Constraint Satisfaction Methods for Applications in
Engineering

Esther Gelle*, Boi V. Faltings*, Denis E. Clément® and Ian F.C. Smith®
* Artificial Intelligence Laboratory (LIA)
° Institute of Structural Engineering and Mechanics (ISS-IMAC)
EPFL - Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

Abstract

Constraints provide declarative descriptions of important requirements related
to engineering projects. Most existing algorithms for constraint satisfaction require
input consisting of binary constraints on variables that have discrete values. Such
restrictions limit their use in engineering since complex constraints, involving several
variables that have discrete and numeric values, are common. This paper provides
an approach for decision support through approximating solution spaces that are
defined by constraints. Our algorithm is not limited to a specific type of constraint
but handles numeric and discrete variables in the same framework. Since a new type
of local consistency narrows down the search space effectively, full-scale engineering
tasks, such as designs involving hundreds of variables, are accommodated without
excessive computational complexity. The approach is demonstrated for selection
of appropriate wind bracing for single story steel-framed buildings. Results may
be used for input into other tools containing algorithms such as those offering i)
higher levels of consistency, ii) optimally directed point-solution search and iii)
simulation behavior. Finally, extension to dynamic constraint satisfaction using
different combinations of activation conditions is straightforward. It is expected that
this approach will improve the performance of many existing and future computer-
aided engineering tools.

1 Introduction

Key engineering tasks have always been decomposed into constraints. A structural design
task, for example, is decomposed into functional criteria such as structural safety and
serviceability and these criteria are represented in terms of inequalities. Examples of
inequalities are : i) the stresses due to loads must be less than the resistance provided by
the structural system and ii) the deflection under loading must be less than the maximum
allowable deflection. Some criteria may also be geometric; for example, the available
clearance beneath a bridge must be greater than the minimum required clearance. Since
application of relevant geometrical and engineering principles is always carried out within

the scope of such functional criteria, most important engineering decision making involves
judgements regarding inequalities.

Inequality constraints define sets of solutions called solutions spaces. Currently, single
point solutions are employed in engineering because solution spaces are difficult to calcu-
late and to manage and because traditional media, such as engineering drawings, require
fixed-value assignments for variables. Nevertheless, solution spaces have many advan-
tages. For example, designers are free to consider other criteria that is difficult to express
formally (such as aesthetics and socio-economic factors) in their final choice of design
when they are able to explore solution spaces. Also, least commitment decision strategies
are supported more effectively and this leads to less complicated revisions when conditions
change. Other advantages include fewer artificial conflicts, opportunities for more effec-
tive negotiation between partners and efficient bounding of optimally directed decision
strategies [Lottaz et al., 1999].

Engineering tasks can be represented as constraint satisfaction problems (CSP) in a
natural way. A CSP is defined by a set of variables, each of which has a domain of
possible values, and relations called constraints which restrict the variable values. The
variables correspond to the relevant parameters of the engineering task and the con-
straints to (in)equalities expressing design criteria. The CSP approach provides search
methods which find 1) single variable assignments that satisfy all the constraints and 2)
descriptions of solution spaces, i.e. the set of all solutions. Early applications of CSP
research emerged from the field of image interpretation [Waltz, 1975]. [Mackworth, 1977]
and [Montanari, 1974] generalized this concept to any kind of discrete data related by bi-
nary constraints (so called discrete CSPs). CSP research is rapidly becoming a well estab-
lished field and several introductory texts exist, for example [Tsang, 1993] and [Kumar, 1992].

Consistency is one of the techniques employed in the resolution of a CSP. Consistency
techniques provide filters which remove inconsistent values, i.e. values that cannot be
part of a solution, from the search space and thus make search more efficient. It has been
shown in [Freuder, 1982b, Freuder, 1982a] that the degree of consistency reached in a CSP
is related to the level of backtracking needed to solve it. Consistency techniques can be
used as preprocessing in order to transform the given CSP in a CSP which is simpler to
solve. This approach has led to the identification of restrictions on the constraint syntax
([Van Hentenryck et al., 1992]), the topology of the constraint network [Dechter, 1990]
and the solution space described by constraints ([van Beek and Dechter, 1995]). Other
work has concentrated on applying these techniques during search. In addition to the de-
gree of consistency used, heuristics on the order in which the variables are instantiated de-
termine the execution time ([Haralick and Elliott, 1980],[McGregor, 1979],[Prosser, 1993]).

Initially, most research concentrated on discrete binary constraint problems. Only
recently, search techniques developed for discrete problems have been successfully applied
to numeric domains (numeric CSPs). Since in a numeric CSP value combinations
are not enumerable, interval analysis is employed to achieve partial degrees of consis-
tency ([Van Hentenryck et al., 1995],[Lhomme, 1993|,[Hyvonen, 1992],[Davis E., 1987]).
[Sam-Haroud and Faltings, 1996] has extended the results of
[van Beek and Dechter, 1995] to numeric CSPs and presents convexity conditions
under which a numeric CSP becomes backtrack free. Since this algorithm relies on
an explicit representation of the solution spaces, time complexity is high. In practical

situations, it is typically applicable to problems involving less than 20 variables.

A generalization of the standard CSP has been defined in [Mittal and Falkenhainer, 1990]
where the static CSP formalism, in which the variables and constraints of a CSP are given
in the problem definition, is extended to the definition of conditional CSP (CCSP)!. In a
CCSP, new variables and constraints may be activated during search. However, only dis-
crete CCSPs are treated in [Mittal and Falkenhainer, 1990] and the resolution algorithm
relies on the explicit enumeration of values. No proposals exist for a conditional approach
involving mixed constraints (those that involve discrete and continuous variables) even
though most engineering tasks are constrained by discrete and numeric CSPs.

