HW-SW Emulation Framework for
Temperature-Aware Design in MPSoCs

DAVID ATIENZA and PABLO G. DEL VALLE

DACYA—UCM and LSI—EPFL

GIACOMO PACI, FRANCESCO POLETTI, and LUCA BENINI
DEIS—University of Bologna

GIOVANNI DE MICHELI

LSI—Ecole Polytechnique Federale de Lausanne (EPFL)

and

JOSE M. MENDIAS and ROMAN HERMIDA
DACYA—Complutense University of Madrid (UCM)

New tendencies envisage multiprocessor systems-on-chips (MPSoCs) as a promising solution for
the consumer electronics market. MPSoCs are complex to design, as they must execute multiple
applications (games, video) while meeting additional design constraints (energy consumption, time-
to-market). Moreover, the rise of temperature in the die for MPSoCs can seriously affect their
final performance and reliability. In this article, we present a new hardware-software emulation
framework that allows designers a complete exploration of the thermal behavior of final MPSoC

An initial version of this article was presented in the 2006 IEEE/ACM Design Automation Confer-
ence (DAC). This extended version presents several new contributions:

(i) Extensions of the description of the developed thermal library and emulated SoC.

(i1)) Complete overview of related work on MPSoC modeling, testing and thermal-aware design.
(i) Study of different thermal library models to characterize final MPSoC designs.
(iv) Illustration of the application of the tool with different floorplans.

(v) Evaluation of the impact of employing different packaging technologies in target MPSoCs.

This work was partially supported by the Spanish Government Research Grants TIN2005-5619
and FPU AP2005-0073, the Swiss NSF Research Grant 20021-109450/1, and the SRC Contract
1188.

Authors’ addresses: D. Atienza (contact author), P. G. del Valle, J. M. Mendias, R. Hermida, De-
partamento de Arquitectura de Computadores y Automatica (DACYA), Universidad Complutense
de Madrid, Ciudad Universitaria—28040 Madrid, Spain; email: datienza@dacya.ucm.es; G. Paci,
F. Poletti, L. Benini, Dipartimento Elettronica Informatica e Sistemistica (DEIS), Universita di
Bologna, Via Zamboni, 33-40126 Bologna-Partita IVA: 01131710376, Italy; G. de Micheli, Labora-
toire des Systemes Integres (LSI), Ecole Polytechnique Federale de Lausanne, EPFL-IC-ISIM-LSI
Station 14, Lausanne, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1084-4309/2007/08-ART26 $5.00 DOI 10.1145/1255456.1255463 http:/doi.acm.org/
10.1145/1255456.1255463

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

2 3 D. Atienza et al.

designs early in the design flow. The proposed framework uses FPGA emulation as the key element
to model hardware components of the considered MPSoC platform at multimegahertz speeds. It
automatically extracts detailed system statistics that are used as input to our software thermal
library running in a host computer. This library calculates at runtime the temperature of on-chip
components, based on the collected statistics from the emulated system and final floorplan of the
MPSoC. This enables fast testing of various thermal management techniques. Our results show
speedups of three orders of magnitude compared to cycle-accurate MPSoC simulators.

Categories and Subject Descriptors: C.3 [Computer System Organization]: Special-Purpose and
Application-Based Systems—Real-time and embedded systems; B.8.2 [Performance and Relia-
bility]: Performance Analysis and Design Aids

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Thermal-aware design, FPGA, emulation, MPSoC,
temperature

ACM Reference Format:

Atienza, D., del Valle, P. G., Paci, G., Poletti, F., Benini, L., de Micheli, G., Mendias, J. M.,
and Hermida, R. 2007. HW-SW emulation framework for temperature-aware design in MPSoCs.
ACM Trans. Des. Autom. Electron. Syst. 12, 3, Article 26 (August 2007), 26 pages. DOI =
10.1145/1255456.1255463 http://doi.acm.org/10.1145/1255456.1255463

1. INTRODUCTION

An increasing number of multimedia services (e.g., multiview video or multi-
band wireless protocols) are being implemented on embedded consumer elec-
tronics, thanks to the fast evolution of process technology. These new em-
bedded systems demand complex multiprocessor designs to meet their real-
time processing requirements while respecting other critical embedded de-
sign constraints, such as low energy consumption or reduced implementation
size. Moreover, the consumer market is reducing more and more their time-
to-market and price [Jerraya and Wolf 2005], which does not permit complete
redesigns of such multicore systems on a per-product basis. Thus, multiproces-
sor systems-on-chips (MPSoCs) have been proposed as a promising solution for
this context, since they are single-chip architectures consisting of complex inte-
grated components that communicate with each other at very high speeds [Jer-
raya and Wolf 2005]. Nevertheless, one of their main design challenges is the
fast exploration of multiple hardware (HW) and software (SW) implementation
alternatives with accurate estimations of performance, energy, and power to
tune the MPSoC architecture in an early stage of the design process. In addi-
tion, it has been recently outlined that the problem of temperature rise in the
components of future MPSoCs [Skadron et al. 2004] will increase further their
system integration complexity.

With an objective of exploring the HW-SW interaction, several MPSoC sim-
ulators have been proposed, both at transaction and cycle-accurate levels,
using hardware description languages (HDLs) and SystemC [Benini et al.
2005; Braun et al. 2003; CoWare 2004]. Also, recent SW tools can be added
to them to evaluate in detail the thermal pressure in on-chip components
based on runtime power consumption and floorplanning information of the
final MPSoCs [Skadron et al. 2004]. Nevertheless, although these complex
combined SW environments achieve accurate estimations of the system with

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 3

thermal analysis, they are very limited in performance (approximately 10—
100 KHz) due to signal management overhead. Thus, such environments can-
not be used to analyze MPSoC solutions with complex embedded applications
and realistic inputs of the final working environment to cover the variations
in data loads at runtime. Moreover, higher abstraction-level simulators at-
tain faster simulation speeds, but at the cost of a significant loss in accuracy.
Hence, they are not suitable for fine-grained architectural tuning or thermal
modeling.

One solution for the speed problems of cycle-accurate simulators is HW em-
ulation. Various MPSoC emulation frameworks have been proposed [Cadence
2005; Heron Engineering 2004; Aptix 2003]. However, they are usually very
expensive for embedded design (between $100K and $1M). Moreover, they are
not flexible enough for MPSoC architecture exploration, since they mainly aim
at large MPSoCs prototyping or SW debugging. Typically, the baseline archi-
tectures (e.g., processing cores or interconnections) are proprietary, not permit-
ting internal changes. Furthermore, to the best of our knowledge, no flexible
interconnection interfaces between HW emulation and current thermal SW li-
braries exist today. Thus, thermal effects can only be verified in the last phases
of the design process, when the final components have been already devel-
oped, which can produce large overheads in system integration due to cores,
as well as MPSoC architecture redesigns if any problem is discovered at that
moment.

In this article we present a new HW-SW field-programmable gate array
(FPGA)-based emulation framework that allows designers to explore a wide
range of design alternatives for complete MPSoC systems at cycle-accurate lev-
els, while characterizing their thermal behavior at a very fast speed (i.e., 100
MHz) with respect to MPSoC architectural simulators. First, MPSoC HW com-
ponents are mapped on an FPGA to extract a large range of critical statistics
from three key architectural levels of MPSoC systems (i.e., processing cores, the
memory subsystem, and interconnection mechanisms), while real-life applica-
tions are executed. Second, this runtime information is sent through a flexi-
ble interface (using a standard Ethernet connection) to a configurable thermal
model SW tool, running on a host PC, which evaluates at the same speed as
the emulation executes the thermal behavior of the final MPSoC design, and
returns this information to the FPGA emulating it. This final step enables test-
ing runtime temperature management strategies in real time. Our results il-
lustrate that the proposed HW-SW framework achieves detailed cycle-accurate
reports with speedups of three orders of magnitude compared to state-of-the-art
cycle-accurate MPSoC simulators. Moreover, our experiments indicate the ben-
efit of the proposed framework to study the importance of packaging floorplan
features in MPSoC designs.

The remainder of the article is organized as follows. In Section 2, we overview
related work on MPSoC modeling, testing, and thermal-aware design. In Sec-
tion 3, we present the configurable architecture of the emulated MPSoCs. In
Section 4, we explain the used HW statistics extraction subsystem. In Section 5
we describe the configurable thermal SW libraries used. In Section 6, we detail
how the HW-SW emulation process of MPSoC architectures is performed. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

4 3 D. Atienza et al.

