Calfection: a novel gene transfer method for suspension cells

We have developed a novel method called Calfection for gene delivery to and protein expression from suspension-cultivated mammalian cells. Plasmid DNA was simply diluted into a calcium chloride solution and then added to the cell culture for transfection. We evaluated and optimized this approach using suspension-adapted HEK293 cells grown in 12-well plates that were shaken on an orbital shaker. Highest expression levels were obtained when cells were transfected at a density of 5x10(5) cells/ml in the presence of 9 mM calcium and 5 microg/ml of plasmid DNA while maintaining a culture pH of 7.6 at the time of transfection. Suspension-adapted BHK 21 and CHO DG 44 cells could also be transfected using this method. Calfection differs from the widely known calcium phosphate coprecipitation technique. The physico-chemical composition of the DNA interacting complexes is not yet known. The transfection cocktail, DNA in a calcium chloride solution, remained highly efficient during long-term storage at temperatures ranging from room temperature to -80 degrees C. In contrast, calcium phosphate-DNA cocktails are only efficient for gene transfer when prepared fresh. Furthermore, passing the calcium-plasmid DNA mixture through a 0.2-microm filter did not compromise protein expression, whereas calcium phosphate-DNA coprecipitates were retained by the filter. High protein expression levels, a limited number of manipulations and the possibility to filter the cocktail make the Calfection approach suitable for both large-scale transfection in bioreactors and for high-throughput transfection experiments in microtiter plates.

Published in:
Biochimica et biophysica acta, 1676, 2, 155-61
Laboratory of Cellular Biotechnology, Swiss Federal Institute of Technology, Lausanne, CH-1015, Switzerland.

 Record created 2007-06-05, last modified 2018-03-17

External link:
Download fulltext
Rate this document:

Rate this document:
(Not yet reviewed)