This paper addresses the problem of solving engineering tasks represented as CSPs. The
advantage of using CSPs in this field is that consistency techniques provide a means of
representing an approximation of solution spaces instead of single point solutions. This
provides the engineer with a better basis for decision making and even improves the
efficiency of optimization algorithms used to derive point solutions since it helps the
algorithm focus onto those parts of the search space which are likely to contain solutions.
In this context, we propose the following new methods:

e The approximation of solution spaces is achieved by a new local consistency method
for discrete and numeric variables providing good results in times of pruning and
execution time. This is mainly due to the local consistency operator for numeric
constraints which is superior in pruning power to existing methods [Faltings, 1994],
[Gelle, 1998].

e A new search method embedding local consistency for discrete and numeric variables
is proposed. In contrast to most existing approaches for solving mixed CSPs, which
are based on a cooperation between constraint solvers [Tinelli and Harandi, 1996],
it integrates the local consistency methods for discrete and numeric variables into
the search process and also makes use of the mixed constraints to prune the search
space.

e Finally, a new algorithm is introduced for solving conditional constraint problems
with numeric constraints. From the conditional problem formulation a tree of static
CSPs is generated to each of which the proposed local consistency methods are
applied in order to eliminate inconsistent branches in the tree.

The paper is organized as follows. In section 2, constraint satisfaction problems are
introduced. New local consistency and search methods are presented. The new search
algorithm is presented in section 3. The performance of the algorithm is demonstrated
using a design task in structural engineering in section 4 and finally, its application to
conditional CSPs is described using the same example in section 5.

'We do not use the original name of dynamic CSP as it is used in [Mittal and Falkenhainer, 1990]
since the word dynamic is used in different contexts even in the field of constraint satisfaction.

Cx1x3:=
{(ab) (ac)}

Cxaxa= S g -ap------
{(ba)(be)}

Cx3axa:={(ca)}
X3 Xg @ -
aaba aabc abca

%b(gc
Figure 1: Search tree solving a small CSP by backtracking. The black nodes have been
pruned from the search space. Example taken from [Kondrak, 1994]

2 Constraint Satisfaction Problems (CSPs)

A CSP (V,C,D) is defined by the variables of interest V), each variable X; € V with a
domain D; € D of possible values, and a set of constraints C defining allowed value
combinations over subsets of variables. The goal is to find one or all solutions to the CSP.
A solution is a consistent assignment of values to all variables such that all constraints
are satisfied. A constraint can be represented either extensionally by specifying all valid
value combinations or intensionally by a logical predicate. We distinguish between:

e discrete constraints where the variables have domains consisting of discrete values;
ie. D, ={d;,...,d;,} for the variables X; and the constraint is defined by a set of
tuples, each tuple specifying one allowed value combination in Dy X ... X Dx.

e numeric constraints where the variables take their value in a real interval and the
constraint is a relation £ ® 0 with ® € {=,>,<} and E, an expression built from
constants, variables and operations {+, —, /, %, exp, ..} over the reals.

e mized constraints defined over a set of discrete Vp,, and a set of numeric variables
Vecon Where the constraint is a relation defined on Vp;s U Veoon.

In general, solving a CSP, that is deciding if there is at least one solution, is NP-complete
since, in the worst case, all combinations of values for the variables have to be tested
[Mackworth, 1977]. Lower levels of complexity are possible for specific cases. An example
of a binary discrete CSP is given in Figure 1. Each node corresponds to a variable with its
domain indicated in brackets and edges between the nodes represent constraints between
pairs of variables with the allowed value tuples. On the right-hand side, the search
tree for this problem is shown. The variables are instantiated sequentially in the order
X1, Xy, X3, X4. The depth of the search tree at a given node corresponds to the number
of variables already instantiated; this is marked by dotted lines. The black nodes show
inconsistent value combinations which have been pruned from the search space. There is
only one solution to this problem: {X; = a, Xy =0, X3 = ¢, X4 = a}.

2.1 Local consistency

Local consistency techniques transform the given CSP by removing inconsistent value
combinations from subsets of variables and result in a combination of refined variable do-

mains called labels. This transformation step is complete, i.e. it does not loose solutions.
The set of refined labels corresponds to an approximation of the solution space of the given
problem. In engineering tasks, it can be important to know at least an approximation of
the solution space:

e In the traditional approach, engineering tasks are solved using some optimization
method which provides single point results. This may lead to artificial conflicts
when different engineers are involved in a project [Lottaz et al., 1999]. In this case,
engineers will deliver a single solution to the subproblem they are involved in without
knowing alternative solutions. When the subproblems are combined in the context
of the overall project, a conflict might appear. Consistency methods can help to
avoid this type of conflict.

e The result of local consistency is not only a valuable input to a search algorithm,
e.g. an optimization method, but it can also help to visualize solution spaces. A
visualization helps engineers to find a compromise in case of artificial conflicts and
supports them during decision making. Local consistency thus provides a basis for
least-commitment strategy when solving engineering problems.

e Although locally consistent solution spaces may still contain infeasible value com-
binations, they provide useful input into further search algorithms since they have
already narrowed down the search space. Furthermore, local consistency with search
is often the only alternative for solving engineering problems as it can be very dif-
ficult to provide a good objective function for this type of problem. Often, these
problems involve several design criteria, which are at least partially contradictory.
In this case, it is beneficial to visualize the solution space in order to find a good
optimum.

We are interested here in the consistency between pairs of discrete values, also termed
arc-consistency [Mackworth, 1977]. More precisely, arc-consistency takes each consistent
value of a variable and checks if it is possible to instantiate a second variable such that all
constraints between both variables are satisfied. Consistency techniques employ a compact
representation of the effective combinations of consistent values. Such combinations of
values are called labels. Initially, labels contain the same values as the domains. Local
consistency removes values from the labels thus reducing the size of the search space
(the number of value combinations). In Figure 1, the labels L; and L3 are initially set
to {a} and {a,b,c}. One step of local consistency called refine, making L3 locally
consistent with label L; consists of removing the value a from L3 because this value does
not participate in any tuple of the constraint Cx, x,. Local consistency on a CSP is thus
achieved by examining all ordered pairs of variables, narrowing down the variable labels
and adding the variable pairs that are dependent on the changed labels to the queue.
Changes are so propagated through the CSP (update of @ in Figure 2). In the example,
the unique solution is obtained simply by enforcing local consistency.