Section 7, we illustrate the speed and versatility of our thermal emulation tool
for MPSoC designers. Finally, we draw our conclusions in Section 8.

2. RELATED WORK

It is widely accepted that MPSoCs represent a promising solution for forth-
coming complex embedded systems [Jerraya and Wolf 2005]. This has spurred
research on modeling and prototyping MPSoC designs, using both HW and SW.

From the SW viewpoint, solutions have been suggested at different abstrac-
tion levels, enabling tradeoffs between simulation speed and accuracy. First,
fast analytical models have been proposed to prune very distinct design op-
tions using high-level languages (e.g., C or C++) [Braun et al. 2003]. Also, full-
system simulators, like Symics [Magnusson et al. 2002] and others, have been
developed for embedded SW debugging and can reach megahertz speeds, but
are not able to accurately capture performance and power effects (e.g., at the
interconnection level) depending on the cycle-accurate behavior of the HW. Sec-
ond, transaction-level modeling in SystemC, in academic [Paulin et al. 2002]
and industrial context [CoWare 2004; ARM 2002] has enabled more accuracy
in system-level simulation at the cost of sacrificing simulation speed (about
100-200 KHz). Such speeds render unfeasible the testing of large systems due
to overly long simulation times, conversely to the proposed emulation frame-
work. Moreover, in most cases SW simulations are only limited to a number
of proprietary interfaces (e.g., AMBA [ARM 2004a] or Lisatek [CoWare 2004]).
Finally, important research has been done to obtain cycle-accurate frameworks
in SystemC or HDL languages. Companies have developed cycle-accurate sim-
ulators using postsynthesis libraries from HW vendors [Mentor Graphics 2003;
Synopsys 2003]. However, their simulation speeds (10-50 KHz) are unsuitable
for very complex MPSoC exploration. In the academic context, the MPARM
SystemC framework [Benini et al. 2005] is a complete simulator for system
exploration, since it includes cycle-accurate cores, complex memory hierarchies
(e.g., caches, scratch pads), and interconnects, like AMBA or networks-on-chip
(NoC). It can extract reliable energy and performance figures, but its major
shortcoming is again its simulation speed (120 KHz in a P-4 at 2.8 GHz).

An important alternative to MPSoC prototyping and validation is HW em-
ulation. In industry, one of the most complete sets of statistics is provided by
Palladium II [Cadence 2005], which can accommodate very complex systems
(i.e., up to 256 Mgate). However, its main disadvantages are its operation fre-
quency (approximately 1.6 MHz) and cost (around $1 million). Then, ASIC
integrator [ARM 2004a] is much faster for MPSoC architectural exploration.
Nevertheless, its major drawback is its limitation to only up to five ARM-based
cores and only AMBA interconnects. The same exploration limitation of pro-
prietary cores occurs with Heron SoC emulation [Heron Engineering 2004].
Other relevant industrial emulation approaches are System Explore [Aptix
2003] and Zebu-XL [Emulation and Verification Engineering 2005], both based
on multi-FPGA emulation in the order of MHz. They can be used to validate
intellectual property blocks, but are not flexible enough for fast MPSoC design
exploration or detailed statistics extraction. In the academic world, a relatively

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 5

complete up-to-date emulation platform for exploring MPSoC alternatives is
TC4SOC [Nava et al. 2005]. It uses a proprietary 32-bit VLIW core and en-
ables exploration of interconnects by using an FPGA to reconfigure the network
interfaces (NIs). However, it does not enable detailed extraction of statistics and
performing thermal modeling at the other two architectural levels we propose,
namely, memory hierarchy and processing cores. Last, an interesting approach
that uses FPGA prototyping to speed-up coverification of pure SW simulators
is described in Nakamura et al. [2004]. In this case, the FPGA part is synchro-
nized on a cycle-by-cycle basis with the C/C++ SW part by using an array of
shared registers in the FPGA that can be accessed by both sides. This work
shows a final speed for the combined framework of 1 MHz, outlining the po-
tential benefits of combined HW-SW frameworks which we fully exploit in this
approach to reach an MPSoC emulation speed of 100 MHz.

Regarding thermal modeling, Skadron et al. [2004] presented a ther-
mal/power model for superscalar architectures. It can predict the temperature
variations between different components of a processor and show the subse-
quent increased leakage power and reduced performance. Additionally, Su et al.
[2003] investigated the impact of temperature and voltage variation across the
die of an embedded core. Their results show that the temperature can vary
by around 13.6 degrees across the die. Also, in Lépez-Buedo et al. [2000] the
temperature of FPGAs that are used as reconfigurable computers is measured
using ring oscillators which can be dynamically inserted, moved, or eliminated.
This empirical measurement method is interesting, yet only applicable to FP-
GAs that are as target devices. Our method alternatively aims at estimating the
temperature of integrated circuits implementing MPSoC designs. Nevertheless,
all of these works clearly prove the importance of hot spots in high-performance
and reconfigurable systems, as well as the need for temperature-aware design
and tools to support them.

Based on the previous and other similar thermal models, dynamic thermal
management (DTM) techniques have been suggested for processors using archi-
tectural adaptation, dynamic voltage scaling (DVS), dynamic frequency scaling
(DFS) and profiling-based techniques. In Skadron et al. [2002], it is proposed to
use formal feedback control theory as a way to implement adaptive techniques
in the processor architecture. In Srinivasan and Adve [2003] a predictive frame-
based DTM algorithm targeted at multimedia applications is presented. This
algorithm uses profiling to predict the theoretical highest performance within
a thermally safe HW configuration for the remaining frames of a certain type.
Also, Brooks and Martonosi [2001] performed extensive studies on empirical
DTM techniques (i.e., DVS, DFS, fetch toggling, throttling, and speculation
control) when the power consumption of a processor crosses a predetermined
threshold (i.e., 24W). Their results showed that both DF'S and DVS can be very
inefficient if their invocation time is not set appropriately. Additionally, Rohou
and Smith [1999] suggested not scheduling hot tasks when the temperature
reaches a critical level. In this way, the CPU spends more time in low-power
states such that the temperature can be either locally or globally decreased. In
this work we address the problem of empirical validating such approaches with
long thermal simulations using real-life workloads, which becomes feasible with

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

6 3 D. Atienza et al.

(2 N\
ar L~
<« Shared memory accesses

Non- .
Proc 2 >l capct)eatble Q
. rivate zZ
Core ¥ "@** MEMORY Memory c
S CONTROLLER 2
o S e
= <» D - Cache «» Cacheable %
- Private <« o
<> | -Cache «» Memory &
z

- E |
h =

~ Subsystem 1) G, Btemal suarep
z Brigos MEMORY

S ridge
> 8
Subsystem 2 i
z
o
w
o
|<
T
%)

(Subsystem n)'*’

<_
Fig. 1. Overview HW architecture of emulated MPSoCs.

our HW-SW thermal emulation tool. In fact, a simple DF'S mechanism based on
the previous works is presented in our experiments to illustrate the flexibility
of the proposed HW-SW FPGA-based framework to interact with the SW part,
and to explore in real time different temperature management policies.

Finally, another interesting line of research to ease the problem of tempera-
ture in future MPSoCs is temperature-aware placement [Chu and Wong 1998;
Chen and Sapatnekar 2003; Goplen and Sapatnekar 2005]. In this case, the
temperature issues are addressed at design time to ensure that circuit blocks
are placed in such a way that they even out the thermal profile. All of these
techniques are complementary to ours since we assume that the final floorplan
and core placement phases have been already performed. Hence, our tool is
able to take the outcome of any of the previous approaches and validate their
predicted results during the execution of realistic applications of the target
working environments.

3. MPSOC EMULATION ARCHITECTURE

The proposed MPSoC framework uses FPGA emulation as the key element
to model the HW components of MPSoCs at multimegahertz speeds, and to
extract the detailed system statistics used in our SW thermal library running
in a host computer. An overview of the baseline HW architecture of the MPSoC
emulation platform is depicted in Figure 1. It consists of three main elements:

(1) different MPSoC processing cores, such as Power PC, Microblaze, ARM, or
VLIW;

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 7

(2) the definition of configurable I- and D-cache, as well as main memories (i.e.,
private and shared memories between processors); and

(3) variousinterconnection mechanisms between the L1 memory hierarchy and
the main memory, namely, buses and NoCs.

