
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Dipl.-Ing. in Bauingenieurwesen, Bauhaus-Universität Weimar, Thüringen, Allemagne
et de nationalité allemande

acceptée sur proposition du jury:

Prof. H. J. Mathieu, président du jury
 Prof. K. Scrivener, directrice de thèse

Prof. E. Brühwiler, rapporteur 
Prof. D. E. Macphee, rapporteur
Dr B. Lothenbach, rapporteur 

Sulfate Attack and the Role of Internal 
Carbonate on the Formation of Thaumasite

Thomas Schmidt

THÈSE NO 3853 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 20 juillet 2007

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

Institut des matériaux

PROGRAMME DOCTORAL EN SCIENCE ET GÉNIE DES MATÉRIAUX  

Suisse
2007





Acknowledgements 
 
 

 I

Acknowledgements 

The present work was carried out with the financial support from cemsuisse (Association of 

the Swiss Cement Industry) under guidance of Dr. Gerhard Rytz and Dr. Jean-Gabriel 

Hammerschlag, who I would like to thank for their helpful discussions. The thesis was made 

possible due to the support at the Swiss Federal Laboratories for Materials testing and 

Research (Empa) in Dübendorf and the guidance of the Swiss Federal Institute of 

Technology Lausanne (EPFL) at the Laboratory of Construction Materials (LMC). 

With Dr. Barbara Lothenbach and Dr. Michael Romer I had experienced scientists in my 

working environment who I would like to acknowledge for their guidance, suggestions and 

helpful discussions and for spending time with me for all the reviews of reports, manuscripts 

and papers. Thanks to Barbara, who guided me on the way of understanding the world of 

modelling approaches. I thank Michael, who initiated the PhD project and took his time in 

providing his expertise in the field of sulfate attack.  

I would like to thank my thesis director, Prof. Karen Scrivener, who guided me and the 

project. Thanks for her interest, for the support, encouragement, helpful comments and 

advices during this study. 

Thanks also to Dr. Emmanuel Gallucci, Dr. Lorenz Holzer and Phillip Gasser for their helpful 

guidance and support in the field of microscopy and microanalysis during this research work. 

Thanks to Dr. Frank Winnefeld, Dr. Joseph Kaufmann, Dr. Andreas Leemann for their helpful 

discussions. Thanks to Dr. Daniel Rentsch and Renato Figi and his team for their analytical 

support. Special thanks to Dr. Jürg Neuenschwander for his kind support in the field of 

nondestructive testing.  

I would like to thank the members of the jury: Prof. H.-J. Mathieu, Prof. E. Brühwiler,        

Prof. D. E. Macphee for spending their time evaluating this thesis and providing comments. 

Special appreciation goes to all my colleagues from Empa in the laboratory for concrete and 

construction chemistry in Dübendorf for their friendship and dynamic atmosphere that made 

these three years to pass so quickly. I also would like to thank all the people from the 

laboratory of construction materials LMC in Lausanne for creating a pleasant and dynamic 

atmosphere. 

Last but not least, I would like to thank my parents Dr. Klaus-Dieter and Barbara Schmidt, my 

sister Anne-Kathrin Schmidt and my grandmother Christa Matzke for their support and 

encouragement during the time of my thesis. 



Acknowledgements 
 
 

 II 

 

 



Abstract 
 
 

 III

Abstract 

The sulfate attack is known to influence the durability of concrete. In general, significant 

damage due to sulfate interaction results in the structural breakdown of the concrete 

structure. However, the precipitation of thaumasite due to sulfate concentration, leaching and 

the role of internal carbonate in case of limestone filler in cement is still not understood in 

detail. 

This work has adopted a combination of experimental and modeled data to investigate the 

formation of thaumasite under different exposure conditions. Experiments were carried out 

by using the progressive equilibrium approach (PEA). Further microstructural properties such 

as porosity, sulfate uptake, phase composition and phase transformation reactions during 

sulfate attack were investigated. 

The results show that thaumasite formation is favoured at lower temperatures (8 °C) 

independently of the type of cement clinker (high and low C3A content) used. Thaumasite 

was found to form only in cement systems which contained a source of carbonate and at 

high sulfate contents in the cement paste, i.e. the molar SO3/Al2O3 ratio exceeded 3. 

Leaching, the reduction of alkalies and portlandite, had no significant influence on the 

stability of thaumasite. It slightly reduced the amounts of thaumasite formed. Thaumasite 

formation was found not to be a form of the initial sulfate attack. The phenomenon occurs at 

the late (last) stage of sulfate attack. The initial sulfate induced deterioration is caused by 

ettringite formation. 

The thermodynamic approach used to investigate the chemical aspects of sulfate attack 

turned out to be a good tool for simulating external sulfate attack. However, in the 

experiments, the predicted equilibrium conditions have not been reached after 9 months. 

Limestone addition of a few percent in Portland cement increased the compressive strength 

and reduced the porosity, especially the capillary porosity. Thereby, also the resistance of 

Portland cement systems against sulfate attack was increased. Furthermore, the hydration of 

Portland cement was influenced by limestone addition and monocarbonate was formed 

instead of monosulfate as stable AFm phase.  

 

Keywords: sulfate attack; thaumasite formation; limestone filler; temperature 
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Zusammenfassung 

Sulfatangriff beeinflusst die Dauerhaftigkeit von Beton. Die Sulfatinteraktion kann dabei bis 
zur völligen Zerstörung des Betonbauteils führen. Speziell die Ausfällung von Thaumasit 
infolge einer bestimmten Sulfatkonzentration, dem Auswaschen des Betons und die Rolle 
des internen Karbonats für den Einsatz von Kalksteinmehl im Zement sind bislang noch nicht 
im Detail verstanden. 

