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ABSTRACT
Subtyping tests are essential in typed publish/subscribe in-
frastructures, especially when the underlying programming
language supports subtype conformance, as in Java or C#.
These tests are particularly challenging when the publish/-
subscribe infrastructure is distributed, because processes have
diverging views and new types may be added in a decentral-
ized manner. Maybe surprisingly, subtyping tests for such
distributed systems have been devoted only little attention
so far; they are usually strongly intertwined with serializa-
tion and code transfer mechanisms.

This paper presents an efficient subtype testing method
for event objects received through the wire, requiring neither
the download of a full description of the types or classes of
these objects nor their deserialization. We use a slicing tech-
nique that encodes a multiple subtyping hierarchy with as
little memory as the best known centralized type encoding,
but allows for the dynamic addition of event types without
re-computing the encoding.

We convey the practicality of our approach through per-
formance measures obtained with standard Java libraries
in a publish/subscribe system. Our approach performs be-
tween 3 and 12 times faster than a code transfer approach
without adding overhead to object deserialization, and re-
quires the same testing time as a straightforward string-
based type encoding while reducing the encoding length by
a factor of 50.

Categories and Subject Descriptors
C2.4 [Computer Communication Networks]: Distributed
Systems—distributed applications; D3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types
and structures
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1. INTRODUCTION

At the heart of typed publish/subscribe-like interaction
models with pass-by-value semantics lies the subtyping test,
also called type inclusion test. In short, this test consists in
verifying whether a given type t is a subtype of another type
r. This elementary test, used to decide whether an object O
(of a given type t) is an instance of a type r, occurs of course
frequently at regular program execution, either implicitly as
in Java [10] array assignments, upon dynamic dispatch in
exception clauses, or explicitly as triggered by means of the
instanceof operator (resp. is in C# [11] or isKindOf
in Smalltalk [9]).

Significant seminal work on subtype tests has been cen-
tered around encoding schemes for assigning identifiers to
types in a way using minimal space (sizes of identifiers, data
structures reflecting subtyping relationships) and execution
time (overhead of testing, construction of supporting data
structures) [18, 3, 22, 12, 1, 23, 24].

In the dynamic distributed settings we consider in this
paper, subtyping tests are crucial since individual processes
might very well introduce new types on the fly, for example
as subtypes of existing types. As pointed out in [19], type
descriptions are not necessarily globally available due to dy-
namic joins, leaves, and updates of distributed components,
and because there is no central authority that can be relied
upon. Moreover, any communication of such information be-
tween remote hosts requires network resources and as such
is subject to latency and failures. Consider the simple case
of a process pi sending an object O of type t to a process pj

expecting type r. It might be very well clear to pi that t is a
subtype of r, but pj might never have heard of t, especially if
pi and pj have not constantly been connected by a wired in-
frastructure (cf. [4]). The Java serialization mechanism for
instance stipulates that a full description of the class C (e.g.
its byte-code) of such an object O is available, or that an
exception be raised if this is not the case. This assumption
has been carried over to all object-oriented distributed sys-
tems we know of (e.g., CORBA [16], JMS [15], MSMQ [13],



.NET [14]). At first glance it seems straightforward to rem-
edy the situation by putting a “code download” approach
to work, where pj asks pi for C but C might also depend
on further types/classes unknown to pj . Transferring every-
thing C depends upon leads to unnecessary communication,
wasting network resources utterly and stalling pj , pi, as well
as any processes depending on either of those.

With pass-by-value semantics in event-based interaction
models à-la publish/subscribe, the problem becomes increas-
ingly important as these entail the exchange of event ob-
jects by value at high rates between publishers and sub-
scribers [21]. With subscriptions reflecting long-lasting re-
mote interactions, it is likely that they witness the emer-
gence of new (sub)types of event objects, especially when
types are part of the subscription criteria [7]. In addition,
certain processes might be relaying objects on behalf of oth-
ers only, in which case these processes might not even require
the full description of certain types. Besides, also with pass-
by-reference semantics, as typical for client/server models,
the addition of new (sub-)types at runtime is a realistic sce-
nario [2], and the transfer of entire classes for the mere pur-
pose of performing subtyping tests seems particularly oner-
ous, since these classes will not even be instantiated. Ide-
ally, in a strongly typed system, any object representation
sent over the wire should encompass a type identification en-
abling global subtyping tests, which are independent from
serialization and code transfer mechanisms.

Unfortunately, one cannot simply extend the centralized
type encoding schemes mentioned above to dynamic dis-
tributed systems, since these require the set of types T per-
taining to a given application to be entirely known when the
encoding is determined. Furthermore, these assume com-
plete descriptions of the types (typically byte-code repre-
sentations) containing explicit information on super-types
to be readily available in order to reconfigure the encoding.
In a distributed system, reconfigurations become extremely
costly as they require global agreement; just like the updat-
ing of processes with new types by uploading correspond-
ing descriptions, they can be run as background tasks, but
should not make a process or even entire application stall,
even if new (sub)types are only seldomly added [2].

This paper addresses the problem of distributed subtype
testing by presenting a novel distributed type encoding for
efficient distributed subtyping tests, and a corresponding al-
gorithm, called DST, designed for an environment with nom-
inal multiple subtyping.1 Our DST algorithm provides two
important features:

• it retains efficiency of local subtype testing in time (no
additional latency) and space (type identifiers are kept
concise to spare network resources),

• it permits extensibility of the type encoding without
forcing global reconfiguration.

The latter feature enables processes to perform subtyping
tests without being compelled to download complete type
descriptions when receiving objects, or to deserializing these
objects.

Basically, we view the type hierarchy as disjoint sequences
of types called slices. Each type is assigned an identifier

1For presentation simplicity and alignment with seminal
work, we focus on (abstract) types without further distin-
guishing how they are declared (e.g., classes, interfaces).

corresponding to its position in a slice. The identifier of a
type t, together with the intervals of the identifiers of its
super-types (simply called the intervals of t) in the respec-
tive slices, represent the encoding of t. To test if a type t
is a subtype of a type r, DST checks if the identifier of r is
contained in the interval of t within r’s slice. The addition
of new types is then handled by extending an existing slice
or by creating a new one (in certain specific cases). Roughly
speaking, our scheme can be viewed as a combination of [23]
and [22] with a fundamental difference: we order the ances-
tors of a type instead of its descendants. This is key to
avoiding global reconfiguration with little memory for the
encoding.

An implementation of our DST algorithm (using Java 1.5)
is available at http://lpd.epfl.ch/baehni/dst.tgz. The
algorithm is made accessible to Java programmers (e.g., for
use in middleware packages) in the form of a comprehensive
set of Java APIs, together with a set of wrapper classes
around the Java serialization classes.