These elements are designed in standard and parameterizable VHDL and
mapped onto a Xilinx Virtex 2 Pro vp30 board (or V2VP30) with 3M gates, which
costs approximately $2,000 in the market and includes two embedded Power
PCs, various types of memories (i.e., SRAM and DDR), and an Ethernet port.
However, any other FPGA could be used instead. The only requirements are the
availability of an Ethernet core to interact with the SW thermal tool, a compiler
for the included cores, and a method to upload both the FPGA synthesis of our
framework and the compiled code of the application under study. In our case,
Xilinx provides all these basic tools in its embedded development kit (EDK)
framework for FPGAs.

In addition, note that the purpose of our emulator is not prototyping the fi-
nal HW components in MPSoC systems, but constructing an emulation and fast
exploration tool that can be used by designers to discover the desired charac-
teristics and thermal effects of the eventual system. Therefore, our framework
includes mechanisms to configure the exploration and hide those physical char-
acteristics of the underlying HW that do not match the selected values (con-
versely to traditional prototyping), as will be explained further in Section 4.2.

In the following subsections we describe in detail the architecture and ad-
vanced emulation mechanisms of the different elements included in our emu-
lation platform. We also depict synthesis figures for each component.

3.1 Processing Elements

In our framework, various types of processing cores can be included, both pro-
prietary and public. The accepted input forms are netlists mapped onto the
underlying FPGA and HDL languages (i.e., Verilog, VHDL, or synthesizable
SystemC). This addition of cores is possible since the memory controller that
receives the memory requests in our system includes an external pinout inter-
face and protocol that can be easily modified to match the corresponding ones of
the studied processor (Section 3.2). Moreover, only the instruction-set emulation
part of the core is required because its memory hierarchy (e.g., caches or scratch
pad) is replaced by our framework to explore different memory configurations.

In the current version of the system, we have ported a hard core (PowerPC
405) and a RISC-32 soft core (Microblaze) provided by Xilinx. None includes
HDL sources, but only netlist mapping, and the inclusion process for their
pinout interfaces and protocols required one week. Regarding platform scala-
bility for MPSoC designs, a complete Microblaze requires only 4% of the total
resources of our V2VP30 FPGA (574 out of 13,696 slices).

3.2 Memory Hierarchy

As Figure 1 indicates, in the basic emulated architecture two memory levels
presently exist: L1 cache memories and main memories. However, it requires

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

8 3 D. Atienza et al.

only a few minutes to add additional cache memory levels or private memories
to each processing element, either on a per-processor or processor-group basis.
The main element in the memory hierarchy that enables this easy integration
of new memory devices and protocols is the memory controller. One memory
controller is connected to each processing core to capture all its memory re-
quests. Then, the memory controller forwards them to the necessary element of
the memory subsystem according to the demanded memory address. In the cur-
rent implementation, it takes 2% of the total available resources of our V2VP30
FPGA (270 slices), and includes interfaces and protocols for 4 memory compo-
nents and 3 different memory address ranges:

(1) private main memory, cacheable or noncacheable, addressable in a config-
urable memory range of each processor: It is possible to configure its size
and latency, so long as enough block random access memory (BRAM) re-
sources exist. Its synthesis takes 1% of the V2VP30 (181 slices), apart from
the used BRAM that depends on the desired size.

(2) shared main memory, cacheable or noncacheable according to the user’s con-
figuration: It is possible to configure its total size and latency, and it does
not take any area in the FPGA since it uses real memories available on
the board, namely, synchronous random access memories (SRAM) or double
data rate synchronous dynamic RAM (DDR-SDRAM or DDR memories).

(3) private HW-controlled D- and I-caches: It is possible to define independently
the total D- and I-cache sizes, line sizes, and latencies to explore different
design alternatives. In our experiments, both caches are directly mapped.
However, their modular designs include in different concurrent processes
the replacement policy and associativity features, making it easy to change
this configuration with additional algorithms to test. Its synthesis uses 1%
of the V2VP30 (181 slices) and the amount of used BRAM varies according
to the desired size.

Finally, each memory controller is able to observe and synchronize different
clock domains due to its multiple external interfaces (see Figure 1). It has in-
ternal counters for each type of connected memory to keep track of the elapsed
time and compare it with user-defined latencies. Then, the memory controller
informs the virtual platform clock manager (VPCM) (see Section 4.2) to stop
the processor’s clock during the emulation each time one physical memory de-
vice cannot fulfill the defined latency. Hence, the stopped processor preserves
its current internal state until it is resumed by the clock manager, when the
memory controller informs it that the information requested is available. This
mechanism enables tradeoffs between emulation performance and use of re-
sources, as detailed in Section 4.2. Currently, our memory controller monitors
two clock domains: one for the microprocessor and the other for the memories
and memory controller itself.

3.3 Interconnection Mechanisms

The third configurable element in our MPSoC emulation framework is the in-
terconnection mechanism between the memory controller and main memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 9

(i.e.,in BRAM, SRAM, or DDR memories). At this level, we have included both
buses and NoCs. To enable this variety of choices, apart from multiple types
of interfaces of the memory controller, we have also included a configurable
main memory bridge in the device side. It includes two different public pinout
interfaces: one corresponds to the memory and the other to the instantiated in-
terconnection. Similarly as the memory controller, this enables us to extend the
current list of available interconnection mechanisms by modifying the required
pinout and protocol.

In the current version, two available buses on Xilinx FPGAs are included,
namely, an on-chip peripheral bus (OPB) for general-purpose devices and a pro-
cessor local bus (PLB) for fast memories and processors. Also, we have created
our own 32-bit data/address bus for exploration purposes. It is inspired by the
basic functionality of the AMBA 2 AHB interconnect [ARM 2003], where
the bandwidth and arbitration policies can be configured. Thus, starting from
the initial OPB scheme, we have removed the signals used for advanced arbi-
tration schemes, transaction parking request, etc. Also, the arbitration protocol
is specified at compile time, hence avoiding the need for a dedicated signal to
set the arbitration mode. Currently, the allowed arbitration modes are: priority-
based and round robin. In addition, the latency and bus width can be config-
ured. For our experiments (see Section 7) the arbitration latency is one cycle,
and connected to all processing cores through an OPB interface and to an exter-
nal SRAM memory through a custom SRAM controller. Its synthesis (including
the SRAM controller) represents 1% of the V2P30 FPGA (210 slices).

In addition, we have included a facility for exploring custom-made NoC so-
lutions. The synthesizable NoC code is generated using the Xpipes NoC com-
piler [Jalabert et al. 2004]. It allows for studying topologies with any number of
switches, links with bandwidth constraints, and NIs to connect external cores to
the NoC. We have modified the memory controller and main memory bridges to
generate open core protocol (OCP) transactions as the Xpipes NIs require [Jal-
abert et al. 2004]. Regarding FPGA utilization, a complex NoC-based system
with 6 switches of 4 input/output channels and 3 output buffers uses 70% of
the V2P30 FPGA (9,659 slices).

The inclusion of each of these buses and NoC interfaces in our framework
required one week of work. Furthermore, as with processing cores, any other
high-performance proprietary bus (e.g., AMBA, STBus, etc.) can be added to
our emulation framework as a black box, since the integration process only
requires to know the used protocol and external bus pinout.

4. STATISTICS EXTRACTION SUBSYSTEM

The main feature pursued in the design of the statistic extraction subsystem
is its transparent inclusion in the basic MPSoC architecture to be evaluated,
and with minimum performance penalty in the overall emulation process. For
this purpose, as depicted in Figure 2, we have implemented HW sniffers (see
Section 4.1) that monitor certain signals of the memory controller and the exter-
nal pinout of each device included in the emulated MPSoC. These sniffers cal-
culate, among other statistics, the energy consumed in each cell (see Section 5)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

10 o D. Atienza et al.

.

¢—>{ BRAM (Ethernet buffer)]

Virtual Clk
Suppression 1

N
Own To/From host PC Thermal

Ethernet Library
o Dispatcher \ Sofware
=
o
3 . Virtual Virtual CIk n
= Platform .
%) Virtual Clk 1

Processing = . Clock
Core < . Manager Virtual Clk Suppression n

TN RN
@
'—
<
O
=)
w
[a)

Subsystem 1)f

Subsystemn Je

Fig. 2. Overview of the statistics extraction subsystem.

of the floorplan of the emulated MPSoC, and store the final values in a buffer
created in the FPGA BRAM memory. Finally, the buffers are concurrently pro-
cessed by our network dispatcher to generate medium access control (MAC)
packets in our own format, and sent by an Ethernet port to the SW thermal
modeling library running in the connected computer. One key additional ele-
ment in this extraction mechanism is the VPCM module (see Section 4.2), which
enables stopping and resuming the statistics extraction mechanism in the case
of congestion of the Ethernet connection.