In dieser Arbeit wird eine Kombination von experimentellen und modellierten Daten 
verwendet, um die Bildung von Thaumasit unter verschiedenen Expositionsbedingungen zu 
untersuchen. Die Experimente wurden mittels eines progressiven Gleichgewichts Ansatz 
(PEA) durchgeführt. In weiterführenden Untersuchungen wurden die mikrostrukturellen 
Eigenschaften wie Porosität, Sulfataufnahme, Phasenzusammensetzung und 
Phasenumwandlung während des Sulfatangriffs untersucht. 

Die Resultate zeigen, dass die Thaumasitbildung bevorzugt bei tiefen Temperaturen (8 °C) 
stattfindet, unabhängig vom verwendeten Zementklinkertyp (hoher und niedriger C3A 
Gehalt). Thaumasit bildet sich ausschliesslich in carbonathaltigen Zementsystemen bei 
entsprechend hohen Sulfatgehalten im Zementstein, das heisst bei einem molaren SO3/Al2O3 
Verhältnis von mehr als 3. Gewaschene Zementsysteme (Reduktion von Alkalien und 
Portlandit) haben keinen signifikanten Einfluss auf die Stabilität von Thaumasit. Lediglich die 
Menge an Thaumasit wurde leicht reduziert. Die Thaumasitbildung ist keine Form des 
anfänglichen Sulfatangriffs. Der Schaden tritt als letzte Stufe des Sulfatangiffs auf. Die 
ursprüngliche, sulfatinduzierte Schädigung wird durch die Ettringitbildung verursacht. 

Der thermodynamische Ansatz, der zur Untersuchung der chemischen Aspekte des 
Sulfatangriffs benutzt wurde, erwies sich als nützliches Instrument, um den Sulfatangriff zu 
simulieren. Allerdings konnten in den Experimenten die vorausgesagten 
Gleichgewichtsbedingungen nach 9 Monaten nicht erreicht werden. 

Die Kalksteinzugabe von wenigen Prozent im Portlandzement führte zu einer Erhöhung der 
Druckfestigkeit und einer Reduktion der Porosität, insbesondere der Kapillarporosität. 
Dadurch konnte der Widerstand von Portlandzementen gegenüber einem Sulfatangriff 
verbessert werden. Des Weiteren wird durch die Kalksteinzugabe die Hydratation von 
Portlandzement beeinflusst und Monocarbonat entsteht als stabile AFm Phase anstelle von 
Monosulfat.  

 

Stichworte: Sulfatangriff; Thaumasitbildung; Kalksteinfüller; Temperatur 
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Nomenclature and notation 

 

Cement shorthand notation 

C = CaO 

S = SiO2 

H = H2O 

A = Al2O3 

F = Fe2O3 

S  = SO3 

C  = CO3 

 

AFm  aluminate-ferrite-mono hydrate phase 

AFt  aluminate-ferrite-tri hydrate phase 

BSE  backscattered electron 

EDS  energy dispersive spectroscopy 

GEMS  Gibbs free energy minimization program 

HS  sulfate resistant cement  

ICP-OES inductively coupled plasma optical emission spectroscopy 

LF  limestone filler 

MIP  mercury intrusion porosimetry 

NMR  nuclear magnetic resonance 

OPC  ordinary Portland cement 

PEA  progressive equilibrium approach 
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SE   secondary electron 

SEM  scanning electron microscopy 

TGA  thermogravimetric analysis 

TIC  Total inorganic carbon 

TSA  thaumasite form of sulfate attack 

w/c  water to cement ratio 

wt%  weight percent 

XRD  X-ray diffraction 

XRF  X-ray fluorescence 

ZAF  correction factor; atomic number, X-ray absorption and fluorescence 

 

 

 

 



Table of contents 
 
 

 IX

Table of contents 

ACKNOWLEDGEMENTS........................................................................................................................ I 

ABSTRACT............................................................................................................................................ III 

ZUSAMMENFASSUNG ..........................................................................................................................V 

NOMENCLATURE AND NOTATION ...................................................................................................VII 

TABLE OF CONTENTS......................................................................................................................... IX 

1 INTRODUCTION ............................................................................................................................. 1 

1.1 INITIAL SITUATION....................................................................................................................... 1 
1.2 THESIS OBJECTIVES ................................................................................................................... 2 
1.3 OUTLINE OF THE THESIS ............................................................................................................. 2 

2 STATE OF RESEARCH.................................................................................................................. 5 

2.1 PORTLAND CEMENT SYSTEMS..................................................................................................... 5 
2.1.1 Hydration mechanisms ........................................................................................................ 5 
2.1.2 Influence of limestone addition............................................................................................ 6 

2.2 EXTERNAL SULFATE ATTACK ....................................................................................................... 8 
2.2.1 Ettringite formation .............................................................................................................. 8 
2.2.2 Gypsum formation ............................................................................................................. 11 
2.2.3 Thaumasite form of sulfate attack ..................................................................................... 13 
2.2.4 Parameters influencing sulfate attack ............................................................................... 19 

2.3 SUMMARY................................................................................................................................ 22 
2.4 REFERENCES........................................................................................................................... 23 

3 MATERIALS AND METHODS...................................................................................................... 29 