Local consistency for discrete domains can be achieved in polynomial time in the size of
the variable domains since the maximal number of value combinations to be explored for
a variable pair is D? with D the maximal domain size. The goal of local consistency is
thus to find the projection of a constraint onto each variable. The refine operator in

procedure propagate function refine(X,Y,Cxy)

begin begin
Q « {(Xi, X;,Cx,x;)|i # i} L + all values v of Ly such that
while Q #0 do there exists a value w in Lx and
remove element (X;, X;,Cx,x;) from Q Cxy is satisfied by v, w
Lyew + Lx; N refine(X;, X, Cx; x;) return L
if L, =0 then end
return inconsistent !
fi
if Lx; # Lpew then
LX]- <~ Lnew
Q<+ QU {(Xj,Xk,CXij”k #i,k#7j}
fi
od
end

Figure 2: General algorithm for ensuring local consistency

Figure 2 computes one projection. In order to simplify the discussion of local consistency
over numeric constraints, we consider only binary numeric constraints in the following
example, i.e. numeric constraints defined over two variables. Such a constraint defines
a feasible two-dimensional region. Most existing refine operators for numeric constraints
approximate the projection of this region onto the variable axes. They compute an ap-
proximation of the projection for each constraint through accounting for intersections of
interval bounds with the constraints (2B-consistency [Lhomme, 1993]) or through using in-
terval analysis (box-consistency [Benhamou et al., 1994], [Van Hentenryck et al., 1995]).
Consider the projection onto the Y-axis of the feasible region defined by the constraints in
Figure 3 such that all values of X are in Ix. Any algorithm propagating such constraints
individually will result in the single interval Iy for the label of Y.

The true projection of a feasible constraint region is computed using local extrema of the
region [Faltings, 1994]. A refine operator combines all constraints defined on the same
pair of variables simultaneously in a total constraint. The local extrema are defined as
local extrema of individual constraints, intersections between constraints and intersections
of an interval boundary with a constraint. When this algorithm is applied to the example
in Figure 3, the true projection, consisting of two intervals I; and I, is obtained. The
crosses are intersections between constraints; these points are calculated once and then
used to compute the projection.

For constraints with higher arity, this approach can directly be applied as described above
during search when all but two variables of the constraint network have been instantiated.
An other possibility is to use an extension of the algorithm to ternary constraints given
in [Faltings and Gelle, 1997, Gelle, 1998]. This generalized algorithm is valid for topo-
logically simply connected feasible regions?. This means that three-dimensional regions
with channels, i.e. holes that connect to the surface of a region, are excluded. Since

2 A region is simply connected if any closed curve inside the region can be contracted to a single point.

Figure 3: Propagating constraints individually results in the single interval Iy whereas the
exact projection of the feasible region onto the Y -axis are the intervals Iy and I.

root root

Figure 4: Search tree of the CSP in Figure 1 solved by a) forward checking and b) main-
taining arc-consistency.

any constraint with an arbitrary number of variables can be decomposed into an equiva-
lent network of ternary constraints, local consistency for a wide range of n-ary constraint
networks can be computed.

In addition, some constraints are mixed in that they involve both discrete and numeric
variables. Mixed constraints can be divided into the following classes:
1. Discrete constraints with interval values or real values, for example

if beam_type = rolled then beam_depth € [0.1,1]
if beam_type = plate_girder then beam_depth € [1,15]

This constraint describes the expected depth of the beam according to its type.

2. Numeric constraints that use discretization operators such as trunc and round or
those that contain integer variables such as the variable N ft in

B=(Nft—1)«Eft

This constraint describes the width of the structure as a function of the number of
joists and the joist spacing.

3. Mixed constraints that link discrete value tuples or interval values to numeric con-
straints such as discontinuous functions:

2

110
Q, =32 1+ — Q, >

Q, =900 Q, < 900

This constraint describes the snow load (@) on a flat roof as a function of the
altitude (Hy) at which a structure is built in Switzerland in N/m?. The minimum
value for @, is 900 N/m?.

Discrete constraints with interval values can be treated by the discrete refine
operator presented in Figure 2 if a discretization of all numeric variables involved is
also defined. A discretization of a numeric domain involves defining landmarks. The
intervals between landmarks are taken as discrete values. For variable beam_depth in the
constraint given above, the intervals [0.1, 1] and [1, 15] are two discrete values covering the
variable domain [0.1, 15]. The constraint can thus be represented internally as a discrete
constraint and treated by a discrete refine operator. Before activating refine operators,
transformation functions convert numeric variable labels into discretized sets of values.
After the call to refine, resulting labels are translated back into sets of interval values in
order to be available for other numeric constraints.

Since refine operators may use different value representations and some constraints of
different type might share variables, the notion of an approximate domain becomes im-
portant. An approximate domain over the variable domain D allows the approximation
of the original results for a variable [Benhamou, 1996]. Approximate domains are neces-
sary, for example, to combine results for a variable coming from a floating-point operator
and another one from a rational operator. Before and after calls to refine operators,
transformation steps might be necessary in order to combine approximate results.

Numeric constraints with discretization operators are approximated by a set
of numeric constraints according to Table 1. The numeric refine operator treats the
constraint as all other numeric constraints. Additionally, if a new interval value [a, b] with
a,b € R is derived for variable IV, it is rounded to the next integer interval applying the
transformation function f([a,b]) = [[a], [b]]-

Mixed constraints associating discrete values with numeric constraints Con-
straints in which discrete tuples are related to numeric constraints, as for example given
in the following piecewise defined function are propagated during search.

Qn = 320 (1+H°2) Q,, > 900
= % _

Q. =900 Q, < 900

The strategy is to enumerate first discrete values of variables in such constraints in order
to define those subspaces where the numeric part of the constraint is valid.

Table 1: A list of operators and their approximations. The operand r is a real, i,p, and q
are integers.

Operator Name Approximation
i=r| ceiling r<i<r+1
i=|r| floor r—-1<i<r

i=round(r) round r—1/2<i<r+1/2
i=trunc(r) trunc r—1<i<rifr>0
r<i<r4+1lifr<o0
i = mod(p,q) mod r/q = div(r,q) +1
i=div(p,q) div i = trunc(r/q)

2.2 Search techniques for CSPs

Many search techniques are available for discrete CSPs. Most of them are based on
backtrack search, a method which solves CSPs by instantiating variables and testing partial
instantiations against relevant constraints (consistency checks). The search space of a CSP
can be represented as a tree, in which each node represents a particular state of the search.
Edges linking the nodes are transitions between two states. A node in the search tree of a
CSP corresponds to a partial instantiation of the variables and an edge between two nodes
represents the choice of a value for the next variable. At a given node, a next variable
is selected for instantiation from a given order of the variables (order X, X5, X3, X4 in
Figure 1) and a new node is created as successor for each value in the domain of this
variable. If a node is reached where the tuple of values becomes inconsistent, no future
choices will lead to a solution and therefore, the node is pruned. In Figure 1, node (aaa)
is pruned and its subbranch neglected because it does not satisfy the constraint between
variables X; and Xj;. Backtracking still suffers from thrashing [Mackworth, 1977]. For
example in Figure 1, the inconsistency between X; = a and X5 = « is rediscovered during
search.