4.1 HW Sniffers

HW sniffers transparently extract the statistics from each MPSoC component
defined in the floorplan. From a design point-of-view, all sniffers in our platform
share a common structure. They have a dedicated interface to capture internal
signals from the module they are monitoring, and a connection to our custom
statistics bus. To create a new sniffer, the designer need only define what to
monitor in the component and how to connect the sniffer to the bus. For tem-
perature monitoring, HW sniffers measure the time that each processor spends
in active/stalled/idle mode at runtime, and the number and types of access to
memories in the system (i.e., I- and D-caches, and large shared and private
main memories). At the interconnection level (buses or NoC), the monitored
values are the number of signal transitions. There is an skeleton available to
ease the creation of new sniffers for this purpose. Currently, we provide two
different types of sniffers. The first, called event logging, exhaustively logs all

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 11

interesting events that occur in the platform. The second, called count logging,
only counts events such as cache misses, bus transactions, memory accesses,
etc.; thus, it generates more concise results, which is typically what designers
demand from cycle-accurate simulators to test their systems. Our experimental
results with real-life MPSoC designs (see Section 7) indicate that practically an
unlimited number of event-counting sniffers can be added to the design without
deteriorating at all the emulation speed. This establishes one of the main differ-
ences from SW cycle-accurate simulation systems: The addition of additional
cores or analysis sniffers to the MPSoC architecture does not slow down the
emulation process due to the implicit concurrent synchronization of signals be-
tween different HW modules working in parallel to compose a complete MPSoC
architecture. In fact, HW sniffers merely act as an additional HW component
that transparently monitors the switching activity of signal and internal states
of the bare MPSoC HW architecture.

Finally, as an example to evaluate how much FPGA area overhead the statis-
tics extraction subsystem represents, the amount of resources used by one
event-logging sniffer is 0.1% (14 slices), while for an event-counting sniffer
it is about 0.2% (31 slices).

4.2 Virtual Platform Clock Manager (VPCM)

The VPCM is the HW element used in our framework to provide multiple vir-
tual clock domains. This module generates as output the clock signals used
in the emulated MPSoC subsystems (VIRTUAL CLK signals in Figure 2). It re-
ceives three different types of input signals. First, the physical clock is gen-
erated in the oscillator of the FPGA (not shown in Figure 2 for simplification
purposes), which in the current implementation is set to 100 MHz. Second,
one signal from each memory controller of the emulated MPSoC subsystems
(VirTuaL CLK SUPPRESSION 1..N in Figure 2) is used to request a virtual clock
inhibition period if any attached memory device of the emulated hierarchy is
not able to return the requested value at this moment, respecting its set user-
defined latency (see Section 3.2). Third, signals coming from different virtual
temperature sensors (SENSOR 1..N in Figure 2) monitor whether any component
has increased its temperature beyond/below a certain threshold. This mecha-
nism enables the use of runtime thermal management policies (see Section 7
for examples). Virtual temperature sensors are regular registers that store the
current updated runtime temperature coming from the SW thermal library run-
ning in the host computer. However, in the final MPSoC they would be replaced
by real sensors. Then, the use of virtual clock domains generated by the VPCM is
twofold:

—First, the emulation of MPSoCs can be done for physical features other than
those of available HW components. Once the respective VIRTUAL CLK SUPPRES-
SIoN 1..N signal is high, the corresponding VirTuaL CLK signal of that subsys-
tem (or set of subsystems) is activated. Then, the stopped processor preserves
its current internal state until it is resumed by the VPCM, when the memory
controller states that the information requested is available in the accessed
memory. This mechanism allows us to implement the corresponding memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

12 o D. Atienza et al.

resources either in internal FPGA memory (for optimal performance) or with
external memories (for bigger size), while balancing emulation performance
and the use of resources. For instance, if the desired latency of main mem-
ories is 10 cycles but the available type of memory modules in the FPGA is
slower (e.g., use of DDR instead of SRAMs), the VPCM can stop the clock
of the processors involved at runtime. Thus, it can hide the additional clock
cycles required by the memory. Our VPCM includes two clock domains: (1)
microprocessor, memories, and interconnections; and (2) memory controllers.

—Second, the virtual clock of all or part of the components in the emulated
MPSoC can be transparently stopped/resumed at runtime in the case of sat-
uration of the Ethernet connection during download/upload of the extracted
statistics/estimated temperatures.

The combination of these two mechanisms enables the execution and ther-
mal modeling of HW configurations of the emulated MPSoC at a different speed
from the allowed clock speed of available HW components. In fact, it is similar
to the mechanism used in SW simulations, but at a much higher frequency (see
Section 7). For instance, it is possible to explore the thermal modeling effects
of a final system clocked at 500 MHz, even if the present cores of the FPGA can
only work at 100 MHz. To this end, instead of using a 10 ms statistics sampling
frequency with a desired virtual clock emulation of 500 MHz, our framework
uses a virtual clock of 100 MHz (the maximum clock allowed in FPGA emulation
after synthesis). This clock is 5x slower than the desired emulated clock and
collects the statistics every 50 ms, but the switching activity in each MPSoC
component monitored at this interval is equivalent to target system for 10 ms.
Therefore, our framework samples every 50 ms of real execution, but is ana-
lyzed by the SW thermal library as representing 10 ms of the target MPSoC
emulated execution. The major requirement in this case is the definition of
the sampled/emulating frequency and the target MPSoC frequency to config-
ure the SW thermal model accordingly. The SW thermal model is described
next.

5. MPSOC SW POWER/THERMAL MODELING

Our SW thermal tool is a C++ library that enables thermal exploration of silicon
bulk chip systems. It can evaluate the thermal behavior in devices modeled
at different levels of abstraction (i.e., gate-level, RTL-level, and architectural-
level). The switching activities of the wires and components in the die for this
thermal analysis are obtained from our FPGA-based MPSoC emulation (see
Section 3). Then, the library can be configured in multiple ways to evaluate
the thermal behavior of different alternatives for each final MPSoC chip. For
instance, its space resolution for thermal accuracy is configurable (i.e., number
of temperature cells in a fixed area), as are many other packaging parameters
(e.g., quality of heat sink, thermal capacitance of the different materials that
compose the chip, etc.). In our experiments (Section 7), this flexibility in thermal
library configuration is used to investigate the runtime thermal behavior of
multiple cores and embedded memories on a single die in the case of different
package solutions and floorplan designs for MPSoCs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 13

Table I. Power for the Most Important Components of an MPSoC Design (using a
0.13 pwm bulk CMOS technology)

Max. Power Max. Power

MPSoC Component (at 100 MHz) | (at 500 MHz) | Max. Power Density
RISC 32-ARM7 5.5mW — 0.03W /mm?
RISC 32-ARM11 0.3W 1.5W 0.52W /mm?
DCache 8kB/DM (ARM7) 28mW — 0.028W /mm?
DCache 8kB/DM (ARM11) 142mW 710mW 1.97W /mm?
ICache 8kB/DM (ARM7) 28mW — 0.028W /mm?
ICache 8kB/DM (ARM11) 142mW 710mW 1.97W /mm?
Memory 32kB (ARM7) 11mW — 0.01W/mm2
Memory 32kB (ARM11) 55mW 275mW 0.76W /mm?
NoC switch (6x6-32b) 56mW 25TmW 0.08W /mm?
NoC network interface 23mW 128mW 0.02W /mm?

In the next subsections, we first discuss the utilized power model. Second, we
explain the thermal model in detail. Finally, we review the thermal calculation
speed and accuracy of the current library implementation.

5.1 Power Estimation

In Table I, we outline the power consumption and power densities for the most
important components of the evaluated MPSoCs as an illustration of what our
tool requires. We use, as Table I indicates, the maximum power numbers for
each component as the worst case, but the effective power can normally be
lower, depending on the workload (activities of processors and memories), and
be given as an input by the designer for his particular design. These values
have been derived from industrial power models for a 0.13 um technology.
Regarding leakage power, we currently assign a fixed 10% weight to leak-
age energy. This figure actually corresponds to the indications of the inter-
national technology roadmap for semiconductors (ITRS) [SIA 2004] for low-
standby power systems in 0.13 u with a supply voltage of 1.2—-1.3V. ITRS out-
lines that in this case Vdd/Vt are very aggresively scaled to guarantee sufficient
battery lifetime. Hence, using an optimal Vdd/Vt operating point results in very
limited leakage power variation for different working temperatures. However,
in more recent technology nodes, leakage variations become more important,
and our SW thermal library and HW sniffers can be extended accordingly.