3.1 LABORATORY CEMENTS............................................................................................................ 30 
3.2 CEMENT PASTE SAMPLES ......................................................................................................... 32 

3.2.1 Experimental set up........................................................................................................... 32 
3.2.2 Progressive equilibrium approach PEA............................................................................. 33 
3.2.3 Analytical methods ............................................................................................................ 35 

3.3 MORTAR SAMPLES ................................................................................................................... 38 
3.3.1 Experimental set up........................................................................................................... 38 
3.3.2 Ultrasonic measurements.................................................................................................. 39 
3.3.3 Analytical methods ............................................................................................................ 41 

3.4 MICROSCOPY AND MICROANALYSIS ........................................................................................... 42 
3.5 THERMODYNAMIC MODELLING APPROACH.................................................................................. 44 
3.6 REFERENCES........................................................................................................................... 46 



Table of contents 
 
 

 X 

4 BINDER SYSTEMS BEFORE SULFATE EXPOSURE................................................................ 47 

4.1 CHARACTERISATION OF THE BINDER SYSTEMS........................................................................... 47 
4.1.1 Influence of limestone addition on physical properties...................................................... 47 
4.1.2 Chemical influence of limestone addition .......................................................................... 50 
4.1.3 Influence of leaching.......................................................................................................... 54 
4.1.4 Microstructural aspects...................................................................................................... 55 

4.2 SUMMARY AND CONCLUSIONS................................................................................................... 58 
4.3 REFERENCES........................................................................................................................... 59 

5 CEMENT PASTE EXPERIMENTS ............................................................................................... 61 

5.1 THERMODYNAMIC MODELLING AND THAUMASITE FORMATION ...................................................... 61 
5.1.1 Model of initial hydrate phases.......................................................................................... 61 
5.1.2 Effect of sulfate interaction ................................................................................................ 62 
5.1.3 Effect of temperature ......................................................................................................... 68 
5.1.4 Effect of leaching ............................................................................................................... 71 
5.1.5 Aspects of reaction solution............................................................................................... 75 
5.1.6 Microstrucural aspects....................................................................................................... 78 

5.2 SUMMARY AND CONCLUSIONS................................................................................................... 83 
5.3 REFERENCES........................................................................................................................... 85 

6 MORTAR EXPERIMENTS............................................................................................................ 87 

6.1 PHYSICAL AND MICROSTRUCTURAL ASPECTS OF SULFATE ATTACK .............................................. 87 
6.1.1 Expansion and mass change ............................................................................................ 87 
6.1.2 Ultrasonic surface velocity................................................................................................. 92 
6.1.3 Visual appearance............................................................................................................. 95 
6.1.4 Sulfate uptake and relevant phases .................................................................................. 97 
6.1.5 Microstructure and microanalysis ...................................................................................... 99 

6.2 DISCUSSION .......................................................................................................................... 110 
6.3 SUMMARY AND CONCLUSIONS................................................................................................. 114 
6.4 REFERENCES......................................................................................................................... 115 

7 GENERAL DISCUSSION AND CONCLUSIONS....................................................................... 117 

REFERENCES .................................................................................................................................... 122 

APPENDIX .......................................................................................................................................... 123 

 

 



Chapter 1: Introduction 
 
 

 1

1 Introduction 
 

1.1 Initial situation 
Resistance against sulfate attack is an important factor influencing concrete durability and 

serviceability. The thaumasite form of sulfate attack (TSA) is characterised by significant 

damage of concrete and other cement based materials due to swelling, cracking and loss of 

cohesion. Cases of structural deterioration due to TSA have already been reported from a 

number of countries.  

Some factors leading to the formation of thaumasite like high levels of sulfate and 

temperatures below 15 °C are known in the meantime. However, the formation of thaumasite 

was also observed at temperatures above 20 °C. Up to now, only a few cases of thaumasite 

formation were reported in the presence of low sulfate concentrations.  

The fact that sulfate resistant cement is not effective in preventing thaumasite formation is 

generally accepted. However, it is not clear if the thaumasite form of sulfate attack is a cause 

or an effect of the damage due to sulfate attack. The occurrence of thaumasite related 

damage might be underestimated as most of the affected structures, e.g. tunnel structures 

are difficult to access. 

Different theories about the formation mechanisms of thaumasite have been published. It is 

widely discussed whether it forms at the expense of C-S-H or by nucleation from ettringite. 

However, the exact mechanism and the role of carbonate are still unclear. Especially, the 

importance of leaching and the cement composition is not understood in detail.  

Due to ecological and economical aspects cement clinker in Portland cements is replaced 

more and more by limestone filler. So far, limestone filler was regarded as an inert 

constituent in cementitious building materials. Further sources of carbonate are present in 

ground water. Some indication that calcium carbonate from aggregate or filler can act as a 

supplier of carbonate ions for thaumasite formation are documented in the literature. 

This poses the question how additional limestone filler in Portland cement is affecting the 

durability of cementitious building materials in contact with sulfate. Furthermore the work 

aims to investigate how leaching as observed in real conditions affects sulfate interaction and 

especially thaumasite formation. 
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1.2 Thesis objectives 
The main focus of this thesis is to investigate the influence of internal carbonate of a binder 

system on the formation of thaumasite under external sulfate attack.  

The project aims to elaborate the driving force of thaumasite formation. Therefore it is 

important to investigate which conditions promote thaumasite formation.  

Therefore the work seeks to address the following questions regarding sulfate attack: 

• What is the influence of the limestone filler in the binder system? 

• What effect has the sulfate concentration? 

• How important are storage temperature and the time?  