Search is improved through removing inconsistent combinations of values either prior
to or during search. During backtrack search, a refine step that achieves local con-
sistency for one variable in a pair is applied to the future variables. Each instantia-
tion is propagated further to not-yet-assigned variables. The amount of local consis-
tency performed at each node determines the type of search algorithm.Forward checking
[Haralick and Elliott, 1980], for example, applies a refine step to all the neighbors of an
instantiated variable, that is, to all those future variables which are connected to the
current variable by a constraint. Another algorithm, MAC, maintaining arc-consistency
[Sabin and Freuder, 1994], [Bessiére and Régin, 1996] applies local consistency to the en-
tire CSP after each domain reduction (Figure 4).

In addition to local consistency checks, heuristics such as variable ordering can be ap-
plied. Branches in the search tree that are likely to fail are chosen first in order to prune
as much as possible of the search tree (first-fail principle). For discrete binary CSPs,
a first-fail principle based on the number of neighbors it is connected to through con-
straints (the degree) and minimum domain size has proven to be efficient for a number

Figure 5: Search in numeric CSPs: a) interval method b) backtrack search instantiating
the mid-value of an interval.

of applications [Haralick and Elliott, 1980]. A more sophisticated measure is a combina-
tion of domain size and maximum degree heuristic, which has been tested in different
combinations in [Bessiere and Régin, 1996]

While there are a great deal of research results related to solving discrete CSPs, reliable
numeric CSP resolution has proven to be more difficult. This is partly due to the infinitely
many possible values variables may take in their domains. Search methods using interval
analysis [Moore, 1979] are often used for nonlinear optimization and for resolution of
equation systems in order to produce single solutions. In a typical branch and bound
approach, the constraint region is subdivided into a finite number of cubic subregions
(sets of intervals) that are then tested for the optimum using interval analysis. If a test
fails on a cubic region, it is guaranteed not to contain a solution and can be discarded.

In Figure b5a, interval splitting is applied to find the maximum in Y of the
shaded region. Boxes 1,2, and 3 can be discarded by interval analysis. Further
splits in box 4 are necessary to find a reasonable approximation of the optimum.
[Van Hentenryck et al., 1995] has developed a prototype called Newton and its succes-
sor, Numerica [Van Hentenryck et al., 1997], enhancing interval methods with consis-
tency techniques. The system consists of a branch and bound algorithm applying box-
consistency to improve assignment of variable labels. [Hyvonen, 1992] uses an interval
analysis approach called tolerance propagation. This algorithm refines solution sets in a
top-down manner in order to create a lattice of solution sets.

3 A generic search algorithm with refine operators
for mixed constraints

A generic way to solve a mixed CSP is to exploit similarities between search in discrete
and numeric CSPs. In general, numeric CSPs are solved using interval methods. These
methods create a tree of intervals through bisection (Figure 5b) and then intervals are
pruned using interval analysis. Discrete CSPs, on the other hand, are solved by enumer-
ating combinations of values for variables. We combine these two methods and propose
a systematic enumeration of values as follows:

10

e bisection generates a tree of intervals from which a tree of midpoint values is ob-
tained.

e The definition of midpoint value depends on the domain representation: discrete
variable labels can be represented by a set of integer intervals, e.g. the label {a, b, d}
of a discrete variable with domain {a, b, ¢, d}, ordered by a:1, b:2,c:3, d:4, is repre-
sented by the list of intervals [1, 2], [4, 4] The midpoint value for a discrete interval
[a,b], a,b € N is then computed by the formula floor(%“t). Continuous variable
labels are represented by a set of real intervals. The midpoint value is thus the
midpoint of one of the intervals [c, d] with ¢,d € R given by the formula %i.

e the tree of midpoint values is searched in a depth-first manner starting with the
first interval in a variable label. However, the locally consistent intervals are kept
for each variable. If a consistency check fails, the algorithm can directly continue
with the next interval in a label.

When the solution space consists of few contiguous regions, a solution is found rapidly.
The algorithm split instantiates discrete and numeric variables successively to a single
value m, the midpoint, of the current interval I of their label L and checks the obtained
assignments against the constraints in treat-value. When a consistency check fails, the
algorithm first backtracks to the interval to the left of the failed value [left(I), m) and
then to the interval to the right (m,right(l)] and searches them recursively. Domain
splitting continues until a given distance w between adjacent values is reached. w is 1
for discrete domains and is chosen for numeric domains such that a reasonable number of
values in the label are checked. An example of a simple backtrack algorithm with value
instantiation is presented in Figure 5b. The dot indicates one possible midpoint solution.
Here a solution is found after three levels of splitting, i.e. in the worst case the centers of
sixteen cubes have to be tested.

This generic search algorithm is enhanced by consistency techniques that propagate in-
stantiated values to the future variables. The function check in Figure 6 applies forward
checking to prune neighbor labels using the refine operators defined in section 2.1. It
takes the set of labels L, the constraint set C and the already obtained assignments S as
input and returns the changed labels and an ok-status indicating if an inconsistency has
been found in the assigned variables and the constraints or not. If the problem is still
consistent (ok is true), the algorithm continues calling recursive-search on the next vari-
able, otherwise the last assignment added is removed from the solutions and the labels,
which may have been changed by check, are reset to the state before the last assignment
(unwind-labels). Mixed constraints of type three are treated by adding them to the
constraint set when a new variable has been assigned a value (add-mixed-constraints).
They are removed again when the algorithm backtracks on this variable.

Additionally, this algorithm integrates dynamic ordering to improve search (function
reorder-variables). Before the next variable is instantiated, variables are reordered
taking into account the following strategies:

e Value enumeration for discrete variables may also refine numeric variable labels due
to mixed constraints of type 1 and 2 presented in section 2.1.

