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Abstract. Open hedged bisimulation was proposed as a generalisation
to the spi calculus of the pi calculus’open bisimulation. In this paper, we
extend previous work on open hedged bisimulation. We show that open
hedged bisimilarity is closed under respectful substitutions and give a
symbolic characterisation of open hedged bisimulation. The latter result
is an important step towards mechanisation of open hedged bisimilarity.

Introduction

The spi calculus was designed to formalise and study cryptographic protocols. It
is an extension of the pi calculus that permits the transmission of cryptographic
messages [2, 10].

Open bisimulation, introduced by Sangiorgi [16], is an attractive notion of
equivalence for the pi calculus [13–15] for the following reasons. Firstly, it con-
stitutes a reasonably full congruence, i.e., it is preserved by all operators includ-
ing input prefix. Secondly, it allows for simple axiomatizations for finite terms.
Thirdly, it is rather straightforward to build tools that symbolically check for
open bisimilarity ([17] and [6] for example).

In [8] and [7] we defined open hedged bisimulation, which generalises open
bisimulation to the spi calculus. We showed that it is a conservative extension
of Sangiorgi’s open bisimulation (under some conditions) and we proved that it
is a sound approximation of late hedged bisimilarity (see [5] for an overview of
bisimulation for the spi calculus).

In this paper, we extend the study of open hedged bisimulation and give two
important results. We show that open hedged bisimilarity is preserved under re-
spectful substitutions and we provide a symbolic characterisation of open hedged
bisimulation. This symbolic characterisation is an important step towards the
mechanisation of open hedged bisimilarity (for finite spi calculus processes). We
also generalise our definitions to a spi calculus with a rich and realistic message
language that includes shared-key cryptography, public key cryptography, pairing
and hashing.

1 The Spi Calculus

Syntax We assume readers to have a basic knowledge of the notions and ter-
minology of the pi calculus. The spi calculus is an extension of the pi calculus



that permits the transmission of cryptographic (compound) messages. We fol-
low these [5, 4, 8, 7] presentations of the spi calculus. We also assume that the
underlying cryptographic system is perfect as usually done [2, 3, 5].

We assume to have a countably infinite set of names N . Names are used
for channels, variables and clear text messages. Processes P are either the inac-
tive process, inputs, outputs, guard prefixes, parallel compositions, restrictions,
choices or replications. Formulae —or guards— φ include matching, conjunction
and [E :N ], which tests whether an expression E evaluates to a name. Indeed,
contrary to [11], we assume as in [2, 3] that communication channels must be
names; this allows the attacker to verify that a message is a name by attempting
to transmit on it. Messages M are constructed from names by using primitive
constructors for symmetric (shared-key) Encs

KM and asymmetric (public/private
key) cryptography Enca

KM (where M is the content of the cyphertext and K is
the key which may be an arbitrary message), pairing (M .N), hashing H(M)
or public/private key pub(M) and priv(M) (we denote by op an operator in
{H, pub, priv}). Expressions E extend messages with deconstructors for shared
key decryption Decs

FE, public/private key decryption Deca
FE and pair splitting

π1 (E) , π2 (E).

a, b, c, . . . , k, l,m, n, . . . , x, y, z, . . . names N
M,N := a | Encs

NM | Enca
NM | (M .N) messages M

| H(M) | pub(M) | priv(M)
E,F := a | Encs

FE | Enca
FE | (E .F ) expressions E

| H(E) | pub(E) | priv(E)
| Decs

FE | Deca
FE | π1 (E) | π2 (E)

φ, ψ := tt | [E=F ] | φ∧ψ | [E :N ] guards F
P,Q := 0 | E(x).P | E〈F 〉.P | φP processes P

| P +Q | P |Q | (νz)P | !P

Free and bound names are defined as usual: x is a binding occurrence in
E(x).P and (νx)P . α-equivalence ≡α relates any two processes that only differ
w.r.t. the clash-free renaming of their bound names. We write fn(P ) the free
names of P and bn(P ) its bound names. We write n(M), n(E) and n(φ) the
set of all names of M , E and φ and extend this notation to sets of messages,
expressions and formulae.

To treat asymmetric cryptography, we need a way to express the inverse key
of a message; if M = pub(N) (resp. priv(N)) we define inv(M) to be priv(N)
(resp. pub(N)) and otherwise we let inv(M) := ⊥. The language of messages
chosen here is slightly more realistic than the one introduced in [4] particularly
with respect to the treatment of asymmetric cryptography.

Substitutions σ are total functions from names x to messages M whose sup-
port supp(σ) = {x | σ(x) 6= x} is finite. The co-support of σ is cosupp(σ) =
{σ(x) | x ∈ supp(σ)}. Substitutions are applied to processes, expressions, mes-
sages, formulae and actions (see below) in the common way, assuming the usual
notion of capture avoiding substitutions. They are written in the postfix no-
tation, e.g. Mσ. We use the notation

[
M1/x1 , . . . ,

Mn/xn

]
when we enumerate a



substitution. The names n(σ) of a substitution σ are the names of its co-support
and its support.

Labelled (late) Semantics Since arbitrary expressions may appear in input
or output positions, we make sure that these expressions evaluate to a message
or a channel name before performing the transition. The concrete evaluation
ec(E) of an expression allows to check this, it is either a message M or ⊥:

ec(a) := a if a ∈ N
ec(Encs

FE) := Encs
NM if ec(E) = M ∈ M and ec(F ) = N ∈ M

⊥ otherwise
ec(Enca

FE) := Enca
NM if ec(E) = M ∈ M and ec(F ) = N ∈ M

⊥ otherwise
ec((E .F )) := (M .N) if ec(E) = M ∈ M and ec(F ) = N ∈ M

⊥ otherwise
ec(op(E)) := op(M) if ec(E) = M ∈ M

⊥ otherwise
ec(Decs

FE) := M if ec(E) = Encs
NM ∈ M and ec(F ) = N ∈ M

⊥ otherwise
ec(Deca

FE) := M if ec(E) = Encs
NM ∈ M and ec(F ) = inv(N) ∈ M

⊥ otherwise
ec(π1 (E)) := M if ec(E) = (M .N) ∈ M

⊥ otherwise
ec(π2 (E)) := N if ec(E) = (M .N) ∈ M

⊥ otherwise

For guards, we have a predicate e(φ) defined in the obvious way for true (tt)
and conjunction. We define e([E=F ]) to be true iff ec(E) = ec(F ) = M ∈
M and e([E :N ]) to be true iff ec(E) = a ∈ N . It is convenient to define a
shortcut for the guard [E=E ] —written [E :M ]— whose evaluation is true iff
the concrete evaluation of E is a message.

To collect the concrete evaluation of expressions E tested to be names in a
formula φ, we define the set nc(φ) as nc(tt) = nc([E=F ]) = ∅, nc(φ∧ψ) =
nc(φ) ∪ nc(ψ) and nc([E :N ]) = {ec(E)}. Obviously, if e(φ) then nc(φ) ⊆ N .

The set of actions µ ∈ A is defined by µ := τ | a(x) | (νz̃) aM where a ∈ N ,
M ∈ M and z̃ is a tuple of pairwise distinct names. By abuse of notation, we
write aM when z̃ is empty. We let bn(a(x)) := {x} and bn((νz̃) aM) = {z̃}.
We also define ch(a(x)) := a and ch((νz̃) aM) := a.

The labelled transition P
µ−→
S

Q is defined by the derivation rules given in

Table 1 (extended by the symmetric variants of NC-Close-l, NC-Par-l and
NC-Sum-l). The set S collects the names used to apply rules NC-Input, NC-
Output and NC-Guard. The set S puts no constraints on the transition rela-
tion. Indeed, the labelled semantics P

µ−→ Q of the spi calculus is equivalent to
the existence of an S such that P

µ−→
S
Q. Note that as usual the bound names of

µ are binding occurrences in Q.



NC-Input
ec(E) = a ∈ N

E(x).P
a(x)−−−→
{a}

P
NC-Output

ec(E) = a ∈ N ec(F ) = M ∈ M

E〈F 〉.P aM−−→
{a}

P

NC-Close-l
P

a(x)−−−→
S

P ′ Q
(νz̃) aM−−−−−→

S′
Q′

P |Q τ−−−→
S∪S′

(νz̃) (P ′{M/x} |Q′)
{z̃} ∩ fn(P ) = ∅

NC-Open
P

(νz̃) aM−−−−−→
S

P ′

(νz′)P
(νz′z̃) aM−−−−−−−→
S\{z′}

P ′
z′ ∈ n(M) \ {a, z̃}

NC-Res
P

µ−→
S
P ′

(νz)P
µ−−−−→

S\{z}
(νz)P ′ z 6∈ n(µ) NC-Guard

P
µ−→
S
P ′ e(φ)

φP
µ−−−−−→

S∪nc(φ)
P ′

NC-Par-l
P

µ−→
S
P ′

P |Q µ−→
S
P ′ |Q

bn(µ) ∩ fn(Q) = ∅ NC-Sum-l
P

µ−→
S
P ′

P +Q
µ−→
S
P ′

NC-Rep-act
P

µ−→
S
P ′

!P
µ−→
S
P ′ | !P

bn(µ) ∩ fn(P ) = ∅

NC-Rep-close
P

a(x)−−−→
S

P ′ P
(νz̃) aM−−−−−→

S′
P ′′

!P
τ−−−→

S∪S′
(νz̃) (P ′{M/x} |P ′′) | !P

{z̃} ∩ fn(P ) = ∅

NC-Alpha
P ≡α P ′ P ′ µ−→

S
P ′′

P
µ−→
S
P ′′

Table 1. The late semantics of the spi calculus



The following lemma states that applying a substitution σ to a process does
not diminish its capabilities for action if σ does not replace names in S by
compound messages.

Lemma 1. If P
µ−→
S
Q then Pσ

µσ−−→
Sσ

Qσ provided that n(cosupp(σ))∩ bn(µ) = ∅
and ∀x ∈ S : xσ ∈ N.

Notations on pairs If C ⊆ A × B, we define π1(C) := {a | (a, b) ∈ C},
π2(C) := {b | (a, b) ∈ C} and C−1 = {(b, a) | (a, b) ∈ C}.

If σ and ρ are substitutions, we define C(σ, ρ) := {(aσ, bρ) | (a, b) ∈ C}.

2 Open Hedged Bisimulation

The classical notion of bisimulation used in the pi calculus is not adequate for
the spi calculus. The reason is that requiring an exact match between observable
actions is too strong in a cryptographic context where, for example, Encs

kM and
Encs

kN need to be identified as long as k is unknown to the observer (attacker). To
be able to have a cryptographic aware equivalence between actions, bisimulations
are extended with structures (e.g. hedges, frame-theory pairs, S-environments)
that explicitly keep track of the identities between messages. These identities
can be seen as the attacker’s knowledge about processes.

Hedges as Attacker Knowledge Abadi and Gordon proposed in [1] an
“environment-sensitive” notion of bisimulation called framed bisimulation. Hedged
bisimulation is a variant of framed bisimulation that has been shown in [5] to
coincide with barbed equivalence (contrary to framed bisimulation). In hedged
bisimulation, the environment consists of a hedge which is a finite set of pairs of
messages that are supposed to be indistinguishable to the attacker.

We write H the set of hedges (i.e. the finite sets of pairs of messages). The
synthesis S(h) of a hedge h is the (infinite) set of message pairs that can be
constructed from the knowledge represented by h.

Definition 1 (synthesis). If h is hedge, the synthesis S(h) of h is the smallest
set satisfying:

1. if (M,N) ∈ h then (M,N) ∈ S(h)
2. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h)

then ((M1 .M2), (N1 . N2)) ∈ S(h)
3. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h)

then (Encs
M2
M1,Encs

N2
N1) ∈ S(h)

4. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h)
then (Enca

M2
M1,Enca

N2
N1) ∈ S(h)

5. if (M,N) ∈ S(h) then (op(M), op(N)) ∈ S(h)

The analysis A(h) of h is the set of message pairs obtained by deconstructing
the knowledge represented by h.



Definition 2 (analysis). If h is a hedge, analz(h) is the smallest hedge satis-
fying

1. if (M,N) ∈ h then (M,N) ∈ analz(h)
2. if ((M1 .M2), (N1 . N2)) ∈ analz(h) then (M1, N1) ∈ analz(h)
3. if ((M1 .M2), (N1 . N2)) ∈ analz(h) then (M2, N2) ∈ analz(h)
4. if (Encs

M2
M1,Encs

N2
N1) ∈ analz(h) and (M2, N2) ∈ S(h)

then (M1, N1) ∈ analz(h)
5. if (Enca

M2
M1,Enca

N2
N1) ∈ analz(h) and (inv(M2), inv(N2)) ∈ S(h)

then (M1, N1) ∈ analz(h)

The analysis A(h) of h is the smallest hedge such that h ⊆ A(h) and
analz(A(h)) ⊆ A(h).

Theorem 1. A(h) is well-defined.

Given a hedge h, an interesting derived hedge is its irreducible part I(h)
which is the smallest hedge whose synthesis S(I(h)) is equal to the synthesis
S(A(h)).

Definition 3 (irreducible part). If h is a hedge, we define reduce(h) :=
{(M,N) ∈ h | h 6` (M,N)} where h ` (M,N) is the smallest predicate sat-
isfying

1. if (M,N) ∈ S(h) then h ` (op(M), op(N))
2. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h) then h ` ((M1 .M2), (N1 . N2))
3. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h) then h ` (Encs

M2
M1,Encs

N2
N1)

4. if (M1, N1) ∈ S(h) and (M2, N2) ∈ S(h) then h ` (Enca
M2
M1,Enca

N2
N1)

We define the irreducible part of h to be I(h) := reduce(A(h)).
A hedge is irreducible iff I(h) = h.