• What is the effect of leaching due to real conditions?  

• What is the influence of aluminium and the C3A content of the clinker?  

Additionally, the physical consequences of a sulfate attack are studied. All results are 

discussed in relation to other projects and to the predicted results using thermodynamic 

modelling. 

 

1.3 Outline of the thesis 
The thesis composes of seven chapters and the appendix. The following paragraphs give a 

short outline of each chapter as part of the overall content. 

Chapter 2 gives a short overview on Portland cement systems and a comprehensive state of 

research in the field of sulfate attack with special focus on thaumasite formation. The chapter 

summarizes the key questions of this study. 

Chapter 3 describes the strategy, the materials and the various techniques used to 

characterize and understand the specific phenomena of sulfate attack. The progressive 

equilibrium approach (PEA) is used to investigate the chemical aspects of sulfate attack in 

combination with thermodynamic modelling. The physical aspects of sulfate attack are 

illustrated with the use of a surface sensitive ultrasonic method using Rayleigh waves. 

Chapter 4 is a brief chapter for the characterization of the binder systems involving the 

influence of limestone addition. The initial hydrate phase composition as well as physical and 

chemical properties are described and compared to predicted data. 
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Chapter 5 presents the results of the investigations on the conditions of thaumasite 

formation on the cement paste. The study involves the thermodynamically modeled data and 

the experimental results obtained from the progressive equilibrium approach (PEA) in order 

to understand the precipitation reactions for thaumasite during sulfate attack. Additionally, 

SEM microscopy and microanalysis are used to clarify the impact of sulfate interaction and 

leaching. 

Chapter 6 describes the investigations on the physical consequences of sulfate attack on 

mortar samples. The results evaluate the influence of various boundary conditions, e.g. 

temperature and sulfate concentration in solution during sulfate interaction. The new 

developed, surface sensitive ultrasonic method as well as macroscopic and microstructural 

findings are discussed and compared. 

Chapter 7 concludes the thesis with a summary of the results obtained in the phenomena of 

sulfate attack, in particular the influence of limestone and the conditions of thaumasite 

formation in laboratory cements. 
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2 State of research  
 

2.1 Portland cement systems 
Portland cement is polyphase and the principal constituents are impure forms of calcium 

silicate (C3S, C2S), calcium aluminate (C3A) and ferrite (C4AF) in relative amounts given in 

table 2.1: 

Table 2.1: Portland cement clinker phases and mineral composition [1] 

Phase Formula   percentage 

Alite C3S            : 40 – 80 

Belite C2S            : 5 – 35 

Aluminate C3A            : 0 – 15 

Ferrite C4AF          : 0 – 20 

Minor phases, such as gypsum (C S H2) are added during grinding 

During the hydration of ordinary Portland cement the main constituents may react with water 

and ionic species of calcium sulfates (hemihydrate, gypsum, anhydrite), calcite, calcium 

oxide, magnesium oxide and alkalis (Na, K) to form various hydration products [1, 2, 3, 4]. 

 

2.1.1 Hydration mechanisms 

An overview of the development of the microstructure of Portland cement during hydration is 

given in Fig. 2.1. A part of C3A reacts with calcium sulfate to form ettringite (AFt): 

 C3A + 3CaSO4·2H2O + 26H2O  3CaO·Al2O3·3CaSO4·32H2O   (2.1) 

When the added sulfate is exhausted in the absence of limestone, monosulfate (an AFm 

Phase) starts to form from the ettringite and C3A available: 

 2C3A + CaO·Al2O3·3CaSO4·32H2O + 4H2O  3CaO·Al2O3·CaSO4·12H2O (2.2) 

In parallel the calcium silicates (C3S, C2S) react to form the C-S-H phases and portlandite, 

with C3S forming more portlandite: 

 2C3S +  6H2O  3CaO·2SiO2·3H2O + 3Ca(OH)2     (2.3) 

 2C2S + 4H2O  3CaO·2SiO2·3H2O + Ca(OH)2     (2.4) 



Chapter 2: State of research 
 
 

 6 

 

Fig. 2.1: Hydration of Portland cement reproduced from Scrivener [3]: 

As described by Scrivener [3], first the outer C-S-H is formed in free pore space at the 

surface of the polymineralic grains and later the inner C-S-H forms within the boundaries of 

the grains. Generally, the hydration mechanisms of C2S are similar to C3S but its hydration is 

slower [1]. 

The alumino-ferrite phase (C4AF) of unhydrated cement was found to be less reactive in 

comparison to calcium aluminate phase (C3A) in alkaline conditions of cementitious systems 

[1, 5]. 

The formation of the microstructure during the hydration of Portland cement is very complex 

and the calcium silicates and calcium aluminates reaction mechanisms are not separated or 

independent from each other. 

 

2.1.2 Influence of limestone addition 

In many cases limestone additions have been regarded as an inert component in the 

cement. In the last years, however, it has been recognized that limestone filler influences and 

affects the physical and chemical properties of cement. 

The physical influence of limestone addition was concluded to be its filler effect. It was found 

by Tsivilis et al. [6] that small amounts of limestone filler added to the cement reduced 

porosity and permeability at a constant w/c ratio, this was confirmed by Stark [7]. A 

refinement in pore structure during cement hydration was observed earlier by Uchikawa et al. 

[8] for very fine limestone fillers. Higher amounts of limestone filler added to the cement 
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system resulted in higher permeability of the investigated cements and faster degradation 

during sulfate attack according to Irassar et al. [9]. These observations were confirmed by 

Torres et al. [10] for mortars made with Portland-limestone cements.  