11

procedure recursive-search(V, L,C,width,S)
begin
if all variables of V are assigned in § then
return on first solution: S
else
V + reorder-variables())
X < first variable in V unassigned in S
Ix < next interval from Lx € £
split(Ix, X, V, L,C,width,S)
end

procedure split(Ix,X,V, L, C,width,S)
begin
m < midpoint(Ix)
treat-value(m, X, V, L,C, S, width)
if right(I) —left(I) > width then
split(X, [left(Ix),m),V, L,C,w)
split(X, (m,right(Ix)],V, L,C,w)
fi
end

procedure treat-value(m,X,V, L,C,S,width)
begin
oldLabels < L
Lx < m, Lx € L
S+ addX=mtoS
C + add-mixed-constraints(C, X = m)
newLabels < check(L,C,S)
if newLabels # 0 then
recursive-search(V, newLabels,C, width,S)
fi
S + remove X =m from S
C < remove-mixed-constraints(C, X = m)
unwind-labels(newLabels, old Labels)
end

Figure 6: Search algorithm for a mized CSP with interval splitting on backtracking.

12

e Discrete value combinations occurring in a discontinuous function impose further
numeric constraints on the problem.

Discrete Variables occurring in discontinuous constraints should be enumerated first since
they add numeric constraints to the problem. Then, other discrete variables are enumer-
ated subsequently constraining numeric variables through mixed constraints. Variables
are ordered according to the max degree criterion (section 2.2) first and the secondary
criterion of min domain size. For discrete variables, the ordering max degree 4+ min do-
main (first fail principle) and for the continuous variables, the ordering max degree + max
domain performs well on the example presented in the following section. In this example,
we choose to enumerate all values for discrete variables and to find only one consistent
value for numeric variables. The reason is that this example is underconstrained and an
enumeration of values in the numeric labels results in very similar solutions at a distance
w of the previous solution. The algorithm in Figure 6 shows the general principle of value
enumeration over discrete and numeric variables and can be changed easily to avoid a
complete enumeration of the numeric variables.

In numeric domains, pruning the intervals from inconsistent values using local consistency
is important since interval size and the number of splitting iterations can be reduced dras-
tically. Furthermore, regions become constrained during instantiation; local consistency
algorithms for numeric domains, such as the one described in Section 2.1 have improved
computation times. This is especially true if many variables are already instantiated.
At that point, inconsistencies are easily detected by forward checking since the search
space has become highly constrained. Our approach is very generic in that the search
engine is the same for discrete and numeric variables and that special refine operators can
be associated to each constraint type (discrete, numeric, and mixed) to prune variable
labels. When a variable has been instantiated, the associated refine operator propagates
the choice to its neighbor variables (implemented in the call to check).

4 A Full-Scale Example

In this section, the advantages of using local consistency techniques in engineering appli-
cations are demonstrated. The algorithm described in this paper

e is capable of providing support for full-size tasks,

e gives good approximations of solution spaces found in typical engineering tasks and
can thus be used to show, for example, the influence of changes in constraints

e enhances other search algorithms used in computer-aided engineering through re-
moving local inconsistencies early in the search process.

This algorithm provides a different kind of support than those offering global consistency,
for example [Sam-Haroud and Faltings, 1996]. Global consistency ensures that each value
in the domain of a variable can be found in at least one solution and is thus, a much
stronger condition. Solution spaces calculated in this way provide greater engineering

13

support. However, global consistency algorithms have high polynomial time complexity
and as a result, they can only be applied to examples having a small number (usually less
than twenty) variables.

We present a simple example on the design of a single story steel building (Figure 7).
Non-rigid connections (pin connections) are envisaged. The building has to resist to
external loads such as wind and snow as well as internal loads caused by an overhead
crane. In order to resist horizontal loads, a longitudinal and transversal bracing system
is necessary (Figure 8). Constraints from the Swiss Code (SIA 161) that have to be
respected are: bending of joist (F't) and girder (T), biaxial bending of girt (F and F'f),
buckling of columns (C! and C'f) and axial forces in diagonals (DIt, DIl, Dtt, Dtl) of the
bracing systems. The values of snow and wind load are provided by the Swiss Code SIA
160. Characteristics of steel sections available in Switzerland are introduced in form of
tables. The cross-sectional shape of each element is chosen by the user. In this example,
girders, columns, and joists are I-shaped , diagonals in the bracing system are angles, and
the girts are channels. Geometric constraints on volume, surface, width, length, height,
width-length ratio, spacing of the elements (E, E ft, Ecf, Efl), frontal (Lpf) and lateral
door (Lpl) width are also considered. Unary constraints are introduced in order to restrict
value domains of certain variables. The complete list of variables and constraints is given
in the Appendix.

Typical input parameters are snow and wind load, the altitude at which the building is
situated and the minimal surface it occupies. Applying local consistency methods at this
point results in reduced domains for the numeric variables. However, there is no effect
on the choice of the cross sections since there are too many degrees of freedom. When
additional constraints are imposed on variables, their effect on other variables is observed
through different results for solution spaces. Typical user constraints are those on the
dimensions of the building (length, width, and height) and the spacing between elements.
These parameters influence the choice of the cross section for the girts, joists, columns,
and frames. Although a large number of elements guarantee the stability of the building,
the resulting design might cost more and be less aesthetic. We present two examples
of additional user constraints and solution spaces in Table 2. Constraint set 1 restricts
the building dimensions and the spacings E, Eft, Efl, and Ecf, and constraint set 2,
imposes constraints on the number of elements (N, N ft, Ncf, and N f1). Both examples
were executed with the lateral and frontal wind loads set to 800 N/m? and 250 N/m?
and with a wall cladding self weight of 500 N/m?. The load of the overhead crane was
set to 2000 kN.

The average execution time was four minutes on a two-processor Sun Sparc for local
consistency with additional constraints posted by the user. These examples involve over
100 variables. The prototype implementation is written mostly in Lisp with some code in
Maple (implementation of the refine operators) and has not been optimized.

In both solution spaces, the choices of cross-sections for the girder and the column were
reduced from around ten possibilities to one and two respectively. The spacings and the
number of elements are also reduced. Solutions are at the top of the allowable sections
listed in the Appendix. Typically solution spaces are not bounded from above since heavier
sections are almost always feasible. Engineers naturally select lighter member from the
solution set. Although some values within these intervals may not be part of the exact

14

Dit -

- S A Dit L

Figure 7: Design of a single story steel building.