We describe performance measures of our algorithm ob-
tained with standard Java libraries in a publish/subscribe
system. Our performance measurements, conducted through
type hierarchies of the standard Java (1.5, 1.4, 1.3 and 1.2)
class libraries, convey the fact that DST performs a subtyp-
ing test between 3 and 12 times faster than a standard code
downloading approach without increasing the time taken to
deserialize the object. Moreover, DST requires the same
subtyping test time as a straightforward string-based en-
coding approach, in which the type of an object is naively
encoded via the name of the type and recursively through
the names of its super-types (e.g., an encoding of type k in
Figure 1 could be "./a/b/c./d/e/f./h/i./k"). With
respect to this approach, DST however reduces the encoding
length by a factor of 50. We also show, for completeness,
that DST is comparable, in terms of encoding length, to the
best currently known centralized subtyping algorithm [23].
Yet, as pointed out, DST is designed for dynamic distributed
environments where new types can be added at run-time
without requiring global reconfiguration.
Roadmap. Section 2 presents some basic elements needed
to present our DST algorithm. Section 3 presents the algo-
rithm. Section 4 describes the key elements underlying our
Java implementation of DST and illustrates its use. Sec-
tion 5 provides performance measurements. Section 6 sum-
marizes related work whereas Section 7 draws some final
conclusions.

2. BASIC ELEMENTS
This section introduces few definitions before describing

the encoding we consider to represent type hierarchies in
distributed settings.

2.1 Types and Subtypes
A type hierarchy is a partially ordered set S = (T,≺ ),

where T is a set of types {r, t, ...} and ≺ is the reflexive,
transitive and anti-symmetric subtyping relation. Type t is
said to be a subtype of a type r if t ≺ r. In this case r is
said to be a super-type of t. The hierarchy of types present
at the bootstrapping of the system is called the core type
hierarchy, and is denoted by a unique identifier cth(S) (e.g.,
in a typed publish/subscribe system this includes the set
of types in which subscribers can express interests). Every
type that is later added to the system is attached to one
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Figure 1: Example of a type hierarchy. Circles rep-
resent the types of the hierarchy while arrows rep-
resent subtyping relationships (e.g., a© ← e© means
e is a subtype of a).

core type hierarchy. Figure 1 depicts a hierarchy S = (T,≺)
with T = {a, b, c, d, e, f, g, h, i, j, k}. The arrows represent ≺
relations. For instance, d is a subtype of a, c, and d, while k
is a subtype of a, b, c, d, e, f , h, i, and k. As a consequence,
a is a super-type of d and k, among others.

We reuse the following definitions from [23] (formally pre-
sented in Figure 2):

• A type u is a descendant of a type t if u ≺ t. We
denote by D(t, S) the set of all the descendants of t
in S. In Figure 1, we have for instance: D(a, S) =
{a, d, e, g, h, i, k}.

• A type u is an ancestor of a type t if t ≺ u. We denote
by A(t, S) the set of all the ancestors of t in S. In
Figure 1, we have: A(g, S) = {a, c, d, g}.

• A type u is a child of a type t if t 6= u∧u ≺ t and there
is no type v (v 6= u and v 6= t) that is both a subtype of
t and a super-type of u. We denote by C(t, S) the set
of all children of t in S. In Figure 1, C(a, S) = {d, e}.

• A type u is a parent of a type t if t is a child of u. We
denote by P (t, S) the set of all parents of t in S. In
Figure 1, P (g, S) = {d}.

• A root type u of a type hierarchy S is a type that
does not have any parent. We denote by R(S) the set
or root types of a type hierarchy S (a type hierarchy
can have multiple root types). In Figure 1, R(S) =
{a, b, c}.

• The level L(t, S) of a type t in a type hierarchy S is
the greatest level of its parents plus one. The level of
the root types is zero. In Figure 1, L(g, S) = 2.

2.2 Slicing
A type sub-hierarchy, or simply sub-hierarchy, of a type

hierarchy S is a partially ordered subset Si = (Ti,≺), where
Ti ⊆ T. A slice si, with identifier i, in a type hierarchy is
a sequence2 of types a; b; c; ... of the hierarchy. (Because a
slice is a sequence, we will sometimes talk about the head

2Our definition differs here from the one in [22, 23] in that
we consider a slice to be a sequence instead of a set.

Descendants D(t, S)
def
= {u ∈ types | u ≺ t}

Ancestors A(t, S)
def
= {u ∈ T | t ≺ u}

Children C(t, S)
def
= {u ∈ T | u ≺ t ∧ u 6= t∧

(@v ∈ T | v 6= u ∧ v 6= t ∧ u ≺ v ≺ t)}
Parents P (t, S)

def
= {u ∈ T | t ≺ u ∧ u 6= t∧

(@v ∈ T | v 6= u ∧ v 6= t ∧ t ≺ v ≺ u)}
Root types R(S)

def
= {t1, ..., tn ∈ T |

{P (t1, S), ..., P (tn, S)} = {∅, ..., ∅}}

Level L(t, S)
def
=

(
0 t ∈ Root(S)

maxp∈P (t,S)(L(p, S)) + 1 otherwise

Figure 2: Formal notations for S = (T,≺).

s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = s9 = s10 =
a b c d e f g h i j k

a a ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
b ∅ b ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
c ∅ ∅ c ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
d a ∅ c d ∅ ∅ ∅ ∅ ∅ ∅ ∅
e a b c ∅ e ∅ ∅ ∅ ∅ ∅ ∅
f ∅ ∅ c ∅ ∅ f ∅ ∅ ∅ ∅ ∅
g a ∅ c ∅ ∅ ∅ g ∅ ∅ ∅ ∅
h a b c d e ∅ ∅ h ∅ ∅ ∅
i a b c ∅ e f ∅ ∅ i ∅ ∅
j ∅ ∅ c ∅ ∅ f ∅ ∅ ∅ j ∅
k a b c d e f ∅ h i ∅ k

Table 1: A straight slicing of the type hierarchy of
Figure 1.

and the tail of the slice.) A concatenation of two slices si

and sj is written si ⊕ sj (⊕ is associative).
A slicing of a type hierarchy S = (T,≺) is a set of slices

such that (1) each pair of slices is disjoint and (2) the union
of all the slices is T. By extension, all the definitions pre-
sented in Figure 2 also apply to slices. For instance, the root
types of a slice si of a sub-hierarchy Si are the root types of
Si. S0 = ({f, i, j, k},≺) and S1 = ({a, c, d},≺) in Figure 1
are subtype hierarchies of S. A possible slicing of the type
hierarchy S = (T,≺) is given by s0 = g; d; a; c; e; b; h and
s1 = k; i; f ; j.

We now define the notion of straight slice which is key to
our encoding scheme. A straight slice si of a type hierarchy
S = (T,≺) is a sequence of types such that, for any type
t ∈ T, all the ancestors of t within the sequence si are con-
secutive in si. A straight slicing is a slicing in which each
slice is straight. Table 1 describes a possible straight slicing
of the type hierarchy of Figure 1. In this extreme case, each
straight slice contains one type only. The leading column of
Table 1 contains the different types of the hierarchy, while
the heading row contains the different slices of the straight
slicing. A cell at position (i, j) contains the sequence of an-
cestors of the type leading row i for the slice at the head of
column j.