Limestone addition also influences the chemistry of the cement system. The presence of 

carbonate in the cement system leads to the formation of monocarbonate as the stable AFm 

phase [11, 12, 13]. Furthermore the additional calcite was found to act as a source of Ca 

buffering the cement system, e.g. in the case of leaching [14]. 

Thermodynamic calculations (e.g. [12, 13]) indicate that depending on the amount of calcite 

present hemicarbonate and monosulfate can form as stable phases beside monocarbonate 

during the hydration of ordinary Portland cements. Fig. 2.2 illustrates the hydration of a 

Portland cement and the resulting changes in volume. 
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Fig. 2.2: Calculated volume changes during the hydration of ordinary Portland cement            
containing 5 wt% CaCO3; w/c = 0.5 
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2.2 External sulfate attack 
External sulfate attack on mortars and concretes usually results in the formation of phases 

like ettringite (3CaO·Al2O3·3CaSO4·32H2O) and gypsum (CaSO4·2H2O). However, in 

cements and concretes containing a source of carbonate, in addition the formation of 

thaumasite (CaSiO3·CaCO3·CaSO4·15H2O) can be observed. 

The interaction of sulfates with hardened cement paste is often described and associated 

with expansion. The formation of sulfate phases due to sulfate supersaturation leads to 

crystalisation pressure through dissolution and precipitation processes as described by 

Taylor et al. [15]. According to Scherer [16], the precipitation of secondary sulfate phases, 

forming large crystals, in hardened cement paste matrix leads to expansion caused by a 

confinement in the microstructure which is most likely for sulfate alteration.  

Beside that in over sulfated cement systems at early ages, interparticular forces can 

generate swelling pressure as described by Metha [17]. This is unlikely in hardened cement 

systems since ettringite is not colloidal but a fine dispersed phase.  

 

2.2.1 Ettringite formation 

Secondary ettringite formation due to external sulfate attack has been investigated for many 

years now. Systematic studies and reviews were done to evaluate the deterioration 

processes of secondary ettringite formation due to external sulfate attack on hydrated 

cement paste, mortar and concrete [18, 19]. 

The mineral ettringite is characterised by its hexagonal, prismatic needlelike morphology as 

shown in Fig. 2.3. 

Fig. 2.3: ESEM image of ettringite 
needles in cement paste, 56 days, 
Empa 

 

ettingite 
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Ettringite formation leads to an increase in solid volume. The theoretical volume increase 

varies depending on the source of aluminium available [20]. Ettringite has a relative low 

density (1.75 g/cm3) in comparison to e.g. C-S-H phase (2.0 g/cm3). Thus the formation of 

secondary ettringite provides potential stress in hardened cement paste. However, ettringite 

formation does not necessarily lead to primary expansion since pores and voids in the 

microstructure provide space for ettringite precipitation especially in the beginning of sulfate 

exposure [21]. 

It was found by Skalny et al. [19] that reactive aluminium in hydrated cement paste provides 

a potential risk for the formation of secondary ettringite during the migration of sulfate ions 

SO4
2- into the concrete structure during sulfate attack. The sources of reactive aluminium are 

(i) AFm phases (monosulfate, monocarbonate) and (ii) calcium aluminate originating from the 

clinker phases (C3A, C4AF). The following equation shows one possible way of ettringite 

formation from monosulfate with participation of portlandite during sulfate attack. 

 3CaO·Al2O3·CaSO4·12H2O + 2Ca(OH)2 + 2 SO4
2- +20H2O    (2.5) 

       3CaO·Al2O3·3CaSO4·32H2O + 4 OH- 

Thermodynamic calculations [13] indicate that hemicarbonate and hydrotalcite could be 

sources of reactive aluminium.  

Ettringite formation can be reduced by lowering the C3A content of the cement. According to 

the standards EN 196, 197 cements with high sulfate resistance are limited in the C3A 

content < 3% and the Al2O3 content < 5%, whereas the ASTM C1157-03 limits the C3A 

content ≤ 5% and 2C3A+C4AF < 25 % for Type V cements. 

However, the results of Monteiro and Kurtis [22] show that the amounts of C3A (0-8%) in the 

cement systems do not necessarily protect from sulfate deterioration. In contrast the w/c ratio 

of the investigated samples had a major impact on the failure time of the samples during 40 

years of exposure under real conditions. They concluded that the permeability (porosity) of 

the concrete samples investigated has a major influence on the deterioration of the samples. 

These observations were confirmed by Khatari and Sirivivatnanon [23]. 

It is generally agreed that the alumino-ferrite phase (C4AF) seems to be less important with 

regard to secondary ettringite formation during sulfate attack due to its lower reaction kinetics 

[24, 1]. The “C4AF” phase is very inhomogeneous with respect to the Al and Fe content [1]. 