15

Longitudinal
bracing
system

Transversal
bracing
system

Figure 8: An example of a longitudinal and transversal bracing system for resisting hori-
zontal loads.

solution space, the presented spaces provide good approximations. Also variations in the
solution spaces with changes in user-posted constraints provide indications for sensitivity
studies.

Such solution spaces can also be the input to algorithms that provide higher levels of
consistency. In any case, when a solution is chosen it needs to be checked against all
constraints before it is adopted. A solution can for example be derived for a structure
with L = 36, B = 24, H = 10 at an altitude of 900 meters using the following cross
sections: T'= HEB300, Cl = HEB300, Cf = HEB300, F't = IPE200, F'l = UN P280,
Ff=UNP280,and LN P100%10 for all diagonals. The number of girts in the longitudinal
bracing system is three (Cvl) and one in the transversal bracing system. This corresponds
to the third possibility shown in Figure 9.

5 Conditional CSPs

Support for structural design of, for example, this industrial building can be enhanced by
considering different configuration possibilities of the bracing system (Figure 8). Some
designs include only a transversal bracing system when girders are attached with moment-
connections to the columns and when the frames are rigid enough to resist horizontal loads.
Under these circumstances, the constraints related to the longitudinal bracing system are
not relevant. This means that the constraints in A3.2.7, A3.2.9 and A3.2.11 (see appendix)
are not needed and that A3.2.1 and A3.2.2 are replaced by another set of constraints.
The feasible height might fall into a range of values that allows for a simpler system
without longitudinal bracing. When the values for height are refined during calculation
of the solution space, such a simplification may be revealed only during execution of the

16

K\ 7

Figure 9: Different solutions for the longitudinal and transversal bracing system.
17

Table 2: Users may post additional constraints to reduce the size of the solution
space. Where applicable, units are meters.

Additional User Constraint Set 2
altitude Hy 1000
Additional User Constraint Set 1 minimal surface Sp,in 400
altitude Hy 800 length L [40,200]
minimal surface Sp,ip 200 height H [10,20]
width B [10,40] Nb of frames N [1,9]
height H [8,10] Nb of joists N ft [1,7]
frame spacing E [4,5] Nb of windcolumns Ne¢f [1,10]
joist spacing Eft [4,5] Nb of girts N fI [1,7]
joist spacing E fl [4,5] Solution space 2
joist spacing Ecf [4,5] frame spacing E [5,7.19]
Solution space 1 joist spacing Eft [1.16,5]
Nb of joists N ft [3,4] joist spacing E fl [1.67,3.45]
Nb of windcolumns Nef [3,4] joist spacing Fcf [3.45,10.19]
NbD of girts N fi 3 Nb of frames N [7,9]
Girder T HEB300 Nb of joists N ft [3,7]
Longitudinal girt F UNP240/280/320 || Nb of windcolumns Ncf [2,4]
Transversal girt F'f UNP240/280/320 || Nb of girts N fi [4,7]
Column Cl HEA240,HEB300 || Girder T HEB300
Column CI HEA240
HEB300

algorithm. This phenomenon is called conditional variable activation; complex engineering
tasks often demonstrate such behavior.

A model of conditional constraint satisfaction (CCSP) [Mittal and Falkenhainer, 1990] has
been introduced to adapt CSPs to changing environments as illustrated by the constraints
on the bracing system. The standard CSP model is extended to reason on the presence
of variables in a solution. A variable in a CCSP can be active or not in a solution;
ie. VX; € V : active(X;) +» X; = z with z € D;. Typical constraints restricting value
combinations of variables are called compatibility constraints in this model. We extend the
original definition of CCSP by allowing numeric and discrete compatibility constraints.
In contrast to a static CSP, a compatibility constraint in a CCSP is only relevant to a
problem if all the variables of this constraint are active. It follows that a compatibility
constraint is trivially satisfied if at least one of its variables is not active. This is made
explicit by considering a compatibility constraint only in those parts of the search space in
which all variables of the constraint are active. Additionally, a CCSP can post constraints
on a variable’s activity in a given context of value assignments. Such an activity constraint
has the form:

Cx,,...x; = active(Xy)

where Cx, x; 1s a single constraint, which expresses an activation condition under which
the variable X, becomes active. An activity constraint is satisfied by a set of values
{(Xi=z1,...,X; =2} if ~Cx, _ x,;(@1,--.,2;) V active(X}) is true.

In our model, we allow the formulation of an activation condition as a set of value as-

18

signments (a discrete constraint) and as a numeric constraint. A CCSP thus consists
of

A set of variables V representing all variables that may potentially become active
and be part of a solution. Each variable X; € V has associated a domain D; € D
representing the set of possible values for the variable.

e A non-empty set of initial variables V; C V. These variables have to be part of
every solution.

A set of compatibility constraints on subsets of V representing allowed value combi-
nations for these variables.

A set of activity constraints on subsets of V specifying constraints between the
activity of a variable and possible values of problem variables.

The goal of a CCSP is to find all solutions, where a solution S' is

1. an assignment of values to a set of variables such that S satisfies all constraints in
CuCA.

2. minimal — there is no solution S’ satisfying all constraints such that S’ C S.

3. complete — all variables of V; are assigned in S

Minimal solutions of a CCSP contain only those assignments for which there exist
no other assignment that has fewer identical variable-value pairs satisfying the same
constraints. Starting from the set of initially active variables V;, a CCSP incrementally
defines spaces where different variables are active and values are only assigned to the
active variables.

In order to illustrate the formulation of a CCSP, the constraints associated with designing
a steel structure are extended as follows. A new discrete variable cgt standing for column-
girt connection is introduced with the domain [moment_connection, pin_connection] as
well as a numeric variable Hd representing the horizontal displacement of the structure.
The following activity constraints define different bracing systems:

cgt = pin_connection “S" DIt (1)

cgt = pin_connection S DIl (2)

cgt = moment_connection " Hd (3)
Hd > f(H) "% Dit (4)

Hd > f(H) S Dil (5)

These constraints ensure that the longitudinal bracing system represented by the
variables DIt and DIl is only computed if either cgt is not a moment connection or

19

V| ={cat}

1)
@)

cgt = pin_connection cgt = moment_connection
DIt, DI /
(3)
Hd
/ 4
Hd >= f(H) ®
DIt,DII Hd <f(H)

Figure 10: The constraints and variables added dynamically are represented in a combina-
tion tree. The numbers in brackets refer to the constraints in the example of the bracing
system.

the horizontal displacement is larger than a given function on the building height. As
a consequence, the compatibility constraints over the longitudinal bracing system only
become relevant when the variables DIt and DIl are active.