As we will see later, the goal of DST algorithm will be to
generate a small number of slices, for this will be the secret
to a frugal encoding. A slicing made of s0 = g; d; a; c; e; b; h
and s1 = k; i; f ; j is much more frugal (Figure 3 and Table 2)
than that of Table 1. In Table 2, the sequences of ancestors
of any type are consecutive in each slice si. On the other
hand, the following slicing of the type hierarchy of Figure 1
is not a straight one: s0 = a; b; c; d; e; f , s1 = g; h; i; j; k. We
can clearly see here that the ancestors of type f , namely c
and f , are not consecutive in s0.
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Figure 3: Two straight slices of the type hierarchy of
Figure 1 (dashed and plain polygons respectively).

s0 = g; d; a; c; e; b; h s1 = k; i; f ; j
a a ∅
b b ∅
c c ∅
d d; a; c ∅
e a; c; e; b ∅
f c f
g g; d; a; c ∅
h d; a; c; e; b; h ∅
i a; c; e; b i; f
j c f ; j
k d; a; c; e; b; h k; i; f

Table 2: A straight slicing of the type hierarchy of
Figure 3.

2.3 Encoding
We use the notion of straight slicing to encode types with

a concise representation. The encoding of a type t of a type
hierarchy S consists of:

1. The identifier cth(S) of the core type hierarchy of S.

2. The identifier sid(t) ∈ N of the straight slice to which
t belongs.

3. The type identifier id(t) ∈ Z of t. This identifier cor-
responds to the position of t within its straight slice.

4. For each straight slice si, the interval Ii(t) bounded by
the smallest, respectively the largest, type identifier of
the ancestors of type t in si.

As a straight slicing ensures that the ancestors of any type
t in a specific straight slice are consecutive, there is at most
one interval Ii(t) for each slice si that corresponds to the
union of the identifiers of the ancestors of the parents of
t. We will see in Section 3.5 that this property might be
temporarily disabled when new types are added at runtime
to the core type hierarchy cth(S); we will however explain
how we deal with this situation.

Table 3 presents the encoding of the slicing of Figure 2
for the type hierarchy of Figure 3. For simplicity, we do
not mention cth(S) (which is the same for all types). The
leading column again contains the different types of the type
hierarchy while the heading row depicts the straight slices of
the straight slicing. The first (non-leading) column contains
the identifier of the type together with its slice identifier.
The other cells (i, j) contain the intervals of the identifiers
of the ancestors of the type leading row i for the straight
slice at the head of column j.

Using an adequate encoding of type and slice identifiers
(described in Section 4.2), we may represent each type in
the hierarchy very efficiently, with a small number of bits.

id(t), Ii(t) s0 = g; d; a; c; e; b; h s1 = k; i; f ; j
a 2,0 [2,2] ∅
b 5,0 [5,5] ∅
c 3,0 [3,3] ∅
d 1,0 [1,3] ∅
e 4,0 [2,5] ∅
f 2,1 [3,3] [2,2]
g 0,0 [0,3] ∅
h 6,0 [1,6] ∅
i 1,1 [2,5] [1,2]
j 3,1 [3,3] [2,3]
k 0,1 [1,6] [0,2]

Table 3: The encoding of the hierarchy of Figure 1
for the straight slicing of Table 2.

2.4 Distributed Subtyping Test
We show now how our encoding can be used in a dis-

tributed fashion within a system of processes Π = {p1, p1, ...}
exchanging objects, where processes can leave (e.g., crash)
and join the system (e.g., recover) at any time.

To enable distributed subtyping tests, it is not necessary
for processes to send, together with each serialized object,
the entire encoding of the type of the object. Only (1) the
identifier cth(S) (see Section 4) as well as (2) the set of inter-
vals of the ancestors Ii(t) of the type of the object (ordered
according to their respective slice identifiers i) are required.
The information contained in (1) and (2) together with the
serialized form of the object fully qualifies the type of the
object. On the other hand, a process that needs to perform
a subtyping test on a type does not need to maintain the en-
tire encoding of this type. It only needs to know (1) cth(S)
as well as (2) the set containing, for each type t, the pairs
〈id(t), sid(t)〉.

To test if a type u is a subtype of another type t (respec-
tively belonging to type hierarchies Su and St), we simply
check the following property:

u ≺ t⇔ (id(t) ∈ Isid(t)(u) ∧ cth(Su) = cth(St))

Consider the encoding of Table 3 (we omit cth(S) as we
consider only one hierarchy). If a process p1 receives an
object Ob

1 with the encoding information {[5, 5], ∅}, then p1

can test if the object Ob
1 is of type a by verifying whether

id(a) ∈ Isid(a)(b), i.e., if 2 ∈ I0(b) = [5, 5]. Visibly, Ob
1 is not

of (a subtype of) type a. On the other hand, if p1 receives an
object Ok

2 with {[1, 6], [0, 2]}, p1 can test if Ok
2 is of a subtype

of e by checking if id(e) ∈ Isid(e)(k) i.e., 4 ∈ I0(k) = [1, 6].

This yields that Ok
2 is indeed of type e.

3. THE DST ALGORITHM
This section describes how we obtain a straight slicing of

a type hierarchy through our DST algorithm. The straight
slicing is then used to generate the encoding of the types
that are transferred along with objects sent over the wire.

3.1 Overview
In short, the goal of our DST algorithm is to create a

minimal number of straight slices that include all types of
the hierarchy. As we will explain, the idea is to start from



the root types, put each within a singleton slice, which is
inherently straight, and then add other types of the hierar-
chy to existing straight slices, as long as the addition leave
the slices straight. If not, new straight slices are added.
The challenge is to minimize the number of new straight
slices that are created. To simplify our presentation, we
first assume a static type hierarchy and later discuss how to
dynamically add new types.

Our algorithm is composed of three main phases (see Fig-
ure 4) (1) the initialization, (2) the incremental straight
slices creation and (3) the finalization. The creation phase
is in turn made of several steps, that are carried out for
each type t /∈ R(S): (I) the identification of the conflicting
straight slices of a type t, (II) the addition of t into each of
its conflicting straight slices and (III) the concatenation of
the conflicting straight slices in which t has been added.

Phase 3
Finalization

Phase 1
Initialization

Step I
Conflicting Slices

Step II
Add Type

Step II
New Slice

Step III
Concatenation

Phase 2
Straight Slices

Creation

init

confSlices(t) add(t) concat(t,slices)

finalize()

Figure 4: The different phases of DST.

3.2 Initialization – Phase 1
During the initialization phase (lines 1–4, Figure 1), each

root type of the type hierarchy is added into a new distinct
empty straight slice. For instance, if we consider the type
hierarchy of Figure 1, the three root types, a, b and c, are
put in three different initial straight slices: s0 = a, s1 = b
and s2 = c.

3.3 Creation – Phase 2
This phase is performed for each type t of the type hier-

archy S when executing encode() (lines 21–30, Figure 1),
starting with level 1 up to the highest level of S. This phase
can be decomposed in three main steps we detail hereafter.
Identification. During this step, a type t is added to each
of the straight slices of the set of conflicting straight slices
(lines 5–13, Figure 1 and lines 16–23, Figure 2). This set
consists in all the straight slices that contain at least one
ancestor of t.

For instance, if we consider the type hierarchy of Figure 1,
after initialization leading to the creation of straight slices
{s0, s1, s2}, confSlices(d) is {s0, s2}.
Addition. Once the set of conflicting slices confSlices of a
type t has been computed, we add t into each straight slice
s of confSlices (lines 16–23, Figure 2). The addition of t
into a straight slice s is possible only if all the ancestors in
s of any type u in S remain consecutive. This condition
implies that t can only be added at the head (resp. tail) of
s (otherwise, t may break the consecutivity between a type
u and its ancestors in s).