Certain amounts of the Al could dissolve and react with sulfate ions to form secondary 

ettringite. Studies of the pure C4AF phase by Neubauer and Götz-Neunhoeffer [25] showed 

that with increasing Al/Fe-ratio the reactivity of the alumina-ferrite phase increases. The Fate 
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of the iron originating from the dissolution of C4AF is not clear. Iron could precipitate as iron 

hydroxide Fe(OH)3 or as mixed Al-Fe-ettringite or AFm. Furthermore investigations from 

Möschner et al. [26] show that iron-rich ettringite (Aft) is thermodynamically less stable with 

increasing pH. The formation of secondary ettringite from C4AF in the presence of gypsum 

(sulfate) and the formation of aluminium- (AH3) and iron hydroxide (FH3) is given in eq. 2.6:  

 3C4AF + 12 CaSO4·2H2O + xH2O       (2.6) 

      4 (CaO)3·Al2O3·3CaSO4·32H2O + 2 [(A, F)H3] 

 

It has been observed that in the presence of portlandite, the concentration of aluminium in 

the pore solution decreases. In the absence of portlandite the mobility of aluminium 

somewhat increases as reported by Damidot and Glasser [4]. Thus, in the presence of 

portlandite secondary ettringite would be more likely to form in regions close to the initial 

aluminium source, causing expansion. In the absence of portlandite, as in the case of 

leached samples, ettringite could be more likely to form in regions of higher porosity, causing 

less expansion as proposed by Taylor and Gollop [15].  

Moreover, it was observed by NMR data that aluminium can substitute to some extent for 

silicate in the C-S-H [27, 28]. It was not investigated if the aluminium substituted in C-S-H 

can contribute to ettringite formation due to external sulfate attack. Beside that, the C-S-H 

phase was found to adsorb certain amounts of sulfate in its structure [19]. It was found that 

the adsorbed sulfate can act as a source of sulfate for secondary ettringite formation 

especially under wet and moist conditions [19].  

Ettringite was found to be stable at pH levels between 10.5-13.0 in pure systems and stable 

up to pH of 14 in cement systems but starting to decompose with decreasing pH (≤ 10.5) [4, 

29]. However, as already outlined, the formation of ettringite is an important factor for the 

deterioration of concrete undergoing sulfate attack but it is not the only one. 
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2.2.2 Gypsum formation 

Beside ettringite, gypsum can also form during sulfate attack as shown in Fig. 2.4, especially 

in highly concentrated sulfate solutions, e.g. sodium sulfate (≥ 24g SO4
2-/l) according to 

Gollop and Taylor [30, 31].  

Fig. 2.4: SE image of gypsum crystals 
formed in deteriorated mortar sample, 
180 days, Empa 

 

The influence of gypsum formation on the performance of cement pastes, mortars and 

concrete has been studied by various authors [9, 32, 22, 33]. It has been suggested that 

secondary gypsum formation is related to the amount of alite (C3S) in the cement system as 

a potential risk factor due to the possibility of portlandite formation. 

Metha [29] and Monteiro and Kurtis [22] state that cements containing little or no portlandite 

(Ca(OH)2) performed much better when exposed to sulfate attack than cements with high 

alite contents. The transformation of portlandite into gypsum (eq. 2.7) seems to be an 

important factor for the durability of concrete exposed to sulfate attack. 

 Ca(OH)2 +Na2SO4 + 2H2O  CaSO4·2H2O + 2Na+ + 2OH-    (2.7) 

Kollmann and Kollmann et al. [34, 21, 35] report that the reaction above can cause 

expansion, usually later during sulfate exposure. Similar results were given by Metha [29], 

Irassar et al. [9] and Santhanam et al. [33] who reported that beside the observed expansion 

also softening of the near surface regions due to gypsum formation was observed. The 

softening has been attributed to the decalcification of the C-S-H phase.  

The above mentioned studies suggest that the formation of gypsum is a significant factor 

during sulfate resistance experiments performed in the laboratory according to Koch and 

Steinegger [36], Wittekindt [37] or ASTM C 1157-03. All these methods use high sulfate 

concentrations to accelerate sulfate attack. However, these high sulfate concentrations are 

not representative of real conditions of sulfate exposure in the field.  

secondary 
gypsum 
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Marchand et al. [32] showed that the formation of gypsum is rarely observed under field 

conditions where moderate or low sulfate concentrations (5-10 g SO4
2-/l) are present. 

Investigations from Bellmann et al. [38] on a mixture of portlandite and gypsum showed that 

gypsum can precipitate at a sulfate concentration of 3g SO4
2-/l. They further calculated and 

showed experimentally that at reduced pH values (12.5 to 12.9) gypsum precipitated in the 

presence of sulfate concentrations between 3.5 and 18.3g SO4
2-/l.  

It was generally concluded that minimizing the amount of portlandite in the hydrated cement 

paste increases the resistance of gypsum formation. The investigations indicate that some 

expansive deterioration of the concrete can be attributed to the formation of gypsum due to 

the high sulfate concentrations in the attacking solution. In addition, gypsum may acts as a 

source of sulfate for the formation of AFt phases (ettringite, thaumasite) as mentioned in 

section 2.2.1 and 2.2.3. 
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2.2.3 Thaumasite form of sulfate attack 

Thaumasite in cementitious materials was reported by Erlin and Stark [39]. In recent years 

the formation of thaumasite during sulfate attack has been collected systematically on 

concrete structures by the Thaumasite Expert Group [40].  

 

Crystal structure and morphology of thaumasite 

The natural mineral thaumasite (CaSiO3·CaSO4·CaCO3·15H2O) was investigated in 1880 by 

Nordenskiöld [41]. The structure of thaumasite remained unclear for quite some time. In 

recent years the mineral thaumasite has been studied by various authors using different 

analytical methods, e.g. XRD, IR, SEM/EDS or 29Si-NMR [42-47]. 

 

 

Fig. 2.5: Crystal structure of thaumasite–projection on a–b plane, reproduced from [48] 

 

Thaumasite is structurally very similar to ettringite. It was recognized that in the structure of 

thaumasite the silicon has an octahedral coordination. Compared to ettringite the alumina is 

replaced by silicon and the carbonate partly substitutes the sulfate in the structure of 

thaumasite [48] (Fig. 2.5).  