Hedges are used to relate indistinguishable messages. However, it can happen
that the attacker finds a contradiction in its knowledge. For example, if both
(M,N1) and (M,N2) are in h andN1 6= N2. The notion of consistency guarantees
the absence of such contradictions.

Definition 4 (consistency). A hedge h is left consistent iff

1. if (M,N) ∈ h and M ∈ N then N ∈ N
2. if (M,N) ∈ h and (M,N ′) ∈ h then N = N ′

3. if (M,N) ∈ h and (inv(M), N ′) ∈ h then N ′ = inv(N)
4. if (op(M ′), N) ∈ h then (M ′, N ′) 6∈ S(h) for any N
5. ((M1 .M2), N) 6∈ h for any M1,M2 and N
6. if (Encs

M2
M1, N) ∈ h then (M2, N2) 6∈ S(h) for any N2

7. if (Enca
M2
M1, N) ∈ h

then (M1, N1) 6∈ S(h) or (M2, N2) 6∈ S(h) for any N1 and N2

8. if (Enca
M2
M1, N) ∈ h and (inv(M2), N ′

2) ∈ S(h)
then N ′

2 = inv(N2), N = Enca
N2
N1 and (M1, N1) ∈ S(h)

It is consistent if both h and h−1 are left consistent.

Consistent hedges are irreducibles.



Late hedged bisimulation A hedged relation R is a subset of H × P × P
such that for (h, P,Q) ∈ R we have fn(P ) ⊆ n(π1(h)) and fn(Q) ⊆ n(π2(h)). It is
consistent if whenever (h, P,Q) ∈ R, h is consistent. It is symmetric if whenever
(h, P,Q) ∈ R we have (h−1, Q, P ) ∈ R.

Definition 5 (late hedged bisimulation). A symmetric consistent hedged
relation R is a late hedged bisimulation if for all (h, P,Q) ∈ R, if P

µ1−→ P ′

with, if µ1 6= τ , bn(µ1) ∩ n(π1(h)) = ∅ and ch(µ1) ∈ π1(h) then there exists µ2

and Q′ such that Q
µ2−→ Q′ with bn(µ2) ∩ n(π2(h)) = ∅ and

1. if µ1 = τ then µ2 = τ and (h, P ′, Q′) ∈ R
2. if µ1 = a1(x1) then µ2 = a2(x2) where (a1, a2) ∈ h and for all B ⊆ N ×N

and (M1,M2) ∈ M×M such that
– B is a consistent hedge
– π1(B) \ n(M1) = ∅
– π1(B) ∩ n(π1(h)) = π2(B) ∩ n(π2(h)) = ∅
– (M1,M2) ∈ S(h ∪B)

we have (h ∪B,P ′{M1/x1}, Q′{M2/x2}) ∈ R
3. if µ1 = (νc̃) a1M1 then µ2 = (νd̃) a2M2 where (a1, a2) ∈ h and (I(h ∪
{(M1,M2)}), P ′, Q′) ∈ R

In the above definition, the condition ch(µ1) ∈ π1(h) says that the transition
is observable by the attacker. The second clause requires that the bisimula-
tion game can be continued with any pair the attacker can synthesise from its
knowledge possibly by adding fresh names (B). In the third clause, the emitted
messages are added to the current knowledge of the attacker who immediately
computes the irreducible part of h. The hedge h is required to be consistent to
ensure that the emitted messages do not allow to distinguish the two processes.

Let h ∈ H and P,Q ∈ P . We say that P and Q are late hedged bisimilar
under h —written P ∼hLH Q— if there exists a late hedged bisimulation R such
that (h, P,Q) ∈ R.

Environments for Open Bisimulation The idea of open bisimulation is
to defer the substitution of input names until they are really needed in the
bisimulation game.

For defining open bisimulation in the spi calculus [8, 7], we have to record
on each input, during the bisimulation game, every messages the attacker can
substitute to the input variable given its current knowledge. This information
is represented by S-environments which consist of a hedge h representing the
attacker’s current knowledge, v which are names used as input names so far and
≺ which allows to recover the hedge the attacker had when a given input name
was input. Moreover, since we require that communications can only occur on
channel names, S-environments also need to remember which input names can
be substituted by names only, this is stored in γl, γr.

Definition 6. A S-environment is a quadruple se = (h, v,≺, (γl, γr)) where h ∈
H, v ⊆ N×N is a consistent hedge, ≺⊆ h× v, γl ⊆ π1(v) and γr ⊆ π2(v). The
set of all S-environments is written Sh.



The hedge available to (x, y) ∈ v according to ≺ is defined by se|(x,y) :=
{(M,N) ∈ h | (M,N) ≺ (x, y)}.

The concrete hedge of se is H(se) := h ∪ v. The inverse of se is se−1 :=
(h−1, v−1,≺−1, (γr, γl)) where (N,M) ≺−1 (y, x) iff (M,N) ≺ (x, y).

The intuition behind ≺ is that if (M,N) ≺ (x, y), the attacker knew about
(M,N) whenever (x, y) was used for input in the bisimulation game. In that
case, we need to require that x 6∈ n(M) and y 6∈ n(N) to avoid circularities,
which is included in the following definition.

Definition 7 (well-formed S-environments).
A S-environment se = (h, v,≺, (γl, γr)) is well-formed if π1(v)∩π1(h) = π2(v)∩
π2(h) = ∅ and for all (M,N) ∈ h and (x, y) ∈ v with (M,N) ≺ (x, y) we have
x 6∈ n(M) and y 6∈ n(N).

There are three relevant ways to add information to a S-environment se. We
can add a pair of indistinguishable messages (M,N) to the hedge h (on process
outputs) —note that whenever (M,N) was produced by the attacker, we don’t
put it in h since it adds no information to the attacker’s knowledge. We can
add a fresh pair (x, y) of input variables to v and update ≺ so that the hedge
se|(x,y) corresponds to the current hedge h (on process inputs). And finally, we
can add new constraints in γl and γr to reflect that some input names were used
as channels (on process transitions).

Definition 8. Let se = (h, v,≺, (γl, γr)) be a S-environment.
If (M,N) ∈ M×M, we define se⊕o(M,N) := (h′, v,≺, (γl, γr)) where h′ = h

if (M,N) ∈ v and h′ = h ∪ {(M,N)} otherwise.
If (x, y) ∈ N×N, we define se⊕i(x, y) := (h, v ∪ {(x, y)},≺′, (γl, γr)) where

≺′:=≺ ∪ (h× {(x, y)}).
If S1, S2 ⊆ N, we define se⊕c(S1, S2) := (h, v,≺, (γ′l , γ′r)) where γ′l := γl ∪

(S1 ∩ π1(v)) and γ′r := γr ∪ (S2 ∩ π2(v)).

By adding information to particular S-environments as shown above, hedges
available to variables in v can be ordered in an increasing sequence of hedges.
This property is captured by the following definition.

Definition 9 (growing S-environments).
A S-environment se = (h, v,≺, (γl, γr)) is growing iff there exists an injective
mapping θ : [[1, n]] → v (where n := card(v)) such that if hi := se|θ(i) then
hi ⊆ hi+1 for 1 ≤ i < n.

The part (h, v,≺) of a growing S-environment can be seen as a sequence
of hedges h1 · h2 · . . . · hn and a sequence of pairs of input names (x1, y1) ·
(x2, y2) · . . . · (xn−1, yn−1) with hi ⊆ hi+1 for 1 ≤ i < n, h = hn, v =
{(x1, y1), . . . , (xn−1, yn−1)} and (M,N) ≺ (xi, yi) iff (M,N) ∈ hi for 1 ≤ i < n.

Conceptually, a S-environment se is a concise representation of every pair of
substitutions resulting from plays performed by the attacker in the bisimulation
game. These pairs are said to respect se and are given by the following definition.



Definition 10 (respectful substitutions). Given a pair (σ, ρ) of substitu-
tions, B ⊆ N×N a consistent hedge and se = (h, v,≺, (γl, γr)) a S-environment,
(σ, ρ) respects se with B —written (σ, ρ) .B se— if

1. supp(σ) ⊆ π1(v)
2. supp(ρ) ⊆ π2(v)
3. ∀(b1, b2) ∈ B : b1 ∈ n(σ(π1(v)))∨ b2 ∈ n(ρ(π2(v)))
4. π1(B) ∩ (n(π1(h)) \ π1(v)) = ∅
5. π2(B) ∩ (n(π2(h)) \ π2(v)) = ∅
6. ∀(x, y) ∈ v : (xσ, yρ) ∈ S(I(se|(x,y)(σ, ρ) ∪B))
7. ∀x ∈ γl : xσ ∈ N
8. ∀y ∈ γr : yρ ∈ N

In this definition, substitutions affect only names in v (input names). Given
(x, y) ∈ v, these names can be replaced by any pair of messages the attacker
could have synthesised from se|(x,y) possibly adding fresh names (B) and tak-
ing into account previous choices made by the attacker for other input names.
Moreover, input names used as communication channels (mentioned in γl or γr)
are prevented from being substituted by something else than a name.

In a given S-environment se, choices made by the attacker during the bisimu-
lation game correspond to pairs (σ, ρ) of respectful substitutions. These choices
lead to an updated S-environment se

(σ,ρ)
B .

Definition 11 (S-environment updating). Given (σ, ρ) a pair of substitu-
tions, B ⊆ N×N a consistent hedge and se = (h, v,≺, (γl, γr)) a S-environment
such that (σ, ρ) .B se, the update of se by (σ, ρ) is se

(σ,ρ)
B := (h(σ, ρ), B,≺′

, (γ′l , γ
′
r)) where γ′l := σ(γl) ∩ π1(B), γ′r := ρ(γr) ∩ π2(B) and for (M,N) ∈ h

and (x′, y′) ∈ B, (Mσ,Nρ) ≺′ (x′, y′) iff for all (x, y) ∈ v such that x′ ∈ n(xσ)
or y′ ∈ n(yρ) we have (M,N) ≺ (x, y).

Well-formedness and growth of S-environments are preserved by updates.

Lemma 2. Let (σ, ρ) be a pair of substitutions, B ⊆ N×N a consistent hedge
and se = (h, v,≺, (γl, γr)) a S-environment such that (σ, ρ) .B se.

If se is well-formed then se
(σ,ρ)
B is well-formed.

If se is growing then se
(σ,ρ)
B is growing.

For well-formed and growing S-environments, respectfulness composes.

Lemma 3. Let se = (h, v,≺, (γl, γr)) a S-environment. Assume that se is well-
formed and growing.

Let (σ1, ρ1) be a pair of substitutions and B1 ⊆ N × N a consistent hedge
such that (σ1, ρ1) .B1 se. We write se1 := se

(σ1,ρ1)
B1

.
Let (σ2, ρ2) be a pair of substitutions and B2 ⊆ N × N a consistent hedge

such that (σ2, ρ2) .B2 se1. We write se2 := se1
(σ2,ρ2)
B2

.

Then (σ, ρ) .B2 se and se
(σ,ρ)
B2

= se2 where σ and ρ are defined such that
xσ := xσ1σ2 if x ∈ π1(v) and xσ := x otherwise and yρ := yρ1ρ2 if y ∈ π2(v)
and yρ := y otherwise.



Finally, as for hedges, a notion of consistency for S-environments is needed:
under every possible substitution, the attacker is unable to get a contradiction
from its updated knowledge.

Definition 12 (consistency). A S-environment se = (h, v,≺, (γl, γr)) is con-
sistent if it is well-formed, growing, for every (x, y) ∈ v, we have x ∈ γl iff y ∈ γr
and if for every σ, ρ and B such that (σ, ρ) .B se, we have I(h(σ, ρ) ∪ B) is a
consistent hedge.

Open Bisimulation An open hedged relation R is a subset of Sh×P ×P such
that for (se, P,Q) ∈ R, we have fn(P ) ⊆ n(π1(H(se))) and fn(Q) ⊆ n(π2(H(se))).
It is consistent if, for every (se, P,Q) ∈ R, se is consistent. It is symmetric if for
every (se, P,Q) ∈ R we have (se−1, Q, P ) ∈ R.

Definition 13 (open hedged bisimulation). A symmetric consistent open
hedged relation R is an open hedged bisimulation if for all (se, P,Q) ∈ R, for
all σ, ρ and B such that (σ, ρ) .B se, if Pσ

µ1−→
S1

P ′ with, if µ1 6= τ , bn(µ1) ∩

n(π1(H(se(σ,ρ)
B ))) = ∅ and ch(µ1) ∈ π1(I(H(se(σ,ρ)

B ))) there exists Q′, µ2 and S2

such that Qρ
µ2−→
S2

Q′ with bn(µ2) ∩ n(π2(H(se(σ,ρ)
B ))) = ∅ and

1. if µ1 = τ then µ2 = τ and (se(σ,ρ)
B ⊕c(S1, S2), P ′, Q′) ∈ R

2. if µ1 = a1(x1) then µ2 = a2(x2) where (a1, a2) ∈ I(H(se(σ,ρ)
B )) and

(se(σ,ρ)
B ⊕i(x1, x2)⊕c(S1, S2), P ′, Q′) ∈ R

3. if µ1 = (νz̃1) a1M1 then µ2 = (νz̃2) a2M2 where (a1, a2) ∈ I(H(se(σ,ρ)
B )) and

(se(σ,ρ)
B ⊕o(M1,M2)⊕c(S1, S2), P ′, Q′) ∈ R

In any case, names used as channels (collected in S1, S2) are added to the
environment’s γl and γr. On inputs (clause 2), input names are added to the
environment’s v. On outputs (clause 3), messages are added to the environment’s
h.

Let se ∈ Sh and P,Q ∈ P . We say that P and Q are open hedged bisimilar
under se —written P ∼se

OH Q— if there exists an open hedged bisimulation R
such that (se, P,Q) ∈ R.