Adding t at the head (resp. tail) of s implies that the head
(resp. tail) of s must be an ancestor of t (otherwise t is not
consecutive with its ancestors in s as s contains at least one
ancestor of t, see Section 3.3). However, the fact that the
head or the tail of s is an ancestor of t does not imply that
all the ancestors of t are consecutive in s. For instance,

1: init
2: sslices← ∅ {ordered set containing the straight slices}
3: for all t ∈ R(S) do

4: sslices← sslices ∪ {t} {one type per slice}

5: function confSlices(t) {The conflicting slices of a type}
6: slices← ∅ {Set of conflicting slice}
7: mcs← ⊥ {Conflicting slice with non-root type(s)}
8: for all si ∈ sslices do
9: if si ⊆ R(S) ∧ A(t, si) 6= ∅ then
10: slices← slices ∪ si

11: else if A(t, si) 6= ∅ ∧ idsi
> idmcs then

12: msc← si

13: return slices ∪ {msc}

14: procedure finalize() {finalization}
15: for all si ∈ sslices by increasing i do
16: if si ⊆ R(S) then

17: sj ← sj ⊕ si | j = min(k : sk ∈ sslices) {k = 0 if
none exists}

18: for all si ∈ sslices and t ∈ si do
19: sid(t)← i
20: Ii(t)← [k, l] | k=first, l=last pos of super-types of t in si

21: procedure encode() {main DST algorithm}
22: for all level l of cth(S) in ascending order do
23: for all t at level l do
24: confSlices←confSlices(t)
25: add(t,confSlices)

26: if ∃s ∈ sslices | t ∈ s then {addition succeeded}
27: concat(t, {s | s ∈ confSlices ∧ t ∈ s})
28: else
29: sslices← sslices ∪ {t}
30: finalize()

Figure 1: Encoding a type hierarchy.

consider a straight slice s0 = b;d;e;c;a which corresponds
to the output of the algorithm for the type hierarchy of
Figure 5. Consider a type f which is a subtype of d and c.
Even if the head and the tail of s0 are ancestors of f , it is
not possible to add f at the head/tail of s0, because f will
not be consecutive with all its ancestors c, a, b, d as e is in
between d and c. To avoid this, the algorithm checks if all
the parents of t are consecutive.

At the end of this phase, t has been added into either (a)
one straight slice, (b) no straight slice or (c) several straight
slices. In the case of (a) the algorithm proceeds with the
identification of the conflicting straight slices of a new type
u and if all the types of the hierarchy have gone through
the addition step, proceeds to the finalization phase. In the
case of (b), i.e., t was not added into any of the straight
slices (because the slicing would not remain straight), a new
straight slice is created for t. Finally, in the case of (c) we
proceed to the concatenation of the straight slices in which
t has been added. Note that concatenation will also take
care of the temporary situation where the resulting straight
slices become non-disjoint, if it occurs.

Consider the hierarchy of Figure 1 where the straight slic-
ing up to type c corresponds to {s0, s1, s2} = {a, b, c} and
confSlices(d) returns s0 = a and s2 = c. We can add
d into s0 and s2, as both a and c are ancestors of d. The
resulting straight slices are s0 = d; a and s2 = d; c.
Concatenation. We consider now the conflicting straight
slices of t in which t has been added and we try to concate-
nate them, one by one.

We only concatenate two straight slices si and sj if the
ancestors of any type u in S remain consecutive after the



1: function getConsAncestors(t,s) {retrieve consec.
ancestors of type in straight slice}

2: ancestors← ∅
3: if head(s) = t then
4: pos← 0
5: while pos < sizeof(s) ∧ u at position pos in s ∈ P (t,S) do
6: ancestors← ancestors ∪ {u}
7: pos← pos + 1
8: else
9: pos←sizeof(s)-1
10: while pos ≥ 0 ∧ u at position pos in s ∈ P (t,S) do
11: ancestors← ancestors ∪ {u}
12: pos← pos− 1
13: return ancestors

14: predicate isStraightSlice(t,s) {test if a slice is straight}
15: return (t ∈ s ∧ P (t,s) = getConsAncestors(t,s))

16: procedure add(t,confSlices) {add new type if possible}
17: for all s ∈ confSlices do
18: if head(s) ∈ A(t,S) then
19: s ← t⊕ s
20: else if tail(s) ∈ A(t,S) then
21: s ← s ⊕ t
22: if not isStraightSlice(t, s) then
23: s ← s\{t}

Figure 2: Adding a new type t into the set of its
conflicting slices confSlices.

concatenation. Therefore, the straight slices si and sj (see
Figure 3) are only concatenated at their head/tail and we de-
note this head/tail by ht. If we consider the previous exam-
ple where d was added into the straight slicing {s0, s1, s2},
the straight slices that are concatenated are s0 = d; a and
s2 = d; c. In this case, we concatenate s0 and s2 at their
respective heads as this does not break the consecutivity of
types a, b, c, d (as the only ancestor of a is a, of b is b, of c
is c and d is consecutive with d, a and c).

To check that the concatenation of si with sj at ht does
not break any consecutivity between the ancestors of any
type t, part of the straight slicing (i.e., that have been added
either at initialization or in the addition phase), we make
sure that (1) ht is an ancestor of t and (2) that ancestors of
t in si and sj are consecutive with ht.

If conditions (1) and (2) above are fulfilled, the concatena-
tion of two straight slices si, sj at ht is performed as follows
(in the case where si and sj do not contain only root types
and t):

• If ht corresponds to the head (resp. tail) of si and
to the tail (resp. head) of sj , t is removed from sj

(remember that t was added in sj during the previous
phase) and we concatenate sj with si (resp. si with
sj , see lines 26–29 and lines 30-33 of Figure 3 resp.).
For instance, if we have two straight slices s0 = t; u; v
and s1 = w; x; t, the concatenation of s0 with s1 is
w; x; t; u; v.

• If ht corresponds to the head (resp. the tail) of both si

and sj , t is removed from sj , and we concatenate bsje
with si (resp. si with bsje, see lines 22–25 and lines
34–37 resp.), where bsje corresponds to the reversed
sequence of sj (e.g., ba; b; c; de corresponds to d; c; b; a).
For instance, if we have two straight slices s0 = t; u; v
and s1 = t; w; x, the concatenation of s0 with s1 is
x; w; t; u; v.

In the case where both straight slices contain only root
types and t, the concatenation is achieved as follows: (1) t

is removed from sj and (2) if t is the head (resp. the tail)
of si, the root types of sj that have another child than t in
the type hierarchy S are concatenated at the tail (resp. at
the head) of si (see lines 15–21, Figure 3). For example, if
we have two straight slices s0 = t; u; v and s1 = t; w; x (in
which u, v, w, x are root types and w has another child than
t) the concatenation of s0 with s1 is t; u; v; x; w.

If it is not possible to concatenate two straight slices si

and sj , t is removed from sj and a unique slice identifier is
set for sj . This is important because sj might be a straight
slice containing only a root type.

