3.3.3 RAV score 

 

Figures 3.7 a2) and b2) show the comparison of the RAV parameters between a 

patient and a control subject for the nine tests. The RAV parameter is higher for the 

healthy side than the painful side for all tests (Figure 3.7 (a2)). But for a healthy 

subject (Figure 3.7 (b2)) the ΔRAV parameter is approximately similar between the 

right and the left shoulder for each test. The RAV score for the healthy subjects 

ranged from 87% to 99% (mean: 94%). While this score was in average 59% for 

patients preoperatively (Tables 3.4, 3.5). 

 

Significant differences were found between the RAV score at baseline and the RAV 

score at 3 months, as well as between the RAV score at baseline and the RAV score at 

6 months (p<0.05). 

 

The average of the RAV score was respectively 81% and 83% at 3 months and 6 

months after surgery (Table 3.4). Figure 3.8 b) shows the improvement of the RAV 

score after surgery in comparison to the baseline values and the control subjects. 

 

The RAV score of the healthy subjects was significantly higher than the RAV score at 

baseline as well as the RAV score at 3 months, but significant differences were also 

found between the RAV score at 6 months and the RAV score of the healthy subjects 

(p=0.037). 

 

3.3.4 M score 

 

Figure 3.7 a3) and b3) show the comparison of moment in Nm (Newton-meter) 

between a patient and a control subject for the nine tests. The moments are higher for 

the healthy side than the painful side for all tests (Figure 3.7 (a3)), while the moments 

are similar between the right and the left shoulder for a healthy subject (Figure 3.7 

(b3)). The M score for a healthy subject ranged from 82% to 97% (mean: 88%), 

which is more than twice the average for the patients preoperatively (Tables 3.4, 3.5). 

The M score at baseline was significantly lower than the M score at 3 months as well 

as the M score at 6 months  (p<0.05). 
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Table 3.4 shows all the results in comparison with the baseline. The M score average 

was respectively 59% and 62% at 3 months and 6 months after surgery. Figure 3.8 c) 

shows the improvement of the M score after surgery in comparison to the baseline 

values and the control subjects. We observed that there were significant differences 

between the M score at the baseline vs. the M score of the healthy subjects and the M 

score at 3 month vs. the M score of the healthy subjects, but significant differences 

were also found between the M score at 6 month vs. the M score of the healthy 

subjects (p=0.009). 
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3.4 Discussion and conclusion 

 

Many investigations of the shoulder outcome evaluation previously used the 

questionnaires and imposed movements. Kirkley et al.1 presented the differences between 

scoring systems for the functional assessment of the shoulder. They observed that many 

of the items may seem irrelevant to patients with specific conditions and none has been 

accepted as the universal standard. In some case, the patient could not understand the real 

meaning of the questions and could not answer or answered in a wrong way. The DASH 

instrument is a questionnaire. It depends on the subjective evaluation of the patients. In 

some cases, the patient doesn’t understand the questions or answers wrongly. It depends 

also of the patient’s psychological condition. Due to the dichotomous response option 

(yes or no), the SST instrument is likely to have poor differentiation sensitivity between 

patients with varying severities of the same condition1. 

 

Our outcome evaluation of the shoulder surgery was based on objectives scores derived 

from accurate 3D measurements (Table 3.3) of shoulder kinematics on healthy and 

painful shoulders obtained during specific tasks. These scores concern the acceleration 

and the angular velocity rather than the components of the angle. Though angles can be 

estimated accurately with our system, they have not shown pertinent changes between a 

healthy and a painful shoulder. Figure 3.9 shows the 3D angles for a patient for the test 

n°2, where the subject moved his hand to the back. The angular ranges are rather larger 

for the painful side in comparison to the healthy side for the abduction/adduction (yaw) 

and flexion/extension (pitch) axis. This observation shows that the patient has a strategy 

to minimize the pain by accomplishing a longer path than normal for the painful shoulder 

to do the same movement. 
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Figure 3.9: Humerus angles for test 2, consisting in moving the hand to the back. Healthy humerus angles 
and painful humerus angles in flexion/elevation (pitch) (a), in internal /external rotation (roll) (b) and in 

abduction/adduction (yaw) (c) 
 

However, this is not the case for all patients, since every patient has a different movement 

strategy to reduce the shoulder pain. Therefore, it was not possible to use the angle 

magnitude as an objective parameter to quantify the difference between a healthy and a 

painful shoulder. 

 

This chapter proposed three different scores: the P score based on a combination of 

accelerations and angular velocities, the RAV score based on the differences of angular 

velocities range and the M score based on the sum of all moments of the humerus. These 

scores show a way to assess shoulder function based on a quantification of the difference 

of kinematics between the healthy and the painful shoulder. Figure 3.8 shows the 

comparison between baseline, 3 and 6 months after surgery for the three scores. It can be 

observed with these scores that, for all the patients, the mobility increased significantly 

after surgery (Table 3.4). In addition, the scores are clearly distinct between a healthy 
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subject and a painful patient at baseline without any overlapping of the confidence 

intervals (Figure 3.8).  

 

Table 3.4 shows also the results of the Wilcoxon matched pairs signed rank sum test for 

the clinical scores (DASH, SST). It can be seen that while kinematic scores showed 

significant differences between baseline and follow-up time (p<0.02), the clinical scores 

(DASH, SST) showed no significant differences between baseline and 3 months 

evaluation but the differences became significant at 6 months evaluation (p<0.03). These 

results suggested that our inertial scores might be more sensitive to the functional 

changes than the clinical scores, and were able to express an improvement from the 

baseline even at 3 months after surgery.  

 

By producing an objective score based on 3D kinematics of the shoulder our system 

assessed the functionality of the shoulder. However, it can’t be used yet for the diagnosis 

of complex pathologies or to differentiate the pathologies. Our score is not related 

directly to pain but to the pain’s effect on mobility. For example, if a patient experiences 

pain in a shoulder and therefore moves his shoulder less, our system will detect this lack 

of functionality. But, in the case where there is no recovery of shoulder functionality even 

if the pain is removed after surgery, our scores will remain low. 

 

It is noteworthy that those three scores compare the patient’s affected and non affected 

shoulder only if the pathology is unilateral.  

 

Concerning the sensors attachment some precautions should be taken. First, in order to 

reduce the effects of skin artefacts, a sticking elastic band was used to fix the sensors. In 

addition, the module was placed on the distal and posterior part of the humerus where 

there are less skin movement and where sensors can detect all the rotations of the 

humerus.  In fact, if the sensor is positioned at the top of the humerus (near the humeral 

head), the internal/external rotation cannot be measured. 
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In order to estimate the repeatability of the system, measurement were repeated on the 10 

control subjects after 1 year. The comparison between the two measurements showed a 

small difference (less than 3% in average with STD less than 10%) with an ICC of 0.8 

(Table 3.5). 

 

The proposed scores can be clinically understandable. The RAV score represents the 

velocity of the humerus. The P score shows how the patient controls the velocity of his 

humerus using the combination of the accelerations and the angular velocities. The M 

score represents the sum of all moments on the shoulder.  Indeed, our proposed scores are 

based on the tests corresponding to daily activity (Table 3.1), it can be therefore used in 

situations where long-term monitoring of shoulder kinematics in daily activity is possible. 

By recognizing physical activity using additional sensors 17,15 it can be possible to provide 

a better evaluation of the shoulder mobility and therefore offer a more reliable score since 

it is based on a natural and voluntary activity of the patients. Moreover using one sensor's 

module on each humerus and one of the three scores, it could be possible to compare a 

painful and a healthy shoulder during daily activity (Chapter 7). Monitoring the subjects 

in their usual environment with minimal interference is therefore possible, in contrast 

with other systems that require a laboratory. 

 

In the next chapter, we describe how the proposed P score can be used to quantify the 

dominance of the upper-arm in healthy subjects and patients. 
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Chapter 4  Estimating the dominant upper-limb segment 
                              during daily activity 
 
 

Abstract – Considering the results obtained in the chapter 3 for the P score, a new method 

to quantify the arm dominance and to distinguish a dominant from a non dominant 

shoulder is presented. An ambulatory system using inertial sensors attached on the 

humerus was used to differentiate a dominant from a non-dominant shoulder. The method 

was tested on 31 healthy volunteer subjects without any shoulder pathologies while 

carrying the system during 8 hours of their daily life. The shoulder mobility based on the 

angular velocities and the accelerations of the humerus (P score) were calculated and 

compared every 5 seconds for both sides. Our data showed that the dominant arm of the 

able-bodied participants was more active than the non dominant arm for standing (+18% 

for the right-handed, +8% for the left-handed) and sitting (+25% for the right-handed, 

+18% for the left-handed) postures, while for the walking periods the use of the right and 

left side was almost equivalent. The proposed method could be used to objectively 

quantify the upper limb usage during activities of daily living in various shoulder 

disorders. 

 

4.1 Introduction 

 

Most quantitative approaches to shoulder movement analysis are performed in a 

laboratory setting where motion captures device such as camera1, electromagnetic2, or 

electromyogram3,4 systems are used. Although very accurate and important for movement 

analysis, their use is limited to the volume of the laboratory. There is a difference 

between what patients can do in a laboratory or a clinical environment and what they 

actually do in daily life conditions. Consequently the provided information does not 

reflect the actual body movements as they are during daily activity. Nevertheless, the 

description of shoulder motion during daily activity is fundamental to better evaluate the 

consequences of pain on joint mobility and the functional outcome of the patient. When 
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evaluating shoulder motion during daily activities, body fixed sensors, such as inertial 

sensors, could be used5. 

 

Several methods have been used to measure shoulder usage using only accelerometers6,7. 

The integrated value of wrist acceleration over a specified period was used to define an 

index of the amount of movement. Schasfoort et al.8,9 used a multi accelerometers device 

including 2 accelerometers on each wrist (sensitive direction perpendicular to the body 

segment in the sagittal and transversal directions). They presented initial studies for the 

validity of accelerometry to differentiate usage and non usage upper-limb during a 

normal life.  

 

Other investigators have used pressure sensors10,11 to develop a system for the objective 

measurement of the upper-limb usage during a person’s activities of daily living. Their 

system gave a signal proportional to the vertical displacement of the wrist with respect to 

the shoulder. They showed that the dominant arm of the ten able-bodied participants was 

19% more active than the non dominant arm10.  

 

While the kind of task tested in a controlled environment such as a laboratory setting is 

well-known, in activities of daily life, the nature of physical activities where each 

shoulder is involved is unknown. Since the activity is entirely free, the involvement of the 

affected shoulder is expected to be different from the healthy shoulder. For a number of 

shoulder disorders, problems in performing daily activities should be expressed in terms 

of upper-limb usage. Therefore, we need to quantify the normal shoulder usage in healthy 

subjects. This way, the shoulder usage in patients with shoulder disorders can be 

compared to that of normal shoulder usage in order to evaluate shoulder function. 

Moreover, shoulder usage can be used to evaluate changes in shoulder function overtime, 

i.e. in baseline and follow-up in order to evaluate the outcome of a treatment. 

  

Many instruments measure upper-limb movement, however, to the best of our knowledge 

there is no study regarding the differentiation of use of the left or the right shoulder. We 

have shown in the chapter 3 that the range of movement does not necessarily quantify 
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shoulder function as different movement strategies are often used to compensate for 

impairments, such as pain. Moreover, the humerus acceleration combined with the 

humerus angular velocity provides a better score for functional outcome evaluation in 

patients with shoulder pathology12. In this chapter, we use both acceleration and angular 

velocity of the humerus to introduce an ambulatory method for measuring the usage of 

shoulders and to quantify the contribution of each shoulder in the patient’s daily physical 

activity. The described method could be used to evaluate the effects of both conservative 

and surgical shoulder treatments.  

 

4.2 Methods 

 

4.2.1 Subjects and materials  

 

This study received prior ethical approval from the Institutional Ethics Board committee. 

31 healthy subjects (mean 32 years old ± 8, 13 women; 23 right-handed, 8 left-handed) 

were studied. Two inertial modules were fixed by a patch on the dorsal side of the distal 

humerus and on the thorax (Figure 3.1). This way, the inertial module on the humerus 

measured the anterior elevation-extension, abduction-adduction and internal-external 

rotation of the shoulder and the module on the thorax was used to detect daily activities 

(walking, sitting, standing) using the method proposed by Najafi et al.12,13. We have used 

the monitoring device described in 3.2.1.  Each subject carried the system during one day 

(~8 hours), at home or wherever he/she went. At the end of recording, the data was 

transferred in a computer for further analysis. 
 

4.2.2 Body posture detection 

 

Body posture allocations (sitting, standing and lying) as well as walking periods were 

detected by the trunk inertial module13,14. The time of sit-stand (respectively stand-sit) 

transition was detected from the patterns of angular tilt obtained from the gyroscope. 

Pattern recognition of the vertical acceleration allowed classifying the transition and 

deciding if the subject was in a standing or a sitting position. The lying position was 
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detected from the inclination of the trunk obtained from the accelerometers. A walking 

period was defined as an interval with at least three gait cycles. The walking state was 

identified by analyzing the vertical accelerometer every five seconds. The difference 

between the right and the left shoulder is shown for each period corresponding to sitting, 

standing and walking.  

 

4.2.3 Algorithm for estimating dominant shoulder 

 

We have shown in the chapter 3 that the product of range of acceleration and range of 

angular velocity that inform about the power of the shoulder is a pertinent parameter to 

evaluate the shoulder mobility. This way a new parameter Pr (Equ. 3.4) was defined that 

considered the 3D components of acceleration and angular velocity of the humerus 

obtained from the inertial module fixed on this segment. Pr was estimated every 5 

seconds for the left and the right humerus (PrLeft, PrRight). In order to estimate the shoulder 

usage, Pr was compared to a defined threshold (thp). If Pr was under thp the humerus was 

considered motionless, otherwise it was considered active. The periods where Pr > thp 

were estimated in percent of the total monitoring time and were called Activity. The 

mean value for Pr (left and right) during the rest position was used to define the optimum 

thp. If the difference between PrLeft and PrRight was positive and PrLeft was larger than thp, 

the usage was classified as a left shoulder usage (ALS=1). If the difference between 

PrRight and PrLeft was positive and PrRight was larger than thp, the usage was classified as a 

right shoulder usage (ARS=1). The percentage of the left shoulder usage (ALSp) and 

right shoulder usage (ARSp) are described as: 
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For each interval i of 5 sec, P(i)  parameter was defined as :  
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Figure 4.1 shows the flow chart of the shoulder usage estimation.  
ALS = ARS = 0 ; i = 0

Left Humerus Right Humerus

Pr Left Pr Right

3D accelerations
3D gyroscopes

3D accelerations
3D gyroscopes

ARS = ARS +1

Pr Right - Pr Left > 0
             &
     Pr Right > thp

P(i) = Pr Right

P(i) = Pr Left P(i) = 0

ALS = ALS +1

i = i + 1

Pr Left > thp

i = N

END  
Figure 4.1: Flow chart for estimating the difference between the left and the right shoulder. To obtain the 

parameter Pr, the acceleration range was multiplied by the angular velocities range each 5 seconds for the 
left and the right humerus. If the difference between Pr Left and Pr Right is positive and Pr Left is larger 

than the threshold, the usage is classified as a left shoulder usage (ALS). If the difference between Pr Right 
and Pr Left is positive and Pr Right is larger than the threshold, the usage is classified as a right shoulder 

usage (ARS). 
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4.3 Results 

 

The results for the detection of the different postures (walking, sitting and standing) for a 

typical patient are presented on the Figure 4.2 (a). 
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Figure 4.2: (a) Typical physical activity of a left-handed subject classified as sitting, standing, walking 
during 1 hour of recording. (b) Shoulder mobility expressed by the parameter P for different activity 

showing clear asymmetry between the left and the right side. 
 

To define the threshold (thp), we turned on the system in rest position during 1 hour to 

detect the mean value of the Pr for the left and the right humerus. The mean value for Pr 

Left was 0.859 and the mean value for the Pr Right was 0.556. These values corresponded to 

the average noise of the motion during rest. Activity periods should be several times 

above this noise level.  To find the optimum threshold, we varied thp from 1 to 10 per 

step of 1 for the 31 subjects. The optimum threshold was defined as the value where a 

difference of 1% was observed in the values of ARSp and ALSp (for the sit and stand 
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postures). We obtained an optimum threshold of 3 that was used to estimate the Activity 

periods. It can be shown in Tables 4.1 and 4.2 that the Activity of both shoulders during 

standing and sitting postures was 74% and 59% respectively. The Activity of both 

shoulders during the walk was over 99%.  

Table 4.1: Difference between the dominant and the non dominant side for 23 healthy right-handed 
subjects. Activity for the walk was >99%. 

                  
 Walk Sit Stand 

Subject  ALSp,% ARSp,% ALSp,% ARSp,% Activity,% ALSp,% ARSp,% Activity,% 
r1 24 76 40 60 60 37 63 69 
r2 61 39 45 55 43 45 55 74 
r3 58 42 36 64 47 26 74 67 
r4 45 55 26 74 50 44 56 63 
r5 67 33 33 67 40 44 56 66 
r6 54 46 26 74 50 38 62 63 
r7 72 28 38 62 58 44 56 80 
r8 35 65 40 60 50 47 53 49 
r9 60 40 38 52 47 45 55 53 

r10 64 36 28 72 46 38 62 33 
r11 32 68 31 69 62 32 68 76 
r12 45 55 38 62 63 40 60 89 
r13 50 50 42 58 57 50 50 76 
r14 44 56 38 62 76 37 63 89 
r15 42 58 44 56 72 47 53 85 
r16 56 44 44 56 69 50 50 84 
r17 48 52 46 54 50 40 60 68 
r18 42 58 45 55 51 39 61 83 
r19 42 58 38 62 86 42 58 94 
r20 41 59 37 63 68 38 62 81 
r21 57 43 42 58 77 49 51 86 
r22 58 42 32 68 71 36 64 87 
r23 43 57 34 66 61 35 65 84 

         
Mean 50 50 37 62 59 41 59 74 
Std 12 12 6 6 12 6 6 15 
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Table 4.2: Difference between the dominant and the non dominant side for 8 healthy left-handed subjects 

                  
  Walk   Sit     Stand     

Subject ALSp,% ARSp,% ALSp,% ARSp,% Activity,% ALSp,% ARSp,% Activity,%
l1 49 51 62 38 82 63 37 93 
l2 45 55 52 48 62 48 52 78 
l3 39 61 47 53 49 44 56 86 
l4 46 54 54 46 64 50 50 72 
l5 38 62 49 51 66 52 48 79 
l6 63 37 79 21 56 56 44 62 
l7 52 48 66 34 69 57 43 78 
l8 50 50 60 40 63 60 40 83 
         

Mean 48 52 59 41 64 54 46 79 
Std 8 8 11 11 10 6 6 9 

 

The usage of the dominant side (ARSp and ALSp) over the day (8 hours) and during each 

period of usage is presented for each subject in Tables 4.1 and 4.2. It can be observed that 

for right-handed subjects (N=23) the right side was in average 18%(±12) and 25%(±12) 

more used than the left side in standing and sitting postures respectively. While the 

inverse was occurred for the left-handed subjects (N=8): the right side was in average 

8%(±13) and 18%(±21) less used than the left side in standing and sitting postures 

respectively. For the walking periods, the use of the right side and the left side was 

almost equivalent (50%-50% for the right-handed subjects; 48%-52% for the left-handed 

subjects). Data showed that the subjects used their dominant upper-limb for standing and 

sitting postures in average 18% more than the non-dominant upper-limb (Table 4.1 and 

4.2). 

The intensity of the shoulder movement expressed by the parameter P is shown in Figure 

4.2 for a left-handed subject during 1 hour of recording. The mean of the P parameter 

during the daily activity for all right-handed subjects was larger for the right shoulder 

than the left shoulder (Table 4.3). The tendency was inverted for the left-handed subjects 

in average even if few left-handed subjects had higher intensity for the right shoulder 

(Table 4.4).  

Chapter 4: Estimating the dominant upper-limb segment during daily activity

86



 

Table 4.3: Difference of movement intensity between the left and the right shoulder for 23 healthy right-
handed subjects 

      
  Mean P 
Subject Left shoulder Right shoulder

r1 56.5 61 
r2 51.2 59.2 
r3 53.5 68.2 
r4 49.3 65.5 
r5 46.7 62.2 
r6 53.5 62 
r7 57.9 65.4 
r8 55.8 79.3 
r9 50.5 52.6 

r10 62.7 72.7 
r11 52.6 64.2 
r12 48.2 55.4 
r13 56 60 
r14 45 53.3 
r15 47 51.3 
r16 52.6 60.4 
r17 50.1 56.9 
r18 45.2 53 
r19 47.6 54.4 
r20 50.1 60.7 
r21 49.7 56.2 
r22 48.2 60 
r23 42.8 55.6 

   
Mean 51.0 60.4 
Std 4.7 6.8 

 
Table 4.4: Difference of movement intensity between the left and the right shoulder for 8 healthy left-

handed subjects 
      
  Mean P 
Subject Left shoulder Right shoulder

l1 51.5 42.8 
l2 57.5 55 
l3 45.7 48 
l4 57.7 53 
l5 50.9 51.2 
l6 53.9 56.3 
l7 54 48.8 
l8 55.7 46.9 
   

Mean 53.4 50.3 
Std 4.0 4.5 
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4.4 Discussion and conclusion 

We have proposed an ambulatory method to evaluate the usage and non usage of upper 

limbs during daily physical activity. Based on 3D inertial sensors on both humerus, our 

method can quantify the difference between the dominant and the non-dominant shoulder 

for a healthy subject for his/her different postures. The figure 4.2 shows that the intensity 

of the movements of the shoulders is not similar for each posture. In this fact, we decided 

to separate the usage of the shoulders in gait, standing and sitting postures. Data showed 

that the left shoulder and the right shoulder have the same rate of usage for the left-

handed and right-handed subjects during walking but for the standing and sitting postures 

we are able to differentiate quantitatively the left-handed from the right-handed subjects 

(p<0.00053) (Table 4.1 and 4.2). Actually, during the walk, the upper-limbs have a cyclic 

movement. During the sitting and standing postures, by using his/her dominant side, the 

subject leaves the non dominant side inactive or in posture to stabilize the movement. 

This could explain the difference between the dominant and the non dominant shoulder 

activity. Although walking solicited both arms equally during the whole walking period, 

it can not be concluded that during each period of walking, the left and the right arms 

have the same rate (as it can be seen in Figure 4.2). For example, external work (carrying 

a load) could affect this similarity. However, it is not yet possible to automatically 

determine whether a subject is performing ordinary walking or carrying a bag while 

walking. Calibrating the ordinary walking of a subject at the beginning of a measurement 

period or using electromyogram (EMG) recordings may be a solution. Therefore, with the 

proposed method, the quantification of the shoulder mobility in regards to the physical 

activity can provide a better insight of a patient’s recovery after treatment. The goal of 

the study focused only on the shoulder constraints, not on the forearm or the hand. We 

did not study the hand dominance, but the arm and shoulder dominance. 

The intensity of the upper-limb movement was estimated using the parameter P that 

considers 3D kinematics (accelerations and angular velocity) of the shoulder. The 

sensitivity of this parameter to show shoulder function improvement has already been 

shown in the previous chapter. 
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Our method was sensitive to the movements on the horizontal plane and a difference of 

the usage’s rate is shown between the standing and the sitting postures. Both shoulders 

were more active (+18%) during the standing posture than the sitting posture (Tables 4.1 

and 4.2). Moreover, the mean P parameter is significantly different for the dominant 

shoulder than for the non dominant shoulder (p<0.004) (Tables 4.3 and 4.4). 