We proved in [8, 7] that open hedged bisimilarity is sound w.r.t. to late hedged
bisimilarity, i.e.

Theorem 2. If P ∼se
OH Q then for every σ, ρ and B such that (σ, ρ) .B se we

have Pσ ∼I(H(se
(σ,ρ)
B ))

LH Qρ.

Open hedged bisimilarity is closed under respectful substitutions.

Theorem 3. If P ∼se
OH Q then for every σ, ρ and B such that (σ, ρ) .B se we

have Pσ ∼se
(σ,ρ)
B

OH Qρ.

Proof. By Lemma 3 and since fn(P ) ⊆ n(π1(H(se))), fn(Q) ⊆ n(π2(H(se)))
whenever P ∼se

OH Q.



3 A Symbolic Characterisation

Symbolic Semantics The symbolic characterisation of open hedged bisimula-
tion relies on a symbolic transition system inspired by [4].

The idea behind the symbolic semantics is to record —without checking—
conditions needed to derive a transition. Restrictions are still handled by side
conditions in derivation rules. Every other constraint is simply collected in tran-
sition constraints. A symbolic transition is written P

µ−−−−→
(νc̃)φ

P ′ where µ is a

symbolic action and (νc̃)φ is a transition constraint.
The set of symbolic actions µ ∈ As is defined by µ := τ | E(x) | (νz̃)E F

where E,F ∈ E and z̃ is a tuple of pairwise distinct names. By abuse of notation,
we write E F when z̃ is empty. We define bn(E(x)) = {x} and bn((νz̃)E F ) =
{z̃}. We extend the notion of concrete evaluation to symbolic actions with
ec(τ) := τ , ec(E(x)) := ec(E)(x) provided that ec(E) 6= ⊥, ec((νz̃)E F ) :=
(νz̃) ec(E) ec(F ) provided that ec(E) 6= ⊥ and ec(F ) 6= ⊥. Otherwise it is un-
defined. We implicitly assume that ec(µ) is defined on µ when we write this
expression.

A transition constraint has the form (νc̃)φ where φ ∈ F and c̃ is a tuple
of pairwise distinct names. Names c̃ are binding occurrences in φ. We extend
α-equivalence to transition constraints. Again, when c̃ is empty, we write φ by
abuse of notation.

The abstract evaluation ea(E) of an expression is the symbolic counterpart
of concrete evaluation. Intuitively, it can be seen as the reduction of E without
checking that encryption and decryption keys correspond. It is defined by:

ea(a) := a if a ∈ N
ea(Encs

FE) := Encs
ea(F )ea(E)

ea(Enca
FE) := Enca

ea(F )ea(E)
ea((E .F )) := (ea(E) . ea(F ))
ea(op(E)) := op(ea(E)) op ∈ {pub, priv,H}

ea(Decs
FE) := E1 if ea(E) = Encs

E2
E1

Decs
ea(F )ea(E) otherwise

ea(Deca
FE) := E1 if ea(E) = Enca

E2
E1

Deca
ea(F )ea(E) otherwise

ea(π1 (E)) := E1 if ea(E) = (E1 . E2)
π1 (ea(E)) otherwise

ea(π2 (E)) := E2 if ea(E) = (E1 . E2)
π2 (ea(E)) otherwise

The symbolic transition P
µ−−−−→

(νc̃)φ
Q is defined by the derivation rules given

in Table 2 (extended by the symmetric variants of S-Close-l, S-Par-l and
S-Sum-l). Contrary to the symbolic semantics in [4], restricted names of µ are
not binding transition constraints: we really have two kinds of bound names on
symbolic transitions. Only the bound names of µ are binding occurrences in Q.

Before showing the relation between symbolic transitions and concrete tran-
sitions, an auxiliary definition is needed.



S-Input
E(x).P

ea(E)(x)−−−−−−→
[E :N ]

P

S-Output

E〈F 〉.P ea(E) ea(F )−−−−−−−−−−→
[E :N ]∧ [F :M ]

P

S-Close-l

P
E(x)−−−−→
(νc̃)φ

P ′ Q
(νz̃)F G−−−−−→
(νd̃)ψ

Q′

P |Q τ−−−−−−−−−−−−−−→
(νc̃d̃) ([E=F ]∧φ∧ψ)

(νz̃) (P ′{G/x} |Q′)

{z̃} ∩ fn(P ) = ∅
{c̃} ∩ n(ψ,E, F ) = ∅
{d̃} ∩ n(φ,E, F ) = ∅

S-Open

P
(νz̃)E F−−−−−→
(νc̃)φ

P ′

(νz′)P
(νz′z̃)E F−−−−−−−→
(νz′c̃)φ

P ′

z′ ∈ n(F )
z′ 6∈ n(E)
z′ 6∈ {z̃, c̃}

S-Res

P
µ−−−−→

(νc̃)φ
P ′

(νz)P
µ−−−−→

(νc̃)φ
(νz)P ′

z 6∈ n(µ)
z 6∈ n(φ)

S-RO-Guard

P
µ−−−−→

(νc̃)φ
P ′

(νz)P
µ−−−−→

(νzc̃)φ
(νz)P ′

z 6∈ n(µ)
z ∈ n(φ)
z 6∈ {c̃}

S-Guard

P
µ−−−−→

(νc̃)ψ
P ′

φP
µ−−−−−−−→

(νc̃) (φ∧ψ)
P ′ {c̃} ∩ n(φ) = ∅

S-Par-l

P
µ−−−−→

(νc̃)φ
P ′

P |Q µ−−−−→
(νc̃)φ

P ′ |Q
bn(µ) ∩ fn(Q) = ∅ S-Sum-l

P
µ−−−−→

(νc̃)φ
P ′

P +Q
µ−−−−→

(νc̃)φ
P ′

S-Rep-act

P
µ−−−−→

(νc̃)φ
P ′

!P
µ−−−−→

(νc̃)φ
P ′ | !P

bn(µ) ∩ fn(P ) = ∅

S-Rep-Close

P
E(x)−−−−→
(νc̃)φ

P ′ P
(νz̃)F G−−−−−→
(νd̃)ψ

P ′′

!P
τ−−−−−−−−−−−−−−→

(νc̃d̃) ([E=F ]∧φ∧ψ)
(νz̃) (P ′{G/x} |P ′′) | !P

{z̃} ∩ fn(P ) = ∅
{c̃} ∩ n(ψ,E, F ) = ∅
{d̃} ∩ n(φ,E, F ) = ∅

S-Alpha

P ≡α P ′ (νc̃)φ ≡α (νc̃′)φ′ P ′ µ−−−−−→
(νc̃′)φ′

P ′′

P
µ−−−−→

(νc̃)φ
P ′′

Table 2. The symbolic semantics of the spi calculus



Definition 14 (>o). We let >o be the least precongruence on expressions, guards
and processes (modulo ≡α for processes) such that

1. π1 ((E1 . E2)) >o E1 provided that ec(E1) 6= ⊥
2. π2 ((E1 . E2)) >o E2 provided that ec(E2) 6= ⊥
3. Decs

E2
Encs

E2
E1 >o E1 provided that ec(E2) 6= ⊥

4. Deca
priv(E2)Enca

pub(E2)E1 >o E1 provided that ec(E2) 6= ⊥
5. Deca

pub(E2)Enca
priv(E2)E1 >o E1 provided that ec(E2) 6= ⊥

Processes related by >o have the same (concrete) semantics.

Lemma 4. Let P,Q ∈ P and assume that P >o Q.

1. if P
µ−→
S
P ′ then Q

µ−→
S
Q′ and P ′ >o Q

′.

2. if Q
µ−→
S
Q′ and bn(µ) ∩ fn(P ) = ∅ then P

µ−→
S
P ′ and P ′ >o Q

′.

Proof (sketch). By rule induction on the transitions and since

– if E >o F then ec(E) = M iff ec(F ) = M
– if φ >o ψ then e(φ) iff e(ψ) and if e(φ) then nc(φ) = nc(ψ)

Lemma 5. Let P ∈ P.

1. If P
µ−−−−→

(νc̃)φ
P ′ and σ is such that n(cosupp(σ)) ∩ bn(µ) = n(σ) ∩ {c̃} = ∅

and e(φσ) then Pσ
ec(µσ)−−−−−−−→

nc(φσ)\{c̃}
Q′ with P ′σ >o Q

′.

2. If Pσ
µ−→
S
R and n(cosupp(σ)) ∩ bn(µ) = ∅ then there exists µ′, c̃, φ and Q

such that P
µ′

−−−−→
(νc̃)φ

Q, {c̃} ∩ n(σ) = ∅, e(φσ), ec(µ′σ) = µ, S = nc(φσ) \ {c̃}

and Qσ >o R.

Proof (sketch). By rule induction on the transitions.

Symbolic Open Bisimulation Lemma 5 suggests the following definition:

Definition 15 (symbolic open hedged bisimulation). A symmetric con-
sistent open hedged relation R is a symbolic open hedged bisimulation if for
all (se, P,Q) ∈ R, for all σ, ρ and B such that (σ, ρ) .B se, if P

µ1−−−−→
(νc̃)φ1

P ′

with n(σ) ∩ {c̃} = ∅, e(φ1σ) and, if µ1 6= τ , bn(µ1) ∩ n(π1(H(se(σ,ρ)
B ))) = ∅

and ch(ec(µ1σ)) ∈ π1(I(H(se(σ,ρ)
B ))) there exists Q′, µ2, d̃ and φ2 such that

Q
µ2−−−−→

(νd̃)φ2

Q′ with n(ρ) ∩ {d̃} = ∅, e(φ2ρ), bn(µ2) ∩ n(π2(H(se(σ,ρ)
B ))) = ∅ and

1. if µ1 = τ then µ2 = τ and (se(σ,ρ)
B ⊕c(S1, S2), P ′σ,Q′ρ) ∈ R

2. if µ1 = E1(x1) then µ2 = E2(x2) where (ec(E1σ), ec(E2ρ)) ∈ I(H(se(σ,ρ)
B ))

and (se(σ,ρ)
B ⊕i(x1, x2)⊕c(S1, S2), P ′σ,Q′ρ) ∈ R



3. if µ1 = (νz̃1)E1 F1 then µ2 = (νz̃2)E2 F2 where (ec(E1σ), ec(E2ρ)) ∈
I(H(se(σ,ρ)

B )) and (se(σ,ρ)
B ⊕o(ec(F1σ), ec(F2ρ))⊕c(S1, S2), P ′σ,Q′ρ) ∈ R

where S1 = nc(φ1σ) \ {c̃} and S2 = nc(φ2ρ) \ {d̃}

Let se ∈ Sh and P,Q ∈ P . We say that P and Q are symbolic open hedged
bisimilar under se —written P ∼se

SO Q— if there exists a symbolic open hedged
bisimulation R such that (se, P,Q) ∈ R.

Theorem 4 (symbolic characterisation theorem). Let se ∈ Sh and P,Q ∈
P. Then P ∼se

OH Q ⇐⇒ P ∼se
SO Q.

Proof (sketch). We prove both implications:

⇒ We show that R = {(se, P,Q) | P ′ ∼se
OH Q′ ∧P >o P

′ ∧Q >o Q
′ ∧ fn(P ) ⊆

n(π1(H(se)))∧ fn(Q) ⊆ n(π2(H(se)))} is a symbolic open hedged bisimula-
tion.

⇐ We show that R = {(se, P,Q) | P ′ ∼se
SO Q′ ∧P ′ >o P ∧Q′ >o Q} is an open

hedged bisimulation.

Towards Mechanisation of Open Hedged Bisimulation Definition 15 clar-
ifies which pairs of respectful substitutions have to be considered to enable tran-
sitions. Indeed, for (se, P,Q) and a symbolic transition P

µ−−−−→
(νc̃)φ

P ′, we have to

consider the pairs (σ, ρ) such that (σ, ρ) .B se and e(φσ) (with n(σ) ∩ {c̃} = ∅).
Using a unification-like algorithm, we can show that every substitution σ that
satisfies φ (i.e. e(φσ)) and supp(σ) ⊆ V can be written σ = σφσ

′ where σφ
belongs to a finite set Sφ of the most general solutions of φ. We are then in-
terested in instances σ = σφσ

′ (with σφ ∈ Sφ) such that there exists ρ and B
such that (σ, ρ) .B se. By using similar ideas as developed in [9] to solve the
so-called “problem of simultaneous construction” we work towards proving that
there exists a finite set of most general solutions to this problem and that it is
sufficient to inspect this finite set rather than the infinite set of Definition 15.
The problem of checking consistency of a S-environment can be solved using
similar ideas. This finally suggests that open hedged bisimulation is decidable
for finite spi calculus terms. Note that it was shown in [12] that finite control
spi calculus is Turing complete.

Conclusion and Future Work

We presented a revised (w.r.t. [8, 7]) version of open hedged bisimulation. We
have shown a first congruence result: open hedged bisimilarity is preserved under
every pair of respectful substitutions. We have given an alternative definition of
open hedged bisimulation called symbolic open hedged bisimulation. It is built
upon a symbolic transition system similar to [4]. The symbolic characterisation
theorem suggests that open hedged bisimilarity is decidable for finite spi calculus
processes.



In future work, we expect to settle this by formalising and proving algorithms
we have quickly sketched. We would also like to clarify the precise link between
open hedged bisimulation and symbolic bisimulation as presented in [4]. Finally,
the study of congruence properties is another field of investigation we are con-
sidering: the non-symbolic definition of open hedged bisimulation is probably
more suited to study such theoretical results.
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la validation de protocoles cryptographiques. PhD thesis, Université Henri Poincaré
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A Proofs

This appendix will not be part of the final paper. The following proofs will be
released in a technical report to appear later.

The author has formalised in the proof assistant Coq several results that
will be used in the following. In particular, most of the results concerning hedge
theory have been already spread as an official Coq contribution and have been
revised to take into account the new message language we use in this paper.