To illustrate the concatenation of two straight slices, con-
sider the straight slices s0 = d; a and s2 = d; c which cor-
respond to the output of the algorithm at the end of the
addition of d into its set of conflicting straight slices (as pre-
sented above). The concatenation of s0 with s2 is possible
and the new concatenated slice is s = d; a; c. It is then pos-
sible to add e in both s0, s2 as both c and b are ancestors
of e. Hence, at the end of the addition of e, we end up
with s0 = d; a; c; e and s1 = e; b. It is furthermore possible
to concatenate s0 and s1 as the concatenation allows the
ancestors of a, b, c, d to be consecutive in the new straight
slice. Indeed, the ancestors of a, b, c are respectively a, b, c,
and d remains consecutive with d, a, c while e is consecu-
tive with a, b, c, e. The new concatenated straight slice s0

corresponds to d; a; c; e; b. If now we consider adding f , we
compute confSlices(f) = s0. It is not possible to add f in
s0 as neither the head of s0 (i.e., d) nor the tail of s0 (i.e.,
b) are ancestors of f . Thus a new straight slice is created:
s1 = f .

1: predicate concatenable(u, v, si, sj , types)
2: return (∀ k ∈ types : u ∈ A(k, si) ∧ v ∈ A(k, sj))

3: procedure concat(t,slices) {modifying a slice s in slices
modifies also s in sslices}

4: while sizeof(slices) 6= 1 do
5: si ← slices[0]
6: sj ← slices[1]
7: types← ∅
8: for all sk ∈ sslices do
9: for all u ∈ sk do
10: if A(u,S ∈ si ∧ A(u,S ∈ sj) then
11: types← types ∪ {u}
12: types← types ∪ {t}
13: sj ← sj\{t}
14: slices← slices\{sj}
15: if (si\{t} ∪ sj) ⊆ R(S) then
16: tmp← (first u ∈ sj | C(u, S)\{t} 6= ∅)
17: if (head(si)=t then
18: si ← si ⊕ sj ⊕ tmp
19: else
20: si ← tmp⊕ sj ⊕ si

21: sslices← sslices\{sj}
22: else if (head(si) ∈ A(t,S) ∧ head(sj) ∈ A(t,S)) then
23: if concatenable(head(si),head(sj),si, sj ,types) then
24: si ← bsje ⊕ si

25: sslices← sslices\{sj}
26: else if (head(si) ∈ A(t,S) ∧ tail(sj) ∈ A(t,S)) then
27: if concatenable(head(si),tail(sj),si, sj ,types) then
28: si ← sj ⊕ si

29: sslices← sslices\{sj}
30: else if (tail(si) ∈ A(t,S) ∧ head(sj) ∈ A(t,S)) then
31: if concatenable(tail(si),head(sj),si, sj ,types) then
32: si ← si ⊕ sj

33: sslices← sslices\{sj}
34: else if (tail(si) ∈ A(t,S) ∧ tail(sj) ∈ A(t,S)) then
35: if concatenable(tail(si),tail(sj),si, sj ,types) then
36: si ← si ⊕ bsje
37: sslices← sslices\{sj}

Figure 3: Concatenating straight slices.



3.4 Finalization – Phase 3
We first check that there is no straight slice containing

only root types, which might happen if the type hierarchy
contains root types that do not have any descendants. If
such straight slices su, sv, ... exist, they are appended at the
tail of the first straight slice si that does not contain only
root types. If there is no such si (i.e., the type hierarchy
contains only root types), sv, ... are appended at the end
of su. In this case, appending straight slices at the end
of another straight slice does not break any consecutivity
between the ancestors of any type t of the type hierarchy,
as the straight slices that are appended contain only types
that do not have any parent (lines 17–19, Figure 1).

Then, we construct the encoding of each type of the hier-
archy, i.e., for each type t we assign: (1) its identifier id(t),
(2) its slice identifier sid(t) and (3) for each slice si, its in-
terval of ancestors Ii(t) (lines 20–23, Figure 1). To assign
an identifier to a type in a straight slice si, we parse the se-
quence si starting at its head up to its tail and we assign a
unique identifier id(t) to each item t of si incrementally. The
slice identifier of a type t corresponds to the slice identifier
of the straight slice t belongs to. Finally, the computation of
Ii(t) consists in the union of the identifiers of the ancestors
of the parents of t.

For example, if the type f was the last type of the type
hierarchy of Figure 1, the encoding of the resulting straight
slicing {s0, s1} where s0 = d; a; c; e; b and s1 = f would be
the one of Table 4. For instance, the identifier of f is 0
(because f is at the first position in s1), its slice identifier is
1 and the intervals of its ancestors are [2, 2] and [0, 0] in s0

and s1 respectively.

id(), sid(t)1 s0 = d; a; c; e; b s1 = f
a 1,0 [1,1] ∅
b 4,0 [4,4] ∅
c 2,0 [2,2] ∅
d 0,0 [0,2] ∅
e 3,0 [1,4] ∅
f 0,1 [2,2] [0,0]

Table 4: Encoding of the type hierarchy of Figure 1
up to type f .

3.5 Addition of New Types at Runtime
So far, a new type t is simply added at the head or tail of

one of its conflicting slices s and only if s remains straight
(lines 2–13, Figure 4). If it is not possible to add t into
one of its conflicting slices, a new slice is created and t is
added to it (lines 14–16, Figure 4). We do not concatenate
anymore the slices together. This is justified by the fact that,
when successful, a concatenation always implies changing
the slice identifier of at least one straight slice. Since we
want to preserve the encoding of the types that belong to
such straight slices, we must retain the slice identifiers.

Once t is added into a slice si, then the slice identifier
of t is idsi and the set of Ij(t) is determined by the union
of the intervals of the ancestors of t for all sj in S. The
type identifier of t is the highest type identifier of si plus
one, respectively the lowest type identifier of si minus one,
depending if t is added at the tail, respectively the head of
si (lines 17–31, Figure 4).

To illustrate the idea, consider the type hierarchy of Fig-
ure 7. In that case, the newly added type l is both a subtype

of g and k. The conflicting slice of l with the highest iden-
tifier is s1 and, consequently, the new slicing of the type
hierarchy is made of s0 (which remains the same) and s1 =
l; k; i; f ; j.

It is not possible to concatenate s0 and s1 for that would
not preserve the encoding of one of the original straight
slices. The encoding of l is thus the following: id(l) = -
1, sid(l) = 1, I0(l) = I0(g) ∪ I0(k) = [0,3] ∪ [1,6] = [0,6],
I1(l) = I1(g) ∪ I1(k) ∪ I1(l) = ∅ ∪ [0, 2] ∪ {−1} = [-1,2].

Note that in specific cases, the resulting Ij(t) can be dis-
joint. This is especially true when the newly added type
is a subtype of two types of a slice sj whose ancestors are
not consecutive in sj . This might happen due to a previous
concatenation. For instance, let us take the type hierarchy
presented in Figure 6 (which corresponds to the type hier-
archy presented in Figure 5 in which a new type f , subtype
of type c and d is added). The output of our DST algorithm
gives the following slice s0 = a; c; e; d; b. We can clearly see
if a new type f , subtype of c and d, is added to the type
hierarchy of Figure 5, the ancestors of f in s0 are not con-
secutive as e is not an ancestor of f . Consequently, I0(f) =
I0(c) ∪ I0(d) = [0,1] ∪ [3,4].