5.2 Thermal Estimation

In our case we consider MPSoCs HW that is made of silicon die wrapped into
a package placed on a printed circuit board (PCB), with variable cost (from
low-cost to high-cost packaging, as shown in Section 7). In this case, as shown
in Figure 3, the heat flow starts from the bottom surface of the die and goes up
to the silicon, passes through the heat spreader, and ends at the environment
interface where the heat is spread by natural convection [Skadron et al. 2004].
Therefore, for modeling the heat flow, we rely on an equivalent electrical RC
model (see Figure 3). Two RC models are supported. On the one hand, we have
developed our own thermal model of MPSoC considering nonlinear resistances

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

14 D D. Atienza et al.

Heat spreader IC package
IC die ?

: % package pin

PCB

Fig. 3. Chip packaging solution.

Cu

‘| sifsi

1]3.[3. s ‘

St Tsifsilsisi . ‘ ‘ . — Yoo,
si sif il si

si sif silsi
Si| Si| Si| Si P Bottom
si| sil si/ si

(a) (b)

Fig. 4. (a) Chip divided into cells; (b) equivalent RC circuit.

inside the silicon [Paci et al. 2006] in order to match the behavior of thermal
conductivity. We consider the heat spreader made of copper and use linear
resistances to model it. Currently, we can analyze 2 seconds of simulation (in
a 660-cell floorplan) in 1.65 seconds on a P-4 at 3 GHz, which is fast enough
to interact in real time with our FPGA-based MPSoC emulation. On the other
hand, we have cross-checked our results by including in our tool the capability
to use the Hotspot v3.0 thermal model [Skadron et al. 2004] (see Section 7 for
more details). It is an accurate model for high-performance processors, based
on an equivalent circuit of linear thermal resistances and capacitances which
correspond to microarchitecture blocks and essential aspects of the thermal
package. This model has been validated using finite element simulation. In the
following subsections, we further describe our own thermal model and refer to
Skadron et al. [2004] for a more detailed explanation of this library.

5.2.1 Modeling the Heat Flow. A low-power MPSoC is usually packed
within a plastic ball grid array package [Vandevelde et al. 2001] (see Figure 3).
In our library, we assume that all surfaces but that of the heat spreader are
adiabatic. The spreader disposes the generated heat by natural convection with
the ambient.

Then, similar to Skadron et al. [2004], Su et al. [2003], and Heo et al. [2003],
we exploit the well-known analogy between electrical circuits and thermal mod-
els. We decompose the silicon die and heat spreader in elementary cells which
have a cubic shape (see Figure 4) and use an equivalent RC model for com-
puting the temperature of each cell. By varying the cell size and number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 15

1200um 1200um
dCache|iCache |dCache|iCache Private dCache ‘ Private
8KB 8KB 8KB 8KB 30KB 3K15 oea 32KB
p1 p1 p2 p2 memory 2 P 1 switch | memory
iCache rocessor o1 p1
Processor1 ‘ ‘ Processorz‘ p3 8KB
p1 NoC 6x8| Private
NoC 6x6 NoC 6x6 NoC 6x6 pr— switch 32KB
! switch switch switch e e memory
p1 p2 p3 02 \ p2
: : [Pracessors cache| PTOCESSOr2 |\ocexs| Private
Private Private 8KB switch 32KB
32KB 32KB ~icache [dCache P2 PP | memory
merqory merréory 8KB | 8KB dCache p3
8KB
2 2 p3 p3 3 Private
- 32KB
Private NG 616 Shared Cache Processor3 fwces 2268
32KB o 32KB o e p4
memory Q4 memory T ——
p4 ‘Processom‘ B ‘ ©7[NoG interface
} P4 Shared
iCache dCache| oo cacne| Processor4 32KB
interf 8KB memory
pd pd interface ¥
(a) (b)

Fig. 5. MPSoC floorplan with (a) 4 ARM7 cores; and (b) 4 ARM11 cores.

cells, we can tradeoff the simulation speed of the thermal library with its accu-
racy. In our experiments we have used two basic floorplans: (a) 4 ARM7 cores
at 100 MHz; and (b) 4 ARM11 running at 100 or 500 MHz, both in 0.13 um
technology (see Figure 5). The interconnect is clocked at the same frequency as
the cores in each case. The cell sizes used in both cases are 150um * 150um.
We assume that the power is uniformly burned in this region, which repre-
sents 1/8th of the size of an ARM processor in 0.13 um. For technologies with
worse thermal conductance, such as the fully depleted silicon-on-insulator [SIA
20041, it is possible to use smaller thermal cells (down to the level of standard
cells).

5.2.2 Equivalent RC Thermal Model. We associate with each cell a thermal
capacitance and five thermal resistances (see Figure 4). Four resistances are
used for modeling the horizontal thermal spreading, whereas the fifth is used
for vertical thermal behavior. The thermal conductivity and capacitance of each
cell is computed as follows (where &,/ is the thermal conductivity and ¢}/ is
the thermal capacitance per unit volume):

si/cu h-
R (1)
0, sijcu l-
Gy = kth/ : _hw (2)
CchCth'l'h'w (3)

We model the generated heat by adding an equivalent current source to the
cells on the bottom surface. The heat injected by the current source into the
cell corresponds to the power density of the architectural component covering
the cell (e.g., a memory decoder or processor) multiplied by the surface area of
the cell. No heat is transferred down into the package from these bottom cells.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

16 o D. Atienza et al.

Table II. Thermal Properties

silicon thermal conductivity 150 - (%)4/3 W/mK
silicon specific heat 1.628¢ — 12J /um’K
silicon thickness 350um
copper thermal conductivity 400W/mK
copper specific heat 3.55¢ — 12J /um*K
copper thickness 1000um
package-to-air conductivity (low-cost) 40K /W

In contrast, the heat from cells on the top surface is removed through
convection. We model this by connecting an extra resistance in series where
R}? = 1/G? resistance. The value of this resistance is equal to the package-
to-air resistance weighted with the relative area of the cell to the area of the
spreader.

Finally, the thermal model is calibrated against a 3D finite element analysis
given by an industrial partner.

5.2.3 Thermal Properties. In Table II we enumerate thermal properties
of the different packaging options used during our experiments. The amount
of heat that can be removed by natural convection strongly depends on the
environment, such as the placement of the chip on the PCB as in the case of
embedded systems. Regarding package-to-air resistance, we consider the case of
very low-cost packaging where a good average value is 42W/K (see Vandevelde
et al. [2001]) because of the uncertainty of the final MPSoC working conditions.
However, since this value is higher than the actual figures published by some
package vendors, in our experiments (see Section 7) we also study the effect of
different packaging solutions for MPSoCs.

6. HW-SW MPSOC EMULATION FLOWS

The key advantage of our framework for exploration of MPSoC designs with
thermal management at high speed is its double integration of statistics ex-
traction (from HW emulation) and SW thermal simulation of all MPSoC archi-
tectural blocks in one overall tool flow. The whole system flow is depicted in
Figure 6.

First, the HW and SW components of the system are defined. Regarding
HW, the user specifies in this phase one concrete architecture and all the HW
sniffers. These HW sniffers are to extract statistics for each of the three main
architectural levels that constitute the final MPSoC: processing cores, mem-
ory subsystem, and interconnection to the main memories. This is done by
instantiating, in a plug-and-play fashion, the predefined HDL modules avail-
able in our repository for each of the aforementioned three levels (see Section 3)
and corresponding sniffers. In our case we use the Xilinx integrated software
environment. As for the SW part, in this phase it is compiled in the applica-
tion(s) to be tested in the emulated MPSoC. In our case we use Xilinx EDK,
which includes GNU C (gcc) and C++ (g++) compilers/linkers for the Power
PC and the Microblaze cores available in our repository. Also, EDK enables

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 17

Define HW architecture ‘

l Cache size & line length, latencies, N

Define HW architectural parameters ‘{ Memory ranges, etc...