 

These results will be used on patients with pathologies of the shoulder in chapter 7. As 

example, the Figure 4.3 shows the evaluation of the dominant shoulder for a typical right-

handed patient with a right painful shoulder (rotator cuff disease). For this patient, the 

functionality of his right shoulder (dominant) was less than his left shoulder (non 

dominant). His usage corresponded rather to the left-handed subjects (Table 2). This 

tendency will be discussed in the chapter 7 (7.2.4.2). 

Right Arm: 26%

Left Arm: 74%

Walk

Right Arm: 27%

Left Arm: 73%

Sit
Right Arm: 30%

Left Arm: 70%

Stand

 

Figure 4.3: Estimation of the dominant shoulder for a typical right-handed patient with his right painful 
shoulder before surgery during the standing, sitting and walking activity. 

Based on kinematics of the subjects, we were able to find the difference between the 

dominant and the non dominant shoulder and quantify if a person is right-handed or left-
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handed during daily activity. This study provides preliminary evidence that this system is 

a useful tool for objectively assessing the upper-limb usage during daily activity. The 

proposed system was used during daily activity for patients with shoulder disorders 

(Chapter 7). Although the intensity of the movement as estimated by the P score in this 

chapter is important, it does not provide the frequency (e.g the number of flexions per 

hour) of the movement. This is the aim of the next chapter, where the type of the 

movement and its frequency for the dominant and the non dominant humerus is 

estimated. 
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Chapter 5 Characterization of the movement of the   
                              humerus during long-term measurements 
 
 

Abstract - A new method of recognizing the movement of the humerus is presented. 3D 

gyroscopes attached on the humerus were used to identify the movement of flexion-

extension, abduction-adduction and internal/external rotations of the humerus. Within 

each identified movement the rates of adjunct (deliberate rotation of the joint) and 

conjunct rotations (inherent or automatic rotation of the joint) were also estimated. The 

method was validated in laboratory setting and then tested on 31 healthy volunteer 

subjects without any shoulder pathologies while carrying the system during ~8 hours of 

their daily life. Based on the comparison of the angular velocities, we were able to find 

the frequency (number/hour) of each movement during daily activity, the rate of adjunct 

and conjunct rotations for each movement and the frequency of humerus over slow, 

medium and fast movement. The results showed that the number of movements per hour 

was highest for walking and significantly lowest for sitting posture (p<0.008). Moreover, 

during the whole daily activity and for each posture (i.e. walking, sitting and walking) the 

number of internal/external rotations was significantly highest while the number of 

abductions-adductions was the lowest (p<0.009). Despite of the difference observed on 

the number of movements the rate of conjunct and adjunct rotations were quite similar for 

all subjects within each movement: flexion-extension was composed of 48% of pure 

flexion, 19 % of pure abduction and 33% of pure int/ext rotation, the abduction-adduction 

was composed of 45% of pure abduction, 22% of pure flexion and 33 % of pure int/ext 

rotation and the internal/external rotation was composed of 61% of int/ext rotation, 22% 

of pure flexion and 17% of pure abduction. These results will be very useful for the 

future studies on patients with pathologies of the shoulder.  
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5.1 Introduction 

 

In the chapter 4, we described a method to distinguish the dominant from the non 

dominant shoulder during daily activity. In the present chapter, a method to characterize 

the kind of movements of the dominant and the non dominant shoulder is presented. 

Shoulder movements are composed of adjunct and conjunct rotations1. The adjunct 

rotation corresponds to deliberate rotation of the joint while the conjunct rotation is the 

inherent or automatic rotation of the joint. The conjunct rotations are due to anatomic 

reasons and the tensions of ligaments and muscles1. There is a general agreement that 

patients with rotator cuff impingement, adhesive capsulitis or glenohumeral degenerative 

diseases have a diminished arm flexion, abduction or internal/external rotation. In spite of 

the recourse to careful and complex studies, a precise evaluation of the shoulder 

movement based on the estimation of the number of movement per hour and the 

quantification of adjunct and conjunct rotation is still missing.  

 

The goal of this chapter was two-fold. First, validating an algorithm for the detection of 

the type of shoulder movement (flexion-extension, abduction-adduction and 

internal/external rotations) and the ratios of the adjunct and conjunct rotations for each 

movement. The second goal was to evaluate the effectiveness of this algorithm during 

long term measurements. By validating such an approach, we will provide a clinical tool 

that can be used to assess the shoulder’s function and to find objective scores for outcome 

evaluation of a shoulder pathology treatment. 

 

5.2 Methods 

 

5.2.1 Subjects and materials  

 

31 healthy subjects (32 years old ± 8; 18 men, 13 women; 23 right handed, 8 left handed) 

were studied. In this study, two inertial modules with 3D gyroscopes were fixed by a 

patch on each dorsal side of the distal humerus and one module with 3D gyroscopes and 

3D accelerometers on the thorax (Figure 3.1). The sensors on the humerus measured the 
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anterior flexion-extension (pitch), abduction-adduction (yaw) and internal-external 

rotation (roll) of the shoulder and the module on thorax was used for detecting daily 

activities (walking, sitting, standing) using the method proposed by Najafi et al.2,3 

(Chapter 4, 4.2.2 Body posture detection).  

 

5.2.2 Detection of adjunct and conjunct rotation of the humerus movements 

 

3D angular velocities of the humerus were used to detect the movement and its axis of 

rotation. The pitch, roll and yaw angular velocities were associated to the local coordinate 

systems, segments and joint rotation according to the ISB standardization proposal for the 

upper extremity4 (Figure 5.1).  

XhXh

YhYh

ZhZh

Pitch

Roll

Yaw
 

Figure 5.1: Local coordinate systems of the humerus for the angular velocities (roll, pitch, yaw). Adapted 
from ISG standardization proposal for upper extremity. 

 

Figure 5.2 shows the three angular velocities recorded respectively for a flexion 

movement of 90°, an abduction of 90° and an internal/external rotation of 90°. During the 

flexion, the range the pitch angular velocity was higher than the two other components 

(yaw and roll). Similar results can be observed for internal/external rotation (i.e. the range 

of the roll angular velocity was higher than yaw and pitch components) and for abduction 

(i.e. the range of the yaw angular velocity was higher that pitch and roll components). We 

assumed therefore that the angular velocity with higher amplitude defines the type of 

adjunct rotation while the other lower components of angular velocity belong to conjunct 

rotations.  
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Figure 5.2: Angular velocities (Pitch, Roll, Yaw) from the kinematics sensors for the flexion (a), the 

internal/external rotation (b) and the abduction (c). 
 

To detect the shoulder movement, the absolute values of each component of angular 

velocity (pitch, roll, and yaw) was compared to a threshold (th). The shoulder was 

considered in movement if at least one component of angular velocity was higher that th. 

Then, the component of angular velocity with highest absolute angular velocity was 
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considered as adjunct rotation. If the adjunct rotation was pitch the movement was 

defined as a flexion-extension (FE). Similarly, if the adjunct rotation was yaw, the 

movement was defined as abduction-adduction (AA), and if the adjunct rotation was roll, 

the movement was defined as internal/external rotation (IE). The amplitude of each 

rotation (AFE, AAA, and AIE) was divided by the sum of the amplitude of all rotations (i.e. 

adjunct and conjunct) and expressed in percentage: 

 

AAA
AIE

AAA
AAA

AAA
AFE

IEAAFE

IE

IEAAFE

AA

IEAAFE

FE

++
=

++
=

++
=   ;  ;   (Equ. 5.1) 

 

For example: an abduction movement expressed in FE/AA/IE percentage as 20/45/35 

represents 45% adjunct rotation and 20% and 35% conjunct rotations while a “pure” 

flexion could be represented by 100/0/0 in FE/AA/IE. 

 

The threshold (th) was necessary to avoid the noise of the gyroscopes at rest and to 

decrease the false detections of the movement. The threshold (th) was adapted (adaptive 

threshold) every hour during the recording and was estimated for each subject and each 

humerus. To define th, we searched during each hour of recording all the positive peaks 

for each of the three angular velocities higher than 10°/s (almost still period of humerus). 

For each angular velocity, we calculated the average of the peaks. The threshold (th) was 

fixed to the minimum value of these averages. 

 

5.2.3 Validation 

 

During the validation part, the 31 subjects carried the system and were asked to perform 

flexion, abduction and internal/external rotation with both arms while in hospital. To 

estimate the performance of the rotation classification, the sensitivity (defined as the 

ability of the system to correctly identify the true rotation) and the specificity (defined as 

the ability of the system to not generate false detection) were estimated. The sensitivity 

and the specificity were calculated as follow. 
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Sensitivity was defined as:  

 

%100
(FN) Negative False  (TP) Positive True

(TP) Positive True
×

+
    (Equ. 5.2) 

 

Specificity was defined as: 

 

%100
(FP) Positive False  (TN) Negative True

(TN) Negative True
×

+
    (Equ. 5.3) 

 

For example, for the flexion movements, the above parameters were defined as follow: 

the true positives were the numbers of true flexion detected by the algorithm. The false 

negatives were the numbers of undetected flexion. The true negatives were the numbers 

of other type of movement detected by the algorithm, which are not true flexion. The 

false positives were the numbers of false detection as flexion. 

 

5.2.4 Long-term measurement 

 

Each subject carried the system during one day (~8 hours), at home or wherever he/she 

goes. At the end of recording data were transferred to computer for further analysis. 

Using the algorithm described in 5.2.2 and the validation in 5.2.3, the type of the 

movement was detected. Then, the following parameters were estimated:  

 

• The number of movements recognized as flexion-extension (NFE), abduction-

adduction (NAA) and internal/external rotation (NIE) per hour and for each posture 

allocation. 

• The percentage of adjunct and conjunct rotation for each detected movement: 

FE/AA/IE. 

• The number of movements over three range of angular velocities: slow (less than 

50 °/s), medium (between 50°/s and 100°/s) and fast (higher than 100°/s). 
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5.2.5 Statistical analysis 

 

The Wilcoxon unmatched pairs signed rank sum test was used as a non-parametric 

hypothesis test to show if there were significant differences (at a significance level of 

5%) between the number of movements, the combination of adjunct and  the conjunct 

rotation for the  left and right shoulder. 

 
5.3 Results 
 

5.3.1 Results of the validation phase 

 

Table 5.1 shows the specificity and sensitivity of the flexion, abduction and 

internal/external rotations for the adaptive threshold (th). The specificities were 100% for 

the flexion and the internal/external rotation, the sensibilities were 100% for the 

abduction and the internal/external rotation. But the sensitivity was 94% for the flexion 

and the specificity was 97% for the abduction. For comparison, we have also reported the 

results obtained with a minimum threshold of 10 deg/s and a fixed threshold of 33 deg/s. 

which corresponded to the average of all adaptive thresholds obtained during long-term 

recording. 

 
Table 5.1: Specificity and Sensitivity for the detection of the flexion, abduction and internal/external 

rotation. TP: true positive; TN: true negative; FP: false positive; FN: false negative. 
 

Rotation TP TN FP FN Sensitivity, % Specificity, % 
th = 10°/s       
Flexion 31 123 7 34 47 95 

Abduction 24 102 28 41 37 78 
Int/ext Rotation 56 81 49 9 86 62 

th = 33°/s       
Flexion 41 122 8 24 63 94 

Abduction 36 108 22 29 55 83 
Int/ext Rotation 61 107 23 4 94 82 

Adaptative threshold       
Flexion 58 124 0 4 94 100 

Abduction 62 120 4 0 100 97 
Int/ext Rotation 62 124 0 0 100 100 
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5.3.2 Results of the long-term measurement 

 

For each subject, walking, sitting and standing periods were recognized over a day (~8 

hours) and for each period the number of flexions, abductions and internal/external 

rotations movements normalized by the time of each posture were estimated for each 

humerus (NFE, NAA, NIE). All results are reported in Tables 5.2-5.5 for right handed and 

left handed subjects.  

 
Table 5.2: Number of flexions, abductions and int/ext rotations per hour for all activities for the right 

handed subjects. 
              
 NFE NAA NIE 

Subject  right left right left right left 
r1 157 121 73 47 272 259 
r2 150 181 76 59 291 273 
r3 129 105 44 35 209 168 
r4 124 109 59 70 301 244 
r5 87 95 54 40 251 188 
r6 123 72 37 33 213 113 
r7 136 189 90 56 298 274 
r8 99 96 38 38 237 219 
r9 131 119 36 35 185 165 
r10 86 68 39 33 160 103 
r11 165 154 68 57 309 213 
r12 215 199 96 109 476 444 
r13 161 122 69 87 308 306 
r14 246 222 140 139 521 473 
r15 210 175 81 102 406 388 
r16 153 173 77 65 406 310 
r17 134 139 66 53 311 283 
r18 205 146 80 67 420 396 
r19 252 287 152 103 492 476 
r20 183 150 93 70 333 322 
r21 210 229 112 114 534 503 
r22 196 176 104 80 438 377 
r23 234 224 87 97 539 491 

       
Mean 165 154 77 69 344 304 
Std 49 55 31 30 116 122 
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Table 5.3: Number of flexions, abductions and int/ext rotations per hour for all activities for the left handed 
subjects 

              
 NFE NAA NIE 

Subject  right left right left right left 
l1 156 209 86 112 325 342 
l2 129 129 70 65 306 326 
l3 206 163 83 90 396 407 
l4 141 146 68 95 270 270 
l5 200 169 89 94 388 408 
l6 79 93 47 50 190 198 
l7 245 265 98 141 360 376 
l8 201 244 99 107 388 406 
       

Mean 170 177 80 94 328 342 
Std 53 58 17 28 71 75 
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Typical results obtained for the subject r7 over a day are illustrated in Figure 5.3 where 

for each activity (i.e. walking, sitting and standing) the occurrence of different movement 

of the right humerus can be observed. 
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Figure 5.3: Typical classification of a subject’s physical activity during a 1h recording (a) sitting, (b) 

standing, (c) walking, (d) flexion, (e) abduction and (f) internal/external rotation for the right humerus. 
 

We counted more movements per hour in average on the right humerus (flexion right: 

165; flexion left: 154; abduction right: 77; abduction left: 69; internal/external rotation 

right:344; internal/external rotation left:304) for the right handed subjects (N=23). While 

the inverse was occurred for the left handed subjects (N=8) (flexion right: 170; flexion 

left: 177; abduction right: 80; abduction left: 94; internal/external rotation right:328; 

internal/external rotation left:342) (Table 5.2 and 5.3). However, statistical tests showed 

that dominant shoulder and non dominant shoulder had no significant difference (p>0.1) 

for the number of flexions (NFE), abductions (NAA) and internal/external rotations (NIE) 

per hour for the sitting and standing posture (Table 5.4 and 5.5). Moreover, there was no 
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significant difference (p>0.3) between the dominant and the non dominant shoulder 

during the gait. 

 

The number of movements was significantly higher for walking compared to sitting and 

standing and the number of standing was significantly higher than that of sitting 

(p<0.008). For all postures, as well as during the whole daily activity, we found a 

significantly highest number of movements per hour for the internal/external rotations 

and the lowest number of movements per hour for the abductions-adductions (p<0.009). 

 
Table 5.6: The combination of adjuncts and conjuncts rotations for the right handed subjects and the 

difference Δ between right and left humerus. 
  Flexion Abduction Int/ext Rotation 

Subject  
Right 

FE/AA/IE 
Left 

FE/AA/IE Δ 
Right 
P/Y/R 

Left 
FE/AA/IE Δ 

Right 
FE/AA/IE 

Left 
FE/AA/IE Δ 

r1 50/20/30 50/20/30 0/0/0 24/46/30 23/43/34 -1/-3/4 21/18/61 20/18/62 -1/0/1 
r2 47/19/33 51/17/31 4/-2/-2 23/44/34 24/46/30 1/2/-4 23/17/60 25/16/59 2/-1/-1
r3 51/20/29 53/18/28 2/-2/-1 20/49/31 23/48/29 3/-1/-2 21/18/61 22/17/61 1/-1/0 
r4 47/20/32 46/21/33 -1/1/1 23/42/35 23/43/34 0/1/-1 20/17/63 19/18/62 -1/1/-1
r5 47/21/33 47/17/36 0/-4/3 25/40/35 26/42/32 1/2/-3 19/18/63 23/16/62 4/-2/-1
r6 50/21/29 49/20/31 -1/-1/2 24/46/30 25/43/31 1/-3/1 22/18/60 24/17/58 2/-1/-2
r7 46/21/33 50/18/32 4/-3/-1 20/46/33 24/47/29 4/1/-4 20/20/60 24/17/59 4/-3/-1
r8 49/19/32 49/21/31 0/2/-1 24/48/28 23/45/32 -1/-3/4 25/16/62 19/18/63 -3/2/1 
r9 51/17/32 51/18/31 0/1/-1 25/47/28 26/45/29 1/-2/1 21/16/59 26/16/59 1/0/-0 

r10 49/20/31 47/22/31 -2/2/0 23/42/35 29/39/33 6/-3/-2 23/17/62 25/16/59 4/-1/-3
r11 50/18/32 52/19/29 2/1/-3 22/45/32 24/46/31 2/1/-1 22/17/61 26/17/57 3/-1/-4
r12 45/18/35 46/20/34 1/2/-1 23/41/36 23/42/34 0/1/-2 25/17/62 21/17/62 -1/0/0 
r13 48/19/32 47/20/33 -1/1/1 22/44/34 22/45/33 0/1/-1 21/16/59 22/18/61 -3/1/2 
r14 48/20/32 48/21/31 0/1/-1 21/46/33 22/46/32 1/0/-1 23/18/61 21/17/61 0/0/0 
r15 50/18/32 46/20/34 -4/2/2 23/45/32 23/46/31 0/1/-1 22/16/61 21/19/59 -2/1/1 
r16 47/18/35 50/20/30 3/2/-5 22/43/35 22/46/31 0/3/-4 21/17/61 22/17/61 0/2/-2 
r17 46/19/35 48/19/33 2/0/-2 23/43/34 23/44/33 0/1/-1 22/17/62 23/16/62 2/0/-1 
r18 48/18/33 47/17/36 -1/-1/3 23/44/32 22/43/35 -1/-1/3 23/16/61 22/16/58 0/0/1 
r19 47/20/33 48/18/34 1/-2/1 22/46/33 23/46/31 1/0/-2 23/18/59 25/18/59 2/-2/-1
r20 48/19/32 47/18/35 -1/-1/3 22/46/32 23/43/33 1/-3/1 19/20/57 23/18/62 0/-2/2 
r21 44/19/37 45/19/33 1/0/-2 20/42/39 21/44/35 1/2/-4 21/18/63 20/19/60 1/0/-1 
r22 47/17/35 47/20/34 0/3/-2 21/45/34 20/44/36 -1/-1/2 23/15/62 20/18/60 -3/4/-2
r23 46/18/35 48/18/34 2/0/-1 21/41/39 22/43/36 1/2/-3 19/16/64 21/16/63 2/0/-1 

          
Mean 48/19/33 48/19/32 0/0/0 22/44/33 23/44/32 1/0/-1 22/17/61 22/17/60 1//0/1 

STD 2/1/2 2/1/2 2/2/2 1/2/3 2/2/2 2/2/2 2/1/2 2/1/2 2/2/2 
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Table 5.6 and 5.7 show the percentage of adjunct and conjunct rotations expressed in 

FE/AA/IE for each movement in average as well as the difference (Δ) between right and 

left humerus. The difference between right and left humerus as well as left-handed and 

right-handed subject was low and not statistically significant (p>0.21). The overall results 

considering both humerus of all subjects (N=31) indicated that the flexion was composed 

by 48% FE, 19 % AA and 33% IE, the abduction was composed by 45% AA, 22% FE 

and 33 % IE and the internal/external rotation was composed by 61% IE, 22% FE and 

17% AA. 
 

Table 5.7: the combination of adjuncts and conjuncts rotations for each movement during daily activity for 
the left handed subjects the difference Δ between right and left humerus. 

  Flexion Abduction  Int/ext Rotation 

Subject  
Right 

FE/AA/IE 
Left 

FE/AA/IE Δ 
Right 
P/Y/R 

Left 
FE/AA/IE Δ 

Right 
FE/AA/IE 

Left 
FE/AA/IE Δ 

l1 46/21/33 47/21/32 1/0/-1 21/47/32 24/45/31 3/-2/-1 20/16/64 19/17/64 -1/1/0
l2 47/20/33 48/20/32 1/0/-1 21/46/33 21/48/31 0/2/-2 19/17/64 19/18/63 0/1/-1
l3 48/18/34 44/20/36 -4/2/-2 24/45/31 23/39/38 -1/-6/7 25/16/60 22/16/62 -3/0/2
l4 50/19/31 50/21/30 0/2/-1 23/46/31 21/50/29 -2/4/-2 22/17/61 23/18/59 1/1/-2
l5 48/19/33 49/19/32 1/0/-1 23/45/32 22/45/33 -1/0/1 23/16/61 20/18/61 -3/2/0
l6 45/21/34 48/20/33 3/-1/-1 23/46/31 20/47/33 -3/1/2 21/17/62 19/18/63 -2/1/1
l7 49/21/30 49/21/30 0/0/0 24/46/30 23/47/30 -1/1/0 24/16/60 20/18/62 -4/2/2
l8 48/20/33 50/19/31 2/-1/-2 22/44/34 22/45/33 0/1/-1 22/17/61 22/18/60 0/1/-1
          

Mean 48/19/33 48/20/32 1/0/-1 22/45/33 22/45/32 -1/0/1 22/17/61 22/18/61 0/0/0 
STD 2/1/2 2/1/2 2/1/1 1/2/3 2/2/2 2/3/3 2/1/2 2/1/2 2/1/2 

 

Another aspect, which could be studied in shoulder pathology, is the change of humerus 

movement due to pain. To highlight this point, we have plotted in Figure 5.4  for all 

control subjects the distribution of each movement per hour in three ranges of angular 

velocity: slow (up to 50deg/s), medium (between 50deg/s and 100deg/s) and fast (more 

than 100deg/s). For comparison, we have performed a long-term recording with right-

handed patient suffering from of a rotator cuff tear in the right shoulder. 
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Figure 5.4: Distribution of the movements (Number of movement per hour vs. range of angular velocities 
values) for the control group and for a typical right-handed patient suffering from rotator cuff disease in 

the right shoulder a)All activities b)walking. b) standing. c) sitting. Slow (up to 50deg/s), medium (between 
50deg/s and 100deg/s) and fast (more than 100deg/s). 

 

The Tables 5.8 and 5.9 show the the distribution of each movement per hour in three 

ranges of angular velocity for all activities. 
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5.4 Discussion and conclusion 

 

In this chapter, an ambulatory system was proposed to evaluate the number of movement 

as well as the rate of adjunct and conjunct rotations of upper limbs during daily physical 

activity. The method used the velocity of the rotation of the humerus and not the 

orientation of the humerus, avoiding in this way any noise and drift due to time 

integration of the gyroscope signals to find angles5. The performance of the method to 

detect the movement and classify adjunct and conjunct rotations lies on the adequate 

choice of the threshold (th). By using and adaptive threshold we provided a better 

performance since th was modified based on the amplitude of angular velocity in each 

windows of one hour. We tested a fixed threshold of 10°/s for the comparison angular 

velocities for the validation phase but the sensitivity and specificity was low (Table 5.1). 

We evaluated also the change in th for the phase of validation and for the long term 

measurement for each subject. We noticed that in average (over 8 hours and all subjects) 

th was different for the validation phase (th = 52±7 deg/s) where the movement was 

imposed and the long term measurement (th = 33±3 deg/s) where the movement was 

natural. To show the efficacy of the adaptive threshold, we calculated the specificity and 

the sensitivity in the validation phase with a fixed threshold of 33°/s obtained from the 

long term measurement. The sensitivities and specificities obtained were lower than those 

with the adaptive threshold (Table 5.1). 