Concrete evaluation, abstract evaluation and >o

Lemma 6. Let M ∈ M. Then ec(M) = M .

Proof. By induction on M .

Lemma 7. Let E ∈ E and σ : N → M. If ec(E) = M ∈ M then ec(Eσ) =
ec(E)σ = Mσ.

Proof. By induction on E and by Lemma 6.

Lemma 8. Let φ ∈ F and σ : N → M. If ec(φ) = true then

ec(φσ) = true ⇐⇒ ∀x ∈ nc(φ) : xσ ∈ N

Moreover, if ec(φσ) = true then nc(φσ) = nc(φ)σ.

Proof. By induction on φ and thanks to Lemma 7.

Lemma 9. Let E ∈ E. If ec(E) = M ∈ M, then E >o M .

Proof. By induction on E. We give the proof for the inductive case E = π1 (F ).
Assume that E = π1 (F ) and the result holds for F .
Since ec(E) = M ∈ M, necessarily ec(F ) = (M .N) ∈ M for some N .
By induction, we have F >o (M .N).
By >o-fst, we have π1 (F ) >o π1 ((M .N)), i.e. E >o π1 ((M .N)).
By >o-fst-pair, we have π1 ((M .N)) >o M , because ec(N) 6= ⊥ by Lemma 6

since N ∈ M.
So, by >o-trans, we conclude that E >o M .

Lemma 10. Let E,F ∈ E and assume that E >o F . Let M ∈ M. Then

ec(E) = M ⇐⇒ ec(F ) = M

Proof. ⇒ By rule induction on E >o F .
⇐ By rule induction on E >o F . We give below the proof for the case >o-fst-

pair.
Assume E >o F by >o-fst-pair.
Then E = π1 ((F .G)) with ec(G) 6= ⊥.
By hypothesis, ec(F ) = M . Since ec(G) 6= ⊥, there exists N ∈ M such that
ec(G) = N .
We have thus ec((F .G)) = (M .N).
So ec(E) = M



Corollary 1. Let φ, ψ ∈ F and assume that φ >o ψ. Then

e(φ) ⇐⇒ e(ψ)

Moreover, if e(φ), then nc(φ) = nc(ψ).

Lemma 11. Let E,F ∈ E and σ : N → M a substitution. Assume that E >o F .
Then Eσ >o Fσ.

Proof. By rule induction on E >o F and thanks to Lemma 7.

Lemma 12. Let E ∈ E. If ec(E) = M ∈ M then ea(E) = ec(E).

Proof. By induction on E.

Lemma 13. Let E ∈ E and σ : N → M a substitution. Then ea(ea(E)σ) =
ea(Eσ).

Proof. By induction on E. We give the proof for the inductive case E = π1 (F ).
Assume E = π1 (F ) and the result holds for F .
By induction, we have (*) ea(ea(F )σ) = ea(Fσ).
We have two cases:

1. if ea(F ) = (F1 . F2) for some F1, F2.
Then ea(E) = F1.
So ea(ea(E)σ) = ea(F1σ).
Rewriting (*) gives ea((F1 . F2)σ) = ea(Fσ), i.e. ea((F1σ . F2σ)) = ea(Fσ).
By definition, ea((F1σ . F2σ)) = (ea(F1σ) . ea(F2σ)).
So ea(Fσ) = (ea(F1σ) . ea(F2σ)).
So ea(Eσ) = ea(π1 (F )σ) = ea(π1 (Fσ)) = ea(F1σ) by definition.
Hence ea(ea(E)σ) = ea(Eσ).

2. otherwise
Then by definition, ea(E) = π1 (ea(F )).
Thus, ea(E)σ = π1 (ea(F )σ).
So ea(ea(E)σ) = ea(π1 (ea(F )σ)).
We have then two subcases:
(a) if ea(ea(F )σ) = (F1 . F2)

By (*), we have then ea(Fσ) = (F1 . F2).
By definition, we have ea(ea(E)σ) = F1.
And by definition, we have ea(π1 (Fσ)) = F1.
But ea(π1 (Fσ)) = ea(π1 (F )σ) = ea(Eσ).
So ea(ea(E)σ) = ea(Eσ).

(b) otherwise
So by definition, we have ea(ea(E)σ) = π1 (ea(ea(F )σ)) which is equal
to π1 (ea(Fσ)) by (*).
By (*), we know that ea(Fσ) is not a pair so ea(π1 (Fσ)) = π1 (ea(Fσ)).
But ea(π1 (Fσ)) = ea(Eσ).
So ea(ea(E)σ) = ea(Eσ).

Corollary 2. Let E ∈ E. Then ea(ea(E)) = ea(E).



Lemma 14. Let E ∈ E and σ : N → M a substitution. Assume that ec(Eσ) =
M ∈ M. Then ec(ea(E)σ) = M .

Proof. By induction on E. We give the proof for the inductive case E = π1 (F ).
Assume E = π1 (F ) and the result holds for F
We have ec(Eσ) = ec(π1 (Fσ)) = M ∈ M.
Necessarily, ec(Fσ) = (M .N) for some N ∈ M.
By induction, we have thus ec(ea(F )σ) = (M .N).
We have two cases:

1. if ea(F ) = (F1 . F2)
Then ea(E) = F1.
We have ec(ea(F )σ) = ec((F1σ . F2σ)) = (M .N).
So necessarily, ec(F1σ) = M and ec(F2σ) = N .
Hence the result, since ec(Eσ) = M = ec(F1σ) = ec(ea(E)σ).

2. otherwise
We have ea(E) = π1 (ea(F )).
So ec(ea(E)σ) = ec(π1 (ea(F )σ)).
Since ec(ea(F )σ) = (M .N), we have ec(π1 (ea(F )σ)) = M by definition.
Hence ec(ea(E)σ) = ec(Eσ).

Lemma 15. Let E ∈ E and σ : N → M a substitution. Assume that ec(Eσ) 6=
⊥. Let z ∈ N such that z 6∈ n(σ). If z ∈ n(ea(E)), then z ∈ n(ec(Eσ)).

Proof. Let σ : N → M a substitution and z ∈ N such that z 6∈ n(σ).
For x ∈ N, we define the inductive predicate x / E on expressions:

x / x

x / E1

x / (E1 . E2)
x / E2

x / (E1 . E2)
x / E1

x / Encs
E2
E1

x / E2

x / Encs
E2
E1

x / E1

x / Enca
E2
E1

x / E2

x / Enca
E2
E1

x / E

x / op(E)
op ∈ {pub, priv,H}

It is obvious that if z / E then z / Eσ.
We define also a measure ](E) on expressions:

](a) := 0 if a ∈ N
]((E1 . E2)) := ](E1) + ](E2)
](Encs

E2
E1) := ](E1) + ](E2)

](Enca
E2
E1) := ](E1) + ](E2)

](op(E)) := ](E) op ∈ {pub, priv,H}
](π1 (E)) := 1 + ](E) if E = (E1 . E2)

:= ](E) otherwise
](π2 (E)) := 1 + ](E) if E = (E1 . E2)

:= ](E) otherwise
](Decs

FE) := 1 + ](E) + ](F ) if E = Encs
E2
E1

:= ](E) + ](F ) otherwise
](Deca

FE) := 1 + ](E) + ](F ) if E = Enca
E2
E1

:= ](E) + ](F ) otherwise



It is possible to show by a simple induction on E that

∀E ∈ E : ea(E) = E ⇐⇒ ](E) = 0

Before showing the main result, we state and show several auxiliary results:

1. If ec(Eσ) 6= ⊥ and z / E then z ∈ n(ec(Eσ)).
Proof. By a simple rule induction on z / E.

2. If ec(Eσ) 6= ⊥, z ∈ n(E) and ](E) = 0 then z / E.
Proof. By induction on E
– E = a ∈ N

Necessarily, a = z thus z / E.
– E = (E1 . E2) and the result holds for E1 and E2

Clearly we have ](E1) = ](E2) = 0.
Since n(E) = n(E1) ∪ n(E2), we have z ∈ n(E1) or z ∈ n(E2).
Moreover, since ec(Eσ) 6= ⊥, we have necessarily ec(E1σ) 6= ⊥ and
ec(E2σ) 6= ⊥.
If z ∈ n(E1) then by induction z / E1. Hence z / E.
If z ∈ n(E2) then by induction z / E2. Hence z / E.
In both cases, we have z / E.

– E = Encs
E2
E1 or E = Enca

E2
E1 and the result holds for E1 and E2

Similar to the case E = (E1 . E2).
– E = op(F ) (with op ∈ {pub, priv,H}) and the result holds for F

Trivial.
– E = π1 (F ) and the result holds for F

Since ](E) = 0, we have F 6= (F1 . F2) and ](F ) = 0.
Since ec(Eσ) 6= ⊥, we necessarily have ec(Fσ) = (M1 .M2) for some
M1,M2 ∈ M so ec(Fσ) 6= ⊥.
We have n(E) = n(F ) so z ∈ n(F ).
By induction, we have z / F .
By case analysis on z / F and since ec(Fσ) = (M1 .M2) and z 6∈ n(σ),
we have necessarily that F = (F1 . F2) for some F1, F2 ∈ E. This is a
contradiction.
This case is thus impossible.

– E = π2 (F ) and the result holds for F
Similar to the case E = π1 (F )

– E = Decs
GF and the result holds for F and G

Since ](E) = 0, we have F 6= Encs
F2
F1, ](F ) = 0 and ](G) = 0.

Since ec(Eσ) 6= ⊥, we have ec(Fσ) = Encs
M2
M1 and ec(Gσ) = M2 for

some M1,M2 ∈ M. Thus ec(Fσ) 6= ⊥ and ec(Gσ) 6= ⊥.
Since n(E) = n(F ) ∪ n(G) we have z ∈ n(F ) or z ∈ n(G).
If z ∈ n(F ), then by induction z /F . By case analysis on z /F and since
ec(Fσ) = Encs

M2
M1 and z 6∈ n(σ), we necessarily have that F = Encs

F2
F1

for some F1, F2 ∈ E. This is a contradiction.
So necessarily z ∈ n(G). By induction we have z / G. Since ec(Gσ) 6= ⊥
and z/G we have by (1) that z ∈ n(ec(Gσ)) = n(M2). So, since ec(Fσ) =
Encs

M2
M1, we have z ∈ n(ec(Fσ)). Since z 6∈ n(σ), we necessarily have

that z ∈ n(F ). This leads to a contradiction.
This case is thus impossible.



– E = Deca
GF and the result holds for F and G

Similar to the case E = Decs
GF .

We can now show the main result.
Since ec(Eσ) 6= ⊥, there is M ∈ M such that ec(Eσ) = M .
By Lemma 14, we have ec(ea(E)σ) = M . Moreover by Corollary 2, we have

ea(ea(E)) = ea(E). Thus ](ea(E)) = 0.
So, since z ∈ n(ea(E)), by (2) we get z / ea(E).
Then by (1) we get z ∈ n(ec(ea(E)σ)) = n(M) = n(ec(Eσ)).

Concrete transitions

Lemma 16. Let P ∈ P. Assume that P
µ−→
S
Q and let σ : N → M a substitution

such that n(cosupp(σ)) ∩ bn(µ) = ∅. Then

∀x ∈ S : xσ ∈ N =⇒ Pσ
µσ−−→
Sσ

Qσ

Proof. By induction on P
µ−→
S
P ′.

If we are going to α-rename P , we might as well consider that no names of
n(σ) are bound in P .

NC-Input Assume that P = E(x).P ′ a(x)−−−→
{a}

P ′ with ec(E) = a ∈ N.

By Lemma 7, we have ec(Eσ) = aσ. Since a ∈ {a}, we have aσ ∈ N.

Thus by NC-Input, Pσ = Eσ(x).P ′σ
aσ(x)−−−→
{aσ}

P ′σ.

NC-Output Assume that P = E〈F 〉.P ′ aM−−→
{a}

P ′ with ec(E) = a ∈ N and ec(F ) = M ∈

M.
By Lemma 7, we have ec(Eσ) = aσ and ec(Fσ) = Mσ ∈ M. By hypothesis,
aσ ∈ N.
By NC-Output, Pσ = Eσ〈Fσ〉.P ′σ

aσMσ−−−−→
{aσ}

P ′σ.

NC-Guard Assume that P = φP ′ µ−−−−−→
nc(φ)∪S

P ′′ with P ′ µ−→
S
P ′′ and e(φ).

By induction, since S ⊆ nc(φ) ∪ S, we have P ′σ
µσ−−→
Sσ

P ′′σ.

By Lemma 8, we have e(φσ).
Thus by NC-Guard, Pσ = φσP ′σ

µσ−−−−−−−→
nc(φσ)∪Sσ

P ′′σ.

Still by Lemma 8, we have nc(φσ) = nc(φ)σ so nc(φσ)∪Sσ = (nc(φ)∪S)σ.

NC-Close-l Assume that P = P1 |P2
τ−−−−→

S1∪S2
(νz̃) (P ′

1{M/x} |P ′
2) = Q with P1

a(x)−−−→
S1

P ′
1,

P2
(νz̃) aM−−−−−→

S2
P ′

2 and {z̃}∩ fn(P1) = ∅. We may assume that {x, z̃}∩n(σ) = ∅.

By induction since S1 ⊆ S1 ∪ S2, we have P1σ
aσ(x)−−−→
S1σ

P ′
1σ and since S2 ⊆

S1 ∪ S2 we have P2σ
(νz̃) aσMσ−−−−−−−→

S2σ
P ′

2σ.