Define analysis targets & ‘
write/connect suitable sniffers

v v
Synthesize HW platform ‘ ‘ Compile SW ‘

\/

Generate platform binaries ‘

Write application code ‘

Run & extract statistics 4—'—-

|
| |)
I ‘ Runtime

FPGA |
EE——— Power estimation I Thermal
Behavior

B —— T —

o _____ __________I Feedback
Communication via Ethernet

Fig. 6. Complete HW-SW flows included in the FPGA-based thermal emulation framework.

loading different binaries on each system processor. Thus, if the application to
be tested is already written in any of these languages, no effort is required for
the designer, since the memory hierarchy and utilization of the interconnection
mechanism (e.g., generation of OCP transaction for the NIs of the NoC) are
transparently generated by the underlying emulated HW architecture. For a
complex MPSoC with 8 processors and 20 additional HW modules, this phase
requires 10 to 12 hours overall, including the complete synthesis phase with
standard tools. Moreover, modifications in the current core configurations take
less than 1 hour to resynthesize, while the compilation of the additional SW
part of a 4-processor emulation system only takes minutes.

In the next phase, the floorplan to be evaluated according to the previous HW
definition is specified. At this time the different energy and frequency values
for each HW component in the emulated MPSoC are set. Also, the configurable
granularity of the temperature updates and communication between the FPGA
and SW thermal library is configured. This value is fixed at 10 ms in our exper-
iments (Section 7).

Next, the whole HW emulated MPSoC is uploaded onto the Xilinx FPGA-
based platform using a JTAG device, and the graphical interface of our SW
thermal model is launched in the host computer. After this point our frame-
work runs autonomously. While the emulated system is running, the statistics
concerning the power values for each cell defined in the layout are concurrently
extracted, and sent to the thermal simulator running onto the host computer
via a standard Ethernet connection. The thermal simulator calculates in real
time the new temperatures and feeds back these updates by sending MAC pack-
ets to the FPGA-based emulation framework. According to this newly received

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

18 o D. Atienza et al.

Table III. Timing Comparisons between Our MPSoC Emulation

Framework and MPARM
| | MPARM | HW Emulator |

Matrix (1 core) 106 sec 1.2 sec (88x)
Matrix (4 cores) 5 min 23 sec 1.2 sec (269x)
Matrix (8 cores) 13 min 17 sec 1.2 sec (664 x)
Dithering (4 cores-bus) 2 min 35 sec 0.18 sec (861x)
Dithering (4 cores-NoC) 3 min 15 sec 0.17 sec (1147 x)
Matrix-TM (4 cores-NoC) 2 days 502 sec (1612x)

information, the implemented temperature manager in our FPGA can be used
to test different runtime thermal management policies on the emulated MPSoC
(see Section 7 for an example).

7. EXPERIMENTAL RESULTS

We have assessed the performance and flexibility of the proposed emulation
framework in comparison with the MPARM framework [Benini et al. 2005] and
its internal SW thermal library by running several examples of multimedia
and intensive processing cores of MPSoC designs (see Sections 7.1 and 7.2).
Additionally, our experiments include applying the presented framework to test
a runtime DFS mechanism for one complex MPSoC case study based on ARM-
11 cores (see Section 7.3), with various packaging techniques (Section 7.4), and
different thermal-aware floorplan solutions (Section 7.5). In our experiments
MPARM is executed on a P-4 at 3.0 GHz with 1GB of SDRAM and running
GNU/Linux 2.6.

7.1 MPSoC Emulation vs. Simulation Performance Evaluation

In the first set of experiments we have assessed the performance of the bare
MPSoC emulation framework (without thermal modeling) for system architec-
ture exploration, in comparison to cycle-accurate simulators. To this end, we
evaluated various configurations of interconnections and processors (1 to 8) us-
ing a complex L1 hierarchy for each core with a 4KB D-cache/I-cache, 16KB of
private memory, and a global 1MB main shared memory. All processors used
OPB and OCP buses. As an example, the MPSoC design with HW sniffers and 4
processors (1 hard-core PowerPC and 3 soft-core Microblazes) consumes 66% of
the V2VP30 and runs at 100 MHz. Next, we explored the use of NoCs [Jalabert
et al. 2004] instead of buses. The tested NoC had two 32-bit switches with 6
inputs/outputs and 3-package buffers. This NoC-based MPSoC required 80% of
our FPGA.

For the SW drivers, first we used a kernel application (Matrix in Table III)
that performs independent matrix multiplications at each processor private
memory and combines the results in memory at the end. Second, we used a
dithering filter (DiTHERING in Table III) using the Floyd algorithm [Floyd 1985]
in two 128x128 grey images, divided into 4 segments and stored in shared mem-
ories. This application is highly parallel and imposes almost the same workload
in each processor. The obtained timing results are depicted in Table III.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 19

These results show that the HW-SW emulation framework scales signifi-
cantly better than SW simulation. In fact, an exploration of MPSoC solutions
with 8 cores for the Matrix driver took 1.2 seconds per run in our case, but more
than 13 minutes in MPARM (at 125 KHz), resulting in a speedup of 664 x. More-
over, the exploration of NoCs with complex SW drivers (dithering with 4 cores,
30 HW MPSoC components in total) shows larger speedups (1147 x) due to sig-
nal management overhead in cycle-accurate simulators (Table III). As a result,
our HW-SW emulation framework achieved an overall speedup of more than
three orders of magnitude (1147 x), illustrating its clear benefits for exploration
of the design space of complex MPSoC architectures compared to cycle-accurate
simulators.

7.2 MPSoC Thermal Modeling Using Cycle-Accurate Simulation vs.
HW-SW Emulation

In the second set of experiments we have verified the capabilities of real time
interaction between the HW FPGA-based emulation and SW thermal library
components of our system, compared to pure cycle-accurate SW simulation. In
this case we considered a low-cost package solution (see Table II). From the
HW viewpoint, we defined a system with 4 RISC-32 processing cores. Each core
was attached to a local 8KB direct-mapped instruction and data caches, using
a write-through replacement policy. Also, each processor had a 32KB cacheable
private memory, and a 32KB shared memory was included in the system. The
memories and processors were connected using an XPipes NoC of four 6x6
switches and NI modules. The considered floorplan is shown in Figure 5 and
included 128 thermal cells. We obtained the dimensions of the NoC circuits by
synthesizing and building a layout. As the SW driver for this MPSoC design,
we defined a benchmark (Matrix-TM in Table III) that keeps the processor
workload close to 100% all of the time, pushing the MPSoC to its processing
power limits to observe effects in temperature. This benchmark implements a
pipeline of 100K matrix multiplication kernels based on the Matrix benchmark
(see Table III). Each processor executes a matrix multiplication between an
input matrix and a private operand matrix, then feeds its output to the logically
following processor. The platform receives a continuous flow of input matrices
and produces a continuous flow of output matrices. Every core follows a fixed
execution pattern: (i) copy of an input matrix from the shared memory to its
private memory; and (ii) multiplication of the new matrix with a matrix already
stored in the private memory; (iii) copy of the resulting matrix back to the shared
memory. During the whole execution, interrupt and/or semaphore slaves are
queried to keep the synchronization, creating an important amount of traffic to
the memories. The obtained timing results (Table III) show that our HW-SW
emulation framework takes approximately 5 minutes for the entire execution
of the driver, including thermal monitoring, versus 2 days in MPARM for just
0.18 seconds of real execution (left corner in Figure 7); Thus, our framework
achieves more than three orders of magnitude in speedups (1612x) compared
to SW-based thermal simulation, making feasible to study, in a reasonable time,
long thermal effects.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

20 o D. Atienza et al.

420

400 ///—

Temperature (Kelvin)

0,0 1.0 2,0 3,0 4,0 50 6,0 7.0 8.0
Time (seconds)

| &= Simulation in MPARM — Emulation without DFS —o— Emulation with DFS

Fig. 7. Average temperature evolution of Matrix-TM in a 4-core MPSoC at 500 MHz or using a
two-choice DF'S (500-100MHz).

7.3 Evaluation of Dynamic Thermal Strategies in MPSoCs

In the third set of experiments we have performed a long thermal emulation
in our framework to observe thermal effects on the MPSoC with real-life pro-
cessing inputs of embedded applications. We ran the Matrix-TM workload for
100K iterations and the results for a 500 MHz emulation are shown in Figure 7.
These indicate the need to perform long emulations to estimate thermal effects
(note in Figure 7 that the previous simulation in MPARM only represents a very
limited part of the overall MPSoC thermal behavior). Due to the high rise in
temperature observed in the MPSoC design, we explored the possible benefits
of DTM techniques within our HW-SW emulation framework. To this end, we
implemented a simple threshold monitoring policy using the available HW tem-
perature sensors in our framework. The policy consists of a simple dual-state
machine that monitors at runtime whether the temperature of each MPSoC
component increases/decreases above/below two certain thresholds that we de-
fined (350 or 340 degrees Kelvin in this example). Then, the temperature sen-
sors inform the VPCM, which performs DFS choosing between 500 or 100 MHz
accordingly. The results are also shown in Figure 7 and indicate that this simple
thermal management policy could be highly beneficial in MPSoC designs using
low-cost packaging solutions (i.e., with values of package-to-air resistance of
more than 40K/W). Furthermore, these results outline the potential benefits of
our HW-SW emulation tool for exploring the design space of complex thermal
management policies in MPSoCs, compared to SW cycle-accurate simulators
that suffer from important speed limits.