 

Based on 3D inertial sensors on both humerus, our method has quantified the number of 

flexion, abduction and internal/external rotations between dominant and non-dominant 

shoulder for a healthy subject for his daily activity (Fig. 5.3). We have shown that 

dominant shoulder has a higher number of flexions, abductions and internal/external 

rotations per hour for the sitting, walking and standing posture (Table 5.4 and 5.5). 

However, based on our population, we have not observed a significant level of difference 

(p>0.1) between the dominant and the non dominant shoulders. These results imply also 

that the arm predominance does not lie considerably on the number of movements of the 

arm, but in the intensity of the movement as described rather in chapter 4. 
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We observed that the number of movements per hour increased from the sitting to the 

standing posture and from the standing to the walking posture. This was expected since 

we have more activities during standing and walking compared to sitting. In addition, in 

daily activities the most common movement was the internal/external rotation and the 

less frequent one was the abduction. While the movements of flexion were important 

during the gait for example, the movements of internal/external rotation were performed 

during all daily tasks like working in an office, cleaning a table etc.  This study could be 

useful to determine daily physical activities which require the most flexion, abduction or 

internal/external rotations. 

 

Interestingly, despite of the difference on number of movements, the rate of conjunct and 

adjunct rotations were quite similar for all subjects within each movement (Table 5.6). 

We can conclude that, for our healthy population, each movement (i.e. flexion, abduction, 

internal/external rotation) performed during the daily activity was almost “standardized”: 

for each movement, the three axis of the humerus contributed to the movement at almost 

fixed rate. We will use these results on patients with pathologies of the shoulder to see if 

this standardized movement could change due to shoulder pathology in the clinical 

application (Chapter 7). Actually, a right-handed patient with a painful right shoulder 

performed more movements with the left shoulder (non-dominant) than the right shoulder 

(dominant) during his daily activities (Figure 5.4). The movement distribution of the 

healthy non-dominant shoulder is close to the non-dominant shoulder of control 

population while the painful shoulder differs not only on the number of movement but 

also on the velocity distribution. This tendency should be logically reversed after the 

surgery of the shoulder and recovery. Moreover, we can observe more difference in 

medium and fast movement than slow movement. What implies that for patients suffering 

of osteoarthritis or rotator cuff disease, the number of internal/external rotations should 

be less than the healthy subjects (Figure 5.4) and should increase after surgery (Chapter 

7). 
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A potential extrinsic confounding parameter could be the external charge that can carry 

the subject during his daily activity with his arm. For example, it is not possible with the 

proposed method to determine whether a subject is performing ordinary walking or 

carrying a bag while walking. We can expect that by carrying a bag, the number of 

flexion will decrease and appears like a disease. Calibrating the ordinary walking of a 

subject at the beginning of a measurement period or using electromyogram recordings 

might be a solution. A method which is able to give 3D angles during the daily activity or 

the intensity of the movement will be complementary to this study. Indeed, the addition 

of the angles value or the power of the movement with the type of the rotation could 

illustrate more difference between the left and right shoulder. This study will be also very 

useful to test prosthetic implants (in laboratory or numerically) because the current load 

on the shoulder does not correspond to the reality of the use of the shoulder during daily 

activity6. 

 

Based on kinematics of the subjects, we were able to find the number of flexions, 

abductions and internal/external rotations of the humerus during daily activity for a 

healthy population and to quantify the rate of adjunct and conjunct rotations. This chapter 

provides preliminary evidence that this system is a useful tool for objectively assessing 

upper-limb activity during daily activity. The results obtained with the healthy population 

could be used as control data to evaluate arm movements of patients with shoulder 

diseases during daily activity (Chapter 7). In the next chapter, a new method to evaluate 

the level of work was developed in order to supplement the method described in this 

chapter and in the chapter 4. 
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Chapter 6 Working level of the shoulder during daily 
                              activity 
 
 
Abstract - A new method of evaluation for the functional assessment of the shoulder 

during daily activity is presented. An ambulatory system using inertial sensors attached 

on the humerus was used to detect the working level of the shoulder. Nine working levels 

were defined based on the humerus elevation. The method was tested on 31 healthy 

volunteer subjects. First, we estimated the performance of the system to detect the 

different working levels of each subject, and then we evaluated their working levels 

during approximately 8 hours of their daily life. Each working level was recognized with 

a good sensitivity (range: [80%, 100%]) and specificity (range: [96%, 99%]). During 

daily activity, we estimated for each detected working level, the frequency (number/per 

hour) over three different duration, P1 (0s-1s), P2 (1s-5s) and P3 (5s-30s). Our data 

showed that all subjects had 96% of their working level reached under the 5th level (L5: 

100°-120°). No significant difference of the frequency and duration of working levels 

(p>0.3) was observed between dominant and non-dominant side. Our evaluation was 

made in according to the clinical questionnaire (the Constant score) for the P1 duration, 

but differed for longer periods P2 and P3. By measuring the working levels and their 

durations for both shoulders, we proposed a new score to evaluate the ability to work at a 

specific level. We showed that this score had an average of 100% (±31%) for healthy 

subjects and can be useful to evaluate the working level in patients with shoulder disease. 

The proposed technique could be used in many shoulder diseases where problems in 

performing daily activities should be expressed in terms of objective measures of the 

upper-limb working level. 

 

6.1 Introduction 

 

The ability to work at a specific level with the shoulder during daily activity is 

fundamental to better evaluate the pain consequences on joint mobility and the actual 
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functional outcome of the patient. Actually, working with the arms in a elevated position 

is associated with shoulder disorders1. Indeed, in the chapter 5, we described a method to 

evaluate the movement of flexion-extension, abduction-adduction, and internal/external 

rotation but we didn’t evaluate the working level of these movements. Different 

questionnaires such as the Constant score2,3 have assessed the working level. This score 

consisted of asking the patient if he was able to work with his hand at the pelvis, at the 

xyphoïd, at the neck, at the head or above the head and increased with the altitude of the 

level. These assessments are very subjective and thus cannot reflect the actual working 

level during daily activities. Moreover they cannot give any information about the 

endurance (frequency and duration) of working at a specific level. Some investigators 

used pressure sensors4,5 to develop a system for the objective measurement of the upper-

limb activity during person’s daily activities. Their system gave three different working 

levels related to the shoulder without any information about the working level 

distribution over time. The use of body fixed sensors, such as inertial sensors (e.g. 

accelerometers and gyroscopes)6, has proved to be an alternative where the shoulder 

mobility during daily activity is studied. Hansson et al. evaluated the usability of 

inclinometry based on tri-axial accelerometers for assessing industrial tasks7. They 

applied the accelerometers on the head, upper back and upper arms. Yet they studied only 

two different working levels of the upper-arm during short-term measurement. 

 

In this chapter, we used accelerations and angular velocities of the humerus to introduce a 

new method for long-term recording of the working levels of shoulders during daily 

activity. The working level is then characterised by the arm elevation, the duration of the 

stay at specified level and the frequency to reach this level. We described how such an 

approach can provide a clinical tool to objectively assess the shoulder’s function and the 

outcome of a shoulder pathology treatment. 
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6.2 Methods 

 

6.2.1 Subjects and materials 

 

Two different studies were conducted. The first study was performed in a laboratory to 

validate the algorithm quantifying the working level of the humerus. The second was 

performed in a free living environment to evaluate the validity of the method during daily 

activities. These studies had received prior ethical approval from the Institutional Ethics 

Board committee. In both studies, two inertial modules were fixed by a patch on the 

dorsal side of each distal humerus (Figure 3.1). The inertial module on the humerus 

measured the anterior elevation-extension (pitch), abduction-adduction (yaw) and 

internal-external rotation (roll) of the shoulder. The module on the thorax was used to 

classify daily activities (walking, sitting, standing, lying) using the method proposed by 

Najafi et al.8,9 (Chapter 4, 4.2.2 Body posture detection). For this study, working level 

was estimated only during the periods of walking, standing and sitting.  

 

1) First Study. 5 healthy subjects (26 years old ± 3.8) were enrolled to study the elevation 

of the humerus segment. While standing, each subject placed his humerus in positions 

from 0° to 180° by step of 20° in flexion (10 trials) and then in abduction (10 trials). 

These tests were repeated with each subject to evaluate the repeatability of the system. 

An Electromagnetic motion capture system (Liberty) was used as reference to evaluate 

the accuracy and precision of the kinematics data obtained from the inertial sensors. The 

Liberty system contains a tracker module with electromagnetic coils enclosed in a 

molded plastic shell that detect the magnetic fields emitted by the source and provided in 

this way a real-time 3D orientation and the arm position. In order to evaluate the 

performance of the inertial module for the estimation of the arm inclination, two 

magnetic Liberty modules (C1 and C2) were fixed by a patch on the dorsal side of the 

distal humerus, close to the inertial module (Figure 6.1). Two other Liberty modules (C3 

and C4) were placed on the wall to get the vertical reference line.  
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The estimation of the actual angle between the vertical and the humerus was defined as:  

 

43 C1C2

43C1C2 acos  
CC

CCangle ⋅
=

       (Equ. 6.1) 

 

C1

C2

 
Figure 6.1: Position of the Physilog modules and the Liberty modules (C1 and C2) on the humerus. 

 

2) Second Study: 31 healthy subjects (mean 32 years old ± 8; 18 men, 13 women; 23 right 

handed, 8 left handed) were studied for long-term measurement. Each subject carried the 

Physilog system during one day (~8 hours), at home or wherever he/she went. At the end 

of the recording, the data was transferred to computer for further analysis and to evaluate 

the level of activity of the subject’s shoulder. 

 

6.2.2 Quantification of working levels  

 

We defined a working level as the level during which the arm can be considered as 

almost motionless. These motionless periods were defined by the following conditions: 

 

- The norm of the accelerations was equal to 1g ± 0.1. 

- The norm of the angular velocities was less than 10°/sec. 

- The duration was more than 50 ms. 
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For each motionless period, we used the vertical accelerometers as inclinometers10,11  and 

found the mean angle (α) with the vertical. The angle with the vertical is defined as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

g
va acos   α         (Equ. 6.2) 

where av is the vertical acceleration of the humerus and g = 9.81 m/s2. Based on the value 

of α, 9 working levels were defined (Figure 6.2) which are an extension of the working 

level derived from the Constant score with more and precise levels. For each humerus of 

each subject, we estimated the number of time per hour that the humerus reached each 

level during the periods of 0 to 1 second (period P1), 1 to 5 seconds (period P2) and 5 to 

30 seconds (period P3). These periods were defined in order to take into account the 

endurance of the activity.  

a) b) 10 points

8 points

6 points

4 points

2 points

 

Figure 6.2: Relation between working level of The Constant score (5 working levels) with its weightings b); 
and the working level of our method (9 working levels) a). 
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We defined a weighting score (WS) for each level (Li, i=0:8) reached for each period (Pj, 

j=1:3): 

∑ ∑= =
⋅⋅=

3

1

8

0j i
LijiWS         (Equ. 6.3) 

Where Li = 1 if at least one Li is detected in Pj; Li = 0 otherwise. The coefficient of the 

working level increased with the level and the duration reached. Therefore, a high score 

corresponded to a high working level and a long duration. For example, the maximum 

score (WS=216) will be obtained when a subject reached all the levels during all the 

periods. A Working Level Score (WLS) was defined in percentage as the ratio of the 

weighting score for the non dominant shoulder (WSND) divided by the weighting score 

for the dominant shoulder (WSD): 

,%100
WS
WSWLS

D

ND⋅=         (Equ. 6.4) 

In the same way, for a patient, the WLS can be defined as the ratio of the weighting score 

for the painful shoulder (WSP) divided by the weighting score of the healthy shoulder 

(WSH). 

6.2.3 Statistical analysis 

 

In order to estimate the performance of the classification of the angles, sensitivity 

(defined as the ability of the system to correctly identify the true working level) and 

specificity (defined as the ability of the system to not generate false detection) were 

estimated. The sensitivity and specificity are calculated as Equation 5.2 and 5.3. 

 

For example, for level L1 the parameters are defined as follow: the true positives were 

the number of true L1 detections by the system. The false negatives were the number of 

undetected and misclassified L1. The true negatives were the number of types of levels 
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that are not L1 detected by the method. The false positives were the number of false 

detections as L1. 

 

In the first study, the error of classification was evaluated by considering the angle 

obtained by the Liberty system (actual) and the corresponding angle estimated from the 

inertial sensors (measured): 

 

Errorangle= (actual angle-measured angle)     (Equ. 6.5) 

 

Moreover, to analyze the test-retest reliability results, intra-class correlation (ICC) was 

used. ICC was defined as a ratio between the true variance and the total variance, where 

the true variance is the difference between the total variance and the variance due to an 

error of measurement12. ICC is suggested as the measures of the reliability of a single 

measurement13. 

 

The Wilcoxon matched pairs signed rank sum test was used as a non-parametric 

hypothesis test to show whether there were significant differences (at a significance level 

5%) between the dominant and the non dominant side. 

 

6.3 Results 

 

A. First study : 

 

A total of 200 movements were obtained (40 trials per subjects). Figure 6.3 shows the 

difference between the angles obtained with the reference system (Liberty) and the angles 

measured by our method (Bland-Altman Plot)14. The mean error (accuracy) was 0.8 

degrees and the standard deviation (precision) was 3.8 degrees. Table 6.1 shows the 

sensitivity and specificity of the 9 working levels detected by the inertial sensors. When 

considering all 200 movements performed by the enrolled subjects, overall sensitivity and 

specificity were 90.9% and 98.3% respectively. 

Chapter 6: Working level of the shoulder during daily activity

127



 

0 40 80 120 160 200
-10

-5

0

5

10

15

20

MEAN

+ STD

- STD

actual angle + measured angle
2 , deg

Er
ro

r
, d

eg
an

gl
e

 
Figure 6.3: Difference between the angles measured by the Liberty system and the angles estimated by our 

system Physilog. 
 

 
Table 6.1:  Overall sensitivity and specificity of level detection for 5 subjects (200 trials).  

              
Level TP TN FP FN Sensitivity,% Specificity,% 

0 30 163 7 0 100.0 96.0 
1 17 182 1 0 100.0 99.0 
2 19 176 1 4 83.0 99.0 
3 19 176 3 2 90.0 98.0 
4 14 182 2 2 87.0 99.0 
5 25 170 3 2 93.0 98.0 
6 23 171 2 4 85.0 98.8 
7 16 177 3 4 80.0 98.3 
8 12 185 3 0 100.0 98.4 
       

        Mean 90.9 98.3 
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The ICCs for the Liberty system and the Physilog system were 0.99 and 0.98 

respectively. Figure 6.4 shows the results of test-retest obtained for the Physilog system. 
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Figure 6.4: Test and re-test results for the estimation of the angles with the Physilog system. 

 

B.  Second  study : 

 

A total of 209 hours of recording was obtained from all the subjects. Figure 6.5 illustrates 

the output of the algorithm detecting motionless periods. We can particularly observe that 

all three criteria are necessary to consider a period as motionless. For each motionless 

period, the working levels were detected and based on their duration classified into P1, 

P2 and P3 periods. Considering the Constant score questionnaire, all enrolled subjects 

were able to work to a level above the head.  
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Figure 6.5: Motionless (•) and motion periods for a) the norm of the accelerations and b) the norm of the 

angular velocities. 
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Figure 6.6 shows a typical result obtained for a subject during 8 recording hours, where 

the frequency of each working level (number/hour) was presented for both humerus and 

all 3 periods P1, P2 and P3. Then, we estimated the frequency of working levels over all 

subjects by estimating the average of all the data obtained from the 31 healthy subjects.  

 

P1 P2 P3

0

200

400

600

800

Periods

Nu
m

be
r p

er
 h

ou
r

L1
L2
L3
L4
L5
L6
L7
L8

L00+1+2+3+4+5+6

0+2+4+6+8

0+3+6+9

+

+

WS     = 59

a)

0

200

400

600

800

Nu
m

be
r p

er
 h

ou
r

b)
0+1+2+3+4+5+6

0+3+6+9 WS   = 69

0+2+4+6+8+10

+

+

ND

D

 
Figure 6.6: Number of level per hour for the periods P1 (0s-1s), P2 (1s-5s) and P3 (5s-30s) for the left 

humerus a) and the right humerus b) for a typical right handed control subject. WSND: weighting score for 
the non dominant shoulder; WSD: weighting score for the dominant shoulder. Working Level Score (WLS) 

= 100*WSND/WSD = 86%. 
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Table 6.2 summarizes these results where the mean frequency and the standard deviation 

of working level (L0 to L8 and P1 to P3) are estimated for both the dominant (D) and the 

non dominant (ND) shoulders. Moreover, the mean of the difference between the 

dominant and the non-dominant humerus frequency are included for each working level. 

Comparison between the dominant and the non-dominant humerus was performed for 

each working level and each period (P1, P2 and P3). No significant difference was 

observed between the dominant and the non-dominant the frequency and duration of 

working levels (p>0.3), though in average the frequency of the working level is almost 

higher for the dominant humerus. 
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In order to better evaluate the pertinence of the working level frequency as an evaluation 

tool, we have reported in Table 6.3 the number of working level per hour reached for a 

right handed patient suffering of a rotator cuff disease at his right shoulder for the three 

periods P1, P2 and P3. It can be observed for the right painful side that the patient didn’t 

reach the levels L5 to L8 during the 8 hours of daily activity. 

 
Table 6.3:  The number per hour for the level reached by the right handed patient with a rotator cuff 

disease at his right shoulder. H: healthy shoulder; P: painful shoulder; Δ: P-H. 
                    

 P1 P2 P3 
  P H Δ P H Δ P H Δ 

L0 545.8 572.1 -26.3 111.4 125.8 -14.3 34.3 41.9 -7.6 
L1 448.3 295.2 153.1 38.8 28.8 10.0 16.6 12.0 4.6 
L2 358.8 292.3 66.4 43.0 36.4 6.6 19.2 12.3 6.9 
L3 64.6 150.1 -85.6 8.7 5.7 3.0 3.1 2.0 1.1 
L4 34.7 14.9 19.8 2.3 1.7 0.7 0.3 0.1 0.2 
L5 0 14.3 -14.3 0 1.2 -1.2 0 0.1 -0.1 
L6 0 8.9 -8.9 0 2.6 -2.6 0 1.7 -1.7 
L7 0 4.4 -4.4 0 0.6 -0.6 0 0.6 -0.6 
L8 0 7.7 -7.7 0 0 0 0 0 0 

 

The Table 6.4 shows the weighting scores for the dominant (WSD) and the non dominant 

shoulder (WSND) as well as the WLS for the 23 right handed and 8 left handed subjects. 

In average, the WLS for the control subjects is 100% (±31). As a comparison with the 

same patient, the WS for the healthy (left) and pathologic (right; dominant) shoulder of 

the patient were respectively 149 and 48 leading to a WLS of 32%. 
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Table 6.4:  Weighting scores for the three periods P1, P2 and P3 and the Working Level Score (WLS) for 
the 31 healthy subjects. WSND: weighting score for the non dominant shoulder; WSD: Weighting score for 

the dominant shoulder. 
        

 Left humerus Right humerus  
Right Handed WSND WSD WLS

r1 45 59 76 
r2 59 69 86 
r3 65 59 110 
r4 65 71 92 
r5 45 51 88 
r6 96 151 64 
r7 81 75 108 
r8 78 49 159 
r9 198 100 198 
r10 36 40 90 
r11 53 59 90 
r12 59 66 89 
r13 65 103 63 
r14 88 123 72 
r15 88 88 100 
r16 79 66 120 
r17 59 71 83 
r18 96 104 92 
r19 71 88 81 
r20 79 112 71 
r21 69 53 130 
r22 58 74 78 
r23 53 69 77 

Left Handed WSD WSND WLS
l1 98 76 78 
l2 88 66 75 
l3 58 58 100 
l4 151 126 83 
l5 75 103 137 
l6 96 123 128 
l7 58 66 114 
l8 45 71 158 
    

Mean 76 80 100 
STD 32 27 31 

 

6.4 Discussion and conclusion 

 

In this study based on 3D inertial sensors on both humerus, an ambulatory system was 

proposed to quantify the working level of the humerus during daily physical activity of a 
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group of healthy subjects. Compared to the reference electromagnetic system, the results 

of the first study showed that our method measured the working levels enough accurately. 

Even with a precision of few degrees, the sensitivity and the specificity of the method 

were high enough and acceptable (Table 6.1). The reason of the weak sensitivity in some 

cases (subjects 2, 6 and 7) could come from the fact that some positions of the humerus 

were at the limit of two different levels (for example: actual angle = 121° = L6; measured 

angle = 119° = L5).   

To estimate the humerus level, we used 3D accelerometers as inclinometers during the 

motionless periods. Bernmark et al. showed the efficiency of the use of accelerometers as 

inclinometers to estimate the orientation of the arm in rest position and in slow motion11. 

They showed how the dynamic acceleration influenced the angle of the upper arm in 

relation to the vertical line and concluded that even in slow arm-swing (<0.40 Hz), the 

total acceleration was close to 1g.  In this study also, to detect the motionless periods, we 

considered a norm of acceleration around 1g (±0.1). However we have included two 

other conditions: low angular velocity (<10°/s), corresponding to the quite still period of 

humerus and a duration of at least 50ms (ten time the sampling periods) to exclude short 

artifact. The Figure (6.7 a)) shows the duration of all motionless periods for the whole 

control group. By removing motionless periods that lasted less than 30 seconds, 

belonging mostly to L0 level and the lying posture, we observed an exponential 

distribution: the number of short motionless periods was extremely higher than the long 

duration ones (Figure 6.7 b)). The two decades slop in log-log plot (Figure 6.7 c)) shows 

that the distribution of the motionless periods follows a power law (non-Poisson 

statistic)15. This power-law distribution appears ubiquitously in the sciences and are 

empirically observed in a multitude of physical, economic, and engineering 

systems16,17,18.  
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Figure 6.7: a) All motionless periods for all control subjects (209 hours of measurement); b) Distribution 
of the motionless periods for the period of 50ms to 30 seconds; c) Log-log plot of the distribution, it 

appears clearly that this distribution is a power-law distribution. 
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The questions of the Constant score regarding the working level had 5 different levels: 

pelvis (C0: 0°-45°), xyphoïd (C1: 45°-90°), neck (C2: 90°-120°), head (C3: 120°-150°) 

and above the head (C4: >150°). The reason we chose 9 levels for our study was that 

more than 96% of the working levels per hour (Table 6.2) were performed under the 

“neck” level (L5) and that we wanted to increase the possibility of differentiating the 

subjects compared the Constant score which offered only 2 levels under the neck. In this 

study, we showed the difference of working level estimated on actual activity of the 

subject and that estimated on the basis of the Constant questionnaire. For the short 

periods (i.e. P1), our evaluation was in accordance to the Constant level where all 

subjects were assessed to be active at the maximum level of C4 (corresponding to L8, see 

Figure 6.2). The actual maximum working level for the shoulder during daily activity was 

in average the L8 (at least once per hour). But for longer periods (i.e. P2 and P3), the 

frequency of the working level was rarely (in average less than once every six hours, 

Table 6.2) more than L5 for P2 and more than L4 for P3 (in average less than 1 every 4 

hours). This was expected, since it is more difficult to keep the humerus at a high 

working level during long periods rather than during short periods. The Constant 

questionnaire didn’t give any information of the time spent at a specific level. To include 

the duration of the working level, we have developed the Working Level Score (WLS). 

The WLS was calculated with different weights given for each level reached at a specific 

duration. The higher the humerus and the longer its duration were, the higher was the 

weight.  In the Table 6.4, we can observe the difference of the WLS for the subjects 

(100% ± 31) and the patient (32%). We can expect that this score will increase after 

treatment. 