The morphology of thaumasite can be described as thin prismatic needles which form as 

bunches naturally as well as in affected concrete structures as shown in Fig. 2.6.  
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The length of these needles was found to be in the range of 50 – 200 µm and the thickness 

was measured to be 0.5 – 2 µm. 

Fig. 2.6: SE image of natural mineral thaumasite, Ettringer Bellerberg, Laacher See (Germany), 
Empa 

 

Conditions of thaumasite formation 

The formation of thaumasite requires a source of calcium silicate, i.e. C-S-H; sulfate, 

carbonate and humidity [49, 43, 44, 50, 40]. Furthermore it has been suggested by Bensted 

[49, 43] that thaumasite is more stable at lower temperatures since silicon tends to adopt the 

octahedral co-ordination found in thaumasite more easily at lower temperatures. However, 

thaumasite is formed also at temperatures around 20 °C and above as reported for buildings 

in Southern California [51] and Italy [52]. Once thaumasite has formed, it remains stable up 

to 30 °C according to Macphee and Barnett [69]. 

Thaumasite has been observed to form both in the presence and in the absence of 

portlandite. However it has been suggested that thaumasite formation tends to occur in 

leached, surface near regions of the concrete [53]. It was observed that alkaline conditions 

(pH ≥ 12.5) enhance thaumasite formation [54], while during strong leaching at low pH levels 

(pH ≤ 8.0) gypsum becomes the dominant sulfate phase and the amount of thaumasite 

decreases [55]. However, findings from Gaze and Crammond [56] and Jallad et al. [57] show 

that once thaumasite forms it remains stable also at low pH levels between 6-8. 

The formation of thaumasite always needs a source of carbonate which can be supplied from 

the limestone contained in the cement itself [58, 45] as minor component up to 5 wt% (CEM 

I) or as major component with up to 35 wt% (CEM II/A B-LL).  



Chapter 2: State of research 
 
 

 15

Furthermore, carbonate containing aggregate, or limestone fillers used in self compacting 

concretes SCC could favour thaumasite formation as reported by Kalinowski and Trägardh 

[58]. Hartshorn et al. [59] found that increasing amounts of limestone filler in cement 

increased the amount of thaumasite formed in mortars. Other sources of carbonate were 

found to be carbonate in ground waters [60], soils [50] or atmospheric carbon dioxide CO2 

[61]. The latter generates calcite by transformation of portlandite which could also lead to 

thaumasite formation. However, only very small amounts of thaumasite have been observed 

in the carbonated zone of the affected concrete structures in tunnels [62] and bridges [40]. 

Thaumasite has been found in cement systems with both high and low C3A contents [63-65]. 

Although thaumasite itself contains no aluminium, aluminium has been proposed to play a 

catalytic role and to promote thaumasite formation [66]. In contrast Juel et al. [67] shows that 

in cements with small amounts of aluminium, the amounts of sulfate which are consumed by 

secondary ettringite formation are small and therefore more sulfate is available for 

thaumasite and gypsum formation. Cement systems with high C3A content could theoretically 

reduce the amount of thaumasite formed as more sulfate is needed to form secondary 

ettringite during sulfate interaction as suggested by Blanco-Varela et al. [63]. 

Because of the similarities between ettringite and thaumasite the solid solution between the 

two has been studied [68, 69, 48]. Barnet et al. [70] showed that ettringite and thaumasite 

can both adopt variable amounts of aluminium, sulfate and carbonate but a distinct miscibility 

gab was observed. Glasser [71] proposed a generalised stability diagram for ettringite, 

carbonate ettringite and thaumasite which also shows a miscibility gap. However, Pajares et 

al. [72] found that ettringite starts to decompose as it incorporates increasing amounts of 

carbonate in its structure. 

Thaumasite formation is often described to occur directly from C–S–H [73, 74] reacting with 

appropriate carbonate, sulfate, Ca2+ ions and excess water eq. 2.8: 

 3CaO·2SiO2 3H2O + 2CaSO4·2H2O + 2CaCO3 + 24 H2O    (2.8) 

     2CaSiO3·CaSO4·CaCO3·15H2O + Ca(OH)2 

The other possible reaction for thaumasite formation was described to be from ettringite 

called the “Woodfordite-route” where ettringite is reacting with C–S–H, carbonate, Ca2+ ions 

and water, in which thaumasite arises directly from ettringite (eq. 2.9): 

 3CaO·Al2O3·3CaSO4·32H2O + 3CaO·2SiO2·3H2O + 2CaCO3 + 4H2O   (2.9) 

   2CaSiO3·CaSO4·CaCO3·15H2O + CaSO4·2H2O + 2Al(OH)3 + 4Ca(OH)2 
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Köhler et al. [75] suggested that ettringite can act as a template for the nucleation of 

thaumasite. Their results further indicated that the reactions for thaumasite formation 

seemed to be rather slow and irregular. Bensted [73] claimed that the “Woodfordite-Route” of 

thaumasite formation might be possible but only at very low temperatures (≤ 2 °C) during 

rather long periods of time.  

Systematic investigations on the stability and formation of thaumasite assuming equilibrium 

conditions have been made by Juel et al. [67]. It was found that thaumasite only forms in 

cements systems where enough sulfate has been added to transform all available aluminium 

into ettringite. Thaumasite was observed to form at rather high sulfate contents (7-10 wt% 

SO3) by weight of unhydrous cement.  