7.4 Floorplan Selection Exploration in MPSoCs

When an integrated system is built for a certain MPSoC, the definition of an
appropriate floorplan is a very complex task for system integration designers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 21
1200um 1200um
dCache|iCache dCache|iCache :]
8KB | 8KB 8KB | 8KB Frate Filvate
p1 p1 p2 p2 memory memory
1 2
Processor1 Private Processor2 ‘ P p
NoC 6x6 32KB NoC 6x6 ‘ dCache|iCache |dCache|iCache
I switch —— Memory ! switch 8KB | 8KB 8KB | 8KB
p1 p2 p2 NoC 6x6| p1 p1 p2 p2 [NoC 6x§
switch switch
Private Private p1 Processor1 | Processor2 p2
32KB 32KB NoC 6x6| Processor3 | Processor4 [dCache
memory Shared memory St SKB
p1 S p4 p3 |iCache |dCache|iCache p4
Emeny 8KB | 8KB | 8KB
NoC 6x6 NoC 6x6| ‘ p3 p3 p4 [NoC 6x6
—— switch switch —— switch
= Private e Private e
32KB 32KB
Processor3 ‘ memory ‘ Processor4‘ memory Shared Private
iCache [dCache p3 iCache |dCache p3 3ZKB 32KB
8KB | 8KB 8KB | 8KB LT me”jlory
p3 | P8 p4 | p4 P

(a) (b)

Fig. 8. MPSoC floorplan with cores; (a) scattered in the corners; and (b) clustered in the center of
the chip.

In fact, deciding a suitable placement for each block in the MPSoC architecture
requires taking into account multiple constraints (e.g., power, energy, perfor-
mance, etc.) with values that are specific for each design. Recently, due to the
increasing temperature in MPSoCs, thermal behavior has become another key
factor defining the placement of each block of the design [Chu and Wong 1998;
Chen and Sapatnekar 2003]. In this set of experiments we have used our tool to
evaluate two additional thermal-aware floorplans (see Figure 8) for our initial
case study with four processing cores and a NoC-based interconnect working at
500 MHz (see Figure 5). The first alternative floorplan scatters the processing
cores in the corners of the chip (Figure 8(a)), while in the second all the cores are
clustered together in the center (Figure 8(b)). We assumed the use of a low-cost
packaging solution in all cases (see Table II).

The results are shown in Figure 9. In this case we can observe that the best
floorplan to minimize temperature (15% less heating speed on average than
the initial floorplan of Figure 5) was achieved with the placement technique
that tries to assign processing cores to the corners of the layout (labeled as
scattered in Figure 9). Hence, this solution is the best of the three thermal-
aware placement options because it most delays the need to apply the available
DFS mechanism shown in Figure 9, although its interconnects experience more
heating effects due to the longer and more conflicting connection paths between
components, which can originate more NoC congestion effects. By contrast, the
solution that tries to place all processing cores in the center of the chip (labeled
as clustered in Figure 9) shows the worse thermal behavior, but just slightly
worst in temperature (5% on average) than the original manual placement of
cores used for this MPSoC design, while the delays in interconnections between
cores are minimal for the former due to their closest locations in the floorplan

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

22 o D. Atienza et al.

330

320

Temperature (Kelvin)

310

300 T T T T T T
0 2 4 6 8 10 12
Time (seconds)

— Original floorplan ——(a) Scattered ——{b) Clustered £ MPARM

Fig. 9. Average temperature evolution with different floorplans for Matrix-TM at 500 MHz with
DFS on.

(see Figure 8(b)). The main conclusion from this study is that a more aggresive
temperature-aware placement must be applied (e.g., placement of cores scat-
tered in the corners of the chip) to justify placing the cores apart, as attempted
in the original manual design, to compensate for the heating effects on the chip
due to longer interconnects. Otherwise, the possible penalty for long intercon-
nects may not be justified, since a uniform distribution of power sources does
not necessarily lead to a uniform temperature in the die. Moreover, these re-
sults clearly outline the importance for tool designers to explore the concrete
thermal behavior of each design, and to select the most appropriate placement
in an early stage of integration flow.

7.5 Effect of Different Packaging Technologies and SW Thermal Libraries

In this final set of experiments we tested different packaging solutions and
compared them with the thermal behavior of the low-cost value of 40K/W that
was initially considered (Table II) for our MPSoC floorplan with four RISC-32
processing cores working at 500 MHz with a NoC interconnect (see Figure 5).
We simulated this floorplan with two additional values, namely, 12K/W in the
case of standard packaging [ARM 2004b] and 5K/W in the case of high-cost and
high-performance embedded processors [AMD 2004]. The results are shown in
Figure 10.

As this figure shows, in the case of the standard packaging solution, the MP-
SoC design required more time to heat up and reached a maximum value of
360 degrees Kelvin when the DFS mechanism was not applied. This is lower
than the case of low-cost packaging (40K/W), which reached a temperature
of more than 500 degrees Kelvin. However, the thermal behavior of the stan-
dard packaging system was similar to the low-cost solution (its starting point
was only slightly shifted to the right due to its more gradual temperature-rise

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 23

500

350
340

A\ A A BT A AN A e
450 }\\y "\(\J‘\) \}\l \ \‘\." "“‘.v" q ‘\(AYAVAYATAN J \J

400

Temperature (Kelvin)

350 4

0 5 10 15 20 25
Time (seconds)

[—K=40 (OFs) K=40 (no DFS) —K=12 (DFS) —K=12 (no DF5) —K=5 |

Fig. 10. Thermal behavior for an MPSoC floorplan using low-cost, standard, and high-cost pack-
aging solutions.

curve) when the presented threshold-based DTM strategy of Section 7.3, fixed
at 250 degrees Kelvin, was applied. Therefore, with this threshold value, no
significant improvements were obtained with the standard package, and the
low-cost solution would be preferable for this design using DTM. However, for
the high-cost packaging solution (for 5K/W), the system showed a completely
different temperature behavior where the chip never went beyond 325 degrees
Kelvin. Therefore, this packaging solution creates much less thermal stress in
the overall MPSoC implementation, and does not require the application of DF'S
because the design never reaches a temperature above the 350-degree-Kelvin
threshold. As a result, this solution could significantly increase the expected
mean-time-to-failure of the component and be interesting in highly reliable ver-
sions of this MPSoC chip design. However, note that this type of package has
the important drawback of high cost for the manufacturer of the final embedded
system, namely, typically 5 to 12x more than standard package solutions and
more than 20x the cost of the low-cost package solution [IBM 2006]; Thus, it
can seriously increase the price of the final product and developers would like
to avoid it if possible. Hence, this type of experiment and presented framework
can be a very powerful tool for designers to decide which type of packaging
technique would be enough for a specific set of constraints in forthcoming gen-
erations of MPSoC designs.

Finally, we performed the same set of emulation experiments replacing our
library with the well-known Hotspot v3.0 thermal library [Skadron et al. 2004],
configuring it with the same packaging options previously tested. The results
of this additional set of experiments show a very similar thermal behavior in
comparison to our own library in the case of high-cost packaging (less than 3
degrees Kelvin of difference), which is the original target of the Hotspot library.
In cases, of low-cost and standard packaging, variations that range between
4 to 15 degrees Kelvin have been observed. The origin of these variations the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

24 o D. Atienza et al.

nonlinear dependency factor of silicon thermal conductivity with respect to the
actual temperature in the die, which is included in our own library, but not
modeled in the Hotspot library. In fact, our results indicate that this nonlinear
part of the thermal equations is particularly important when the temperature
rises beyond 360 degrees Kelvin in the case of low-cost packaging solutions,
and needs to be considered at each moment of the emulation to get accurate
thermal measurements for this type of MPSoC packaging technology.