This means that the number of range queries to perform
a subtyping test depends, when a new type t is added at
runtime, on the number of non-consecutive parents of t in
the slice of these parents. However, the greater the number
of parents of a new type t in a slice si, the more likely the
union of the intervals of the ancestors of t in si will be non-
disjoint.

1: procedure addNewType(t) {At runtime}
2: confSlices← confSlices(t)
3: newSlice← ⊥
4: for all s ∈ confSlices do
5: if head(s) ∈ A(t,S) then
6: s ← t⊕ s
7: else if tail(s) ∈ A(t,S) then
8: s ← s ⊕ t
9: if not isStraightSlice(t, s) then
10: s ← s\{t}
11: else
12: newSlice← s
13: break
14: if newSlice = ⊥ then
15: newSlice← {t}
16: sslices← sslices ∪ newSlice
17: for all si ∈ sslices do
18: if t ∈ si then
19: sid(t)← i
20: k ← ⊥
21: l← ⊥
22: for all u ∈ si do
23: if u ∈ A(t, S) ∧ k = ⊥ then
24: k ← u
25: l← u
26: else if u ∈ A(t, S) ∧ k 6= ⊥ then
27: l← u
28: else if u /∈ A(t, S) ∧ k 6= ⊥ ∧ l 6= ⊥ then
29: Ii(t)← Ii(t) ∪ [k, l]
30: k ← ⊥
31: l← ⊥

Figure 4: Addition of a new type at runtime.

3.6 Limitations
The modifications of DST needed to add new types at

runtime may affect both the encoding length (due to the
local information of the processes) and the subtyping tests
time (due to increased encoding length and the fact that



c d

e

a b

Figure 5: Concatenable
subtype hierarchy.

c d

e

a b

f

Figure 6: Ancestors of
the new added type f are
not consecutive in s0.

d e f

g h i j

a cb

k

l

Figure 7: Addition of a type l to the type hierarchy
of Figure 1.

several intervals of ancestors might be disjoint). This results
from the incremental flavor of DST, and is more pronounced
in other incremental algorithms (for instance in [17] adding
new types at runtime implies creating new buckets as well as
an exclusion list). Avoiding any degradation would require
predicting the future.

To avoid cumulated effects of many types added at run-
time, our DST algorithm could be used together with a
strong-consistency protocol run in the background to up-
date the encoding of the core type hierarchy with respect to
the newly added types. In between such updates our DST
algorithm can be used to ensure the liveness of the systems.

4. PUTTING DST TO WORK
This section outlines the implementation and use of our

type encoding.

4.1 Implementation
Rather than extending/modifyinig a given Java virtual

machine, we have implemented a set of 40 Java classes to
encode type hierarchies according to DST and perform se-
rialization and deserialization accordingly. The APIs are
designed in a generic way. Programmers can easily de-
fine their own type encoding/subtyping tests by implement-
ing prescribed interfaces. Our packages currently imple-
ments three flavors: besides the DST scheme presented pre-
viously, we provide implementations of the two naive ap-
proaches outlined in Section 1, i.e., the code transfer and
string-based encoding approaches. These will be compared

in terms of efficiency to our DST approach in Section 5.
The complete source code and APIs can be downloaded at
http://lpd.epfl.ch/baehni/dst.tgz.

4.2 Bit-Encoding of Integers
As explained in Section 2, the encoding of a type t in-

cludes integer values, namely: the intervals of the ancestors
of t (each interval being represented by a slice identifier and
containing the type identifiers of the highest and the low-
est ancestor of t in that slice); the slice identifier; and the
type identifier. We chose to encode identifiers using an array
of bits representing the absolute value of the identifier pre-
ceded by a bit of sign (our implementation supports negative
identifiers).

To deal with the variable size of the encoding (e.g., 1 is not
represented with the same number of bits than 3), an initial
mark (a 0-bit) and a final mark (a sequence of n 1-bits) are
appended to the identifier, which is encoded as groups of n
bits. Whenever one such group of n bits is identical to the
final mark, it is repeated in the actual encoding. Therefore,
final marks can be distinguished by a unit of n 1-bits that
is followed by a 0-bit or by the end of the array.

An optimization has been implemented for encoding the
intervals of the ancestors. It consists of encoding the second
value of the interval (representing the highest type identi-
fier of the ancestors in the interval) as the relative offset
to the first value. With the exception of intervals whose
lowest type identifier is negative and whose 19 highest type
identifier is positive, the relative value is smaller than the
absolute value of the highest type identifier. Therefore, the
resulting encoding length of the interval is reduced. One es-
pecially advantageous situation is the encoding of singleton
intervals, where the relative value is zero, hence the interval
becomes encoded in a particularly efficient manner. Imple-
menting the encoding using the above technique does not
impose any assumption on the size of the slices and thus
allows the algorithm to dynamically add new types to its
slices. Furthermore, it has the desirable advantage of encod-
ing small identifiers with a small number of bits and hence
suits perfectly DST. Upon an experimental evaluation under
the conditions described in Section 5, the optimal unit size
was found to be n = 1. The results of Section 5 use such a
unit size.

4.3 Illustration
To serialize and deserialize objects, the programmer cre-

ates a new instance of the basic class DSCTH to construct and
encode the type hierarchy, specified by an array of classes
representing the leaves of the hierarchy. Consider the case
of a class Sample:

Class[] leaves = {Sample.class};
DSCTH dscth = new DSCTH();
dscth.constructTypeHierarchy(leaves);
dscth.encode();

Once the type hierarchy is encoded, a process can serialize
an object, e.g. to send it over a TCP connection, as follows:

Sample obj = new Sample();
DSSerializer ser = new DSSerializer(dscth);
OutputStream oStrm = sdrSk.getOutputStream();
ser.serialize(obj, oStrm);

Note that to this end the object must only implement the
interface java.io.Serializable. This makes it possible
to easily send proxies for Java RMI over the wire.



A receiver process at the other end of the connection may
then obtain the object as a DSObject as follows:

DSSerializer ser = new DSSerializer(dscth);
InputStream iStrm = rcvSk.getInputStream();
DSObject dObj = ser.deSerializeObject(iStrm);

It is then possible, via the received instance of DSObject,
to perform a subtyping test over the encapsulated object:

dscth.forName("Sample").isInstance(dObj);

The isInstance() method returns true or false depend-
ing on whether the object encapsulated in the DSObject in-
stance is of the type whose name is passed to forName().

5. PERFORMANCE
To illustrate how DST retains efficiency of centralized ap-

proaches this section compares our Java implementation of
DST (1) in a local setting with CPQE (an optimized ver-
sion of the PQE algorithm – the most efficient centralized
approach we know of) and (2) in a distributed setting with
the code download approach (a common way to perform
subtyping tests in current distributed systems; henceforth
termed CD), and the string-based encoding (SE, a simple
way to perform subtyping tests in a way avoiding global
reconfiguration).

5.1 Local Setting
In the local setting, we measured both the overhead of

type encoding and the efficiency of (de)serialization of a re-
ceived object according to specific cases.
Configuration. All measurements in this setting were ob-
tained using an Intel Pentium 4 2.66GHz computer with
1GB RAM, running Java virtual machine version 1.5.0-b64
on a Fedora Core 2 (kernel 2.6.11) operating system. All the
presented values are averaged over 10000 measurements.