Since {z̃} ∩ fn(P1) = ∅ and {z̃} ∩ n(σ) = ∅, we have clearly that {z̃} ∩
fn(P1σ) = ∅.
Thus Pσ = P1σ |P2σ

τ−−−−−−→
S1σ∪S2σ

(νz̃) (P ′
1σ{Mσ/x} |P ′

2σ) = Q′ by NC-Close-

l.
Since x 6∈ n(σ), we have P ′

1σ{Mσ/x} = P ′
1{M/x}σ. So Q′ = Qσ.

NC-Open Assume that P = (νz′)P ′ (νz′z̃) aM−−−−−−−→
S\{z′}

P ′′ with P ′ (νz̃) aM−−−−−→
S

P ′′ and z′ ∈

n(M) \ {a, z̃}.
Since z′ 6∈ n(σ), we have z′σ = z′. So if x ∈ S, then xσ ∈ N.

By induction, we thus have P ′σ
(νz̃) aσMσ−−−−−−−→

Sσ
P ′′σ.

Since z′ ∈ n(M) and z′ 6∈ n(σ), we have z′ ∈ n(Mσ). Since z′ 6= a, we have
z′ 6= aσ. And we still have z′ 6∈ {z̃}.
So by NC-Open, we have Pσ

(νz′z̃) aσMσ−−−−−−−−→
Sσ\{z′}

P ′′σ.

But Sσ \ {z′} = (S \ {z′})σ since z′ 6∈ n(σ).
NC-Res Assume that P = (νz)P ′ µ−−−−→

S\{z}
(νz)P ′′ = Q with P ′ µ−→

S
P ′′ and z 6∈ n(µ).

Since z 6∈ n(σ), it is obvious that if x ∈ S then xσ ∈ N.
By induction, we thus have P ′σ

µσ−−→
Sσ

P ′′σ.

Since z 6∈ n(µ) and z 6∈ n(σ), we have z 6∈ n(µσ).
By NC-Res, we thus have Pσ = (νz)P ′σ

µσ−−−−−→
Sσ\{z}

(νz)P ′′σ = Qσ.

Since z 6∈ n(σ), we have Sσ \ {z} = (S \ {z})σ.

Lemma 17. Let P,Q ∈ P and assume that P >o Q.

1. if P
µ−→
S
P ′ then Q

µ−→
S
Q′ and P ′ >o Q

′

2. if Q
µ−→
S
Q′ and bn(µ) ∩ fn(P ) = ∅ then P

µ−→
S
P ′ and P ′ >o Q

′

Proof.

1. By rule induction on P
µ−→
S
P ′. We give the proof for the following cases:

NC-Input Assume that P = E(x).P ′ a(x)−−−→
{a}

P ′ where ec(E) = a ∈ N.

Since P >o Q, we have Q ≡α F (x).Q′ with E >o F and P ′ >o Q
′.

By Lemma 10, we have ec(F ) = a.

Thus, by NC-Alpha and NC-Input, Q ≡α F (x).Q′ a(x)−−−→
{a}

Q′ and P ′ >o

Q′.
NC-Output Assume that P = E1〈E2〉.P ′ aM−−→

{a}
P ′ with ec(E1) = a ∈ N and ec(E2) =

M ∈ M.
Since P >o Q, we have Q = F1〈F2〉.Q′ with E1 >o F1, E2 >o F2 and
P ′ >o Q

′.
By Lemma 10, we have ec(F1) = a and ec(F2) = M .
Thus, by NC-Output, Q = F1〈F2〉.Q′ aM−−→

{a}
Q′ and P ′ >o Q

′.



NC-Close-l Assume that P = P1 |P2 with P1
a(x)−−−→
S

P ′
1, P2

(νz̃) aM−−−−−→
S′

P ′
2, {z̃}∩fn(P1) =

∅ and P τ−−−→
S∪S′

(νz̃) (P ′
1{M/x} |P ′

2) = P ′.

Since P >o Q, we have Q = Q1 |Q2 with P1 >o Q1 and P2 >o Q2.

By induction, we have Q1
a(x)−−−→
S

Q′
1 and Q2

(νz̃) aM−−−−−→
Q

′

2

with P ′
1 >o Q

′
1 and

P ′
2 >o Q

′
2.

Since P1 >o Q1 we have fn(Q1) ⊆ fn(P1) so {z̃} ∩ fn(Q1) = ∅.
Thus, by NC-Close-l, we have

Q = Q1 |Q2
τ−−−→

S∪S′
(νz̃) (Q′

1{M/x} |Q′
2) = Q′.

Since P ′
1 >o Q

′
1 and M ∈ M, we have P ′

1{M/x} >o Q
′
1{M/x}.

So P ′ >o Q
′.

NC-Guard Assume that P = φP1 with P1
µ−→
S
P ′, e(φ) and P = φP1

µ−−−−−→
S∪nc(φ)

P ′.

Since P >o Q, we have Q = ψQ1 with φ >o ψ and P1 >o Q1.
By induction, Q1

µ−→
S
Q′.

By Corollary 1, we have e(ψ).
Thus, by NC-Guard, we have Q = ψQ1

µ−−−−−−→
S∪nc(ψ)

Q′.

Again by Corollary 1, we have nc(ψ) = nc(φ) so Q
µ−−−−−→

S∪nc(φ)
Q′ and

P ′ >o Q
′.

NC-Par-L Assume that P = P1 |P2 with P1
µ−→
S
P ′

1, bn(µ) ∩ fn(P2) = ∅ and P
µ−→
S

P ′ = P ′
1 |P2.

Since P >o Q, we have Q = Q1 |Q2 with P1 >o Q1 and P2 >o Q2.
By induction, we have Q1

µ−→
S
Q′

1 with P ′
1 >o Q

′
1.

Since P2 >o Q2, we have fn(Q2) ⊆ fn(P2). Hence bn(µ) ∩ fn(Q2) = ∅.
Thus, by NC-Par-l, we have Q = Q1 |Q2

µ−→
S
Q′

1 |Q2 = Q′.

Since P ′
1 >o Q

′
1 and P2 >o Q2, we have P ′ >o Q

′.
2. By rule induction on P

µ−→
S
P ′. We give the proof for the following cases:

NC-Input Assume that Q = F (x).Q′ a(x)−−−→
{a}

Q′ with ec(F ) = a ∈ N.

Since P >o Q, we have P ≡α E(x).P ′ with E >o F and P ′ >o Q
′.

By Lemma 10, we have ec(E) = a.

So, by NC-Alpha and NC-Input, we have P ≡α E(x).P ′ a(x)−−−→
{a}

P ′ and

P ′ >o Q
′.

NC-Close-L Assume that Q = Q1 |Q2 with Q1
a(x)−−−→
S

Q′
1 , Q2

(νz̃) aM−−−−−→
S′

Q′
2, {z̃} ∩

fn(Q1) = ∅ and Q τ−−−→
S∪S′

(νz̃) (Q′
1{M/x} |Q′

2) = Q′. We may assume that

{x, z̃} ∩ fn(P ) = ∅.
Since P >o Q, we have P = P1 |P2 with P1 >o Q1 and P2 >o Q2.

By induction, we have P1
a(x)−−−→
S

P ′
1 and P2

(νz̃) aM−−−−−→
S′

P ′
2 with P ′

1 >o Q
′
1

and P ′
2 >o Q

′
2.



So by NC-Close-L, we have
P = P1 |P2

τ−−−→
S∪S′

(νz̃) (P ′
1{M/x} |P ′

2) = P ′.

Since P ′
1 >o Q

′
1 and M ∈ M, we have P ′

1{M/x} >o Q
′
1{M/x} so P ′ >o Q

′.
NC-Par-l Assume that Q = Q1 |Q2 with Q1

µ−→
S

Q′
1, bn(µ) ∩ fn(Q2) = ∅ and

Q
µ−→
S
Q′ = Q′

1 |Q2.

Since P >o Q, we have P = P1 |P2 with P1 >o Q1 and P2 >o Q2.
Since bn(µ) ∩ fn(P ) = ∅, we have bn(µ) ∩ fn(P1) = bn(µ) ∩ fn(P2) = ∅.
By induction, P1

µ−→
S
P ′

1 with P ′
1 >o Q

′
1.

Thus by NC-Par-l, P = P1 |P2
µ−→
S
P ′

1 |P2 = P ′.

Since P ′
1 >o Q

′
1 and P2 >o Q2, we have P ′ >o Q

′.

S-environments

Lemma 18. Let (σ, ρ) be a pair of substitutions, B ⊆ N×N a consistent hedge
and se = (h, v,≺, (γl, γr)) a S-environment such that (σ, ρ) .B se. If se is well-
formed then se

(σ,ρ)
B is well-formed.

Proof. We note se
(σ,ρ)
B = (h′, v′,≺′, (γ′l , γ

′
r)).

1. By contradiction, assume that x ∈ π1(h′) ∩ π1(v′).
By definition of h′, there is M ∈ π1(h) such that x = Mσ. Since x ∈ N,
necessarily M = a ∈ N.
Since π1(h) ∩ π1(v) = ∅ and supp(σ) ⊆ π1(v), we have x = Mσ = aσ = a
because a 6∈ supp(σ).
We have thus a ∈ n(π1(h)), a 6∈ π1(v) and a ∈ π1(B). This is a contradiction.
So π1(h′) ∩ π1(v′) = ∅.

2. Similarly π2(h′) ∩ π2(v′) = ∅.
3. Assume that (Mσ,Nρ) ≺′ (x′, y′) with (M,N) ∈ h and (x′, y′) ∈ v′.

By contradiction, assume that x′ ∈ n(Mσ). Necessarily, there exists (x, y) ∈
v such that x ∈ n(M) and x′ ∈ n(xσ). So we have (M,N) ≺ (x, y). This is
a contradiction with x 6∈ n(M). So x′ 6∈ n(Mσ).
Similarly, y′ 6∈ n(Nρ).

Lemma 19. Let (σ, ρ) be a pair of substitutions, B ⊆ N×N a consistent hedge
and se = (h, v,≺, (γl, γr)) a S-environment such that (σ, ρ) .B se. If se is growing
then se

(σ,ρ)
B is growing.

Proof. We write v = {(x1, y1), . . . , (xn, yn)} and hi = se|(xi,yi) and assume that
for all 1 ≤ i < n, we have hi ⊆ hi+1.

We note se
(σ,ρ)
B = (h′, v′,≺′, (γ′l , γ

′
r)).

By definition, we have (M,N) ≺ (xi, yi) ⇐⇒ (M,N) ∈ hi for (M,N) ∈ h
and 1 ≤ i ≤ n.

Let (x′, y′) ∈ v′ and (M ′, N ′) ∈ h′. We have M ′ = Mσ and N ′ = Nρ for
(M,N) ∈ h.



By definition, we have

(M ′, N ′) ≺′ (x′, y′) ⇐⇒
∧

(x, y) ∈ v
x′ ∈ n(xσ)∨ y′ ∈ n(yρ)

(M,N) ≺ (x, y)

⇐⇒
∧

1 ≤ i ≤ n
x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)

(M,N) ≺ (xi, yi)

⇐⇒
∧

1 ≤ i ≤ n
x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)

(M,N) ∈ hi

Moreover, we know that if (x′, y′) ∈ v′ = B, we have x′ ∈ n(σ(π1(v))) or
y′ ∈ n(σ(π2(v))), so A(x′,y′) := {1 ≤ i ≤ n | x′ ∈ n(xiσ)∨ y′ ∈ n(yiρ)} 6= ∅.
Since A(x′,y′) is a non empty subset of N, its minimum element exists. We thus
define idx((x′, y′)) := minA(x′,y′).

Since we have h1 ⊆ h2 ⊆ · · · ⊆ hn, we have

(M ′, N ′) ≺′ (x′, y′) ⇐⇒ (M,N) ∈ hidx((x′,y′))

for every (M,N) ∈ h, (x′, y′) ∈ v′, M ′ = Mσ and N ′ = Nρ.
We sort the elements (x′, y′) ∈ v′ according to the value of idx((x′, y′)),

i.e. let z : [[1, k]] → v′ injective where k := card(v′) such that if i ≤ j then
idx(z(i)) ≤ idx(z(j)).

For 1 ≤ i ≤ k, we define

h′i := se
(σ,ρ)
B |z(i) = {(M ′, N ′) ∈ h′ | (M ′, N ′) ≺′ z(i)}

= {(Mσ,Nρ) | (M,N) ∈ h∧ (M,N) ∈ hidx(z(i))}
= hidx(z(i))(σ, ρ)

Thus since h1 ⊆ h2 ⊆ · · · ⊆ hn, we have for 1 ≤ i < k that h′i ⊆ h′i+1.
Hence se

(σ,ρ)
B is growing.

Lemma 20. Let (σ, ρ) be a pair of substitutions, B ⊆ N×N a consistent hedge
and se = (h, v,≺, (γl, γr)) a S-environment such that (σ, ρ) .B se. Then if se is
well-formed and growing we have

∀(b1, b2) ∈ B : b1 ∈ n(σ(π1(v)))∧ b2 ∈ n(ρ(π2(v)))

.

Proof. We write v = {(x1, y1), . . . , (xn, yn)} such that if hi := se|(xi,yi) then
hi ⊆ hi+1 for 1 ≤ i < n.

By contradiction, assume that there is (b1, b2) ∈ B such that b1 6∈ n(σ(π1(v)))
or b2 6∈ n(ρ(π2(v))).



By symmetry, assume for example that b2 6∈ n(ρ(π2(v))). By hypothesis, we
have then that b1 ∈ n(σ(π1(v))).

Let i0 minimal such that b1 ∈ n(xi0σ). We have b2 6∈ n(yi0ρ).
By hypothesis, we have (xi0σ, yi0ρ) ∈ S(I(hi0(σ, ρ) ∪B)).
Since b2 6∈ n(yi0ρ), Syn-Inc have not been applied with (b1, b2) as premise.