In the original CCSP algorithm by [Mittal and Falkenhainer, 1990], the condition of an
activity constraint was restricted to a set of value assignments. This restriction does not
allow treatment of problems where:

1. The activation condition is a discrete constraint with several value combinations

2. The activation condition is a numeric constraint defining infinitely many value com-
binations.

Activating new variables based on partial solutions is thus not an efficient method for
solving a mixed CCSP. We propose the generation of subspaces where variables are active
through consideration of different combinations of activation conditions. The activity
constraint that introduces a longitudinal bracing system, leads to two subspaces, one
where the traversal bracing system exists and the condition on the width is satisfied
and one where the condition is not satisfied. Solutions to a CCSP are found in the
combinations of all these subspaces. This combination can be represented in a tree where
for each constraint two sub-branches are added to each node, one with the condition
satisfied and the variable active and one with the complement of the condition satisfied.
More detailed information on generalized CCSPs is given in [Gelle, 1998].

In Figure 10, each node shows only newly added variables and conditions. Trivially
inconsistent subspaces are not shown. In the leaf nodes of this tree are represented the
spaces where solution spaces for the CCSP are found. In our example, the leaf spaces P,
with additional variables V; and constraints C;, 7+ = 1, 2, 3 are:

P, Vy ={DIt, Dil} C, = {cgt = pin_connection}
Po: Vo ={Hd,DIt,DIl} Cy= {cgt =moment_connection, Hd > f(H)}
Ps: Vs ={Hd} Cs = {cgt = moment_connection, Hd < f(H)}

20

Problem set three describes all solutions with a horizontal displacement smaller than the
given limit. Thus, those solutions do not require a bracing system. Since each space
corresponds to a standard CSP, the methods described in the preceding sections can be
applied to define solution spaces.

Activity constraints may introduce new variables that are themselves used in the condition
of another activity constraint. This dependency can be analyzed in a directed graph. Such
an analysis helps to identify i) cycles in activity constraints ii) constraints that are never
reached (and thus their variables are never activated) and finally iii) an ordering for
activity constraints. The algorithm for generating the solution spaces of a CCSP includes
the following steps:

1. Create a directed graph from the set of activity constraints representing the de-
pendencies between the constraints. Each activity constraint as well as the set of
initially active variables is a node (respectively a root node) and a directed edge
exists between two nodes if the variable activated by the first constraint is found in
the condition of the second constraint. The second constraint is dependent on the
first one and the arrow points to the dependent node.

2. Eliminate cycles in the original graph by clustering all nodes in such cycles into a
super-node. Instead of identifying cycles directly, strongly connected components
are identified in the graph. In a strongly connected component, there is a path
between each pair of nodes. In contrast to cycle identification, this can be done in
time linear in the number of nodes and arcs. A reduced graph is built by collapsing
each strongly connected component into one node and by linking those components
which contain each node that was linked by an edge in the original graph. The
reduced graph is acyclic by construction.

3. Find a partial order on the resulting acyclic graph, traverse the graph in this order,
and apply the activity constraints. On the reduced graph a strict partial order can
be established. A relation is a strict partial order if it is asymmetric, transitive,
and irreflexive. Using a longest path algorithm, we attribute a length to each path
so that an activity is only executed if all the variables in its condition are active.
Ordering the nodes according to the increasing distance from the root node, gives
us an order in which the activity constraints can be applied safely. If a node has
been collapsed, i.e. contains several activity constraints, each of them has to be
tested for applicability.

Consider the directed graph in Figure 11. In the first example, only the variables X, X,

are initially active. Activity constraints are Xy = ¢ A9l x 5, X5 =1 9l x 3,X1 =0 == X3

X3 =ce AGr X4. The directed graph shows dependencies between the constraints. The

initially active variables form the root node. The numbers in bracket give the longest
path from the root node to a node. They indicate a partial ordering on the activity

constraints. This order is converted to a full order and the constraints are applied in the
ACT ACT . ACT ACT

order X1 =b"= X3, Xo=c = X5,X5 =1"= X3, X3 =e = X,. The application
of the first activity constraint X; = b aqr X3 to the space containing the active variables
Xy, Xy results in two spaces, one in which X, Xy, X3 are active and X; is reduced to

b, and a second, in which only X;, Xy are active but X; cannot take the value . Each

21

X1.X2

X1.X2 [0 N
X1 =b,X3 X17b
~
\\ X2,¢C
X2 c >X5 [
X1=b->X3 [1] Xp= ¢ X5 X"C X =c¢ X5
~
Xg = |>x3 2 ‘ .
X5FI
\ / X3= eX4 x3;e X5 =iX3
X3=eX4 XzZe / ™~
Xz=e->X4 [3] X3 =eXy X3z e
b)
X1.X2 [0]
l X1.Xo
X1=b->X3 [1] / \
! ""“\’---- 2] X1=b, X3 X1 7b
L Xg=e>Xg / \
\ [
AY 1
N Xg4=0->X3 " X3=¢, Xy X3 7e

c)

Figure 11: Dependencies in a DCSP represented as directed acyclic graph. The right hand
sides show how problem spaces are combined. At each node only the additional variables
and constraints are shown.

activity constraint is applied to the corresponding subspaces and may lead to a doubling
of the number of subspaces. Local consistency can detect inconsistencies in the subspaces
and thus helps reducing the number of subspaces.

6 Conclusions

Properly formulated local consistency techniques provide useful support for engineering
tasks when many interdependent variables of discrete and numeric nature are involved.
The local consistency techniques described in this paper are able to approximate globally
consistent spaces rapidly and with a reasonable degree of accuracy for constraint networks
that exceed twenty variables. However, local consistency algorithms are not completely
reliable. When accuracy is essential, our approach provides an effective filter for infeasible
values such that its results can be the input to subsequent search or optimization methods.
Our extension to conditional CSPs allows a systematic enumeration of solution spaces,
which leads to a clarification of the overall complexity of solution-space sets. As in the
context of standard CSPs, local consistency is applied to remove entire spaces that are
inconsistent. An example of steel-structure construction motivates the results of this
paper and also demonstrates the need for conditional CSPs. The proposed methods will
enhance performance and quality of future computer-aided engineering systems.