We considered the type hierarchies of Java 1.5 (around
12500 classes), Java 1.4.2 (8900), Java 1.3.1 15 (4500) and
Java 1.2.2 (4500) as core type hierarchies. More precisely,
we considered all Java 1.5 classes, 96% of the Java 1.4.2
classes, 78% of the Java 1.3.1 classes and 99% of the 1.2.2
Java classes. The rest of the classes are not compatible with
our Java 1.5 implementation.
Overhead of type encoding. An average time of 0.691ms is
taken by DST to initially encode a type hierarchy. This is for
instance substantially higher than the time taken with the
SE approach (0.063ms). This is explained by the increased
complexity of our algorithm. Since the encoding of a core
type hierarchy occurs only once, at the bootstrapping of the
system, we consider a delay of less than a millisecond to be
very acceptable.

Table 5 depicts the encoding length per type, in bits, av-
eraged over the total number of types for each Java type hi-
erarchy. We also distinguish for DST and the SE approach,
the number of bits that (1) must be sent along with each
object of that type and (2) must be maintained in order
to perform subtyping tests against that type. The results
from [23] do not allow us to make this discrimination in the
case of CPQE. The encoding length of DST outperforms SE
by a factor of more than 35 for the information sent with
the objects, and 2.5 to 7.8 for the information maintained
by processes that need to perform subtyping tests. More im-
portantly, DST is comparable, in terms of encoding length,
to CPQE. This might be explained by the fact that the num-
ber of ancestor intervals needed to encode a type is typically

Java DST SE CPQE
version (1) (2) (1) (2) (1)+(2)
1.2.2 12.4 4.5 432.6 29.1 10

1.3.1 15 12.3 4.5 434.3 29.8 18
1.4.2 12.2 4.3 437.4 30.6 -
1.5 12.2 4.5 510.0 35.3 -

Table 5: Average number of bits for the encoding.

Java DST SE
version Sender Receiver Sender Receiver
1.2.2 277 15 1432 1432

1.3.1 15 277 15 1432 1432
1.4.2 294 15 1432 1432
1.5 294 15 2494 2494

Table 6: Maximum number of bits to encode type
information, as held by receiver processes and sent
by sender processes.

one, which is a consequence of the low average number of
straight slices per type hierarchy (1.019 straight slices).
Efficiency of (de)serialization. We also benchmarked
our implementation when serializing/deserializing an object
of a Sample event class. Each instance of that class con-
tained an instance of class ServerManagerImpl in pack-
age com.sun.corba.se.impl.activation. The result-
ing serialized byte array contains the (previously encoded)
type information of the object (in the case of DST and SE),
the byte-code of the class of the object, as well as the object
itself. The time taken to serialize an object is presented in
Figure 8 for DST, SE, and CD. Clearly DST and SE take
a similar amount of time for serializing an object but do
not perform as well as CD in this case by 82.76µs. This
overhead is due to the time to serialize the type encoding.

The object is then sent by a process pi over a local TCP
socket to a process pj , which, upon a positive subtyping test
with the object’s type completes the deserialization. During
the deserialization, four distinct situations may arise accord-
ing to the possible permutations of two conditions, namely
(1) the types received by pj and (2) the availability of the
byte-code of the object. We depict all the cases in Figure 8.
As expected, DST and SE are much better when the subtyp-
ing test fails. DST outperforms CD by factors of 3 and 12,
depending, respectively, on whether the class of the object is
already loaded or not in the Java virtual machine of pj . On
the other hand, if the subtyping test succeeds, the overhead
induced by DST does not hamper the complete deserializa-
tion process. It is surprising to observe that both DST and
SE are comparable. This result can be explained by the fact
that the algorithm used to (de)serialize the type information
of the object in a size-efficient way, in DST, is quite com-
plex. If the (de)serialization time is more important than
the length of the encoding, it is possible to use plain bytes
for the encoding instead of bits. In this case, the deserializa-
tion time of the encoded type information is 4 times shorter
with our DST algorithm than with SE. Moreover, even if
the encoding of our algorithm uses bytes instead of bits, it
still outperforms the SE approach by a factor of 5 in terms
of encoding length. Regarding the time taken to actually
perform the subtyping test, Figure 8 depicts the fact that
this delay is negligible (around 10µs with every approach)
with respect to the time taken for the deserialization.

Table 6 presents the worst encoding length that is achieved



for individual Java versions. This corresponds to the Java
1.5 type java.awt.dnd.DnDEventMulticaster. This
type hierarchy has 18 straight slices. In this case, our al-
gorithm still performs between 3 and 6 times better than
SE.

5.2 Distributed Setting
We measured and compared the average number of incom-

ing objects a process pi can handle in the case it is using (1)
DST, (2) SE, or (3) CD. We focus here on a typed publish/-
subscribe scenario, in which objects representing events are
passed by value between processes. Publish/subscribe appli-
cations are a particularly interesting study case, due to their
wide adoption in large scale applications, and because they
require high throughput and thus push existing technologies
to their limits [21].
Configuration. The measurements conducted in the dis-
tributed setting were obtained using 5 Intel Pentium 4 3.0GHz
with 1 GB, running Java virtual machine version 1.5.0 06-
b05 on Red Hat Enterprise Linux WS (kernel 2.4.21-27.EL)
operating systems on a 100Mbit/s LAN. All the presented
values are averaged over 30 measurements.

In these experiments one process acting as “event bro-
ker” received events containing instances of either Sample
(the same type used in the previous tests) or NewSample
(NewSample has all the ancestor types of Sample, with-
out being a subtyping of Sample) serialized either with the
DST serializer, the SE serializer or only the native Java
serializer (CD approach). We assumed that the code of
the Sample and NewSample classes were available locally.
In this setting the server considered the events containing
Sample objects as “relevant” (i.e., of interest for the pro-
cess), whereas events containing NewSample objects were
“parasite” events (i.e., only being forwarded on behalf of
other processes) [?]. Each of the remaining 4 computers
sent 200’000 events with objects of 192 bytes each to the
broker.
Throughput. We now analyze the number of events a pro-
cess can handle with respect to the approach we use. When
receiving an event the following piece of code is performed
at the server side (in is an input stream from a socket,
and gcth is an instance of class GenericCTH representing
cth(S)):

GenericObject go = ser.deSerializeObject(in);
GenericClass gc =

(GenericClass)gcth.forName("Sample");
if (gc.isInstance(go)) {

Object obj = go.getObject();
}

First, the broker deserialized an event by means of the
method deSerializeObject(). In the DST and SE ap-
proaches this means deserializing only the encoded type in-
formation whereas in the CD approach this means deserializ-
ing the object contained in the event. Then a subtyping test
is performed against the type of the conveyed object (i.e.,
isInstance()) to see if it is of interest. Finally, if the ob-
ject is of interest, it is retrieved from the GenericObject
(through getObject()). In the DST and SE approaches
this means deserializing the object (with the native Java
APIs) whereas with CD this implies just returning the pre-
viously deserialized object.