So necessarily, there is (M,N) ∈ hi0 such that b1 ∈ n(Mσ). Since π1(B) ∩
(n(π1(h)) \ π1(v)) = ∅, there exists j such that xj ∈ n(M) and b1 ∈ n(xjσ). By
choice of i0, we have i0 ≤ j so hi0 ⊆ hj.

Since (M,N) ∈ hi0 ⊆ hj, we have (M,N) ≺ (xj , yj).
Since se is well-formed, we have xj 6∈ n(M). This is a contradiction.
This even proves that if (b1, b2) ∈ B and i is minimal such that b1 ∈ n(xiσ)

then necessarily b2 ∈ n(yiσ) (this result will be used afterwards).

Lemma 21. Let h ∈ H and {(x1, y1), . . . , (xn, yn)} ⊆ N×N.
Let also (M1, N1), . . . , (Mn, Nn) ∈ M×M and B ⊆ N×N such that

∀1 ≤ i ≤ n : (Mi, Ni) ∈ S(A(h(σ, ρ) ∪B))

where σ and ρ are defined such that

xσ :=

{
Mi if x = xi

x otherwise
yρ :=

{
Ni if y = yi

y otherwise

Then

∀(M,N) ∈ S(A(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

Proof. We use a characterisation of analysis and actually show that

∀i ∈ N : ∀(M,N) ∈ S(analzi(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

Before showing this result, we show some auxiliary results.

1. Let h′ ∈ H such that

∀(M,N) ∈ h′ : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

Then
∀(M,N) ∈ S(h′) : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

Proof. We show this result by rule induction on (M,N) ∈ S(h′). The hy-
pothesis gives the base case and the inductive cases are then obvious.

2. Let h′ ∈ H such that

∀(M,N) ∈ h′ : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

then
∀(M,N) ∈ analz(h′) : (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))



Proof. Again, we show this result by rule induction on (M,N) ∈ analz(h′).
– If (M,N) ∈ analz(h′) by Ana-Inc. Then (M,N) ∈ h′ and the hypothesis

gives the result.
– Assume that (M,N) ∈ analz(h′) by Ana-Dec-a. That means that (Enca

KM,Enca
LN) ∈

analz(h′) with K ′ = inv(K) ∈ M, L′ = inv(L) ∈ M and (K ′, L′) ∈ S(h′).
By induction, (Enca

KσMσ,Enca
LρNρ) ∈ S(A(h(σ, ρ) ∪B)).

Either it was deduced by Syn-Inc or by Syn-Enc-a.
(a) If it was by Syn-Inc:

Then (Enca
KσMσ,Enca

LρNρ) ∈ A(h(σ, ρ) ∪B).
Trivially, inv(Kσ) = K ′σ ∈ M, inv(Lσ) = L′σ ∈ M.
According to the previous auxiliary result and since h′ satisfies the
premise, we have (K ′σ, L′ρ) ∈ S(A(h(σ, ρ) ∪B)).
By definition of analysis, we have analz(A(h(σ, ρ)∪B)) = A(h(σ, ρ)∪
B).
So by Ana-Dec-a (Mσ,Nρ) ∈ A(h(σ, ρ) ∪B).
Thus by Syn-Inc, we have (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B)).

(b) Otherwise, it was by Syn-Enc-a and then immediately, we have
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B)).

We show now that

∀i ∈ N : ∀(M,N) ∈ analzi(h ∪ {(x1, y1), . . . , (xn, yn)}) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

By induction on i.

– i = 0
We have by definition

analz0(h ∪ {(x1, y1), . . . , (xn, yn)}) = h ∪ {(x1, y1), . . . , (xn, yn)}

If (M,N) ∈ h, then by definition, (Mσ,Nρ) ∈ h(σ, ρ). So by definition of
the synthesis, (Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B)).
If (M,N) = (xi, yi) for some 1 ≤ i ≤ n. Then (Mσ,Nρ) = (Mi, Ni) ∈
S(A(h(σ, ρ) ∪B)) by hypothesis.

– Assume the result holds for some i ∈ N.
Then the second auxiliary lemma gives the result for i+1 because analz(analzi(h)) =
analzi+1(h).

Then by the first auxiliary result, we obtain

∀i ∈ N : ∀(M,N) ∈ S(analzi(h ∪ {(x1, y1), . . . , (xn, yn)})) :
(Mσ,Nρ) ∈ S(A(h(σ, ρ) ∪B))

This completes the proof.



Theorem 5 (respectful substitutions composition). Let se = (h, v,≺, (γl, γr))
a S-environment. We assume that se is well-formed and growing.

Let (σ1, ρ1) be a pair of substitutions and B1 ⊆ N × N a consistent hedge
such that (σ1, ρ1) .B1 se. We note se1 := se

(σ1,ρ1)
B1

.
Let (σ2, ρ2) be a pair of substitutions and B2 ⊆ N × N a consistent hedge

such that (σ2, ρ2) .B2 se1. We note se2 := se1
(σ2,ρ2)
B2

.

Then (σ, ρ) .B2 se and se
(σ,ρ)
B2

= se2 where σ and ρ are defined such that

xσ :=

{
xσ1σ2 if x ∈ π1(v)
x otherwise

yρ :=

{
yρ1ρ2 if y ∈ π2(v)
y otherwise

Proof. First, by Lemma 18 and by Lemma 19, we know that both se1 and se2 are
well-formed and growing.

1. By definition, we have supp(σ) ⊆ π1(v).
2. Similarly, supp(ρ) ⊆ π2(v).
3. Let (b1, b2) ∈ B2. By Lemma 20, we have b1 ∈ n(σ2(π1(B1))). So, there

exists (a1, a2) ∈ B1 such that b1 ∈ n(a1σ2).
By Lemma 20, we have a1 ∈ n(σ1(π1(v))). So, there exists (x, y) ∈ v such
that a1 ∈ n(xσ1).
Then b1 ∈ n(xσ1σ2) = n(xσ).

4. By contradiction, assume that there exists b1 ∈ π1(B2) ∩ (n(π1(h)) \ π1(v)).
By hypothesis, we have b1 6∈ n(π1(h(σ1, ρ1))) or b1 ∈ π1(B1).
If b1 ∈ π1(B1) then b1 6∈ (n(π1(h)) \ π1(v)).
So necessarily, b1 6∈ n(π1(h(σ1, ρ1))). But since b1 ∈ n(π1(h)) and b1 6∈ π1(v)
and supp(σ1) ⊆ π1(v), we have b1 ∈ n(π1(h(σ1, ρ1))). This is a contradiction.
So π1(B2) ∩ (n(π1(h)) \ π1(v)) = ∅.

5. Similarly π2(B2) ∩ (n(π2(h)) \ π2(v)) = ∅.
6. We first prove that h(σ1, ρ1)(σ2, ρ2) = h(σ, ρ), i.e. we show that for every

(M,N) ∈ h, (Mσ1σ2, Nρ1ρ2) = (Mσ,Nρ).
Let (M,N) ∈ h. We show that Mσ1σ2 = Mσ.
Let x ∈ n(M). We have x ∈ π1(h). If x ∈ π1(v), then xσ1σ2 = xσ. Other-
wise, if x 6∈ π1(v), then we have by hypothesis that x 6∈ π1(B1). Moreover,
since supp(σ1) ⊆ π1(v), we have xσ1 = x. And since supp(σ2) ⊆ π1(B1), we
have xσ2 = x. Thus xσ1σ2 = x = xσ. So for every name x of M , we have
xσ1σ2 = xσ. So a simple induction on M shows that Mσ1σ2 = Mσ.
Thus h(σ1, ρ1)(σ2, ρ2) = h(σ, ρ).
We write v = {(x1, y1), . . . , (xn, yn)} such that if hi = se|(xi,yi), then for
1 ≤ i < n, we have hi ⊆ hi+1.
Let 1 ≤ i ≤ n.
We have by hypothesis (xiσ1, yiρ1) ∈ S(I(hi(σ1, ρ1) ∪B1)).
Let Bi1 := {(b1, b2) ∈ B1 | ∃j ≤ i : b1 ∈ n(xjσ1)∨ b2 ∈ n(yjρ1)}. We have
B1 = Bi1 ∪ (B1 \Bi1).
Let (b1, b2) ∈ B1 such that b1 ∈ n(π1(hi(σ1, ρ1))). By definition, there exists
(M,N) ∈ hi such that b1 ∈ n(Mσ1). This implies that there exists j such
that xj ∈ n(M) and b1 ∈ n(xjσ1). If j ≥ i, then since se is growing, we have



(M,N) ≺ (xj , yj). But since se is well-formed, we have xj 6∈ n(M). This is
a contradiction. Thus j < i and (b1, b2) ∈ Bi1.
Similarly if (b1, b2) ∈ B1 is such that b2 ∈ n(π2(hi(σ1, ρ1))) then (b1, b2) ∈
Bi1.
This proves that the useful names of B1 to compute the analysis A(hi(σ1, ρ1)∪
B1) are included in Bi1.
In other words, we have just proven that S(I(hi(σ1, ρ1)∪B1)) = S(I(hi(σ1, ρ1)∪
Bi1) ∪ (B1 \Bi1)).
And by definition of Bi1, we have (xiσ1, yiρ1) ∈ S(I(hi(σ1, ρ1) ∪ Bi1)) (i.e.
the names of B1 \Bi1 are irrelevant to synthesise (xσ1, yρ1)).
Let (b1, b2) ∈ Bi1. We have that (b1σ2, b2σ2) ∈ S(I(se1|(b1,b2)(σ2, ρ2) ∪B2)).
Let (Mσ1, Nρ1) ∈ se1|(b1,b2) where (M,N) ∈ h. We have b1 ∈ n(xjσ) or b2 ∈
n(yjσ) for some j ≤ i. So by definition, we have (M,N) ≺ (xj , yj). Since se
is growing, we have also (M,N) ≺ (xi, yi). So (M,N) ∈ se|(xi,yi) = hi.
Thus (b1σ2, b2σ2) ∈ S(A(hi(σ1, ρ1)(σ2, ρ2) ∪B2)) for every (b1, b2) ∈ Bi1.
So by Lemma 21, we get (Mσ1σ2, Nσ1σ2) ∈ S(A(hi(σ1, ρ1)(σ2, ρ2) ∪ B2)),
i.e. (Mσ,Nρ) ∈ S(A(hi(σ, ρ) ∪B2)).

7. Let x ∈ γl. We have xσ1 ∈ N. If xσ1 ∈ π1(B1), then we have xσ1σ2 = xσ ∈
N. If xσ1 6∈ π1(B1), then xσ1σ2 = xσ1 ∈ N.

8. Similarly, if y ∈ γr, then yρ ∈ N.
9. We note (h1, B1,≺1, (γ1

l , γ
1
r )) = se1, (h2, B2,≺2, (γ2

l , γ
2
r )) = se2 and (h′, B2,≺′

, (γ′l , γ
′
r)) = seσ,ρB2

= se′.
We have h1 = h(σ1, ρ1), h2 = h1(σ2, ρ2) = h(σ1, ρ1)(σ2, ρ2) and h′ = h(σ, ρ).
According to the previous results, we have h2 = h′.
If x2 ∈ γ2

l then x2 = x1σ2 for some x1 ∈ γ1
l . Since x1 ∈ γ1

l , there exists
x ∈ γl such that x1 = xσ1. We have x2 = xσ1σ2 = xσ ∈ σ(γl). Moreover
x2 ∈ π1(B2) so x2 ∈ γ′l.
Conversely, if x2 ∈ γ′l, there is x ∈ γl such that x2 = xσ = xσ1σ2. Since
xσ1σ2 = x ∈ N, we have xσ1 ∈ N. Necessarily, xσ1 ∈ π1(B1) otherwise
xσ1σ2 6∈ π1(B2) which would be a contradiction. So x2 ∈ γ2

l .
Hence γ′l = γ2

l and γ′r = γ2
r .

It remains to show that ≺′=≺2.
Since se is growing, we write v = {(x1, y1), . . . , (xn, yn)} such that if hi :=
se|(xi,yi) we have hi ⊆ hi+1 for 1 ≤ i < n.
Since se1 is growing, we write B1 = {(x′1, y′1), . . . , (x′p, y′p)} such that if h′i :=
se1|(x′

i,y
′
i)

we have h′i ⊆ h′i+1 for 1 ≤ i < p.
According to proof of Lemma 19, (Mσ1σ2, Nρ1ρ2) ≺2 (x′′, y′′) if and only if
(Mσ1, Nρ1) ≺1 (x′i, y

′
i) where i is the minimal index such that x′′ ∈ n(x′iσ2)

or y′′ ∈ n(y′iρ2) (where (M,N) ∈ h and (x′′, y′′) ∈ B2.
Similarly, (Mσ,Nρ) ≺′ (x′′, y′′) if and only if (M,N) ≺ (xi, yi) where i is
the minimal index such that x′′ ∈ n(xiσ) or y′′ ∈ n(yiρ) (where (M,N) ∈ h
and (x′′, y′′) ∈ B2.
Assume that (Mσ,Nρ) ≺′ (x′′, y′′). Let i minimal such that x′′ ∈ n(x′iσ2) or
y′′ ∈ n(y′iρ2). According to proof of Lemma 20, we have that x′′ ∈ n(x′iσ2)
and y′′ ∈ n(y′iρ2) (because the S-environments are well-formed and growing).
Now let j minimal such that x′i ∈ n(xjσ1) or y′i ∈ n(yjρ1). Similarly, we



have that x′i ∈ n(xjσ1) and y′i ∈ n(yjρ1). So x′′ ∈ n(xjσ) and y′′ ∈ n(yjρ).
So we have (M,N) ≺ (xj , yj). Thus (Mσ1, Nρ1) ≺1 (x′i, y

′
i) and finally

(Mσ1σ2, Nρ1ρ2) ≺2 (x′′, y′′), i.e. (Mσ,Nρ) ≺2 (x′′, y′′). We conclude that
≺′⊆≺2.
Assume now that (Mσ1σ2, Nρ1ρ2) ≺2 (x′′, y′′). Let i minimal such that
x′′ ∈ n(xiσ) or y′′ ∈ n(yiρ). We have x′′ ∈ n(xiσ) and y′′ ∈ n(yiρ). Neces-
sarily, there is j such that x′j ∈ n(xiσ1) and x′′ ∈ n(x′jσ2). We then have
(Mσ1, Nρ1) ≺1 (x′j , y

′
j). Hence (M,N) ≺ (xi, yi). So (Mσ,Nρ) ≺′ (x′′, y′′).