Different studies related the problem of working at high level with a shoulder disorder 

but they used questionnaires to assess this problem19,20. In this study, we have proposed 

an objective method that estimates not only the working level but also the number of 

times (frequency) that each level was reached. Though, our results showed the frequency 

of the working levels for the dominant shoulder are in average higher than for the non-

dominant side (Table 6.2), statistical tests proved no significant difference between the 

number per hour of working levels of both shoulders for the healthy subjects. This 
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finding could be exploited in order to evaluate the change of frequency in a painful 

shoulder. Indeed, we observed that the right handed patient suffering from a rotator cuff 

disease at his right shoulder didn’t reach a level higher than the level L4 for the three 

periods with his right humerus while the left (non dominant) healthy humerus worked in 

higher levels. At the same time, it appeared that he had the same frequency distribution 

on both shoulder for the levels L0 to L4. One should expect that after treatment this 

patient will work at higher levels with his right shoulder too. However, further results and 

follow up evaluations after treatment with more patients are needed to confirm these 

preliminary results (Chapter 7). 

 

Based on humerus kinematics, we were able to estimate for a healthy population, the 

working level of the shoulder, its duration and its frequency during daily activity. This 

study provided preliminary evidence on the duration and the frequency distribution of 

working level and its change between the dominant and the non dominant humerus. The 

proposed ambulatory system enables the subjects monitoring in their usual environment 

with minimal interference, in contrast to other systems that require a laboratory setting.  
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Chapter 7  Clinical application 
 
 
Abstract - The clinical application of the algorithms and scores described in the previous 

chapters is presented. During the short-term measurement (in a hospital), the DASH, 

SST, ASES and Constant scores (clinical scores), and the P, RAV and M scores 

(kinematic scores, Chapter 3) were applied to 31 healthy subjects and 26 patients before 

and after surgery. The kinematics scores showed significant differences (p<0.02) between 

baseline and all follow-ups. Good correlations were found between kinematic and clinical 

scores, thought the clinical scores showed less sensitivity to change between follow-ups. 

During the long-term measurement, the algorithm of the estimation of the dominant 

upper-limb segment, the characterization of the movement of the humerus and the 

detection of the working level of the shoulder were applied to 10 patients before and after 

surgery. The measurements at baseline on patients have shown that they have used more 

their non affected and non dominant side (+14%) during daily activity if the dominant 

side = affected shoulder. This tendency is reverted after the treatment. If the dominant 

side ≠ affected shoulder, the patients used much more their dominant side (+24%) 

compared to the healthy group (+18%). Also, we observed that the patients with a disease 

at their dominant shoulder performed more movements per hour with their healthy non 

dominant shoulder. They had less pure internal/external rotations and performed less fast 

movements. After surgery, these parameters presented no significant differences (p>0.06) 

with the control group. Moreover, the working levels of the painful shoulder were lower 

than the healthy shoulder before and after surgery. Compared to the control group (100% 

± 31), the Working Level Score (WLS) for the patient at baseline (54% ± 17), 3 months 

(77% ± 18) and 6 months (87% ± 21) were always lower. However, a significant 

improvement can be shown after surgery. This clinical application shows the 

effectiveness of the proposed algorithms and parameters to have an objective outcome 

evaluation of the shoulder before and after surgery by considering the actual activity of 

the patient during daily conditions. 
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7.1 Short-term measurement 

 

7.1.1 Introduction 

 

The rapidly rising cost of healthcare with its financial impact on individuals and the 

national economy, associated with deficiencies in clinical research methods have 

stimulated the emergence of the concept of outcome research. Variable definitions of 

outcome have been used previously to assess outcome after the shoulder treatment. Some 

of these (such as the Constant score, the American Shoulder and Elbow Surgeons score 

or the Disabilities of the Arm, Shoulder and Hand score) are widely used. However, none 

has been recognized as a universal outcome tool. Therefore, we have developed a new 

ambulatory shoulder movement analysis device that can be used easily by any physician 

at the hospital or in his practice as well as by the patient at home. It allows the 

measurement of changes in the biomechanics of the shoulder by noting the effects of 

these changes on clinical findings and day-living patient pain and activities. The goal of 

the following study was to validate it clinically for adult patients undergoing shoulder 

surgery for glenohumeral osteoarthritis and rotator cuff disease. 

 

7.1.2 Patients and methods 

 

The present investigation was set up as a monocentric prospective cohort study over an 

observation period of 12 months. The same blinded assessor obtained historical and 

subjective data and made all the clinical observations. 

 
- Inclusion criteria: The patients were required to be at least 18 years old, with a 

rotator cuff disease implying a supraspinatus rupture of at least 1 cm2, as 

determined by an MRI, or with a glenohumeral osteoarthritis stage II or III 

according to the radiologic criteria published by Koss et al.1. Informed consent to 

enter into the study was mandatory. 

- Exclusion criteria: Patients who had a previous shoulder treatment (surgery or 

arthroscopy) or an intra-articular injection in the last six months, who had a 
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controlateral painful shoulder or a malignant disorder were excluded. Other 

exclusions criteria included a pregnancy or an inability to understand the visual 

analog scale (VAS). 

- Patient selection: The first 26 patients sent to the clinic with a rotator cuff disease 

(19 patients) or with a glenohumeral osteoarthritis (7 patients) who met the 

inclusion criteria were selected. Informed consent to enter into the clinical trial 

was obtained and patients were then operated on by the same surgeon, following 

his standardized open delto-pectoral surgical approach and technique.  

- Controls: 31 healthy young subjects were selected as controls and signed a 

consent form. They were younger than the patient group in order to be almost sure 

they didn’t get an unrecognized pathologic shoulder. 

- Technique for rotator cuff disease + implants used and rehabilitation program. 

- Outcome tool: we used the device described in Chapter 3 (cf Figure 3.1). 

- All patients and the 31 healthy subjects had a clinical evaluation with the DASH, 

SST, VAS, ASES and Constant scores. The same evaluation was done at 3, 6 and 

12 months after surgery.  

- For all patients, we applied the three scores developed in the chapter 3: P Score, 

RAV Score and M Score. 

- In order to show the evolution of each clinical score, comparisons between 

baseline and 3 months scores, baseline and 6 months scores, and baseline and 12 

months scores were made. 
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7.1.3 Results of the short-term evaluation 

 

7.1.3.1  Clinical scores 

 
Table 7.1 shows the characteristics of the control group. 

 
Table 7.1: Characteristics of the control group. 

        
Subject BMI AGE Dominant side

r1 17.43 35 R 
r2 21.46 24 R 
r3 19.84 29 R 
r4 19.81 28 R 
r5 25.43 35 R 
r6 27.31 49 R 
r7 26.64 34 R 
r8 19.23 40 R 
r9 22.63 32 R 

r10 29.7 35 R 
r11 26.53 46 R 
r12 23.3 32 R 
r13 24.61 38 R 
r14 25.91 37 R 
r15 20.03 30 R 
r16 25.82 31 R 
r17 21.47 27 R 
r18 19.49 55 R 
r19 31.59 37 R 
r20 21.45 32 R 
r21 21.6 25 R 
r22 19.61 47 R 
r23 19.71 28 R 
l1 22.31 45 L 
l2 22.28 28 L 
l3 25.34 27 L 
l4 25.4 24 L 
l5 22.21 27 L 
l6 22.31 22 L 
l7 23.18 42 L 
l8 23.57 40 L 

 

The average BMI was 23 kg/m2 ± 3 and the average age was 34 years old ± 8.There was 

23 right-handed subjects and 8 left-handed subjects. The Table 7.2 shows the clinical 

scores for the control group. 
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Table 7.2: Clinical scores for the control group. Vas_s: VAS score for the stiffness; VAS_p: VAS score  for 

the pain; DASH_pt: DASH score  in points; ASES_o: ASES score for the operated side; ASES_h: ASES 
score for the healthy side. Const_R(L): Constant score for the right(left) side;const_b_R(L): Constant score 

balanced by the right(left) side. 
                      

Subject VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L
r1 0 0 30 100 100 12 87.8 86 89.59 87.76 
r2 0 0 30 100 100 12 86 85.4 87.76 87.14 
r3 0 0 30 100 100 12 84.4 80.4 87.01 82.89 
r4 0 0 30 100 100 12 87.8 87.8 89.59 89.59 
r5 0 0 30 100 100 12 93.8 86.6 95.71 88.37 
r6 0 0 30 100 100 12 93.2 88.2 101.3 95.87 
r7 0 0 30 100 100 12 91.6 88.4 93.47 90.2 
r8 0 0 30 100 100 12 87.8 82 97.56 91.11 
r9 0 0 30 100 100 12 94.2 93.8 96.12 95.71 

r10 0 0 30 100 100 12 97.2 88.2 99.18 90 
r11 0 0 30 100 100 12 96 91.4 104.35 99.35 
r12 1 1 31 100 100 12 96.8 96.4 98.78 98.37 
r13 0 0 30 100 100 12 85.4 82.8 94.89 92 
r14 0 0 30 100 100 12 95.4 97 97.35 98.98 
r15 0 0 30 100 100 12 89 92.2 98.8 102.4 
r16 0 0 30 100 64 11 84.4 82.8 93.7 92 
r17 0 0 30 100 100 12 89 88 91.75 90.72 
r18 0 0 30 100 100 12 91.8 92.2 125.75 126.3 
r19 0 0 32 100 100 12 97.2 95.4 99.18 97.34 
r20 0 0 33 100 100 12 84.8 84 94.22 93.33 
r21 0 0 30 100 100 12 87.8 89 87.8 89 
r22 0 0 34 93 100 12 86.6 85.2 108.25 106.5 
r23 0 0 33 100 100 12 94.2 95 96.12 96.94 
l1 0 0 30 100 100 11 87.4 88.4 109.25 110.5 
l2 0 0 30 100 100 12 95.6 98 98.55 101.03 
l3 0 0 30 100 100 12 99.4 97.4 102.47 100.41 
l4 0 0 30 100 64 12 100.2 96.6 102.24 106.18 
l5 0 0 30 100 100 12 99.4 103 102.47 106.18 
l6 0 0 30 100 100 12 86.2 83.2 88.86 85.77 
l7 0 0 30 100 100 12 92.2 93.8 100.21 101.95 
l8 0 0 30 100 100 12 80.8 92.2 82.45 94.08 
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The Table 7.3 shows the DASH, ASES, SST and Constant scores in percentage (Non 

Dominant side/Dominant side). All the scores were almost at 100%. 

 
Table 7.3: DASH, Ases, SST and Constant Scores in percentage for the control group. 

          
Subject DASH,% ASES,% SST,% Const,%

r1 100 100 100 98 
r2 100 100 100 99 
r3 100 100 100 95 
r4 100 100 100 100 
r5 100 100 100 92 
r6 100 100 100 95 
r7 100 100 100 97 
r8 100 100 100 93 
r9 100 100 100 100 
r10 100 100 100 91 
r11 100 100 100 95 
r12 99 100 100 100 
r13 100 100 100 97 
r14 100 100 100 102 
r15 100 100 100 104 
r16 100 64 92 98 
r17 100 100 100 99 
r18 100 100 100 100 
r19 98 100 100 98 
r20 98 100 100 99 
r21 100 100 100 101 
r22 97 100 100 98 
r23 98 100 100 101 
l1 100 100 92 99 
l2 100 100 100 98 
l3 100 100 100 102 
l4 100 100 100 96 
l5 100 100 100 97 
l6 100 100 100 104 
l7 100 100 100 98 
l8 100 100 100 88 

     
Mean 100 99 99 98 
STD 1 6 2 4 
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Table 7.4 shows the characteristics of the patient group. 

 
Table 7.4: Characteristics of the patient group, Ri: Right; Le, Left; C: Rotator cuff disease; A: 

osteoarthritis. 
          
Patient BMI AGE Painful side Pathology

1 24.17 63 Ri C 
2 33.08 57 Ri C 
3 27.72 48 Ri C 
4 32.83 68 Le C 
5 28.72 54 Le C 
6 27.43 57 Le C 
7 22.79 63 Le A 
8 30.56 61 Le A 
9 29.02 55 Ri C 

10 36.89 72 Ri A 
11 23.18 61 Le C 
12 24.78 80 Ri A 
13 22.86 68 Ri C 
14 28.31 59 Ri A 
15 28.33 44 Ri C 
16 26.29 65 Ri C 
17 58.44 56 Ri C 
18 32.96 44 Le C 
19 28.08 59 Ri C 
20 22.15 48 Ri A 
21 19.26 83 Le A 
22 26.73 57 Ri C 
23 28.73 58 Ri C 
24 29.41 58 Ri C 
25 24.54 63 Ri C 
26 24.31 55 Ri C 

 
The average BMI was 29 kg/m2 ± 7 and the average age was 60 years old ± 9. 
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The Tables 7.5 to 7.8 show the clinical scores of the patients at baseline, 3, 6 and 12 

months after surgery.  

 
Table 7.5: Clinical scores for the patients at baseline. Vas_s: VAS score for the stiffness; VAS_p: VAS 

score for the pain; DASH_pt: DASH score in points; ASES_o: ASES score for the operated side; ASES_h: 
ASES score for the healthy side. Const_R(L): Constant score for the right(left) side;const_b_R(L): 

Constant score balanced by the right(left) side. 
                      

Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L
1 9 10 137 43 100 0 33 82.2 39.76 99.04 
2 7.5 1.5 91 78.6 43 7 49 81.5 67.12 111.63 
3 3 0 47 49.8 100 9 78.8 75 85.65 81.52 
4 7 2 74 57.2 100 5 90 47 108.43 56.63 
5 3 4 47 71.8 100 6 93 66 103.33 73.33 
6 6 3 93 28.4 100 1 76.6 30.6 104.93 41.92 
7 6 7 75 50 71.4 5 64.4 35.8 77.59 43.13 
8 4 8 70 64.2 71.4 7 68.8 34.2 82.89 41.2 
9 7 6 93 21.2 100 1 26.8 92.2 29.78 102.44 

10 7 7 99 50.2 100 1 20.4 71.2 29.57 103.19 
11 7 8 79 50 100 4 63.3 30.6 76.56 42.15 
12 8 10 128 28.8 100 1 75.8 14 109.86 20.29 
13 4 4 51 71.4 100 8 74 93 89.16 112.05 
14 9 9 132 14.2 85.6 0 2 62.8 2.74 86.03 
15 5 5 83 71.6 100 3 20.8 84 22.61 91.3 
16 8 8 81 28.4 50 0 12 86.6 17.14 123.71 
17 5 4 83 42.8 92.8 6 48.4 73.4 53.78 81.56 
18 0 8 59 64.4 92.8 6 52.8 99 57.39 107.61 
19 6 7 100 57.2 100 3 48.6 88.6 54 98.44 
20 9 9 112 21.4 100 0 18 88.2 19.57 95.87 
21 9 7 107 28.4 100 2 11 84.6 17.19 132.19 
22 8 7 80 50 92.8 3 64.2 74.6 71.33 82.89 
23 5 5 122 35.6 71.4 2 65.4 21 72.67 23.33 
24 8 5 55 92.8 50 7 84.2 40.4 93.56 44.89 
25 0 0 75 100 50 4 81.6 40 98.31 48.19 
26 3 0 54 78.6 100 9 61.4 90.6 68.22 100.67 

           
Mean 6 6 86 52 87 4 53 65 64 79 
STD 3 3 26 23 19 3 27 26 32 32 
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Table 7.6: Clinical scores for the patients at 3 months after surgery. Vas_s: VAS score for the stiffness; 
VAS_p: VAS score for the pain; DASH_pt: DASH score in points; ASES_o: ASES score for the operated 

side; ASES_h: ASES score for the healthy side. Const_R(L): Constant score for the right(left) 
side;const_b_R(L): Constant score balanced by the right(left) side. 

                      
Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L

1 9 10 137 43 100 0 51 88.2 61.45 106.27 
2 6 4 101 50.2 78.6 3 22 73.8 30.14 101.1 
3 1 0 34 85.8 100 11 78.6 88.6 85.43 96.3 
4 4 4 49 78.6 100 11 90 67 108.43 80.72 
5 5 4 65 71.4 100 2 76.6 49.4 85.11 54.89 
6 3 3 80 64.2 100 6 80.4 50 110.14 68.49 
7 2 4 74 85.8 93 6 67.2 30 80.96 36.14 
8 1 1 69 64.4 64.2 7 56 34 67.47 40.96 
9 4 8 115 14.4 100 1 11 80 12.22 88.89 

10 4 2 68 85.8 85.6 6 48.8 73.4 70.72 106.38 
11 3 3 50 57.2 100 5 75.4 48.3 86.12 56.02 
12 3 3 78 57.2 100 3 75.8 30 109.86 43.48 
13 2 2 34 78.6 100 10 71 73 85.54 87.95 
14 2 4 97 50.2 78.6 2 32 55.2 43.84 75.62 
15 7 1 106 57 100 3 36.2 90.2 39.35 98.04 
16 6 8 85 50 100 1 19 72 27.14 102.86 
17 2 1 39 78.6 78.8 9 54 52 60 57.78 
18 1 5 60 57.4 100 5 29 77.4 31.52 84.13 
19 3 5 83 57.2 92.8 6 39.6 86.8 44 96.44 
20 0 0 67 85.8 100 7 60.4 82.8 65.65 90 
21 3 2 74 85.8 100 7 40 81.2 62.5 126.88 
22 1 1 45 92.8 100 7 75.2 90.8 83.56 100.89 
23 5 7 113 57.2 92.8 1 80.8 24 89.78 26.67 
24 7 7 55 71.6 92.8 2 86.8 27 96.44 30 
25 2 2 56 71.4 100 9 88.2 55.4 106.27 66.75 
26 0 2 46 78.6 100 8 67.2 86.4 74.67 96 

           
Mean 3 4 72 67 95 5 58 64 70 78 
STD 2 3 27 18 10 3 23 22 28 27 
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Table 7.7: Clinical scores for the patients at 6 months after surgery. Vas_s: VAS score for the stiffness; 
VAS_p: VAS score for the pain; DASH_pt: DASH score in points; ASES_o: ASES score for the operated 

side; ASES_h: ASES score for the healthy side. Const_R(L): Constant score for the right(left) 
side;const_b_R(L): Constant score balanced by the right(left) side. 

                      
Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L

1 5 5 94 57.2 100 5 41.6 88.2 50.12 106.27 
2 4 3 93 64.6 78.6 4 26 59 35.62 80.82 
3 1 1 34 85.6 100 11 94.8 98.2 103.04 106.74 
4 2 0 32 92.8 100 10 89.4 82 107.71 98.8 
5 1 1 38 85.8 100 10 83 75.9 92.22 84.33 
6 2 1 81 64.2 92.8 6 72 54.8 98.63 75.07 
7 1 3 54 85.8 85.8 9 72.4 59.2 87.23 71.33 
8 0 7 59 93 85.8 5 58.8 35 70.84 42.17 
9 5 7 110 28.4 78.6 1 19 83.6 21.11 92.89 

10 2 1 68 71.4 71.4 6 61 78 88.41 113.04 
11 1 1 54 85.8 100 7 76.3 59.6 87.14 68.07 
12 2 1 72 57.2 100 3 75.8 12 109.86 17.39 
13 0 0 30 100 100 12 85.4 92.8 102.89 111.81 
14 3 3 82 64.2 71.4 5 54.4 63.4 74.52 86.85 
15 3 2 82 85.8 100 5 48.2 88.2 52.39 95.87 
16 5 8 82 71.4 92.8 2 24 71.2 34.29 101.71 
17 1 1 33 100 78.6 11 77.2 76.4 85.78 84.89 
18 0 1 45 85.8 100 10 72.4 91.6 78.7 99.57 
19 6 4 72 35.6 85.6 7 47.2 87.2 52.44 96.89 
20 7 8 107 57 92.8 1 26.4 68.2 28.7 74.13 
21 1 1 51 85.8 100 11 53.8 67.2 84.06 105 
22 0 0 30 100 100 12 78.8 96.8 87.56 107.56 
23 6 6 102 57.2 100 3 83.4 40 92.67 44.44 
24 3 5 58 64.4 100 6 72.2 49 80.22 54.44 
25 1 1 52 71.4 100 8 74.6 60.6 89.88 73.01 
26 0 0 33 100 100 12 78.2 91 86.89 101.11 

           
Mean 2 3 63 75 93 7 63 70 76 84 
STD 2 3 26 19 10 4 22 21 25 24 
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Table 7.8: Clinical scores for the patients at 12 months after surgery. Vas_s: VAS score for the stiffness; 
VAS_p: VAS score for the pain; DASH_pt: DASH score in points; ASES_o: ASES score for the operated 

side; ASES_h: ASES score for the healthy side. Const_R(L): Constant score for the right(left) 
side;const_b_R(L): Constant score balanced by the right(left) side. 

                      
Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L

1 3 3 82 50 100 6 48.6 88.2 58.55 106.27 
2 9 2 88 35.8 85.6 4 25 68 34.25 93.15 
3 0 0 31 85.6 100 11 84 88.4 91.3 96.09 
4 0 0 30 100 100 12 91.2 81.2 109.88 97.83 
5 1 0 34 92.8 100 12 85 81 94.44 90 
6 1 1 50 78.6 92.8 10 80.4 71.8 110.14 98.36 
7 2 2 41 93 78.6 11 70.8 65.8 85.3 79.28 
8 1 1 71 85.8 49.8 8 36.8 46 44.34 55.42 
9 8 8 120 28.4 100 1 13 83.8 14.44 93.11 

10 0 0 55 93 85.8 9 70.4 77.8 102.03 112.75 
11 5 3 66 78.6 100 7 59 83.6 80.82 114.52 
12 2 2 57 78.6 100 8 85 29 132.81 45.31 
13 0 0 30 100 100 11 83.4 89.8 100.48 108.19 
14 1 1 52 71.4 78.6 8 60.6 67.8 83.01 92.88 
15 0 0 30 100 72 12 83 88.2 90.22 95.87 
16 2 3 57 78.6 100 6 54.8 57 78.29 81.43 
17 1 5 31 100 42.8 11 75.8 63.8 84.22 70.89 
18 0 0 35 100 100 11 81 88 88.04 95.65 
19 6 6 96 21.4 100 4 40.4 96.2 44.89 106.89 
20 6 6 111 57.2 92.8 1 28 76.2 30.43 82.83 
21 1 1 55 92.8 100 9 51.6 81.6 80.63 127.5 
22 0 0 30 100 100 11 83.4 89 92.67 98.89 
23 5 4 101 57.2 92.8 2 45.8 65.6 50.89 72.89 
24 3 2 42 85.8 85.8 10 99.6 56.6 110.67 62.89 
25 2 2 42 71.4 100 12 73.8 74.2 88.92 89.4 
26 0 0 30 100 100 12 80.4 89 89.33 98.89 

           
Mean 2 2 56 78 91 8 65 75 80 91 
STD 3 2 28 23 15 4 23 16 28 19 

 
Using the Wilcoxon matched unpaired rank sum test to compare the clinical scores of the 

patients at baseline, 3, 6 and 12 months after surgery, and the clinical scores of the 

control group, we found significant differences between the control group and the 

patients at baseline and follow-up for all clinical scores (p<0.015).  