22

Acknowledgements

This research was funded by the Swiss National Science Foundation under contract no.
21-39379.93 and no. 20-45416.95.

References

[Benhamou, 1996] Benhamou, F. (1996). Heterogeneous constraint solving. In Hanus,
M. and Rodriguez-Artalejo, M., editors, Algebraic and Logic Programming, 5th Inter-
national Conference, ALP’96, volume 1139 of Incs, pages 62-76, Aachen, Germany.
Springer.

[Benhamou et al., 1994] Benhamou, F., McAllester, D., and Hentenryck, P. V. (1994).
CLP(intervals) revisited. In Bruynooghe, M., editor, Logic Programming - Proceed-

ings of the 1994 International Symposium, pages 124-138, Massachusetts Institute of
Technology. The MIT Press.

[Bessiere and Régin, 1996] Bessiere, C. and Régin, J.-C. (1996). Mac and combined
heuristics: two reasons to forsake fc (and cbj). In Freuder, E. and Jampel, M., editors,
Principles and Practice of Constraint Programming, volume 1118 of Lecture Notes in
Computer Science. Springer.

[Davis E., 1987] Davis E. (1987). Constraint propagation with interval labels. In Artificial
Intelligence 32.

[Dechter, 1990] Dechter, R. (1990). Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial Intelligence, 41(3):273
312.

[Faltings, 1994] Faltings, B. (1994). Arc consistency for continuous variables. In Artificial
Intelligence 65(2), pages 85—118.

[Faltings and Gelle, 1997] Faltings, B. and Gelle, E. (1997). Local consistency for ternary
numeric constraints. In Proc. 11th Int. Joint Conf. on Artificial Intelligence, IJCAI-97,
pages 392-397.

[Freuder, 1982a] Freuder, E. C. (1982a). A sufficient condition for backtrack-bounded
search. A.C.M., 32(4):755-761.

[Freuder, 1982b] Freuder, E. C. (1982b). A sufficient condition for backtrack-free search.
A.C.M., 29(1):24-32.

[Gelle, 1998] Gelle, E. (1998). On the generation of locally consistent solution spaces in
mized dynamic constraint problems. PhD thesis, Swiss Federal Institute of Technology,
EPFL.

[Haralick and Elliott, 1980] Haralick, R. M. and Elliott, G. L. (1980). Increasing Tree
Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence, 14:263—
313.

23

[Hyvonen, 1992] Hyvonen, E. (1992). Constraint reasoning based on interval arithmetic.
the tolerance propagation approach. In Artificial Intelligence.

[Kondrak, 1994] Kondrak, G. (1994). A theoretical evaluation of selected backtracking
algorithms. Technical Report TR-94-10, University of Alberta.

[Kumar, 1992] Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A
survey. Al Magazine, 13(1):32-44.

[Lhomme, 1993] Lhomme, O. (1993). Consistency techniques for numeric CSPs. In
IJCAI-93, pages 232-238.

[Lottaz et al., 1999] Lottaz, C., Clément, D., Faltings, B., and Smith, 1. (1999).
Constraint-based support for collaboration in design and construction. Journal of Com-
puting in Civil Engineering, 13(1):23-35.

[Mackworth, 1977] Mackworth, A. (1977). Consistency in networks of relations. Artificial
Intelligence, 8.

[McGregor, 1979] McGregor, J. J. (1979). Relational consistency algorithms and their
application in finding subgraph and graph isomorphisms. Information Sciences, 19:229—
250.

[Mittal and Falkenhainer, 1990] Mittal, S. and Falkenhainer, B. (1990). Dynamic con-
straint satisfaction problems. In Dietterich, Tom; Swartout, W., editor, Proceedings of
the 8th National Conference on Artificial Intelligence, pages 25-32. MIT Press.

[Montanari, 1974] Montanari, U. (1974). Networks of constraints: Fundamental proper-
ties and applications to picture processing. Inform. Sci., 7:95-132.

[Moore, 1979] Moore, R. E. (1979). Methods and Applications of Interval Analysis. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[Prosser, 1993] Prosser, P. (1993). Domain filtering can degrade intelligent backjumping
search. In IJCAI-93.

[Sabin and Freuder, 1994] Sabin, D. and Freuder, E. (1994). Contradicting conventional
wisdom in constraint satisfaction. In Borning, A., editor, Principles and Practice of
Constraint Programming, volume 874 of Lecture Notes in Computer Science. Springer.

(PPCP’94: Second International Workshop, Orcas Island, Seattle, USA).

[Sam-Haroud and Faltings, 1996] Sam-Haroud, D. and Faltings, B. (1996). Consistency
techniques for continuous constraints. In Constraints, volume 1, pages 85-118.

[Tinelli and Harandi, 1996] Tinelli, C. and Harandi, M. (1996). Constraint logic program-
ming over unions of constraint theories. Lecture Notes in Computer Science, 1118:436—

450.

[Tsang, 1993] Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press,
London.

24

[van Beek and Dechter, 1995] van Beek, P. and Dechter, R. (1995). On the minimal-
ity and global consistency of row-convex constraint networks. Journal of the ACM,
42(3):543-561.

[Van Hentenryck et al., 1992] Van Hentenryck, P., Deville, Y., and Teng, C.-M. (1992).
A generic arc-consistency algorithm and its specializations. Artificial Intelligence, 57(2-
3):291-321.

[Van Hentenryck et al., 1995] Van Hentenryck, P., McAllester, D., and Kapur, D. (1995).
Solving polynomial systems using a branch and prune approach. SIAM Journal of
Numerical Analysis. (Accepted). (Also available as Brown University technical report
CS-95-01.).

[Van Hentenryck et al., 1997] Van Hentenryck, P., Micher, L., and Deville, Y. (1997).
Numerica. A modeling language for global optimization. MIT Press.

[Waltz, 1975] Waltz, D. L. (1975). Understanding line drawings of scenes with shadows.
In Winston, P. H., editor, The Psychology of Computer Vision, pages 19-91. McGraw-
Hill.

25