We conclude that ≺2⊆≺′.
Finally, we have shown that se′ = se2.

Symbolic transitions

Lemma 22. If P
µ−−−−→

(νc̃)φ
P ′ and σ is such that n(cosupp(σ)) ∩ bn(µ) = n(σ) ∩

{c̃} = ∅ and e(φσ) then Pσ
ec(µσ)−−−−−−−→

nc(φσ)\{c̃}
Q′ with P ′σ >o Q

′.

Proof. By rule induction on P
µ−−−−→

(νc̃)φ
P ′.

If we are going to α-rename P , we might as well consider that no names of
n(σ) are bound in P .

We give the proof for the following cases:

S-Input Assume that E(x).P ′ ea(E)(x)−−−−−→
[E :N ]

P ′ and e([E :N ]σ).

Then there exists a ∈ N such that ec(Eσ) = a.

By NC-Input, we have Pσ = Eσ(x).P ′σ
a(x)−−−→
{a}

P ′σ.

This gives the result since we also have nc([E :N ]σ) = {ec(Eσ)} = {a} and
P ′σ >o P

′σ and ec(ea(E)σ) = ec(Eσ) = a by Lemma 14.

S-Output Assume that E〈F 〉.P ′ ea(E) ea(F )−−−−−−−−−−→
[E :N ]∧ [F :M ]

P ′ and e([E :N ]σ ∧ [F :M ]σ).

There exists a ∈ N such that ec(Eσ) = a and M ∈ M such that ec(Fσ) =
M .
So, by NC-Output, we have Pσ = Eσ〈Fσ〉.P ′σ

aM−−→
{a}

P ′σ.

By Lemma 14, we have ec(ea(E)σ) = ec(Eσ) = a and ec(ea(F )σ) =
ec(Fσ) = M . Moreover P ′σ >o P

′σ and nc(φσ) = {ec(Eσ)} = {a}.
S-Close-l Assume that P = P1 |P2

τ−−−−−−−−−−−−−−−−−→
(νc̃1c̃2) ([E=F ]∧φ1 ∧φ2)

(νz̃) (P ′
1{G/x} |P ′

2) = P ′

with P1
E(x)−−−−−→

(νc̃1)φ1

P ′
1, P2

(νz̃)F G−−−−−→
(νc̃2)φ2

P ′
2, z̃∩ fn(P1) = ∅, c̃1∩n(φ1, E, F ) = ∅ and

c̃2 ∩ n(φ2, E, F ) = ∅. We may assume that {x, z̃} ∩ n(σ) = ∅.
Since e([E=F ]σ ∧φ1σ ∧φ2σ), we have e(φ1σ) and e(φ2σ).

By induction, we have P1σ
ec(Eσ)(x)−−−−−−−−−→

nc(φ1σ)\{c̃1}
Q′

1, P2σ
(νz̃) ec(Fσ) ec(Gσ)−−−−−−−−−−−−→

nc(φ2σ)\{c̃2}
Q′

2,

P ′
1σ >o Q

′
1 and P ′

2σ >o Q
′
2.



Since e([E=F ]σ), there exists a ∈ M such that ec(Eσ) = ec(Fσ) = a.
Moreover we have that ec(Eσ) ∈ N (according the induction hypothesis), so
a ∈ N. There exists also M ∈ M such that ec(Gσ) = M .
So, by NC-Close-l, we have P1σ |P2σ

τ−−−−→
S1∪S2

(νz̃) (Q′
1{M/x} |Q′

2) = Q′

because {z̃} ∩ fn(P1σ) = {z̃} ∩ fn(P1) = ∅ (since {z̃} ∩ n(σ) = ∅) where
S1 = nc(φ1σ) \ {c̃1} and S2 = nc(φ2σ) \ {c̃2}.
Since ec(Gσ) = M , by Lemma 9 we have Gσ >o M so P ′σ >o Q

′.
Moreover, nc([E=F ]σ ∧φ1σ ∧φ2σ) = nc(φ1σ) ∪ nc(φ2σ) by definition.
Since n(σ) ∩ {c̃1c̃2} = ∅ and {c̃2} ∩ n(φ1) = ∅, we have nc(φ1σ) \ {c̃1c̃2} =
nc(φ1σ) \ {c̃1} = S1. Similarly, we have that nc(φ2σ) \ {c̃1c̃2} = S2. So
nc([E=F ]σ ∧φ1σ ∧φ2σ) \ {c̃1c̃2} = S1 ∪ S2.

S-Guard Assume that ψP1
µ−−−−−−−−→

(νc̃) (φ1 ∧ψ)
P ′ with P1

µ−−−−→
(νc̃)φ1

P ′ and {c̃} ∩ n(ψ) = ∅.

Since e(φ1σ ∧ψσ), we have e(φ1σ) and e(ψσ).

So by induction, P1σ
ec(µσ)−−−−−−−→

nc(φ1)\{c̃}
Q′ with P ′σ >o Q

′.

Since e(ψσ), by NC-Guard, we have Pσ = ψσP1σ
ec(µσ)−−−−−−−→

S1∪nc(ψσ)
Q′ where

S1 = nc(φ1) \ {c̃}.
Since {c̃} ∩ n(ψ) = ∅ and {c̃} ∩ n(σ) = ∅, we have nc(ψσ) \ {c̃} = nc(ψσ).
Thus nc(φ1σ ∧ψσ) \ {c̃} = S1 ∪ nc(ψσ).

S-Open Assume that P = (νz′)P1
(νz′z̃)E F−−−−−−→
(νz′c̃)φ

P ′ with P1
(νz̃)E F−−−−−→
(νc̃)φ

P ′, z′ ∈ n(F ),

z′ 6∈ n(E) and z′ 6∈ {z̃, c̃}.

By induction, we have P1σ
(νz̃) ec(Eσ) ec(Fσ)−−−−−−−−−−−−→

nc(φσ)\{c̃}
Q′ with P ′σ >o Q

′.

Clearly, ea(F ) = F . So, since z′ ∈ n(F ) = n(ea(F )) and z′ 6∈ n(σ), we have
z′ ∈ n(ec(Fσ)) by Lemma 15.
Since z′ 6∈ n(E), we have z′ 6∈ n(ec(E)σ). Moreover z′ 6∈ {z̃}.

So, by NC-Open, we have Pσ = (νz′)P1σ
(νz′z̃) ec(Eσ) ec(Fσ)−−−−−−−−−−−−−→

S\{z′}
Q′ with S =

nc(φσ) \ {c̃}.
We have nc(φσ) \ {z′c̃} = S \ {z′}.

S-Res Assume that P = (νz)P1
µ−−−−→

(νc̃)φ
(νz)P ′

1 = P ′ with P1
µ−−−−→

(νc̃)φ
P ′

1, z 6∈ n(µ)

and z 6∈ n(φ).

By induction, we have P1σ
ec(µσ)−−−−−−−→

nc(φσ)\{c̃}
Q′

1 with P ′
1σ >o Q

′
1.

Since z 6∈ n(σ) and z 6∈ n(µ), we have z 6∈ n(ec(µσ)).

So, by NC-Res, Pσ(νz)P1σ
ec(µσ)−−−−→
S\{z}

(νz)Q′
1 = Q′ where S = nc(φσ) \ {c̃}.

We have P ′σ >o Q
′ since P ′

1σ >o Q
′
1.

Since z 6∈ n(φ) and z 6∈ n(σ), we have z 6∈ n(nc(φσ)). Thus S \ {z} =
nc(φσ) \ {zc̃} = nc(φσ) \ {c̃} = S.

S-RO-Guard Assume that P = (νz)P1
µ−−−−→

(νzc̃)φ
(νz)P ′

1 = P ′ with P1
µ−−−−→

(νc̃)φ
P ′

1, z 6∈ n(µ),

z 6∈ {c̃} and z ∈ n(φ).



By induction, we have P1σ
ec(µσ)−−−−−−−→

nc(φσ)\{c̃}
Q′

1 with P ′
1σ >o Q

′
1.

Since z 6∈ n(σ) and z 6∈ n(µ), we have z 6∈ n(ec(µσ)).

So, by NC-Res, Pσ(νz)P1σ
ec(µσ)−−−−→
S\{z}

(νz)Q′
1 = Q′ where S = nc(φσ) \ {c̃}.

We have P ′σ >o Q
′ since P ′

1σ >o Q
′
1 and nc(φσ) \ {zc̃} = S \ {z}.

Lemma 23. If Pσ
µ−→
S
R and n(cosupp(σ))∩bn(µ) = ∅ then there exists µ′, c̃, φ

and Q such that P
µ′

−−−−→
(νc̃)φ

Q, {c̃}∩n(σ) = ∅, e(φσ), ec(µ′σ) = µ, S = nc(φσ)\{c̃}

and Qσ >o R.

Proof. By rule induction on Pσ
µ−→
S
R.

If we are going to α-rename P , we might as well consider that no names of
n(σ) are bound in P .

We give the proof for the following cases:

NC-Input Assume that Pσ = Eσ(x).P ′σ
a(x)−−−→
{a}

P ′σ = R with ec(Eσ) = a ∈ N.

We have P = E(x).P ′, R = P ′σ, µ = a(x) and S = {a}.
By S-Input, we have P = E(x).P ′ ea(E)(x)−−−−−→

[E :N ]
P ′.

We define µ′ := ea(E)(x), c̃ := ∅, φ := [E :N ] and Q := P ′.
By Lemma 14, since ec(Eσ) = a ∈ N ⊆ M, we have ec(ea(E)σ) = a, so
ec(µ′σ) = µ.
Since ec(Eσ) = a ∈ N, we have e([E :N ]σ) and e(φσ). Moreover nc(φσ) =
{ec(Eσ)} = {a} = S.
Finally Qσ = P ′σ >o P

′σ = R.
NC-Output Assume that Pσ = Eσ〈Fσ〉.P ′σ

aM−−→
{a}

P ′σ = R with ec(Eσ) = a ∈ N and

ec(Fσ) = M ∈ M.
We have P = E〈F 〉.P ′, R = P ′σ, µ = aM and S = {a}.

By S-Output, we have P = E〈F 〉.P ′ ea(E) ea(F )−−−−−−−−−−→
[E :N ]∧ [F :M ]

P ′.

We define µ′ := ea(E) ea(F ), c̃ := ∅, φ := [E :N ]∧ [F :M ] and Q := P ′.
By Lemma 14, since ec(Eσ) = a ∈ N ⊆ M, we have ec(ea(E)σ) = a.
Similarly, ec(ea(F )σ) = M . So ec(µ′σ) = µ.
Since ec(Eσ) = a ∈ N and ec(Fσ) = M ∈ M, we have e(φσ).
Moreover, nc(φσ) = {ec(Eσ)} = {a} = S.
Finally Qσ = P ′σ >o P

′σ = R.

NC-Close-l Assume that Pσ = P1σ |P2σ
τ−−−−→

S1∪S2
R with P = P1 |P2, P1σ

a(x)−−−→
S1

R1,

P2σ
(νz̃) aM−−−−−→

S2
R2, {z̃} ∩ fn(P1σ) = ∅ and R = (νz̃) (R1{M/x} |R2). We may

assume that {x, z̃} ∩ n(σ) = ∅.
We have µ = τ and S = S1 ∪ S2.
By induction, there exists µ′1, µ

′
2, c̃1, c̃2, φ1, φ2, Q1 and Q2 such that c̃1 ∩

n(σ) = c̃2 ∩ n(σ) = ∅, e(φ1σ), e(φ2σ), S1 = nc(φ1σ) \ {c̃1}, S2 = nc(φ2σ) \



{c̃2}, P1
µ′

1−−−−−→
(νc̃1)φ1

Q1, P2
µ′

2−−−−−→
(νc̃2)φ2

Q2, ec(µ′1σ) = a(x), ec(µ′2σ) = (νz̃) aM ,

Q1σ >o R1 and Q2σ >o R2.
Necessarily, we have µ′1 = E(x) for some E and µ′2 = (νz̃)F G for some F
and G with ec(Eσ) = ec(Fσ) = a and ec(Gσ) = M ∈ M.
By S-Alpha, we may α-rename so that {c̃1} ∩ n(φ2, E, F ) = ∅ and {c̃2} ∩
n(φ1, E, F ) = ∅ and {c̃1} and {c̃2} are disjoints.
We have {z̃}∩ fn(P1σ) = ∅. Since n(σ)∩{z̃} = ∅, we have {z̃}∩ fn(P1) = ∅.
So P τ−−−−−−−−−−−−−−−−−→

(νc̃1c̃2) ([E=F ]∧φ1 ∧φ2)
(νz̃) (Q1{G/x} |Q2) by S-Close-l.

Define Q = (νz̃) (Q1{G/x} |Q2), φ = [E=F ]∧φ1 ∧φ2, µ′ := τ and c̃ = c̃1c̃2.
We have ec(µ′σ) = τ = µ, n(σ) ∩ {c̃} = ∅, S = S1 ∪ S2 = nc(φ)σ \ {c̃}, and
e(φσ).
Since ec(Gσ) = M ∈ M we have Gσ >o M by Lemma 9. Thus, since we
also have Q1σ >o R1 and Q2σ >o R2, we have Qσ >o R.