 

We used the Wilcoxon matched pairs signed rank sum test to compare the clinical scores 

at baseline versus 3 months, baseline versus 6 months and baseline versus 12 months 

after surgery.  The DASH, VAS, ASES and the SST presented significant differences 

between baseline and the follow-up (p<0.01). There was no significant difference 
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(p>0.15) for baseline versus 3 months after surgery with the Constant score, the 

difference appeared only at 6 months (p<0.01). The ASES_h presented logically no 

significant difference (p>0.08) between baseline and follow-up. Indeed, the ASES_h 

evaluates the functionality of the healthy side. It should be the same value between the 

baseline and the follow-up. All clinical scores presented a significant difference between 

3 months and 6 months after surgery (p<0.04). The VAS, ASES and Constant score 

showed no significant difference between (p>0.05) 6 months and 12 months after surgery 

but the DASH and SST showed a significant difference (p<0.02). 

 

The Table 7.9 shows the DASH, ASES, SST and Constant scores in percentage (painful 

side/healthy side) for the patients at baseline, 3, 6 and 12 months after surgery. The 

results for the DASH scores at baseline, 3, 6 and 12 months after surgery were 

respectively 54% ± 22, 65% ± 22, 72% ± 21 and 78% ± 23. The results for the ASES 

scores at baseline, 3, 6 and 12 months after surgery were respectively 67% ± 49, 71% ± 

20, 81% ± 21 and 92% ± 43. The results for the SST scores at baseline, 3, 6 and 12 

months after surgery were respectively 32% ± 25, 44% ± 27, 58% ± 29 and 70% ± 30. 

The results for the Constant scores at baseline, 3, 6 and 12 months after surgery were 

respectively 46% ± 24, 57% ± 22, 68% ± 24 and 75% ± 25. 
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7.1.3.2 P score, RAV score and M score 

 
Tables 7.10 and 7.11 show all kinematic scores for the control group and the patients at 
baseline, 3, 6 and 12 months after surgery. 
 

Table 7.10: P score, RAV score and M score for the 31 healthy subjects. 
        
Subject P score,%  RAV score,% M score,% 

r1 80 88 78 
r2 86 93 80 
r3 100 99 92 
r4 91 93 69 
r5 85 84 77 
r6 85 81 80 
r7 92 94 96 
r8 87 92 83 
r9 95 95 94 
r10 99 96 90 
r11 99 97 91 
r12 96 98 95 
r13 91 91 82 
r14 95 96 86 
r15 92 94 80 
r16 96 92 85 
r17 96 96 67 
r18 85 96 77 
r19 82 85 70 
r20 74 84 80 
r21 83 87 90 
r22 97 95 77 
r23 98 88 89 
l1 79 84 62 
l2 94 99 93 
l3 95 97 93 
l4 89 93 68 
l5 86 98 97 
l6 96 100 81 
l7 82 84 70 
l8 95 99 71 
    

Mean 89.7 92.5 82.0 
Std 8.7 5.5 9.8 
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A. P Score 

 

The P score for the healthy subjects ranged from 79% to 100% (mean: 89.7% ± 8.7) 

(Table 7.10). 

 

The Wilcoxon matched pairs signed rank sum test indicated significant differences in the 

P score between the baseline and 3 months, the baseline and 6 months, and the baseline 

and 12 months (p<0.01). The mean P scores were 46%, 60%, 71% and 78% respectively, 

at baseline, 3 months, 6 months and 12 months after surgery (Table 7.11). Figure 7.1 a) 

shows the improvement of the P score after surgery in comparison to the baseline values 

and the control subjects. 

 

We observed significant differences (p<0.02) in the P scores between the patients and  

the healthy subjects at the baseline, at 3 month and at 6 months, but a no significant 

difference was found between the patients’ P score versus the healthy subjects’ P score at 

12 month (p=0.08). We observed a correlation of 0.72, which reflected a fair to good 

linear response with the SST score (Figure 7.2 a)). The correlation coefficients with the 

DASH, ASES and Constant score were respectively 0.69, 0.55 and 0.74 (Table 7.10). 

 

B. RAV score 

 

The RAV score for the healthy subject ranged from 84% to 100% (mean: 92.5% ± 5.5) 

(Table 7.10). 

 

Significant differences were found in the RAV score between the baseline and 3 months, 

the baseline and 6 months and the baseline and 12 months (p<0.01). The average RAV 

score was respectively 58%, 73%, 81% and 84% at baseline, 3 months, 6 months and 12 

months after surgery (Table 7.11). Figure 7.1 b) shows the improvement of the RAV 

score after surgery in comparison to the baseline values and the control subjects. The 

healthy subjects’ RAV score was significantly higher (p<0.01) than the RAV score at 

baseline, at 3 months, and 6 months but a non significant difference was also found 
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between the RAV score at 12 months and the RAV score of the healthy subjects 

(p=0.078). We observed a correlation of 0.66, which reflected a good linear response 

with the SST score (Figure 7.2 b)). The correlation coefficients with the DASH, ASES 

and Constant score were respectively 0.62, 0.51 and 0.66 (Table 7.12). 
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Figure 7.1: Box plot for the P score (a), the RAV score (b) and the M score (c). Boxes contain 50% of the 
results and the lines represent the range. The dashed line shoes the limit for the healthy subjects. 
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Figure 7.2: Comparison between the SST score and the P score (a), RAV score (b), M score(c). 

 

C. M score 

 

The M score for the healthy subjects ranged from 62% to 97% (mean: 82% ± 9.8) (Table 

7.10). 

 

The M score at baseline was significantly lower than the M score at 3 months as well as 

at 6 months and 12 months after surgery (p<0.05). The M score average was respectively 

33%, 48%, 61% and 71% at baseline, 3 months, 6 months and 12 months after surgery. 

Figure 7.1 c) shows the improvement of the M score after surgery in comparison to the 

baseline values and the control subjects.  
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We observed significant differences (p<0.02) in the M score between the healthy subjects 

and the patients at baseline, at 3 months and at 6 months, but a no significant difference 

was found in the M score for the patients at 12 months and the healthy subjects (p=0.43). 

We observed a correlation of 0.65 which reflected a fair to good linear response with the 

SST score (Figure 7.2 c)). The correlation coefficients with the DASH, ASES and 

Constant score were respectively 0.6, 0.53 and 0.67 (Table 7.12). 
 

Table 7.12: Coefficient correlation (R) between clinical scores and kinematic scores. 
          
R SST Constant ASES DASH

RAV score 0.66 0.66 0.51 0.62 
P score 0.72 0.74 0.55 0.69 
M score 0.65 0.67 0.53 0.6 

 
 
 
7.1.4 Discussion and conclusion 
 
While all clinical scores showed a significant difference between the control group and 

the patient group, and between the baseline and each follow-up, only the DASH and the 

SST have shown a significant difference between follow-ups. 

 

A remark can be done about the ASES score for the healthy side. We observed that there 

was no significant difference between the baseline and the follow-up with a p = 0.076. 

This low value of p can be explained by a great standard deviation compared with the 

other clinical scores.  

 

Our outcome evaluation of shoulder surgery was based on objective scores derived from 

accurate 3D measurements of shoulder kinematics on healthy and affected individuals 

performing specific tasks. The RAV score represented the velocity of the humerus. The P 

score showed how the patient controls the velocity of his humerus using a combination of 

accelerations and angular velocities. The M score represented the sum of all moments on 

the shoulder. These scores showed a way to assess the shoulder function based on the 

quantification of the kinematic differences between the healthy and painful shoulders. 

Figure 7.1 shows the comparison between baseline, 3, 6 and 12 months after surgery for 
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the three scores. For all the patients, the shoulder mobility increased significantly after 

surgery. In addition, the scores were clearly distinct between the healthy subjects and the 

patients with a painful shoulder at baseline without any overlapping of the confidence 

intervals (Figure 7.1). 

 

Considering that we have a fair to good correlation between our kinematic scores and the 

clinical scores (Table 7.12), these results suggest that our kinematic scores may be more 

sensitive to the functional changes of the shoulder than the clinical scores. 

 

The Table 7.9 shows that the patient 9 had poor clinical scores after surgery. He had an 

inflammatory capsulitis at 6 months after surgery. The kinematic scores (Table 7.11) also 

detected this post-operative complication with changes that were consistent with the 

patient suffering with pain while performing some movements. Another complication 

involved patient 12 who suffered from a chronic dislocation. His clinical scores were 

improved but the kinematic scores were equal to the baseline, expressing the poor 

mobility of this patient. 

 

By producing an objective score based on the 3D kinematics of the shoulder, our system 

assessed the functionality of the shoulder. However, it cannot be used yet to differentiate 

the type pathologies. Our score is not related directly to pain but to the pain’s effect on 

mobility. This means that in the case where there is no recovery of shoulder functionality 

even if the pain is removed after surgery, our scores will remain low. 

 

Patients were selected with unilateral symptomatic shoulders. We cannot say that there is 

no rotator cuff pathology on the so called “good” side, but this is the best reference for 

the patient we have. This is the reason why, the first comparison for the scores was made 

intra-patient. However, if the “good” shoulder is asymptomatic, it represents the same 

concept of reference for all the patients: the goal of function recovery after surgery, 

taking into account their shoulder joint evolution with their age. Based on this concept, 

we assumed comparisons across patients.  
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The correlation between subjective and objective scores (Table 7.12) showed that the P 

score had the highest correlation with all clinical scores. After more measurements, it 

should be considered as an argument to be proposed for clinical use. 

 

Based on this study and the limited sample size, it is difficult to decide which score is 

more adapted. To answer this question we need more subjects and a clinical validation by 

considering the type of pathology as well as the results of these scores during long-term 

monitoring of daily activity. Using a α of 0.05, a β of 0.1 and an error of 10% of the mean 

value of the healthy subjects’ kinematic scores, the ideal sample size are 63, 40 and 113 

for the P, RAV and M score respectively. 

 
7.2 Long-term measurement 

 

7.2.1 Introduction 

 

We have designed new algorithms for long-term and the measurement of changes in the 

biomechanics of the patient’s shoulder during the daily activity.  

 

The chapter 4 described a new method of estimating the dominant shoulder segment 

during the daily activity and its intensity based on the P score. The chapter 5 described a 

method of characterizing the movements per hour of the humerus (flexion-abduction-

int/ext rotation) during long-term measurement and estimating the ratio of adjunct and 

conjunct components. The chapter 6 described a method of estimating the ability to work 

at a specific level with the humerus during the daily life.  

 

The goal of this chapter was to validate these algorithms clinically for adult patients 

undergoing shoulder surgery for rotator cuff disease. 
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7.2.2 Patients and method 

 

The next investigation has been set up as a monocentric prospective cohort study over an 

observation period of 6 months. 

- Inclusion criteria: The patients were required to be at least 18 years old, with a 

rotator cuff disease implying a supraspinatus rupture of at least 1 cm2, as 

determined by an MRI. Informed consent to enter into the study was mandatory. 

- Exclusion criteria: Patients who had a previous shoulder treatment (surgery or 

arthroscopy) or an intra-articular injection in the last six months, who had a 

controlateral painful shoulder or a malignant disorder were excluded. Other 

exclusions criteria included a pregnancy or an inability to understand the visual 

analog scale (VAS). 

- Patient selection: The first 10 patients (55 years old ± 7) sent to the clinic with a 

rotator cuff disease who met the inclusion criteria were selected. Informed 

consent to enter into the clinical trial was obtained and patients were then 

operated on by the same surgeon, following his standardized open delto-pectoral 

surgical approach and technique.  

- Outcome tool: we used the device described in Chapter 3 (Figure 3.1).  

- All patients had a clinical evaluation using the DASH, SST, VAS, ASES and 

Constant scores. The same evaluation was done at 3 and 6 months after surgery.  

- For all patients, we applied the algorithms developed in the chapter 4, 5 and 6. 

- Each clinical score was compared between the baseline, 3 and 6 months after 

surgery. 

 

7.2.2.1 Estimation of the dominant shoulder during the daily activity 

 

We will study the predominant of use of shoulders before and after surgery. 

 

In the chapter 4, the results on the healthy subjects showed that there was a difference of 

activity between the dominant shoulder and the non dominant shoulder. For this study, 

we separated the patient group in 2 subgroups: 1) painful non dominant (PND); 2) painful 
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dominant (PD). The PND group is constituted by the patients 1 to 5 (right dominant side, 

left painful side). The PD group is constituted by the patients 6 to 10 (right dominant 

side, right painful side and left dominant side, left painful side, see also Table 7.13). 

 

We compared the painful shoulder of the PD group with the healthy dominant shoulder 

and the painful shoulder of the PND group with the healthy non dominant shoulder at 

baseline, 3 months and 6 months for each posture (walking, sitting, and standing). We 

will also compare our score by itself for baseline versus 3 months and baseline versus 6 

months for each posture. Our outcome evaluation will be compared to the clinical scores 

to see a possible correlation. 

 

7.2.2.2 Characterization of the movement of the humerus during the daily activity 

 

We looked at the number of movements done per hour (flexion, abduction and int/ext 

rotation) during walking, sitting and standing postures, the combination between adjunct 

and conjunct rotations and the angular velocity distribution of the movement per hour for 

the patients’ healthy and painful shoulder. 

 

In the chapter 5, the results on the healthy subjects for the number of movements during 

the gait showed that there was not a significant difference of working level between the 

dominant shoulder and the non dominant shoulder. For the sitting and standing positions, 

we separated the patient group in 2 subgroups PD and PND. We compared the healthy 

with the painful shoulder at baseline, 3 months and 6 months for the gait. We compared 

the results between the PD group and the PND group at baseline and follow-up. We 

compared also our score between follow-ups and with the clinical scores. 

 

7.2.2.3 Detection of the working level of the humerus during the daily activity 

 

We studied the working levels reached per hour and their duration for the healthy and 

painful shoulder for the patients. 
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In the chapter 6, the results on the healthy subjects showed that there was no significant 

difference of working level between the dominant shoulder and the non dominant 

shoulder. For this study, we separated the patient group in 2 subgroups: 1) painful 

shoulders (PS); 2) healthy shoulders (HS). We compared the number of working levels 

per hour, especially under the level 5 (L5 to L8 = L58) for the PS and the HS at baseline, 

3 months and 6 months for each posture, to show the endurance to work above the 

shoulder (level > L5). We compared our Working Level Score (WLS), which consider 

the working levels reached during a day and their durations, by itself for baseline versus 3 

months, baseline versus 6 months for each posture.  

 

7.2.3 Results 

 

7.2.3.1 Clinical scores 

 

The characteristics and the clinical scores of the control group are presented in Tables 7.1 

to 7.3. Table 7.13 shows the characteristic of the ten new patients.  

 
Table 7.13: Characteristics of the patients. 

          
patient BMI AGE Painful side Dominant side 

1 29.41 58 L R 
2 22.86 55 L R 
3 28.74 59 L R 
4 20.83 62 L R 
5 24.54 63 L R 
6 32.93 43 R R 
7 28.34 47 R R 
8 29.41 53 R R 
9 25.96 64 R R 
10 25.82 45 L L 
          

 

The average BMI was 27 kg/m2 ± 4 and the average age was 55 years old ± 8.There was 

5 patients with their non dominant shoulder injured and 5 patients with their dominant 

shoulder injured. 
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The Tables 7.14 to 7.16 show the clinical scores of the patients at baseline, 3 months and 

6 months.  

 
Table 7.14: Clinical scores for the patients at baseline. Vas_s: VAS score for the stiffness; VAS_p: VAS 

score  for the pain; DASH_pt: DASH score  in points; ASES_o: ASES score for the operated side; ASES_h: 
ASES score for the healthy side. Const_R(L): Constant score for the right(left) side;const_b_R(L): 

Constant score balanced by the right(left) side. 
                      

Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L
1 8 5 55 92.8 50 7 84.2 40.4 93.56 44.89 
2 4 4 66 64.4 78.6 7 74.6 25 82.89 28.78 
3 4 3 65 28.6 85.8 7 72.4 63.4 80.44 70.44 
4 5 6 66 42.8 100 6 65.4 44 93.43 62.86 
5 0 0 75 100 50 4 81.6 40 98.31 48.19 
6 9 7 70 50.4 100 1 10 92.4 10.87 100.43 
7 7 8 71 42.8 100 8 70.2 78.8 76.3 85.65 
8 7 7 126 0 100 1 6 97 6.67 107.78 
9 10 7 96 50 100 3 41 78.2 78.85 150.38 

10 7 6 65 64.2 92.8 8 82.4 64.4 103 80.5 
                      

 

 

 

 
Table 7.15: Clinical scores for the patients at 3 months. Vas_s: VAS score for the stiffness; VAS_p: VAS 

score  for the pain; DASH_pt: DASH score  in points; ASES_o: ASES score for the operated side; ASES_h: 
ASES score for the healthy side. Const_R(L): Constant score for the right(left) side;const_b_R(L): 

Constant score balanced by the right(left) side. 
                      

Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L
1 7 7 55 71.6 100 2 86.8 27 96.44 30 
2 2 3 65 71.6 64.2 7 71.2 43 79.11 47.78 
3 2 3 65 71.4 92.8 11 86.4 59.6 96 66.22 
4 2 3 71 64.2 92.8 7 82.8 47 118.29 67.14 
5 2 2 56 71.4 100 9 88.2 55.4 106.27 66.75 
6 3 3 72 78.8 100 5 43.4 104.6 47.17 113.7 
7 4 3 67 64.4 85.6 6 69 76.8 75 83.48 
8 3 3 90 43 92.8 4 29 93.2 32.22 103.56 
9 7 5 79 57.2 100 3 44.8 88.4 86.15 170 

10 2 2 46 85.6 92.8 10 92.6 85.4 115.75 106.75 
                      

 

 

 

Chapter 7: Clinical application

166



 

Table 7.16: Clinical scores for the patients at 6 months. Vas_s: VAS score for the stiffness; VAS_p: VAS 
score  for the pain; DASH_pt: DASH score  in points; ASES_o: ASES score for the operated side; ASES_h: 

ASES score for the healthy side. Const_R(L): Constant score for the right(left) side;const_b_R(L): 
Constant score balanced by the right(left) side. 

                      
Patient VAS_s VAS_p DASH_pt ASES_o ASES_h SST const_R const_L const_b_R const_b_L

1 3 5 58 64.4 100 6 72.2 49 80.22 54.44 
2 2 3 53 64.2 64.2 10 70.4 61.6 78.22 68.44 
3 1 1 50 85.8 85.8 12 75.2 61.2 83.56 68 
4 1 3 50 64.2 100 9 83.6 59.4 119.43 84.86 
5 1 1 52 71.4 100 8 74.6 60.6 89.88 73.01 
6 1 1 36 78.6 100 10 74 92.8 80.43 100.87 
7 1 3 35 78.6 92.8 12 74.2 78.4 80.65 85.22 
8 3 3 98 57.6 100 5 49.2 95.6 54.67 106.22 
9 6 4 85 64.2 100 3 61 87 117.31 167.31 

10 3 3 40 85.6 85.6 10 82 79 102.5 98.75 
                      

 

Using the Wilcoxon matched unpaired rank sum test to compare the clinical scores of the 

patients at baseline, 3 and 6 months after surgery, and the clinical scores of the control 

group, we found significant differences between the control group and the patients at 

baseline and follow-up for all clinical scores (p<0.02) except for the balanced Constant at 

3 and 6 months after surgery (p>0.07). 

 

We used the Wilcoxon matched pairs signed rank sum test to compare the clinical scores 

at baseline versus 3 months and baseline versus 6 months. All the clinical scores except 

the VAS_s (Stiffness) (p<0.01) showed no significant differences (p>0.058) between 

baseline and 3 months evaluation but the differences became significant at 6 months 

evaluation (p<0.03). 

 

The Table 7.17 shows the DASH, ASES, SST and Constant scores in percentage for the 

patients at baseline, 3 and 6 months after surgery. The results for the DASH scores at 

baseline, 3 and 6 months after surgery were respectively 62% ± 17, 70% ± 10 and 79% ± 

17. The results for the ASES scores at baseline, 3 and 6 months after surgery were 

respectively 66% ± 54, 76% ± 18 and 79% ± 17. The results for the SST scores at 

baseline, 3 and 6 months after surgery were respectively 43% ± 23, 53% ± 25 and 71% ± 

25. The results for the Constant scores at baseline, 3 and 6 months after surgery were 

respectively 52% ± 29, 70% ± 22 and 78% ± 14. 
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7.2.3.2 Estimation of the dominant shoulder during daily activity 

 

The Table 7.18 shows the results for the estimation of the dominant shoulder during daily 

activity for the patients at baseline. 

 
Table 7.18: Difference between the dominant and the non dominant side for 10 patients at baseline. PND: 

non painful dominant shoulder; PD painful dominant shoulder. 
                  
   Walk   Sit     Stand     
 Patient ALSp,% ARSp,% ALSp,% ARSp,% Activity,% ALSp,% ARSp,% Activity,%

1 35 65 42 58 32 41 59 56 
2 28 72 37 63 70 34 66 88 
3 45 55 35 65 53 34 66 83 
4 39 61 38 62 41 28 72 71 
5 48 52 39 61 68 44 56 71 
         

P
N

D
 

Mean 39 61 38 62 53 36 64 74 
6 74 26 73 27 39 63 37 66 
7 46 54 34 66 72 43 57 83 
8 52 48 80 20 17 67 33 75 
9 57 43 47 53 41 47 53 85 
         

Mean 57 43 59 42 42 55 45 77 
10 39 61 43 57 45 46 54 88 

P
D

 

         
 

We used the Wilcoxon matched pairs unsigned rank sum test to compare all painful 

shoulders of the PD group with all healthy dominant shoulders and all painful shoulders 

of the PND group with all healthy non dominant shoulders.  

 

We used the Wilcoxon matched pairs signed rank sum test to compare all painful 

shoulders of the PD group at baseline with all painful shoulders of the PD group at 3 and 

6 months and all painful shoulders of the PND group at baseline with all painful 

shoulders of the PND group at 3 and 6 months.  

 

At baseline, for the walking, sitting and standing postures, the differences were 

significant between the PD shoulder and the dominant healthy shoulder (p<0.04). On the 
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other hand, we observed a significant difference for the walking and standing posture for 

the PND shoulders between non dominant shoulders (p<0.05) but we did not find a 

significant difference for the sitting posture (p>0.8). 
 
The Table 7.19 shows the results for the estimation of the dominant shoulder during daily 

activity for the patients at 3 months. 
 

Table 7.19: Difference between the dominant and the non dominant side for 10 patients at 3 months after 
surgery. PND: painful non dominant shoulder; PD painful dominant shoulder. 

                   
  Walk  Sit   Stand   
 Patient ALSp,% ARSp,% ALSp,% ARSp,% Activity,% ALSp,% ARSp,% Activity,%

1 20 80 41 59 77 24 76 83 
2 25 75 36 64 58 34 66 77 
3 44 56 32 68 62 31 69 79 
4 31 69 36 64 43 23 77 78 
5 48 52 43 57 66 43 57 83 

         

P
N

D
 

Mean  34 66 38 62 61 31 69 80 
6 63 37 71 29 29 58 42 82 
7 35 65 50 50 44 41 59 65 
8 60 40 62 38 47 59 41 68 
9 56 44 46 54 69 42 58 83 
         

Mean 54 47 57 43 47 50 50 75 
10 23 77 59 41 45 46 54 80 

P
D

 

         
 
 
At 3 months, for the PND group, significant differences appeared between the healthy 

and painful shoulders for the walking and standing postures (p<0,04) while there was no 

significant difference for the sitting posture (p>0.8). However, the PD group showed 

significant differences for all postures (p<0.04). 
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The Table 7.20 shows the results of the estimation of the dominant shoulder during daily 

activity for the patients at 6 months. 
 

Table 7.20: Difference between the dominant and the non dominant side for 10 patients at 6 months after 
surgery. PND:  painful non dominant shoulder; PD painful dominant shoulder. 