8. CONCLUSIONS

MPSoC architectures have been proposed as a promising solution to tackle the
complexity of forthcoming embedded systems. These future consumer devices
will contain an extremely large amount of transistors, thanks to nanoscale
technologies, but will be very hard to design, as they must execute multiple
complex real time applications (e.g., video processing or 3D games) while meet-
ing several additional design constraints (e.g., energy consumption or short
time-to-market). Moreover, the rise of temperature in the die for on-chip com-
ponents can seriously affect the performance and reliability of final MPSoC
designs. In this article we have presented a new HW-SW emulation framework
that provides designers with a powerful tool to study the thermal behavior
of MPSoC designs at three different architectural levels, namely, processing
cores, memory subsystems and interconnection mechanisms. The experimental
results have shown that our proposed framework obtains detailed reports of
the thermal features of final MPSoC floorplans, with speedups of three or-
ders of magnitude compared to cycle-accurate MPSoC simulators. Also, the
further additions of processing cores and more complex memory architectures
in our emulation framework suitably scale. Thus, almost no loss in emula-
tion speed occurs (conversely to cycle-accurate simulators), which enables long
simulations of complex MPSoCs, as thermal modeling requires. Furthermore,
the real time interaction between HW emulation and SW thermal model-
ing through the Ethernet connection enables the application and testing of
complex dynamic thermal management policies to the emulated MPSoC at
runtime.

In addition, we have used our tool to evaluate different temperature-aware
placement techniques that try to compensate for the heating effects of MPSoCs.
Our study indicates that the significant overheads of power dissipated in long
interconnects can clearly affect the overall thermal behavior of the final MP-
SoC, and that a uniform distribution of power sources in the die does may not
necessarily produce a uniform temperature in the final chip. Hence, MPSoCs
designed in the latest technology nodes require the use of tools to study their
suitable placement in an early stage of system integration, according to the ap-
plications that will be executed in each final MPSoC. Also, we have illustrated
the effectiveness of the presented thermal evaluation tool to rapidly study the
effects of different packaging options for concrete MPSoC solutions. Our re-
sults indicate that the selection of final packaging solutions clearly depends on
the thermal management techniques included in the target MPSoCs, and more
costly packagings may suffer the same heating effects as low-cost ones; Thus,

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs . 25

a demand for expensive packaging solutions cannot be justified without prior
extensive thermal exploration. Finally, we have shown the versatility of our
tool in various thermal libraries, and illustrated the need for different thermal
models according to the implementation requirements of the target MPSoCs
(e.g., high- or low-cost packaging).

ACKNOWLEDGMENT

The authors would like to thank Srinivasan Murali for his great help to validate
the thermal library and Federico Angiolini for his support with XpiPESCOMPILER.

REFERENCES

AMD. 2004. Thermal performance comparison for am486dx2 and dx4 in pdh-208 vs pde-208
package. http://www.amd.com.

Aprix. 2003. System explore. http://www.aptix.com.

ARM. 2003. Arm AMBA 2 AHB Specification. http://www.arm.com/products/solutions/AMBA_
Spec.html.

ARM. 2004a. Arm integrator application. http://www.arm. com.

ARM. 2004b. ARM7TDMI-STR71xF TQFP144 and TQFP64 10x10 packages—Product
datasheets. http://www.arm.com/products/CPUs/ARM7TDMI . html.

ARM. 2002. PrimeXSys platform architecture and methodologies, white paper. http://www.arm.
com/pdfs/ARM11%20Core?20&%20P1latform)%20Whitepaper.pdf.

Benmi, L., Berrozzi, D., Bocrioro, A., MENICHELLI, F., AND Orivier, M. 2005. Mparm: Explor-
ing the multiprocessor SoC design space with SystemC. J. VLSI Signal Process. 41, 2, 169—
182.

BrauN, G., WIEFERINK, A., SCHLIEBUSCH, O., LEUPERS, R., MEYR, H., AND NoHL, A. 2003. Processor/
Memory co-exploration on multiple abstraction levels. In Proceedings of the DATE.

Brooks, D. aND MarTonost, M. 2001. Dynamic thermal management for high-performance mi-
croprocessors. In Proceedings of the HPCA.

CapENCE. 2005. Cadence palladium II. http://www.cadence. com.

CHEN, G. AND SAPATNEKAR, S. 2003. Partition-Driven standard cell thermal placement. In Proceed-
ings of the ISPD.

Cuuy, C. anD Wong, D. 1998. A matrix synthesis approach to thermal placement. IEEE Trans.
Comput. Aided Des. 17,11, 1166-1174.

CoWagre. 2004. Convergence and Lisatek product lines.

EMuLATION AND VERIFICATION ENGINEERING. 2005. Zebu XL and ZV models. http://www.eve-team.
com.

GoOPLEN, B. AND SAPATNEKAR, S. 2005. Thermal via placement in 3D ICs. In Proceedings of the
ISPD.

Hro, S., BARR, K., aND Asanovic, K. 2003. Reducing power density through activity migration. In
Proceedings of the ISLPED.

Heron ENGINEERING. 2004. Heron MPSoC emulation. http://www.hunteng. co.uk.

IBM. 2006. IBM packaging solutions. http://www-03.ibm.com/chips/asics/products/
packaging.html.

JALABERT, A., MURALI, S., BENINI, L., AND DE MicHELL, G. 2004. xpipescompiler: A tool for instanti-
ating application specific networks-on-chip. In Proceedings of the DATE.

JERRAYA, A. AND WoLE, W. 2005. Multiprocessor Systems-on-Chips. Morgan Kaufmann, Elsevier.

Lo6pEz-BUEDO, S., GARRIDO, J., AND BoEMO, E. I. 2000. Thermal testing on reconfigurable computers.
IEEE Des. Test Comput. 17,1, 84-91.

Macnusson, P. S., CurisTENssoN, M., EskiLson, J., ForsGren, D., HaLLBERG, G., HOGBERG, J., LARSSON,
F., MoESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulation platform. IEEE Com-
put. 35, 2, 50-58.

MenTOR GRrAPHICS. 2003. Platform express and Primecell. http://www.mentor.com/products/
embedded_software/platform_baseddesign/.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

26 o D. Atienza et al.

NAKRAMURA, Y., Hosorawa, K., Kuropa, 1., YosHikawa, K., AND YosHmMURA, T. 2004. A fast HW/SW
co-verification method for SoC by using a C/C++ simulator and FPGA emulator with shared
register communication. In Proceedings of the DAC.

Nava, M. D., Brouert, P., TENINGE, P., CoppoLa, M., BEN-IsmaIL, T., PiccHioTTINO, S., AND WILSON, P.
2005. An open platform for developing MPSoC. IEEE Comput., 60—67.

Paci, G., MarcHAL, P., PoLeTT, F., AND BENINI, L. 2006. Exploring temperature-aware design in
low-power MPSoCs. In Proceedings of the DATE.

Paunin, P., PiLkiNGTON, C., AND BENSOUDANE, E. 2002. Stepnp: A system-level exploration platform
for network processors. IEEE Des. Test 19, 6, 17-26.

R. W. Frovp, E. A. 1985. Adaptive algorithm for spatial gray scale. In Proceedings of the ISDT.

Ronou, E. anp Smite, M. 1999. Dynamically managing processor temperature and power. In
Proceedings of the FDO.

SeEMicoNDUCTOR INDUSTRY AssociatioN (SIA). 2004. The international technology roadmap for
semiconductors. http://public.itrs.net/.

SkabroN, K., Stan, M., Huang, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TARrJAN, D. 2002.
Thermal-RC modeling for accurate and localized dynamic TM. In Proceedings of the HPCA.

SkaDRON, K., StaN, M. R., SANKARANARAYANAN, K., Huang, W., VELUsaMY, S., AND TARJAN, D. 2004.
Temperature-Aware microarchitecture: Modeling and implementation. Trans. Architecture Code
Optimizations 1,1, 94-125.

SRINIVASAN, J. AND ADVE, S. V. 2003. Predictive dynamic thermal management for multimedia
applications. In Proceedings of the ICS.

Sy, H., Ly, F.,, DEvGAN., A., Acar, E., AND Nassir, S. 2003. Full chip leakage estimation considering
power supply and temperature variations. In Proceedings of the ISLPED. 78-83.

SyNopsys. 2003. Realview maxsim ESL environment. http://www.synopsys. com.

VANDEVELDE, B., DRIESSENS, E., CHANDRASEKHAR, A., AND BEYNE, E. 2001. Characterisation of the
polymer stud grid array, a lead-free CSP for high performance and high reliable packaging. In
Proceedings of the SMTA.

Received September 2006; revised February 2007; accepted March 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 26, Publication date: August 2007.