NC-Guard Assume that ψσP ′σ
µ−−−−−−→

S∪nc(ψσ)
R with P ′σ

µ−→
S
R and e(ψσ).

We have P = ψP ′. By induction, there exists c̃, µ′, φ′ and Q such that

P
µ′

−−−−→
(νc̃)φ′

Q, {c̃} ∩ n(σ) = ∅, ec(µ′σ) = µ, e(φ′σ), S = nc(φ′σ) \ {c̃} and

Qσ >o R.
By S-Alpha, we may α-rename such that {c̃} ∩ n(ψ) = ∅.
So P

µ′

−−−−−−−−→
(νc̃) (ψ∧φ′)

Q by S-Guard.

We define φ := ψ ∧φ′ and we keep µ′, Q and c̃.
We have e(φσ) since ec(ψσ) = e(φ′σ) and nc(φσ) \ {c̃} = nc(ψσ) \ c̃ ∪
nc(φ′σ) \ c̃ = nc(ψσ) ∪ S because {c̃} ∩ (n(ψ) ∪ n(σ)) = ∅. This gives the
result.

NC-Open Assume that (νz′)P ′σ
(νz′z̃) aM−−−−−−−→
S′\{z′}

R with P ′σ
(νz̃) aM−−−−−→

S′
R and z′ ∈ n(M) \

{a, z̃}.
We have P = (νz′)P ′, µ = (νz′z̃) aM and S = S′ \ {z′}.
By induction, since n(cosupp(σ)) ∩ {z′, z̃} = ∅, there exists Q, µ′, c̃′ and

φ′ such that P ′ µ′

−−−−−→
(νc̃′)φ′

Q, {c̃′} ∩ n(σ) = ∅, e(φ′σ), ec(µ′σ) = (νz̃) aM ,

S′ = nc(φ′σ) \ {c̃′} and Qσ >o R.
Since ec(µ′σ) = (νz̃) aM , necessarily, µ′ = (νz̃)E F for some E and F with
ec(Eσ) = a and ec(Fσ) = M .
By S-Alpha, we may α-rename such that z′ 6∈ {c̃}.
Since z′ ∈ n(M) \ {z̃}, ec(Fσ) = M and z′ 6∈ n(cosupp(σ)), we have z′ ∈
n(F ).
Since z′ 6= a, ec(Eσ) = a and z′ 6∈ n(σ), then z′ 6∈ n(E).

So, by S-Open, we have (νz′)P ′ (νz′z̃)E F−−−−−−→
(νz′c̃)φ′

Q. Clearly, this gives the result.

NC-Res Assume that (νz)P ′σ
µ−−−−→

S′\{z}
(νz)R′ = R with P ′σ

µ−→
S′

R′ and z 6∈ n(µ).

By induction, there exists µ′, {c̃}, φ′ and Q′ such that P ′ µ′

−−−−→
(νc̃)φ′

Q′, {c̃} ∩

n(σ) = ∅, e(φ′σ), ec(µ′σ) = µ, S′ = nc(φ′σ) \ {c̃} and Q′σ >o R
′.



By S-Alpha, we may α-rename such that z 6∈ {c̃}.
Since z 6∈ n(µ), ec(µ′σ) = µ and z 6∈ n(σ), we have z 6∈ n(µ′).
There are two cases: either z ∈ n(φ′) or z 6∈ n(φ′).
1. if z ∈ n(φ′)

Then by S-RO-Guard, we have (νz)P ′ µ′

−−−−−→
(νzc̃)φ′

(νz)Q′.

Clearly, Q := (νz)Q′σ >o (νz)R′ = R and {zc̃} ∩ n(σ) = ∅. So this
gives the result.

2. if z 6∈ n(φ′)

Then by S-Res, we have (νz)P ′ µ′

−−−−→
(νc̃)φ′

(νz)Q′.

Clearly, Q := (νz)Q′σ >o (νz)R′ = R.
Moreover, since z 6∈ n(φ′), then z 6∈ n(nc(φ′σ)) (because z 6∈ n(σ)) so
z 6∈ S′ and S′ \ {z} = S′ = nc(φ′σ) \ {c̃}. This gives the result.

Symbolic characterisation

Lemma 24. R = {(se, P,Q) | P ′ ∼se
OH Q′ ∧P >o P ′ ∧Q >o Q′ ∧ fn(P ) ⊆

n(π1(H(se)))∧ fn(Q) ⊆ n(π2(H(se)))} is a symbolic open hedged bisimulation.

Proof. Let (se, P,Q) ∈ R. There exists P0 and Q0 such that P0 ∼se
OH Q0 and

P >o P0 and Q >o Q0.
Let σ, ρ and B such that (σ, ρ) .B se.
It is clear that n(cosupp(σ)) ⊆ n(π1(H(se(σ,ρ)

B ))) and n(cosupp(ρ)) ⊆ n(π2(H(se(σ,ρ)
B ))).

Also it is clear that since fn(P ) ⊆ n(π1(H(se))) and fn(Q) ⊆ n(π2(H(se))) we
have fn(Pσ) ⊆ n(π1(H(se(σ,ρ)

B ))) and fn(Qρ) ⊆ n(π2(H(se(σ,ρ)
B ))).

Assume that P
µ1−−−−→

(νc̃)φ1

P ′ with bn(µ1)∩n(π1(H(se(σ,ρ)
B ))) = ∅, n(σ)∩{c̃} = ∅,

e(φ1σ) and ch(ec(µ1σ)) ∈ π1(I(H(se(σ,ρ)
B ))) (if µ1 6= τ).

By Lemma 5, since bn(µ1) ∩ n(cosupp(σ)) = ∅, we have Pσ
ec(µ1σ)−−−−−−−−→

nc(φ1σ)\{c̃}
P1

with P ′σ >o P1.
Since P >o P0, we have Pσ >o P0σ.

So by Lemma 4, we have P0σ
ec(µ1σ)−−−−−−−−→

nc(φ1σ)\{c̃}
P ′

0 with P1 >o P
′
0.

Since P0 ∼se
OH Q0, there exists Q′

0 such that Q0ρ
µ′

−→
S

Q′
0 with bn(µ′) ∩

n(π2(I(H(se(σ,ρ)
B )))) = ∅ and P ′

0 ∼se′

OH Q′
0 with se′ depending on ec(µ1σ).

Since Qρ >o Q0ρ and bn(µ′) ∩ fn(Qρ) = ∅, by Lemma 4 Qρ
µ′

−→
S

Q1 with

Q1 >o Q
′
0.

And by Lemma 5, since n(cosupp(ρ)) ∩ bn(µ′) = ∅, we have Q
µ2−−−−→

(νd̃)φ2

Q′

with Q′ρ >o Q1, e(φ2ρ), ec(µ2ρ) = µ′, n(ρ)∩{d̃} = ∅ and S2 = nc(φ2ρ)\{d̃}. So
Q′ρ >o Q

′
0 and bn(µ2) ∩ n(π2(I(H(se(σ,ρ)

B )))) = ∅ (because bn(µ2) = bn(mu′)).
We then do a case analysis on µ1.



– if µ1 = τ , then ec(µ1σ) = τ . Thus µ′ = τ and necessarily µ2 = τ .
Thus se′ = se

(σ,ρ)
B ⊕c(S1, S2) where S1 = nc(φ1σ) \ {c̃}.

Since P ′σ >o P
′
0, Q

′ρ >o Q
′
0, fn(P ′σ) ⊆ fn(Pσ) thus fn(P ′σ) ⊆ n(π1(H(se′)))

and similarly fn(Q′ρ) ⊆ n(π2(H(se′))).
Thus (se′, P ′σ,Q′ρ) ∈ R.

– if µ1 = E1(x1) then ec(µ1σ) = a1(x1). Thus µ′ = a2(x2) with (a1, a2) ∈
I(H(se(σ,ρ)

B )).
Necessarily, µ2 = E2(x2) for some E2 and we have ec(E2ρ) = a2.
And se′ = se

(σ,ρ)
B ⊕i(x1, x2)⊕c(S1, S2) where S1 = nc(φ1σ) \ {c̃}.

We have fn(P ′σ) ⊆ fn(Pσ) ∪ {x1} so fn(P ′σ) ⊆ n(π1(H(se′))) and similarly
fn(Q′ρ) ⊆ n(π2(H(se′))).
As above, we conclude that (se′, P ′σ,Q′ρ) ∈ R.

– if µ1 = (νz̃1)E1 F1, then ec(µ1σ) = (νz̃1) a1M1. Thus µ′ = (νz̃2) a2M2 with
(a1, a2) ∈ I(H(se(σ,ρ)

B )).
Necessarily, µ2 = (νz̃2)E2 F2 with ec(E2ρ) = a2 and ec(F2ρ) = M2.
And se′ = se

(σ,ρ)
B ⊕o(M1,M2)⊕c(S1, S2) where S1 = nc(φ1σ) \ {c̃}.

As above, we conclude that (se′, P ′σ,Q′ρ) ∈ R.

Lemma 25. R = {(se, P,Q) | P ′ ∼se
SO Q′ ∧P ′ >o P ∧Q′ >o Q} is an open

hedged bisimulation.

Proof. Let (se, P,Q) ∈ R. There exists P0 and Q0 such that P0 >o P , Q0 >o Q
and P0 ∼se

SO Q0.
Let σ, ρ and B such that (σ, ρ) .B se.
It is clear that n(cosupp(σ)) ⊆ n(π1(H(se(σ,ρ)

B ))) and n(cosupp(ρ)) ⊆ n(π2(H(se(σ,ρ)
B ))).

Since P0 >o P , we have fn(P ) ⊆ fn(P0). Similarly fn(Q) ⊆ fn(Q0). So
fn(P ) ⊆ n(π1(H(se))) and fn(Q) ⊆ n(π2(H(se))). Hence fn(Pσ) ⊆ n(π1(H(se(σ,ρ)

B )))
and fn(Qρ) ⊆ n(π2(H(se(σ,ρ)

B ))).
Assume that Pσ

µ1−→
S1

P ′ with bn(µ1) ∩ n(π1(H(se(σ,ρ)
B ))) = ∅ and ch(µ1) ∈

π1(I(H(se(σ,ρ)
B ))) (if µ1 6= τ).

Since P0 >o P , we have P0σ >o Pσ. So by Lemma 4, we have P0σ
µ1−→
S1

P ′
0

with P ′
0 >o P

′ because bn(µ1) ∩ fn(P0σ) = ∅.

Then by Lemma 5, since n(cosupp(σ)) ∩ bn(µ1) = ∅, we have P0
µ′

1−−−−→
(νc̃)φ1

P1

with P1σ >o P
′
0, e(φ1σ), n(σ) ∩ {c̃} = ∅, ec(µ′1σ) = µ1 and S1 = nc(φ1σ) \ {c̃}.

Since P0 ∼se
SO Q0, we have Q0

µ′

−−−−→
(νd̃)φ2

Q1 with n(ρ) ∩ {d̃} = ∅, e(φ2ρ),

bn(µ′) ∩ n(π2(H(se(σ,ρ)
B ))) = ∅ and P1σ ∼se′

SO Q1ρ with se′ depending on µ′1.

So by Lemma 5, since n(cosupp(ρ))∩bn(µ′) = ∅, we have Q0ρ
ec(µ

′ρ)−−−−−−−−→
nc(φ2ρ)\{d̃}

Q′
0

with Q1ρ >o Q
′
0.

Since Q0 >o Q, we have Q0ρ >o Qρ so by Lemma 4, since bn(ec(µ′ρ)) =

bn(µ′) and bn(µ′) ∩ fn(Q0ρ) = ∅, Qρ ec(µ
′ρ)−−−−−−−−→

nc(φ2ρ)\{d̃}
Q′ with Q′

0 >o Q
′. We thus



have Q1ρ >o Q
′ and P1σ >o Q

′. Moreover bn(ec(µ′ρ)) = bn(µ′) so bn(ec(µ′ρ))∩
n(π2(H(se(σ,ρ)

B ))) = ∅.
We then do a case analysis on µ1

– if µ1 = τ then µ′1 = τ thus µ′ = τ and µ2 := ec(µ′ρ) = τ .
We have se′ = se

(σ,ρ)
B ⊕c(S1, S2) where S2 = nc(φ2ρ) \ {d̃}.

Since P1σ ∼se′

SO Q1, P1σ >o Q
′ and Q1ρ >o Q

′, we have (se′, P ′, Q′) ∈ R.
– if µ1 = a1(x1) then µ′1 = E1(x1) with ec(E1σ) = a1. Thus µ′ = E2(x2) and
µ2 := ec(µ′ρ) = a2(x2).
We also have (ec(E1), ec(E2)) ∈ I(H(se(σ,ρ)

B )) i.e. (a1, a2) ∈ I(H(se(σ,ρ)
B )).

And se′ = se
(σ,ρ)
B ⊕i(x1, x2)⊕c(S1, S2) where S2 = nc(φ2ρ) \ {d̃}.

As above, we conclude that (se′, P ′, Q′) ∈ R.
– if µ1 = (νz̃1) a1M1 then µ′1 = (νz̃1)E1 F1 with ec(E1σ) = a1 and ec(F1σ) =
M1. Thus µ′ = (νz̃2)E2 F2 and µ2 := ec(µ′ρ) = (νz̃2) a2M2 where a2 =
ec(E2ρ) and M2 = ec(F2ρ).
We also have (ec(E1), ec(E2)) ∈ I(H(se(σ,ρ)

B )) i.e. (a1, a2) ∈ I(H(se(σ,ρ)
B )).

And se′ = se
(σ,ρ)
B ⊕o(ec(F1σ), ec(F2σ))⊕c(S1, S2) where S2 = nc(φ2ρ) \ {d̃}.

As above, we conclude that (se′, P ′, Q′) ∈ R.