Figure 9 presents the average number of events per second
a broker can process according to the percentage of relevant

events received and the serialization approach (i.e., DST,
SE, or CD). Not surprisingly, processing an object of interest
or a parasite one does not make any difference with respect
to the CD approach – the conveyed object is deserialized in
any case. As expected the DST approach is always better
than the SE. This can be explained by the fact that when
receiving many events, the time taken to deserialize the type
encoding information of the SE approach takes much more
time than in a local setting.
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Figure 9: Average number of relevant and parasite
events processed for the different approaches.

What is interesting to notice is that the overhead induced
by our DST approach in the case of an object of interest
(i.e., deserializing the type encoding information) becomes
a problem with respect to the CD approach only when a
process receives more than 83% events of interest. Indeed in
the case where the process receives only parasite events, our
DST approach can process 75% more events than the CD
approach. However, if the process is interested in all the ob-
jects it receives, our DST approach processes 17% less events
than the CD approach. Finally, note that we assume in the
measurements that the code of the actual objects was avail-
able locally. If this was not the case, our approach would
perform even better than CD in the processing of parasite
events (as no download of code is necessary), without of
course mentioning cases in which the CD approach stalls if
types with complex dependencies are downloaded.

6. RELATED WORK
Several authors have proposed efficient schemes for encod-

ing type hierarchies [12, 22, 1, 23, 24, 17], but, as we discuss
below, these approaches typically require global reconfigura-
tions of the encoding when new types are dynamically added
to the system which is usually not an issue in a centralized
setting.

With bit vector encoding [12], a type hierarchy (e.g. Fig-
ure 1) is embedded in a lattice of subsets of {1, ..., k}. The
encoding of a type t is a vector of k bits (vect). A type t is a
subtype of a type r if vect ∧ vecr = vecr. With range com-
pression encoding [1], the type hierarchy is split into single
inheritance trees and types are enumerated using a post-
order traversal algorithm. The encoding of a type t consists
of (1) its identifier as well as (2) a set of intervals. The



Figure 8: Serialization and deserialization time of a Sample object.

smallest, respectively highest, value of an interval of a type
t contains the smallest, respectively highest, identifier of the
subtypes of t while ensuring that only the subtypes of t are
inside the considered interval. If it is not possible to encode
all subtypes of t inside an interval, a new one is created. If
the identifier of a type t is contained in the intervals of a
type r then t is a subtype of r. With these approaches [12,
1], whenever a new type is added at run-time, the entire
type hierarchy encoding is re-computed.

With packed encoding (PE) [22], a hierarchy of N types
is represented by a matrix with N lines and P (determined
by the algorithm) columns called buckets. The encoding of
a type t is given by (1) the identifier of the bucket in which
t is contained, p(t), (2) the identifier of t in this bucket,
id(t), and (3) an array in which the 〈index, value〉 pair cor-
responds respectively to the identifier of a bucket i and the
identifier of the super-type of t in i (in order to support
multiple subtyping, two super-types can not be in the same
bucket). Bit packed encoding (BPE) enhances packet encod-
ing by permitting two or more buckets to be represented by
a single byte. In both approaches, no global reconfiguration
is needed upon addition of new types. The number of buck-
ets, and hence the size of the arrays, grows with the number
of common ancestors in the type hierarchy.

With PQ encoding (PQE) [23], named after PQ-trees, the
relative numbering (each type is encoded by an interval)
is combined with the techniques used in PE or BPE. In
PQE, the type hierarchy is split into subsets of types, called
slices. Each slice si contains the maximal number of types
such that, for each type t ∈ T , the subtypes of t in si can
be arranged in such a way that their identifiers represent a
contiguous interval. If, due to the addition of a new type
v into si, the identifiers of the subtypes of any type t do
not remain consecutive in si, a new slice sj is created for v.
Consequently, the encoding of a type t in PQE consists of:
(1) the slice identifier of t, (2) the type identifier of t in its
slice, and (3) for each slice si, an interval whose first and
last values correspond to the smallest, respectively highest,
identifiers of the subtypes of t contained in si. Testing if
a type t is a subtype of a type r consists in checking if the
identifier of t is part of the interval of the subtypes of r in the
slice of t. PQE provides the best encoding length out of all
centralized algorithms we know about, yet does not support

the addition of new types at run-time without re-encoding
the entire hierarchy.3

R&B encoding [17] uses ranges and slices for encoding
a type hierarchy in constant time and in an incremental
way. The algorithm uses the range numbering technique of
Schubert [18] and supports the addition of new subtypes at
runtime, assuming the algorithm of [22]. No global recon-
figuration is thus needed, but the size of the encoding grows
with the number of common ancestors in the type hierarchy.

Perfect hashing [20, 8] can be used to map each identifier
of an ancestor of a type (i.e., a value in the hash table) to a
unique identifier in a hash table [6] (i.e., a key in the hash
table). The subtyping test simply consists in checking if the
value mapped to the hash of the identifier of the ancestor in
the hash table against which a subtyping test is performed
corresponds to the identifier of the ancestor. New types can
be added at runtime as each type has its own hash table
containing 〈key, value〉 pairs for each of its ancestors. This
implies that the size of the encoding grows with the number
of the ancestors of a type in the considered type hierarchy.

Acute [19, 5] adds mechanisms for distributed program-
ming to OCamL, including support for distributed subtype
testing. The “encoding” of types in Acute is based on hash
functions applied to (abstract) type descriptions. The goal is
to retain a fine grained type information to reflect invariants
of types, and not to associate unique, minimal, identifiers
with types. Unlike the above-mentioned approaches and
the one described in this paper, the encoding does not focus
on nominal subtyping relationships, but supports structural
conformance, in order to deal also with versioning. The hash
functions as well as the resulting encoding and its efficiency
are not detailed.

7. SUMMARY
We devised an efficient subtyping test algorithm, DST,

to boost the performance of dynamic and distributed typed
publish/subscribe infrastructures. Our algorithm (1) retains
the efficiency of local subtype testing but (2) avoids global
reconfiguration upon addition of new types. The algorithm

3The authors present in [24] a variant of the algorithm
(BTS) that overcomes this difficulty in certain situations.
In many cases however, the algorithm still has to re-encode
parts of the type hierarchy.



encodes a multiple subtyping hierarchy in a memory-efficient
manner and can perform subtyping tests against each type
of the hierarchy without downloading its code nor having to
deserialize objects of that type.

As we pointed out, our DST algorithm can be viewed as a
combination of [23] and [22] with a fundamental difference:
we order the ancestors of a type instead of its descendants.
This is key to avoiding global reconfiguration while using
very little memory for the encoding. We ensure that the en-
coding of the core type hierarchy (the set of types present at
the bootstrapping of the system) remains the same through-
out the entire lifetime of the system. Unlike the approach
outlined in [5], we rely on the Java convention that types
are unique (by their name), and do not deal with version-
ing. Possibilities for extending and updating existing types
or classes are given by the ability to introduce new subtypes
or subclasses at runtime.

As we show through our experiments, our DST algorithm
is comparable, in terms of performance, to the best known
centralized subtyping algorithm, namely PQE [23], which re-
quires however re-computing the encoding if new types are
dynamically added. In particular, we show that when de-
ployed in a distributed publish/subscribe system, our DST
algorithm enables significant performance improvements by
allowing up to 30% more events to be handled than with
current approaches.
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