                   
  Walk  Sit   Stand   
 Patient ALSp,% ARSp,% ALSp,% ARSp,% Activity,% ALSp,% ARSp,% Activity,%

1 32 68 34 66 37 30 70 72 
2 24 76 42 58 71 41 59 87 
3 35 65 38 62 45 36 64 75 
4 47 53 37 63 49 30 70 79 
5 44 56 36 64 57 45 55 80 
         

P
N

D
 

Mean 36 64 37 63  52 36 64 79 
6 62 38 47 53 83 56 44 88 
7 51 49 24 76 66 40 60 74 
8 65 35 53 47 51 66 34 72 
9 58 42 43 57 82 42 58 87 
         

Mean 59 41 42 58  71 51 49 80 
10 40 60 57 43 35 55 45 60 

P
D

 

          
 
At 6 months after surgery, for the sitting and standing periods, we observed no significant 

difference for the PND and the PD group (p>0.052), but a significant difference (p<0.02) 

arise between the PND shoulders and healthy dominant shoulders for the walk (Table 

7.21). 

 
Table 7.21: Summary of the statistical comparison between healthy shoulders and painful shoulders. 

              
 Baseline  3 months  6 months  

Healthy/Painful PND PD PND PD PND PD 
Walking p<0.017 p<0.04 p<0.04 p<0.04 NS p<0.02 
Standing   p<0.05 p<0.005 p<0.02 p<0.02 NS NS 

Sitting NS    p<0.005 NS  p<0.003 NS NS 
 

For the difference between the baseline and the follow-up, the difference was not 

significant between baseline, 3 and 6 months for the PD and PND groups (0.06<p<0.7). 
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The mean of the P parameter during the daily activity for all patients is represented in the 

Table 7.22. 

 
Table 7.22: Difference of the P parameter between the left and the right shoulder for 10 patients for 

baseline and 3,6 months after surgery. 
              
  Baseline 3 Months 6 Months 
  Mean P Mean P Mean P 
 Patient Left shoulder Right shoulder Left shoulder Right shoulder Left shoulder Right shoulder

1 43 52 41 56 50 60 
2 54 61 48 61 54 59 
3 41 53 41 56 48 61 
4 40 55 39 52 51 61 
5 52 57 52 57 54 66 

       

P
N

D
 

Mean  46 56 44 56 51 61 
6 66 48 65 61 57 57 
7 43 50 56 57 46 59 
8 68 57 66 67 53 53 
9 52 54 55 62 50 56 
       

Mean 57 52 61 62 52 56 
10 52 53 52 61 58 56 

P
D

 

       
 
At baseline, for the PD and PND groups, we observed significant differences (p<0.03) in 

comparison to the healthy shoulders. At 3 months, the difference became non significant 

between the PND shoulders and the healthy non dominant shoulders (p>0.49), but there 

was a significant difference between the PD shoulders and the healthy dominant 

shoulders (p<0.025). At 6 months, both groups had no significant difference (p>0.5) with 

the healthy subjects (Table 7.23). 

 
Table 7.23: Summary of the statistical comparison between healthy shoulders and painful shoulders for the 

P Intensity. 
        

Healthy/Painful Baseline 3 months 6 months
PD p<0.03 NS NS 

PND p<0.03 p<0.025 NS 
 

For the comparison between the baseline and the follow-up, no significant difference was 

observed between baseline, 3 and 6 months for the PD and PND groups (p>0.1). 
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7.2.3.3 Characterization of the movement of the humerus during daily activity 

 

A. Number of flexions, abductions and int/ext rotations per hour 

 

The Table 7.24 shows the results for the number of flexions-extension (NFE), abductions-

adduction (NAA) and int/ext rotations (NIE) per hour for the walking, sitting and standing 

positions for 10 patients at baseline during daily activity. 

 

For each posture, the results of the chapter 5 showed that there was no significant 

difference between the dominant and the non dominant humerus for the healthy subjects 

(p>0.1). So, we compared the painful shoulder with the healthy shoulders for the patients. 

 

We used the Wilcoxon matched pairs unsigned rank sum test to compare all painful 

shoulders of the group with all healthy shoulders. No significant difference (p>0.06) 

appeared between the healthy and the painful shoulder for the sitting posture but for the 

standing posture, the difference became significant between the painful shoulder and the 

control group only for the abduction movement (p<0.03). Moreover, a significant 

difference was observed between the healthy and the painful shoulder during the walking 

activity (p<0.01) 

 

The Tables 7.25 and 7.26 show the results for the number of flexions, abductions and 

int/ext rotations for the walking, sitting and standing positions for 10 patients at 3 and 6 

months during daily activity. For the walking activity, we observed a significant 

difference between the PS group and the control group (p< 0.02), but for the sitting and 

standing postures, no significant difference was observed for the number of movement 

per hour (p>0.07) (Table 7.27). The comparison between the baseline and the follow-up 

for the PD and PND groups showed no significant difference (p>0.06). 
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Table 7.27: Summary of the statistical comparison between healthy shoulders and painful shoulders for the 
number of flexions, abductions and int/ext rotations per hour. 

        
Healthy/Painful Baseline 3 months 6 months 

All activities       
Flexion NS NS NS 

Abduction NS NS NS 
int/ext Rotation NS NS NS 

Walk       
Flexion p<0.003 p<0.02 p<0.008 

Abduction p<0.006 p<0.002 p<0.002 
int/ext Rotation p<0.02 p<0.006 p<0.006 

Stand       
Flexion NS NS NS 

Abduction p<0.03 NS NS 
int/ext Rotation NS NS NS 

Sit       
Flexion NS NS NS 

Abduction NS NS NS 
int/ext Rotation NS NS NS 

 

B. Combination of adjunct and conjunct rotation. 

 

The results of the chapter 5 showed that there was no significant difference (p>0.21) 

between the dominant and the non dominant humerus for the healthy subjects. So, we 

used the Wilcoxon matched pairs unsigned rank sum test to compare all painful shoulders 

of the PS group with all shoulders from the HS group.The Table 7.28 shows the results 

for the combination of rotation (FE/AA/IE) for the movement of flexion, abduction and 

int/ext rotation for 10 patients at baseline during daily activity. For all movements, we 

observed no significant difference (p>0.3) between the healthy and painful shoulders for 

the AA and FE rotations, but a significant difference appeared for the IE rotation 

(p<0.05). 
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Table 7.28: The combination of adjuncts and conjuncts rotations for 10 patients at baseline. 

    
  Flexion Abduction Rotation 
  Right Left Right Left Right Left 
  Patient FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ 

1 51/20/29 48/24/28 -3/4/-1 24/46/31 27/43/30 3/-3/-1 22/15/63 20/17/63 -2/2/0 
2 54/17/30 52/17/30 -2/0/0 22/46/32 22/43/34 0/-3/2 22/17/61 20/17/63 -2/0/2 
3 49/17/33 49/19/31 0/2/-2 21/47/32 24/43/32 3/-4/0 23/16/61 22/16/62 -1/0/1 
4 48/19/33 43/18/39 -5/-1/6 22/45/34 21/45/35 -1/0/1 18/17/65 21/16/63 3/-1/-2
5 46/20/33 48/18/34 2/-2/1 22/44/34 24/46/30 2/2/-4 22/17/61 25/15/60 3/-2/-1
          

Mean 50/19/32 48/19/32 -2/1/1 22/46/33 24/44/32 1/-2/0 21/16/62 22/16/62 0/0/0 

P
N

D
 

STD 3/2/2 3/3/4 3/2/3 1/1/1 2/1/2 2/3/2 2/1/2 2/1/1 3/1/2 
6 47/19/33 51/18/31 4/-1/-2 24/42/36 24/46/30 3/4/-6 22/18/60 25/16/59 3/-2/-1

7 51/19/30 49/20/32 -2/1/2 21/48/30 22/47/30 1/-1/0 23/17/60 22/17/61 -1/0/1 
8 49/18/33 49/19/32 0/1/-1 22/42/37 22/47/31 0/5/-6 20/16/64 24/18/59 4/2/-5 
9 50/18/33 49/19/32 -1/1/-1 24/47/29 22/46/31 -2/-1/2 26/16/58 23/17/60 -3/1/2 
          

Mean 49/19/32 50/19/32 0/1/-1 22/45/33 23/47/31 1/2/-3 23/17/61 24/17/60 1/0/-1 
STD 2/1/2 1/1/1 3/1/2 1/3/4 1/1/1 2/3/4 3/1/3 1/1/1 3/2/3 

P
D

 

10 47/18/35 46/19/36 -1/1/1 22/43/35 21/42/38 -1/-1/3 25/17/58 20/16/64 -5/-1/6
 

The Tables 7.29 and 7.30 show the results for the combination of rotations (FE/AA/IE) 

for the movement of flexion, abduction and int/ext rotation for 10 patients at 3 and 6 

months during daily activity. For all movements, no significant difference was observed 

between the healthy and painful shoulders for the AA, FE and IE rotations (p>0.09). 
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Table 7.29: The combination of adjunct and conjunct rotations for 10 patients at 3 months after surgery. 

 
  Flexion Abduction Rotation 
  Right Left Right Left Right Left 
  Patient FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ 

1 52/18/30 50/19/31 -2/1/1 21/48/31 22/47/30 1/-1/-1 21/17/62 22/16/61 1/-1/-1
2 47/20/33 47/19/34 0/-1/1 21/45/34 21/43/35 0/1/1 20/17/64 19/16/64 -1/-1/0
3 50/18/32 49/20/32 -1/2/0 21/45/34 21/44/36 0/2/2 20/17/63 18/16/66 -2/-1/3
4 45/19/35 45/20/36 0/1/1 24/40/36 21/45/34 -3/-2/-2 22/16/62 22/15/63 0/-1/1 
5 48/21/31 47/19/33 -1/-2/2 24/47/29 24/46/31 0/2/2 22/17/60 24/16/61 2/-1/1 
          

Mean 48/19/32 48/19/33 -1/0/1 22/45/33 22/42/36 0/0/0 21/17/62 21/16/63 0/-1/1 

P
N

D
 

STD 3/1/2 2/1/2 1/2/1 2/3/3 1/6/6 2/3/2 1/0/1 2/0/2 2/0/1 
6 50/18/33 51/17/32 1/-1/-1 23/46/31 24/47/29 1/1/-2 23/15/62 24/15/61 1/0/-1 
7 52/18/30 52/18/30 0/0/0 22/47/32 23/49/28 1/2/-4 23/16/60 23/18/60 0/2/0 
8 49/18/33 47/19/34 -2/1/1 22/43/35 23/46/31 1/3/-4 19/17/65 20/17/62 1/0/-3 
9 49/21/30 51/19/30 2/-2/0 22/46/32 23/47/30 1/1/-2 21/19/60 24/18/58 3/-1/-2
          

Mean 50/19/32 50/18/32 0/-1/0 22/46/33 23/47/30 1/2/-3 22/17/62 23/17/60 1/0/-2 
STD 1/2/2 2/1/2 2/1/1 1/2/2 1/1/1 0/1/1 2/2/2 2/1/2 1/1/1 

P
D

 

10 45/19/36 48/18/34 3/-1/-2 22/42/36 22/45/32 0/3/-4 22/16/61 23/16/61 1/0/0 
 

Table 7.30: The combination of adjunct and conjunct rotations for 10 patients at 6 months after surgery. 
 

  Flexion Abduction Rotation 
  Right Left Right Left Right Left 
  Patient FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ FE/AA/IE FE/AA/IE Δ 

1 53/20/27 51/20/29 -2/0/2 23/47/30 24/48/28 1/1/-2 23/18/59 25/16/59 2/-2/0 
2 50/19/31 50/20/30 0/1/-1 21/46/33 21/48/31 0/2/-2 20/18/63 21/17/62 1/-1/-1
3 48/22/30 50/19/31 2/-3/2 24/44/32 21/44/34 -3/0/2 21/17/62 21/16/63 0/-1/0 
4 47/20/33 44/17/39 -3/-3/6 22/46/33 30/40/30 8/-6/-3 20/16/64 25/13/62 5/-3/-2
5 47/21/32 48/18/34 1/-3/2 21/49/30 22/48/33 0/-2/3 20/18/62 20/18/62 0/0/0 
          

Mean 49/20/31 49/19/33 0/-2/2 22/46/32 23/45/31 1/-1/0 21/17/62 22/16/62 2/-1/-1

P
N

D
 

STD 3/1/2 3/1/4 2/2/3 1/2/2 4/3/1 4/3/3 1/1/2 2/2/2 2/1/1 
6 51/19/31 46/22/32 -5/3/1 23/45/32 20/50/30 -3/5/-2 23/17/60 20/20/60 -3/3/0 
7 47/20/33 51/19/31 4/-1/-2 22/46/32 24/46/30 2/0/-2 21/17/62 24/17/59 3/0/-3 
8 49/19/32 48/22/30 -1/3/-2 22/43/35 23/48/30 1/5/-5 19/17/64 21/17/62 2/0/-2 
9 48/21/31 49/18/33 1/-3/2 21/46/33 22/45/33 1/-1/0 20/19/60 24/17/59 4/-2/-1
          

Mean 49/20/32 49/20/32 0/1/0 22/45/33 22/47/31 0/2/-2 21/18/62 22/18/60 2/0/-2 
STD 2/1/1 2/2/1 4/3/2 1/1/1 2/2/2 2/3/2 2/1/2 2/2/1 3/2/1 

P
D

 

10 46/20/34 47/21/32 1/1/-2 21/48/31 20/50/30 -1/2/-1 23/16/61 21/17/62 -2/1/1 
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C. Angular velocity distribution of the flexion, abduction and int/ext rotation 

 

The Table 7.31 shows the summary of the comparison between the healthy and the 

painful shoulders for all the activities, the walking activity, the sitting and the standing 

postures.  

 
Table 7.31: Summary of the statistical comparison between the healthy shoulders and painful shoulders for 

the angular velocity distribution of the number of flexions, abductions and int/ext rotations per hour. 
                    

 Baseline 3 months 6 months 
Healthy/Painful Slow Medium Fast Slow Medium Fast Slow Medium Fast 

All activities                   
Flexion NS NS p<0.01 NS NS p<0.03 NS NS NS 

Abduction NS NS p<0.007 NS NS p<0.007 NS NS NS 
int/ext Rotation NS NS p<0.009 NS NS p<0.03 NS NS NS 

Walk                   
Flexion NS p<0.005 p<0.0009 NS NS p<0.0011 NS NS p<0.008 

Abduction NS p<0.0025 p<0.0003 NS p<0.0055 p<0.0019 NS p<0.005 p<0.0014 
int/ext Rotation NS p<0.0006 p<0.0006 NS p<0.01 p<0.0013 NS p<0.004 p<0.0018 

Stand                   
Flexion NS NS p<0.021 NS NS NS NS NS NS 

Abduction p<0.04 p<0.02 p<0.007 NS NS NS NS NS NS 
int/ext Rotation NS NS p<0.024 NS NS NS NS NS NS 

Sit                   
Flexion NS NS NS NS NS NS NS NS NS 

Abduction NS NS NS NS NS NS NS NS NS 
int/ext Rotation NS NS NS NS NS NS NS NS NS 
  

For all activities, at baseline and 3 months after surgery, we observed a significant 

difference for the Fast interval (100°/s ->) for all movements. Then, at 6 months after 

surgery, no significant differences appeared for the three intervals (Slow: 0-50°/s; 

Medium: 50-100°/s; Fast: 100°/s->).  

 

For the walking activity, at baseline, significant differences between healthy and painful 

shoulders were observed for the Medium and Fast interval for all movements, but no 

significant difference was obtained for the Slow interval. At 3 and 6 months after surgery, 

the flexion movement had a significant different between healthy and painful shoulder 

only for the third interval. For the abduction and int/ext rotation movement, there were 
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significant differences between healthy and painful shoulders for the Medium and Fast 

intervals. 

 

For the standing posture, at baseline, significant differences were observed for the three 

intervals for the abduction and only for the last interval for the flexion and the int/ext 

rotation. At 3 and 6 months after surgery, no significant difference appeared for the all 

movements at all intervals. 

 

For the sitting posture, no significant was observed between healthy shoulders and 

painful shoulders at baseline, 3 and 6 months after surgery. 

 

All results are presented in the Tables 7.32 -7.34 for all activities, in the Tables 7.35-7.37 

for the walking activity, in the Tables 7.38-7.40 for the standing posture and in the Tables 

7.41-7.43 for the sitting posture. 

 

For the comparison between baseline and the follow-up, the difference was not 

significant for each posture and each movement. 

Chapter 7: Clinical application

180



  

Ta
bl

e 
7.

32
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t b
as

el
in

e 
fo

r a
ll 

ac
tiv

iti
es

. 

N
FE

N
AA

N
IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

S
lo

w
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
1

10
5

66
6

74
38

3
29

16
2

10
7

17
2

22
6

46
4

22
8

40
2

2
13

3
34

19
99

22
9

34
13

10
24

10
4

28
8

34
24

23
5

25
10

3
16

4
83

25
12

2
63

21
54

33
18

53
24

7
31

0
89

25
30

0
56

18
4

10
7

51
32

74
37

22
46

27
16

36
16

7
36

0
59

35
33

1
37

14
5

99
56

28
12

2
55

31
48

28
21

42
22

12
30

8
54

33
30

4
51

32

M
ea

n
12

2
58

22
98

43
17

42
23

13
52

18
6

29
8

57
24

28
0

42
15

S
TD

27
18

10
24

16
11

11
9

8
32

6
4

48
20

12
46

12
11

6
42

9
2

74
26

9
21

7
1

34
13

5
13

3
13

2
13

9
28

12
7

13
2

39
22

11
2

39
18

46
20

11
50

19
6

27
1

46
22

25
9

42
17

8
32

8
4

48
19

6
10

5
3

17
5

3
83

12
1

78
19

9
9

10
8

43
14

10
0

37
14

38
19

7
49

15
8

20
7

43
17

20
8

42
19

M
ea

n
79

25
11

84
30

12
29

13
6

37
13

6
17

4
28

11
17

1
33

14
S

TD
49

19
9

29
10

5
16

8
4

16
6

2
83

19
11

79
11

5
10

74
49

43
81

39
21

27
22

19
39

19
9

19
7

58
43

26
5

45
17

PND PD

 
 

Ta
bl

e 
7.

33
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 3
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r a

ll 
ac

tiv
iti

es
. 

N
FE

N
AA

N
IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

S
lo

w
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
1

15
8

58
18

12
2

30
5

50
24

10
51

10
1

29
1

48
15

27
5

24
3

2
98

27
18

72
20

7
31

14
9

29
10

4
23

4
27

20
20

8
21

7
3

11
5

45
22

85
35

10
65

33
16

47
14

4
34

0
54

25
31

2
33

9
4

93
55

45
80

37
22

40
30

34
45

24
12

28
5

86
45

30
5

50
18

5
12

1
63

32
12

1
63

38
59

34
24

57
24

13
29

3
69

33
30

3
67

32

M
ea

n
11

7
50

27
96

37
16

49
27

19
46

16
7

28
9

57
28

28
1

39
14

S
TD

26
14

12
24

16
14

14
8

11
10

7
5

38
22

12
43

19
11

6
11

3
34

11
12

6
44

19
23

15
4

29
13

8
19

3
31

11
19

9
47

22
7

10
0

38
14

99
36

15
33

14
6

47
12

5
22

5
38

15
17

2
41

14
8

10
8

49
16

11
1

50
17

50
18

8
62

19
7

21
5

51
20

20
3

52
18

9
13

5
50

24
13

4
41

22
49

28
15

48
15

9
27

3
62

25
22

9
44

20

M
ea

n
11

4
43

16
11

7
43

18
39

19
8

46
15

7
22

6
46

17
20

1
46

18
S

TD
15

8
6

16
6

3
13

6
5

14
3

1
34

14
6

24
5

4
10

70
42

30
82

49
25

25
21

14
40

23
10

19
5

52
26

21
2

53
25

PND PD

 

Chapter 7: Clinical application

181



 

Ta
bl

e 
7.

34
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 6
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r a

ll 
ac

tiv
iti

es
. 

N
FE

N
AA

N
IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

S
lo

w
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
1

10
6

36
12

99
28

7
38

17
8

34
10

3
14

9
38

11
14

5
28

7
2

10
5

39
26

11
2

30
17

57
19

17
58

17
8

28
8

41
28

25
2

33
16

3
11

8
63

24
10

9
34

14
44

31
15

48
19

7
28

7
58

22
27

9
34

12
4

97
48

32
61

32
55

48
25

24
24

11
19

30
5

59
35

24
2

44
38

5
87

36
17

80
33

16
57

22
11

42
11

6
24

3
39

17
22

8
33

15

M
ea

n
S

TD 6
15

8
49

23
99

39
23

54
24

17
10

9
39

17
28

0
58

30
26

0
64

39
7

10
8

54
27

14
3

60
24

57
30

18
53

25
9

32
4

66
31

24
7

60
28

8
69

20
5

82
30

10
42

14
6

68
17

7
25

1
21

6
20

8
33

18
9

13
3

72
36

15
5

66
43

65
41

26
53

29
19

29
6

85
42

28
1

75
44

M
ea

n
S

TD 10
57

23
13

54
26

13
26

13
8

32
12

7
14

4
28

11
16

3
29

11

PND PD

 
 

Ta
bl

e 
7.

35
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t b
as

el
in

e 
fo

r t
he

 w
al

ki
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
o w

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
39

5
33

7
21

25
3

18
8

9
67

63
5

49
7

79
4

61
4

22
0

14
66

6
20

6
6

2
22

6
18

8
12

6
17

5
10

8
67

86
63

76
63

57
32

41
5

21
3

17
3

43
4

18
8

78
3

27
8

23
8

57
24

3
20

5
56

70
78

43
13

2
61

9
48

5
28

6
54

53
0

20
0

44
4

98
58

35
82

64
53

57
38

19
40

25
8

58
9

92
50

50
6

90
32

5
18

0
17

8
10

3
20

7
18

0
14

0
83

88
78

82
79

46
50

7
22

4
15

3
49

1
23

2
15

8

M
ea

n
23

5
20

0
68

19
2

14
9

65
73

66
44

16
3

60
20

52
2

20
7

89
52

5
18

3
64

ST
D

11
1

10
1

45
69

60
47

12
19

33
19

0
22

18
81

71
70

86
55

59
6

13
9

60
16

18
8

16
8

76
98

54
9

12
1

90
40

61
5

15
2

29
55

1
22

1
89

7
14

3
57

34
13

3
67

32
49

26
15

59
28

9
30

5
75

36
32

7
72

27
8

15
4

85
61

18
6

15
6

44
49

55
38

42
20

20
31

6
13

1
10

27
7

13
6

55
9

20
4

12
6

44
19

2
91

43
76

56
20

99
38

30
45

1
14

3
62

41
8

12
7

62

M
ea

n
16

0
82

39
17

5
12

1
49

68
48

21
80

44
25

42
2

12
5

34
39

3
13

9
58

ST
D

30
32

19
28

49
19

24
15

13
36

32
13

14
5

35
22

12
0

62
25

10
11

9
10

8
11

9
86

76
49

40
42

51
73

44
24

32
2

14
2

13
9

45
3

11
4

49

PND PD

 

Chapter 7: Clinical application

182



 

Ta
bl

e 
7.

36
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 3
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r t

he
 w

al
ki

ng
 p

os
tu

re
. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
o w

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
23

0
12

0
25

18
2

66
7

50
28

11
74

10
1

36
4

10
1

23
38

7
66

7
2

20
0

15
3

12
8

18
9

12
0

40
69

67
53

69
47

15
39

0
17

9
16

2
46

6
12

9
66

3
13

6
99

51
15

7
90

24
11

0
79

37
89

44
10

60
4

13
2

60
60

7
98

28
4

90
87

98
75

71
51

38
42

88
39

46
28

39
6

16
3

98
44

7
13

9
46

5
21

4
19

6
11

3
18

2
19

5
13

6
11

4
96

80
94

74
35

42
4

22
9

12
7

48
4

23
1

11
8

M
ea

n
17

4
13

1
83

15
7

10
8

52
76

62
54

73
44

18
43

6
16

1
94

47
8

13
3

53
ST

D
59

44
43

47
53

50
35

28
32

22
23

14
97

48
55

81
62

42
6

23
0

19
7

47
28

3
18

4
77

39
64

13
10

7
39

21
68

9
21

0
60

68
9

18
4

81
7

21
8

15
4

58
24

1
14

7
45

62
33

27
10

5
44

14
44

2
15

9
63

41
3

15
8

41
8

28
5

19
5

45
28

2
18

6
74

34
62

12
10

5
38

22
68

7
21

1
63

68
8

18
5

76
9

20
3

13
9

12
1

21
3

21
5

10
7

74
77

42
89

72
44

45
9

22
6

14
3

47
7

25
4

11
5

M
ea

n
23

4
17

1
68

25
5

18
3

76
52

59
24

10
2

48
25

56
9

20
2

82
56

7
19

5
78

ST
D

36
29

36
34

28
25

19
19

14
8

16
13

13
7

29
41

14
3

41
30

10
14

8
15

8
17

4
15

0
19

3
10

5
73

87
69

65
77

32
42

0
25

8
17

6
49

1
22

5
10

7

PND PD

 
Ta

bl
e 

7.
37

: D
is

tr
ib

ut
io

n 
of

 th
e 

m
ov

em
en

ts
 p

er
 h

ou
r f

or
 th

e 
le

ft 
an

d 
ri

gh
t s

ho
ul

de
r f

or
 1

0 
pa

tie
nt

s a
t 6

 m
on

th
s a

fte
r s

ur
ge

ry
 fo

r t
he

 w
al

ki
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
19

5
96

28
17

3
90

23
70

36
12

57
28

3
23

0
12

2
30

23
5

10
2

23
2

18
5

14
0

13
1

22
0

84
70

10
0

54
73

10
0

58
30

51
9

17
0

15
8

61
0

16
1

64
3

18
2

21
1

83
18

3
85

40
53

81
53

10
8

53
19

50
4

19
3

70
65

4
10

3
38

4
14

1
93

58
85

70
20

7
60

45
55

29
26

69
56

7
13

4
69

42
6

12
4

15
4

5
19

2
16

6
98

17
1

16
6

10
6

12
5

96
59

85
46

29
43

3
21

3
10

6
56

0
19

1
11

1

M
ea

n
17

9
14

1
80

16
6

99
89

82
62

50
76

42
30

45
1

16
6

87
49

7
13

6
78

ST
D

22
50

39
50

38
73

30
25

23
33

15
24

13
2

38
48

17
0

39
54

6
18

2
98

48
11

2
80

41
66

55
34

12
1

86
38

34
5

12
2

65
32

3
15

3
78

7
15

7
11

9
69

23
6

15
7

67
83

65
48

97
73

23
48

4
17

5
86

41
8

17
4

80
8

12
1

50
15

13
4

96
35

79
40

25
10

3
54

20
44

2
72

25
38

3
10

5
68

9
15

5
11

5
79

22
8

12
5

86
65

62
36

64
51

37
38

8
18

0
10

3
41

6
17

1
10

7

M
ea

n
15

4
96

53
17

8
11

5
57

73
56

36
96

66
30

41
5

13
7

70
38

5
15

1
83

ST
D

25
32

28
64

34
24

9
11

9
24

17
9

61
51

34
44

32
17

10
17

4
13

3
10

3
20

6
21

6
10

8
10

8
61

47
71

74
20

50
8

16
2

71
55

0
17

9
81

PND PD

Chapter 7: Clinical application

183



  

Ta
bl

e 
7.

38
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t b
as

el
in

e 
fo

r t
he

 st
an

di
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

S
lo

w
M

ed
iu

m
Fa

st
S

lo
w

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

S
lo

w
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
S

lo
w

M
ed

iu
m

Fa
st

1
35

10
1

27
5

1
11

4
1

21
4

1
14

9
18

3
16

2
14

2
2

12
2

31
21

97
22

9
37

13
10

25
11

4
29

9
43

28
26

1
30

14
3

13
4

51
20

95
32

12
52

24
12

37
17

7
26

8
61

24
26

7
36

16
4

91
40

27
58

23
9

33
19

13
27

10
6

22
1

51
35

22
3

31
14

5
84

37
17

10
1

39
15

41
20

13
35

13
8

27
6

46
27

28
4

48
24

M
ea

n
93

34
17

76
24

9
35

16
10

29
11

5
24

3
44

23
23

9
32

14
S

TD
39

15
10

32
13

5
15

8
5

7
5

3
60

16
12

49
12

8
6

71
15

4
12

1
36

11
27

11
1

49
18

7
21

7
33

5
21

7
41

19
7

79
19

13
65

17
8

27
11

7
27

10
3

16
4

28
12

15
0

24
12

8
49

6
1

63
23

9
14

4
1

24
10

4
14

6
12

3
13

0
21

15
9

13
3

46
15

11
7

44
15

48
22

7
56

18
8

24
6

56
25

24
2

56
26

M
ea

n
83

22
8

92
30

11
29

12
4

39
14

6
19

3
32

11
18

5
36

18
S

TD
36

17
7

32
12

3
14

7
3

16
5

2
46

18
10

53
16

6
10

70
46

33
75

36
18

25
22

14
29

16
7

19
9

65
38

23
6

55
21

PND PD

 
Ta

bl
e 

7.
39

: D
is

tr
ib

ut
io

n 
of

 th
e 

m
ov

em
en

ts
 p

er
 h

ou
r f

or
 th

e 
le

ft 
an

d 
ri

gh
t s

ho
ul

de
r f

or
 1

0 
pa

tie
nt

s a
t 3

 m
on

th
s a

fte
r s

ur
ge

ry
 fo

r t
he

 st
an

di
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

S
lo

w
M

ed
iu

m
Fa

st
S

lo
w

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

S
lo

w
M

ed
iu

m
Fa

st
Sl

ow
M

ed
iu

m
Fa

st
S

lo
w

M
ed

iu
m

Fa
st

1
10

0
25

11
64

11
3

36
17

7
32

7
1

20
0

33
11

18
0

19
2

2
10

2
25

14
68

15
6

36
16

8
29

11
4

24
5

33
17

23
7

27
10

3
86

31
14

61
22

8
50

22
12

35
6

3
24

4
48

19
25

0
30

9
4

88
44

26
77

26
11

36
25

15
45

17
6

23
0

75
39

24
7

37
17

5
95

39
17

10
0

37
18

42
22

13
44

13
9

24
9

49
25

25
3

48
24

M
ea

n
94

33
16

74
22

9
40

20
11

37
11

5
23

4
48

22
23

3
32

12
S

TD
7

8
6

16
10

6
6

4
3

7
4

3
20

17
11

30
11

8
6

94
34

8
72

32
14

29
18

2
22

7
4

15
6

36
10

13
7

34
20

7
87

23
8

80
24

10
29

8
3

37
8

5
19

5
26

11
13

3
31

12
8

91
33

7
71

34
15

27
15

3
21

6
4

15
2

35
11

13
4

32
11

9
14

4
57

26
14

3
44

25
54

33
20

46
17

11
28

1
75

30
23

7
54

24

M
ea

n
10

4
37

12
92

34
16

35
19

7
32

10
6

19
6

43
16

16
0

38
17

S
TD

27
14

9
35

8
6

13
11

9
12

5
3

60
22

10
51

11
6

10
10

3
67

39
11

2
82

41
35

33
20

58
38

15
28

0
90

45
27

9
95

51

PND PD

 

Chapter 7: Clinical application

184



 

Ta
bl

e 
7.

40
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 6
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r t

he
 st

an
di

ng
 p

os
tu

re
. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
o w

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
94

27
12

84
17

5
32

14
7

26
9

3
13

7
31

13
13

0
20

7
2

10
0

36
21

10
1

36
15

45
19

10
52

17
7

28
6

44
28

24
8

38
23

3
97

37
15

87
27

11
40

21
9

37
15

5
26

2
44

17
25

1
32

13
4

91
40

29
58

21
10

47
20

14
21

6
4

24
0

53
36

21
7

35
12

5
84

39
13

90
32

12
62

19
8

44
11

5
23

5
43

17
27

0
39

19

M
ea

n
93

36
18

84
27

11
45

19
10

36
12

5
23

2
43

22
22

3
33

15
ST

D
6

5
7

16
8

4
11

3
3

13
4

1
57

8
10

55
8

6
6

11
2

27
12

74
21

11
38

12
9

82
20

8
19

9
37

18
19

0
38

25
7

79
36

19
11

6
46

17
44

20
12

41
16

6
23

7
52

28
19

7
48

22
8

53
15

4
68

22
6

28
9

4
50

14
6

21
3

20
5

17
9

28
13

9
11

0
59

28
12

9
48

28
60

33
18

48
22

13
25

1
73

32
23

3
58

33

M
ea

n
89

34
16

97
34

16
43

19
11

55
18

8
22

5
46

21
20

0
43

23
S

TD
28

19
10

30
15

9
13

11
6

18
4

3
23

23
12

23
13

8
10

54
20

10
52

20
7

23
8

7
29

10
8

12
7

26
14

15
5

23
8

PND PD

 
 

Ta
bl

e 
7.

41
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t b
as

el
in

e 
af

te
r s

ur
ge

ry
 fo

r t
he

 si
tti

ng
 p

os
tu

re
. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
39

7
4

34
6

1
22

6
2

23
4

1
10

9
11

2
85

7
2

2
11

7
18

7
82

11
4

23
6

2
16

4
2

24
5

18
10

18
2

14
6

3
10

1
31

10
63

22
13

31
15

9
20

9
2

21
5

39
11

16
7

25
14

4
33

9
5

26
7

2
17

6
4

13
4

2
10

9
16

7
11

1
8

4
5

61
24

9
82

17
8

30
11

6
24

9
2

19
8

21
7

18
4

17
8

M
ea

n
70

18
7

57
13

6
25

9
5

19
6

2
17

5
21

7
14

6
14

7
ST

D
37

10
3

26
7

5
6

4
3

5
3

0
63

11
4

45
7

5
6

26
2

1
55

11
2

14
2

1
22

6
2

81
6

1
81

15
5

7
12

0
32

6
91

26
7

48
13

1
48

9
1

24
6

25
17

19
4

23
7

8
13

2
0

27
5

2
4

1
1

10
2

1
36

4
1

41
7

3
9

56
17

4
62

13
4

19
3

2
27

5
1

10
1

18
2

12
9

15
8

M
ea

n
54

13
3

59
14

4
21

5
1

27
6

1
11

6
13

5
11

1
15

6
ST

D
48

14
3

26
9

2
19

6
1

16
3

1
91

10
8

66
7

2
10

38
16

11
50

12
7

14
9

8
22

6
2

81
19

13
13

1
18

9

PND PD

 

Chapter 7: Clinical application

185



 

Ta
bl

e 
7.

42
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 3
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r t

he
 si

tti
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
57

18
9

99
12

1
36

14
4

19
4

0
19

1
19

11
17

6
12

2
2

70
10

6
51

8
2

19
4

3
20

4
1

18
3

13
7

13
6

12
3

3
10

6
25

10
54

13
2

41
15

6
25

6
1

25
0

28
14

16
9

17
4

4
43

20
12

41
8

7
25

12
7

21
7

2
13

3
26

13
14

3
17

6
5

66
11

6
71

17
9

34
9

6
34

6
3

18
6

24
9

17
6

27
10

M
ea

n
68

17
9

63
12

4
31

11
5

24
5

1
18

9
22

11
16

0
17

5
ST

D
23

6
3

23
4

4
9

4
2

6
1

1
42

6
3

19
6

3
6

61
10

3
95

19
9

12
3

1
18

8
5

10
1

10
4

14
1

24
10

7
63

15
5

54
8

6
24

12
2

31
4

1
15

5
19

7
10

7
13

6
8

64
13

7
70

15
8

33
8

7
31

5
4

18
4

21
7

14
0

22
5

9
10

9
31

11
10

6
20

11
39

17
7

37
7

4
23

3
43

12
17

9
24

10

M
ea

n
74

17
7

81
16

9
27

10
4

29
6

4
16

8
23

8
14

2
21

8
ST

D
23

9
3

24
5

2
12

6
3

8
2

2
55

14
3

29
5

3
10

40
13

6
57

14
7

12
7

3
27

8
5

11
6

20
8

14
2

23
9

PND PD

 
 

Ta
bl

e 
7.

43
: D

is
tr

ib
ut

io
n 

of
 th

e 
m

ov
em

en
ts

 p
er

 h
ou

r f
or

 th
e 

le
ft 

an
d 

ri
gh

t s
ho

ul
de

r f
or

 1
0 

pa
tie

nt
s a

t 6
 m

on
th

s a
fte

r s
ur

ge
ry

 fo
r t

he
 si

tti
ng

 p
os

tu
re

. 

N
FE

N
A

A
N

IE

R
ig

ht
Le

ft
R

ig
ht

Le
ft

R
ig

ht
Le

ft
Pa

tie
nt

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

Sl
ow

M
ed

iu
m

Fa
st

1
55

13
5

58
9

2
21

7
5

22
2

2
91

15
4

90
10

2
2

76
17

8
82

12
6

49
9

9
45

7
3

20
8

21
11

15
7

16
8

3
81

24
6

77
15

5
31

17
5

25
5

3
15

2
26

11
11

2
19

6
4

57
20

14
44

15
6

36
16

12
24

6
4

16
2

33
22

12
0

24
13

5
62

14
6

49
12

5
37

12
5

30
5

2
19

4
17

7
13

5
16

5

M
ea

n
66

18
8

62
13

5
35

12
7

29
5

3
16

1
22

11
12

3
17

7
ST

D
12

5
4

17
3

2
10

4
3

9
2

1
45

7
7

25
5

4
6

14
2

32
12

71
21

20
40

10
10

83
17

10
22

7
49

19
18

9
49

39
7

85
30

9
76

12
6

41
16

7
28

6
3

26
2

35
11

14
9

16
7

8
54

10
1

61
12

5
34

9
1

62
6

2
18

8
12

3
14

2
19

8
9

99
35

15
93

34
22

37
20

16
33

15
6

18
3

46
22

16
8

44
24

M
ea

n
95

27
9

75
20

13
38

14
9

52
11

5
21

5
36

14
16

2
32

20
ST

D
37

11
6

13
10

9
3

5
6

26
6

4
37

17
9

21
17

15
10

40
11

4
33

11
7

18
10

4
26

6
4

10
7

17
5

11
3

18
6

PND PD

Chapter 7: Clinical application

186



 

7.2.3.4 Detection of the working level of the humerus during the daily activity 

 

Using the algorithm described in the chapter 6, we analyzed the working level above the 

level 5 (L58) for the 10 patients at baseline, 3 and 6 months after surgery. The Table 7.44 

shows the difference of number of working levels L58 per hour between the healthy and 

the painful shoulder for the patients at baseline, 3 and 6 months after surgery, and for the 

control group. 

 
Table 7.44: Average difference of number of working levels L58 per hour between the painful and the 

healthy shoulder for the control group and the patients at baseline, 3 and 6 months after surgery. 
       
 P1  P2  P3  

Levels Δ std Δ std Δ std 
L58 control 3.60 15.12 0.17 1.53 -0.05 0.66 

Levels Delta std Delta std Delta std 
L58 baseline 8.11 31.64 1.91 2.40 0.68 1.08 
L58 3 months 19.32 26.53 2.01 5.50 0.32 2.59 
L58 6 months 10.85 19.84 0.36 2.72 0.18 0.85 

 

The Table 7.45 shows the relationship between the working levels for the patients with 

the Constant questionnaires (WLC) and the maximum working level from our method 

(mWL). All the maximum working levels for the patients were reached during the period 

P1 (0s-1s). C0 to C4 corresponded respectively to the pelvis, xyphoïd, neck, head and 

above the head levels. 

 
Table 7.45: Working Level of the Constant questionnaire (WLC) and the maximum level of our method 

(mWL)  for the patients at baseline, 3 and 6 months after surgery. 
 Baseline    3 months    6 months    

 Healthy  Painful  Healthy  Painful  Healthy  Painful  
Patient WLC mWL WLC mWL WLC mWL WLC mWL WLC mWL WLC mWL

1 L6 C1 L6 L8 C1 L4 L8 C1 L7 
2 L7 C1 L5 L7 C2 L5 L7 C2 L6 
3 L6 C4 L5 L6 C4 L4 L7 C4 L5 
4 L7 C1 L7 L7 C1 L6 L7 C2 L7 
5 L8 C2 L4 L7 C2 L6 L6 C4 L6 
6 L8 C0 L4 L8 C2 L7 L8 C4 L7 
7 L6 C3 L6 L7 C4 L8 L7 C4 L7 
8 L8 C0 L6 L7 C3 L8 L8 C1 L5 
9 L7 C1 L7 L8 C3 L6 L7 C4 L6 

10 

C4 
 

 L8 C4 L7 

C4 
 

 
 L7 C4 L7 

C4 
 
 

 L7 C4 L6 
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The working level part of the Constant score has shown a significant difference between 

the healthy and the painful side at baseline, 3 and 6 months after surgery (p<0.04). The 

difference between the healthy and the painful shoulder was also significant for the mWL 

of our method (p<0.03). For the comparison between the follow-up and the baseline, the 

WLC has shown no significant difference (p>0.06) between baseline and 3 months but a 

significant difference appeared at 6 months after surgery (p<0.02). The mWL has shown 

significant differences between baseline and 3, 6 months after surgery (p<0.001). There 

was no difference between 3 months and 6 months after surgery for the WLC (p>0.4) but 

the opposite was occurred for the mWL (Table 7.44 and 7.45). Moreover, we found a low 

correlation (R=0.44) between the WLC and the mWL. 

 
Table 7.46: Summary of the comparison between the healthy shoulders and the painful shoulders, and 

between baseline and follow-up for the WLC and mWL. 
      

Healthy/Painful WLC mWL 
Baseline p<0.001 p<0.01 
3 months p<0.02 p<0.03 
6 months p<0.04 p<0.01 

Baseline/Follow-up WLC mWL 
3 months NS p<0.01 
6 months p<0.02 p<0.001

 

The Tables 7.47 to 7.49 show the results for the Working Level Scores at baseline, 3 

months and 6 months after surgery. In the chapter 6, we observed a WLS of 100% (±31) 

in average for the control group. At baseline, 3 and 6 months after surgery, the average 

WLS was 54% (±17), 77% (±18) and 87% (±21) respectively. 
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Table 7.47: Working Level Score (WLS) and Weighting scores for the periods P1 (0s-1s), P2 (1s-5s) and 
P3 (5s-30s) for the patients at baseline. 

 Patient P1 P2 P3 WP P1 P2 P3 WH WLS 
1 15 20 18 53 36 20 20 86 62 
2 10 20 18 48 28 30 45 103 47 
3 10 12 9 31 15 20 18 53 58 
4 15 12 18 45 28 30 30 88 51 

P
N

D
 

5 10 12 18 40 36 30 45 111 36 
   P1 P2 P3 WH P1 P2 P3 WP WLS 

6 36 56 57 149 10 20 18 48 32 
7 21 30 30 81 21 20 9 50 62 
8 36 58 54 148 21 20 18 59 40 
9 28 30 18 76 21 30 18 69 91 
  P1 P2 P3 WP P1 P2 P3 WH WLS 

P
D

 

10 21 42 45 108 21 20 30 71 66 
 

Table 7.48: Working Level Score (WLS) and Weighting scores for the periods P1 (0s-1s), P2 (1s-5s) and 
P3 (5s-30s) for the patients at 3 months. 

 Patient P1 P2 P3 WP P1 P2 P3 WH WLS 
1 10 20 18 48 28 20 30 78 62 
2 21 12 18 51 21 30 18 69 74 
3 15 20 18 53 21 30 9 60 88 
4 28 12 18 58 28 30 30 88 66 

P
N

D
 

5 21 20 30 71 21 30 30 81 88 
   P1 P2 P3 WH P1 P2 P3 WP WLS 

6 36 72 108 216 21 42 63 126 58 
7 28 30 45 103 36 30 45 111 108 
8 36 30 18 84 15 20 18 53 63 
9 28 20 30 78 21 30 30 81 104 
  P1 P2 P3 WP P1 P2 P3 WH WLS 

P
D

 

10 22 44 66 132 21 30 30 81 61 
 

Table 7.49: Working Level Score (WLS) and Weighting scores for the periods P1 (0s-1s), P2 (1s-5s) and 
P3 (5s-30s) for the patients at 6 months. 

 Patient P1 P2 P3 WP P1 P2 P3 WH WLS 
1 15 12 9 36 15 20 18 53 68 
2 15 30 18 63 28 30 21 79 80 
3 15 30 30 75 28 30 30 88 85 
4 28 12 18 58 28 34 18 80 73 

P
N

D
 

5 21 42 33 96 21 42 63 126 76 
   P1 P2 P3 WH P1 P2 P3 WP WLS 

6 36 42 18 96 21 20 18 59 61 
7 21 20 18 59 21 20 30 71 120 
8 15 20 18 53 21 30 9 60 113 
9 28 20 30 78 15 30 45 90 115 
  P1 P2 P3 WP P1 P2 P3 WH WLS 

P
D

 

10 36 44 30 110 21 30 30 81 74 
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At baseline and 3 months after treatment, we observed a significant difference (p<0.03) 

between the healthy and the painful side for the weighting scores of the periods P1, P2, 

and P3, and we observed a significant difference for the WLS between the control group 

and the patients (p<0.01) (Table 7.50).  

 

At 6 months after surgery, we observed no significant difference (p>0.15) between the 

healthy and the painful side for the weighting scores of the periods P1, P2 and P3 and the 

WLS.  

 
Table 7.50: Summary of the comparison between the healthy shoulders and the painful shoulders, and 

between baseline and follow-up for the WLS.  
    

Healthy/Painful WLS 
Baseline p<0.01 
3 months p<0.03 
6 months NS 

Baseline/Follow-up WLS 
3 months p<0.01 
6 months p<0.004

 

No significant difference appeared for the comparison fof the evolution of the WLS 

between 3 months and 6 months after surgery (p>0.1). Moreover, a fair correlation was 

observed (R=0.59) between the WLS and the Constant score. 
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7.2.4 Discussion 

 

7.2.4.1 Clinical scores 

 

The clinical scores (DASH, SST, Constant, ASES) are the most recognized scores for the 

evaluation of the functionality of the shoulder. We observed in the Tables 7.14 to 7.16 a 

tendency for these clinical scores (except the balanced Constant score) to be less 

responsive than the method we proposed. Indeed, significant differences were shown for 

the comparison between the patients’ group and the control group at baseline and follow-

up, but no significant difference was found between baseline and follow-up. Moreover, 

these clinical scores are linked to the patients’ answers and did not give an objective 

evaluation of the functionality of the shoulder during the daily activity. No clinical scores 

assessed the number of movements performed during a day, the real contribution of the 

non dominant and dominant shoulder and the real working level and the endurance to 

work at a specific level. These clinical scores are useful to have an evaluation on what the 

patient can do, but not on what the patient does actually. Moreover, their sensitivity to 

change are not always enough in estimating the evaluation of the shoulder function after 

surgery. 

 

7.2.4.2 Estimation of the dominant shoulder during daily activity 

 

Using the algorithm described in the chapter 4, we estimated which shoulder was more 

active for the 10 patients before surgery, 3 and 6 months after surgery (Tables 7.18 to 

7.20). 

 

At baseline, the patients of the PD group used more their non dominant shoulder during 

the sitting, standing and walking (in average +14%). Indeed, their painful shoulder was 

the dominant one. The patient of the PND group used more their dominant shoulder as 

predicted, because their painful shoulder was the non dominant one. But, during the walk 

they used more the non painful shoulder. The patient of the PND group used their 
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dominant shoulders much more (in average +24 %) compared to the healthy group (in 

average +18%) (Table 7.17). 

 

We can conclude that if a patient had a disease to his dominant shoulder, he used more 

his non dominant shoulder during the daily activity, while, for a patient with a disease to 

his non dominant shoulder, he will use his dominant shoulder much more than usual 

during (Table 7.18). 

 

Three months after surgery, the tendency is almost the same for the PND at baseline 

(+31%), while, for the PD group, the tendency seems to be reversed: the healthy non 

dominant shoulder was in average 7% more active than the painful dominant shoulder. 

Albeit, for the standing position, the shoulders had the same rate of activity (Table 7.19). 

 

Six months after surgery, the dominant shoulders of the PD group’s patients retrieved 

their “dominance”. The painful dominant shoulder was in average 12 % more active than 

the non painful shoulder. The PND group still used its dominant shoulder (in average 26 

%) more than the healthy group (Table 7.20). The reason of the small p value (p=0.053) 

for the difference between the healthy and the painful side at 6 months after surgery for 

the sitting/standing periods could be to the small number of patients. A larger number of 

patients could decrease this value to show a significant difference. 
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The Figure 7.3 shows the evolution of the functionality of the painful dominant shoulder 

for the right-handed patient of the PND group. 
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Figure 7.3: The evolution of the functionality of the painful dominant shoulder for the right-handed patient 

of the PND group for a) walking, b) standing and c) sitting. 
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All right-handed patients of the PD group retrieved their functionality of their dominant 

shoulder at 6 months after surgery. Their rate reached almost the rate of the right shoulder 

of the right-handed control subjects and they were higher than the baseline (Figure 7.4).  
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Figure 7.4: The evolution of the functionality of the painful dominant shoulder for the right-handed patient 

of the PD group for a) walking, b) standing and c) sitting. 
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The left-handed patients of the PD group retrieved their functionality of their dominant 

shoulder at 6 months after surgery. Their rate reached almost the rate of the left shoulder 

of the left-handed control subjects or they were higher than the baseline (Figure 7.5).  
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Figure 7.5: The evolution of the functionality of the painful dominant shoulder for the left-handed patient of 

the PD group for a) walking, b) standing and c) sitting. 
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We have the same observation for the value of the mean P (Table 7.22). The patients of 

the PD group had a mean P value greater for the healthy non dominant shoulder than the 

painful dominant shoulder at baseline. But the tendency is reverted at 3 and 6 months 

after surgery. The patients of the PND group had a mean P value greater at 6 months than 

at baseline, but the mean P value is still greater for the healthy dominant shoulder than 

the painful non dominant shoulder at baseline, 3 and 6 months after surgery. 

 

We expect that 12 months after surgery the patients will retrieve a normal functionality of 

their operated shoulder. 

 

7.2.4.3 Characterization of the movement of the humerus during daily activity 

 

A. Number of flexions, abductions and int/ext rotations per hour 

 

Using the algorithm described in the chapter 5, we estimated the differences of number of 

movements (flexion (NFE), abduction (NAA) and int/ext rotation (NIE)) of the humerus 

between the healthy and the painful shoulder for the 10 patients (Tables 7.24 to 7.26). 

 

Before surgery, we observed that the patients of the PD group performed more 

movements with their healthy non dominant shoulder than their painful dominant 

shoulder. Their dominant shoulder lost its predominance in favor of the healthy shoulder, 

the non dominant shoulder. The patients of the PND group performed more movements 

with their healthy dominant shoulder as expected (Figure 7.6 a)). 

 

At 3 and 6 months after surgery, the tendency is reverted. The patients of the PD group 

performed slightly more movements with their dominant shoulder. Their dominant 

shoulder retrieved its predominance (Figures 7.6 b) and c)) after treatment. 
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Figure 7.6: Difference of the number of flexions, abductions and int/ext rotations per hour between the 

dominant shoulder and the non dominant shoulder for the 10 patients  for all activities at a)Baseline, b) 3 
months after surgery and c) 6 months after surgery. 
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B. Combination of the adjunct and conjunct rotation 

 

The results in the chapter 5 showed that there was no difference between the dominant 

humerus and the non dominant humerus for the healthy subjects. So, we compared the PS 

and HS group. At baseline, the only difference was for the contribution of the IE 

movement. There was less IE rotation for the PS group (Table 7.28). Indeed, the patients 

with a tear in a rotator cuff tendon have a pain or a weakness on internal or external 

rotation of the humerus2. 

 

At 3 and 6 months after surgery, the patients retrieved a normal contribution of the IE 

rotation. 

 

C. Angular velocity distribution of the flexion, abduction and int/ext rotation 

 

At baseline, we found a significant difference between the PS group and the HS group for 

the fast flexion, abduction and int/ext rotation. The healthy shoulders performed more 

movements above 100°/s than the painful shoulders.  

 

At 3 and 6 months after surgery, the painful shoulders had the same angular distribution 

than the healthy shoulders. The angular velocity of the humerus of the painful side 

increased after surgery. 

 

A typical healthy subject has the same angular velocity distribution for the flexion, 

abduction and int/ext rotation for the dominant shoulder and the non dominant shoulder. 

The predominance does not matter for the angular velocity distribution of the 

movements. For a typical patient, there are less fast movements (higher than 100°/s) for 

the painful shoulder at baseline. At 3 months after surgery, the patients will perform 

again fast movements. 

 

 

 

Chapter 7: Clinical application

198



 

7.2.4.4 Detection of the working level of the humerus during the daily activity 

 

Using the algorithm described in the chapter 6, we estimated the ability for the 10 

patients to work at a specific level with the humerus and compared it between the healthy 

side and the painful side (Tables 7.44). 

 

The difference of number of the working levels L58 per hour between the healthy and the 

painful shoulders showed that the frequency of the working levels reached above the 

shoulder decreased for the painful side at baseline and 3 months after surgery. The 

tendency is inverted at 6 months after surgery. The painful side still reached a lower 

working level than the healthy side but the difference decreased (Δbaseline = 8.1; 

Δ3months = 19.3; Δ6months = 10.8) (Table 7.44). We expect that the patient will have, 

as the control group, almost the same number of working levels per hour for his painful 

shoulder at 12 months after surgery.   

 

Compared to the mWL, there was no significant difference for the WLC between the 

baseline and 3 months after surgery (p=0.062). The small number of patients and the poor 

sensitivity of the WLC can explain this p value. But also, this difference can be explain 

by the fact that WLC corresponds to what a patient considers to be able to do, while 

mWL expresses what he or she has really do. The mWL is rather high even for painful 

side (Table 7.46), probably because of the fact that the maximum of the working level 

reached is taken. We proposed a more significant method by choosing the maximum 

level to balance by the duration: WLS. 

 

Compared to the Constant score, the WLS score showed a better responsiveness to the 

variation of the activity of the shoulder. Indeed, the WLS showed a significant difference 

at 6 months after surgery compared to the Constant score which showed no significant 

difference. 
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The evolution of the ability of working at a specific a level can be shown with the WLS 

(Figure 7.7). Improvements are shown between the preoperative and the postoperative 

periods (3 and 6 months). 
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Figure 7.7: The WLS for the control group and for the patients at baseline, 3 and 6 months after surgery. 

 

7.2.5 Conclusion 

 

We described three different methods of assessing the functionality of the shoulder 

during daily activity: one to assess the dominant segment and its intensity to move, one to 

estimate the number of flexions, abductions and int/ext rotations per hour and one to 

assess the working level and the endurance of the shoulder.  

 

Even the sample size is too small, the results showed interesting tendencies that should be 

very useful for further studies on the shoulder and for the choice of outcome tool in 
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clinical practice. Major results regarding the outcome evaluation of the patient after the 

shoulder surgery are summarized in Table 7.51.  

 
Table 7.51: Summary of the comparison between the healthy and the painful shoulders, and between 

baseline and follow-up for the WLS.  
Patient with a disease at the dominant side Patient with a disease at the non dominant side 

Estimation of the dominant shoulder during daily activity 

Baseline: 

• The non dominant side was used 
more than the dominant side. 

• The intensity was higher on the non 
dominant side. 

3 months after surgery: 
• The dominant side was used at 

almost the same rate as the non 
dominant side. 

• The intensity was higher than 
baseline but still less than the non 
dominant. 

6 months after surgery: 
• The dominant side was used more 

than the non dominant. The 
tendency was reserved. 

• The intensity was higher than the 
non dominant side and than 3 
months. 

Baseline: 

• The dominant side was used more than the 
normality. 

• The intensity was higher on the dominant 
side. 

3 months after surgery: 
• The non dominant side was used more 

than baseline, but still less than the 
normality. 

• The intensity was higher on the dominant 
side. 

 
6 months after surgery: 

• The non dominant side was used as the 
same rate as the normality. 

• The intensity was still higher on the 
dominant side. 

 

Characterization of the movement of the humerus during daily activity 

Baseline: 

• The number of flexion, abduction 
and int/ext rotation per hour was 
higher for the non dominant side. 

• There was less number of movement 
for the fast movement for the painful 
side. 

• There was less IE conjunct rotation 
for the painful side. 

3 months after surgery: 
• There was almost the same number 

of movements for the painful 
dominant side and the healthy non 
dominant side. 

• There was less number of 

Baseline: 

• The number of flexion, abduction and 
int/ext rotation per hour was higher for the 
dominant side. 

• There was less number of movement for 
the fast movement for the painful side. 

• There was less IE conjunct rotation for the 
painful side. 

 
3 months after surgery: 

• There was more number movements for 
the dominant side than baseline. 

• There was less number of movements for 
the fast movement for the painful side. 

• There was no difference between the 
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movements for the fast movement 
for the painful side. 

• There was no difference between the 
dominant and the non dominant side 
for the combination of rotations. 

6 months after surgery: 
• There was more number of 

movements per hour for the 
dominant side than the healthy non 
dominant side. 

• The angular velocity distribution of 
the number of movements was the 
same for both arms. 

• There was no difference between the 
dominant and the non dominant side 
for the combination of rotations. 

dominant and non dominant side for the 
combination of rotations. 

 

 

6 months after surgery: 
• There was more number of movements 

per hour for the dominant side than the 
non dominant side. 

• The angular velocity distribution of the 
number of movement was the same for 
both arms. 

• There was no difference between the 
dominant and the non dominant side for 
the combination of rotations. 

Detection of the working level of the humerus during the daily activity 

Baseline: 
• The painful side had less number of working levels above the shoulder than the healthy 

side. 
• The WLS score was very low compared to the control group. 

3 months after surgery: 
• The painful side had still less number of working levels per hour above the shoulder than 

the healthy side. 
• The WLS score was higher than at baseline but was still lower than the control group. 

6 months after surgery: 
• The painful side had almost the same number of working levels above the shoulder. 
• The WLS score was higher than 3 months after surgery and closer of the control group. 
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Chapter 8   General discussion and future prospects 
 
 

8.1 General results and main contributions 

 

The objective of this thesis was to design an objective outcome evaluation of the shoulder 

after surgery that can be used for clinical practice. The project intended to evaluate the 

use of movement recording with body-fixed inertial sensors for the assessment of the 

functionality of the shoulder in patient suffering from rotator cuff disease or osteoarthritis 

based on monitoring of the daily physical activity. The main results and contributions of 

this thesis can be summarized as follows: 

 

1. Ambulatory recording system. 

A specific sensor-based motion recorder system was designed. It was an 

ambulatory system that can be used for long-term monitoring without hindrance 

to natural activities. The shoulder movements were captured with five inertial 

sensor modules using 3D accelerometers and 3D gyroscopes. The sensor modules 

were mounted on each distal part of both humerus, on the superior part of both 

scapula’s spines and on the thorax. This system corresponds to the actual needs of 

clinicians, physical therapists and orthopedics surgeons to provide an objective 

outcome evaluation of the shoulder after surgery. It allows long-term 

measurements as well as short-term measurements.   

 

2. Kinematic scores for the short-term evaluation of the shoulder’s functionality.  

Three different kinematic scores were proposed. The P score was based on the 

combination of the accelerations and the angular velocities of the humerus. The 

RAV score was based on the range of the angular velocity of the humerus and the 

M score was based on the sum of all moments on the humerus. 26 patients with 

rotator cuff disease or osteoarthritis, and 31 healthy subjects were studied. These 

scores were based on 9 simple tests that can be carried out in a clinical or hospital 
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environment or at home. An objective score can be established this way in a short 

time by the doctor at each patient’s visit. The results showed that the kinematic 

scores can show objectively the improvement after surgery. The results of this 

study have been published in a journal article1. 

 

3. Estimation of the difference between the movement intensity of the dominant and 

the non dominant arm in healthy subjects and patients during daily activity. 

Using an extension of the P score during daily activity, we developed a new 

method to evaluate the dominant upper-limb segment. 10 patients with rotator 

cuff disease at baseline, 3 and 6 months after surgery and 31 healthy subjects, 

who carried our system during ~8 hours, were studied. The method can quantify 

the difference between the dominant and the non dominant side for a healthy 

subject, and between healthy and painful side for the patient during the walking, 

sitting and standing periods. Data showed that the subjects used their dominant 

upper-limb 18% more than the non dominant upper-limb. The measurements on 

patients have shown that they have used more their non affected and non 

dominant side during daily activity if the dominant side = affected shoulder. If the 

dominant side ≠ affected shoulder, the difference can be shown only during the 

walking period. The estimation of the dominant side can be used for other 

applications. In fact, this system can detect what kind of work or activity can 

generate a problem of the shoulder. For example, a house painter uses more his 

dominant side than a secretary. The results of this study have been published in a 

journal article2. 

 

4. Identification of the type of the movement of the humerus and its characterization 

during daily activity. 

Using 3D gyroscopes attached on the humerus, we have detected the number of 

movements of flexion, abduction and internal/external rotations per hour. The 

method was validated in a laboratory setting and then tested on 31 healthy 

volunteer subjects without any shoulder pathologies and on 10 patients with 

rotator cuff disease while carrying the system during ~8 hours of their daily life. 
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We were also able to evaluate the combination rate of adjunct and conjunct 

rotations and the angular velocity distribution of the movements per hour. We 

have observed that there was no significant difference for the number of 

movements per hour, the combination rate of adjunct and conjunct rotations and 

the angular velocity distribution between the dominant and the non dominant side 

for the healthy subjects, but the difference was observed for the patients between 

the healthy and the painful side. The number of movement per hour, the angular 

velocity distribution increased after treatment. This method is complementary to 

the method of the estimation of the dominant upper-limb segment. Indeed, we can 

estimate the type of the movements that the dominant and the non dominant 

humerus have done during daily activity. This method can also be useful for 

different medical applications. For example, for a patient who had a small number 

of internal/external rotations per hour, a physiotherapist can adapt his treatment to 

increase the number of this kind of movements. The results of this study have 

been submitted for publication3. 

 

5. Estimation of the working level of the shoulder during daily activity. 

We developed a new method of assessing the working level of the shoulder 

during daily activity. We were able to estimate the dominant upper-limb segment, 

its number of movements per hour and, with this method, the working level 

during daily activity. The method was validated in a laboratory with 5 healthy 

subjects. 31 healthy subjects and 10 patients at baseline, and 3 and 6 months after 

surgery were studied during their daily activities. We evaluated the number of 

working levels per hour during three different periods (P1: 0s-1s; P2: 1s-5s; P3: 

5s-30s). We observed that the frequency of the working levels above the shoulder 

was less for the painful side than the healthy side. The tendency is inverted at 6 

months after surgery. We developed the Working Level Score (WLS) that is 

based on the endurance of the shoulder to work at a specific level. Improvements 

of the WLS are shown between the preoperative and the postoperative periods (3 

and 6 months). Compared to the clinical evaluation using questionnaires (e.g. the 

Constant score), the WLS score, based on the endurance (frequency + duration) of 
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the shoulder, gives an objective evaluation of the working level during daily 

activity.  This way, it provides what the patient has really performed during daily 

activity instead of the patient evaluation of his ability to perform a task. The 

results of this study have been submitted for publication4. 

 

6. Clinical protocols and a database of movement patterns. 

Two clinical studies were performed using our ambulatory system. The first 

protocol (short-term measurement) was conducted on 31 healthy subjects and on 

26 patients. Preoperative results were compared with postoperative results (3 

months, 6 months and 1 year). Each measurement lasted 6 minutes per 

subject/patient. As a result, a 14-hour database of different movement patterns 

was created. The second protocol (long-term measurement) was conducted on the 

31 healthy subjects of the first protocol, and on ten new patients with a rotator 

cuff disease. Each patient/subject wore the ambulatory system during ~8 hours. 

We proposed the following objective parameters for outcome evaluation: the 

number of movements (flexion, abduction and internal/external rotation) per hour, 

angular velocity distribution of the movement per hour, the working level of the 

humerus, the Working Level Score (WLS) and the estimation of the dominant 

upper-limb segment. A 449-hour database of long-term measurement was created. 

These results cannot be obtained through other clinical evaluations and 

complement the clinical scores with a useful objective dynamic evaluation. These 

results could be used for further clinical analysis on more patients. Clinicians can 

used the results of the clinical scores on patients with osteoarthritis or rotator cuff 

disease as well as our kinematics parameters as references for other studies.  
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8.2 Future researches 

 
 The thesis can be extended to the following directions: 
 

8.2.1 Multi-segments model 

 

A potential improvement of these tools would be to add a 3D model of each segment of 

the shoulder girdle and to study the inter-action between them during daily activity. The 

knowledge of the scapula movement and the glenohumeral to scapulothoracic (GH:ST)  

ratio could be useful to evaluate the functionality of a patient’s shoulder. One of our 

current studies, using our shoulder measurement system, evaluated the GH:ST ratio of 

2.2:1 in accordance to the literature5,6,7on 10 healthy subjects (Figure 8.1).  
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Figure 8.1: Contribution of the glenohumeral and scapulothoracic joints to arm motion for 10 subjects. 

There is 2.2° of glenohumeral motion every 1° of scapulothoracic motion during abduction. 
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The inertial modules on the spine of the scapula and on the humerus were used. The 

abduction and adduction movements of the humerus and the lateral rotations of the 

scapula were estimated from 3D accelerometers and 3D gyroscopes. This method needs 

to be more accurate and validated, for example, by fluoroscopy techniques (Roentgen 

Stereo Photogrametric Analysis, RSA).  

 

Furthermore, some other researchers have a finite element shoulder model8,9,10 to evaluate 

force distribution in joint. Usually, they used flexion, abduction and internal/external 

rotations values from literatures to estimate the forces. The knowledge of the 3D 

movements of the clavicle, humerus, forearm and scapula associated to our daily activity 

data could be useful to measure more accurately the force, torque and moment on the 

shoulder girdle and will increase the reliability of these measures. 

 

8.2.2 EMG for detecting the load 

 

Another interesting direction is to use the inertial sensors with EMG sensors to evaluate 

the influence of a load on the shoulder. We showed in the chapter 4, 5 and 6 the issue 

regarding of carrying a load during daily activity. One of our current studies showed that 

the difference between walking with and without a bag was considerable for the deltoid 

and trapezius muscle (Figure 8.2 and 8.3). 
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Figure 8.2: EMG average for all subject for the deltoid. 
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Figure 8.3: EMG average for all subject for the trapezius. 

 

An improvement would be to estimate the limit of kinematics in a functional evaluation 

by assessing the correlation between kinematics and kinetics parameters and how these 

correlation change in a pathological case, and secondly, to improve the kinematics 

evaluation of the segments where inertial sensors are less accurate (e.g. scapula), by 

considering the muscle activation involved in the movement of such a segment. A new 

grant from the Swiss national foundation (NRP 53: Musculoskelethal health –chronic 

pain) was accorded to this study. 

 

8.2.3 Use of our methods for other studies 

 

We have developed new methods to evaluate the number of movements (flexion, 

abduction and internal/external rotation) per hour, estimate the dominant upper-limb 

segment and evaluate the working level of the shoulder. The detection method of the 

number of movements per hour can be easily adapted to other body segments, such as the 

forearm or the lower limbs. In robotic, the invariability of the rate of conjunct and adjunct 

rotations could be useful to simulate the movement of the humerus. The method of 

estimating the dominant segment could be extended to other segments like the forearm, 

the hand or the lower-limbs. The algorithm to detect motionless periods for the evaluation 

of the working level could also be used in other body segments, for example, in trunk, to 
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evaluate trunk sway in subject with balance impairment. These results regarding the 

statistic of the motionless periods (Figure 6.7) reveal a new insight of rest/activity 

distributions of the body segments over a long period of recording. These results can also 

be exploited by considering the long-term correlation in the segment mobility (e.g. self 

similarity and fractal analysis). 

 

A fractal analysis could be done on the working level distribution and the distribution of 

the movements per hour. A combination between the detection of the working level and 

the movement of the humerus could estimate the value of the angle of these movements. 

 

An other application would be to estimate the type of movement (FE, AA or IE) 

performed to reach a working level. This way, it will be possible to estimate for each 

working level the 3D angles. 

 

Finally, the hardware can be improved and further developed to design a wearable system 

which will be totally a non obtrusive device that allows physicians to overcome the 

limitations of ambulatory technology and provide a response to the need for monitoring 

individuals over weeks or even months. 
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Nomenclature 
 
 
Frequently used symbols and abbreviations: 
 
3D    Three dimensional 
t   Time 
s   Second 
ms   Millisecond 
g   gravitational acceleration (9 = 9.81 m/s2) 
ω Angular velocity 
av Vertical acceleration 
m/s   Meter / second 
yrs   Years old 
max   Maximum 
min   Minimum 
p Probability 
NS Non significant 
R   Correlation factor 
RMS Root Mean Square 
th   Threshold for the detection of the movements of the humerus 
thp   Threshold for estimating dominant shoulder 
STD   Standard Deviation 
TP True Positive 
TN True Negative 
FP False Positive 
FN False Negative 
ICC InterClass Correlation 
P Kinematic score based on the product of the acceleration range by 

the angular velocity range 
RAV Range of Angular Velocity. Kinematic score based on the angular 

velocities 
M Kinematic score based on the sum of all moments on the humerus 
I Inertial matrix 
Lh Length of the humerus 
Ch circumference of the biceps 
m Mass of the humerus 
Working level  Ability to work at a specific level 
ARS   Right shoulder usage rate 
ALS    Left shoulder usage rate 
Intensity  Combination of accelerations and angular velocities to characterize 

a movement 
D Dominant 
ND Non Dominant 
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AA Abduction-Adduction 
FE Flexion-Extension 
IE Internal/External rotation 
NAA Number of abduction-adduction 
NFE Number of flexion-extension 
NIE Number of internal/external rotation 
Adjunct rotation Voluntary rotation 
Conjunct rotation Automatic rotation 
Li Level i (i = 0:8) 
Pj Period j (j = 1 :3) 
WS Weighting Score 
WLS Working Level Score 
GH:ST Glenohumeral to scapulothoracic ratio 
EMG Electromyogram 
RSA Roentgen Stereo photogrametric Analysis 
DASH Disabilities of the Arm, Shoulder and Hand 
SST Simple Shoulder Test 
ASES American Shoulder and Elbow Surgeons Evaluation 
VAS Visual Analog Scale 
BMI Body Mass Index 
Ri Right 
Le Left 
A Osteoarthritis 
C Rotator cuff disease 
MEMS Micro Electro Mechanical Systems 
WLAN Wireless Local Area Network 
 
 
 
 

Nomenclature
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