Furthermore Bellmann et al. [76, 77] reported that thaumasite is not stable in the presence of 

ettringite and C-S-H together with calcite. The investigations from Bellmann [76, 77] show 

that thaumasite can be formed from gypsum, calcite, portlandite, C-S-H and water. The 

precipitation of thaumasite was calculated to be possible at low sulfate concentrations of 1,5g 

SO4
2-/l in solution which is in agreement with the observations of Mulenga et al. [78] who 

showed that even at low sulfate concentrations (≤ 3g SO4
2-) in solution thaumasite formation 

is possible.  

Other investigations on field samples in South Africa [79] showed that thaumasite formation 

is enabled at low sulfate content (4.3 wt% SO3) by weight of cement but during rather long 

periods of exposure time. It was believed that the oxidation of pyrites from aggregates forms 

gypsum which later reacts with calcite and C-S-H and external sulfate to form thaumasite. 

However, the actual amount of sulfate necessary for thaumasite formation is not well known. 

Generally, it has been concluded that both the presence of gypsum [80] or sulfate rich 

solution [59, 67] can lead to thaumasite formation in carbonate containing cements.  
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Thaumasite deterioration of concrete 

The damage due to thaumasite formation has been investigated by various authors [81-85, 

60]. Thaumasite deterioration has been reported in the USA for pavements, sewer pipes 

which were severely damaged after 11 years. In Canada a case of thaumasite sulfate attack 

(TSA) on concrete foundations was reported in the Canadian arctic which caused significant 

degradation after only 2-4 years by Bickley et al. [81]. Cases of TSA in South Africa have 

been reported by Oberholster [79] and in Italy by Collepardi [52] in concrete linings and 

historic brickwork made of limestone after almost 40 years possibly indicating that 

thaumasite deterioration takes much longer at higher temperatures.  

In the UK many investigations have been made of concrete foundations of domestic houses 

and motorway bridges [86, 87, 40, 54]. The majority of cases, thaumasite was found in 

deteriorated concretes. The depth of the thaumasite deteriorated zone was found to depend 

on various factors, e.g. w/c-ratio, temperature and sulfate concentration of e.g. soil and 

aggregates used.  

Thaumasite formation has been reported to take place in tunnel structures in Switzerland 

[60]. It was suggested that thaumasite deterioration is favoured by the interaction of 

rockwater through leaching since the breakdown of the C-S-H phase is accelerated under 

these conditions. It was reported that parts of the concrete in the affected tunnel structure 

were scaling indicating that thaumasite formed at certain depths in the concrete structure 

according to Romer et al. [85].  

Fig. 2.7: Scaling as a result of thaumasite 
deterioration, BRE (UK) [88] 

Fig. 2.8: Soft mash consisting of mainly 
thaumasite and gypsum, Empa (CH) [60] 

Visible destruction due to thaumasite formation has been observed as spalling combined 

with scaling of the surface of the affected concrete structure (Fig. 2.7). The conversion of    

C-S-H to thaumasite as described in 2.2.3.2 leads to a significant loss of strength.  
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Finally, thaumasite formation leads to gradual softening, spalling and significant loss of 

strength. In its final state thaumasite deterioration converts the concrete into a structureless 

white or gray mass from which the aggregates can be separated easily (Fig. 2.8). 

The more detailed examination of the affected concrete elements [88] indicated the 

development of a sequence of degradation steps due to thaumasite deterioration during 

sulfate interaction.  

Table 2.2: Idealised degradation sequence for TSA development modified from [40] 

Step 1: occasional voids, pores lined with thaumasite 

Step 2: thin cracks filled in with thaumasite 

Step 3: wide cracks filled with thaumasite, thaumasite around aggregates 

Step 4: complete transformation of cement paste matrix into thaumasite 

 

It was concluded that small amounts of thaumasite observed in pores or cracks had no 

significant impact on strength or elastic modulus. The destructive behaviour of thaumasite 

might be related to the extent of thaumasite formed in concrete especially at later ages. It 

was concluded that almost all C-S-H can be transformed into thaumasite as long as sulfate 

and carbonate sources are available leading to a complete destruction of the concrete [40]. 

The amount of thaumasite formed during sulfate interaction significantly influences the 

damage of the structure. 

However, no attempt has been made to quantitatively estimate the extent, the limiting factors 

(sulfate, carbonate, time) and depth of at which thaumasite formation occurs in cementitious 

materials.  
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2.2.4 Parameters influencing sulfate attack 

The interaction of sulfates from sulfate bearing solutions such as ground water, soil or 

industry waters with Portland cement concrete can result in different phenomena. Some 

effects will be looked at in more detail in the following passages. 

Influence of the cation on sulfate degradation 

Independently from the influence of the sulfate ions (SO4
2-) the accompanying cations can 

modify the rate and extent of external sulfate attack. As mentioned by Skalny et al. [19] the 

cations show different deterioration; the extent of destruction was found to be influenced by 

the type of cations present, in particular MgSO4 > Na2SO4 > CaSO4.  

Sodium and calcium sulfate act similarly on the concrete during sulfate attack. Although in 

case of calcium sulfate no additional calcium is needed, thus the decalcification of the 

cement paste is reduced. 

Other effects occur if magnesium sulfate solutions interact with the affected concrete 

structure (Fig. 2.10).  

Fig. 2.9: Scheme of 
sulfate interaction 
between Portland 
cement components 
and magnesium 
sulfate solution 
reproduced from [19]. 

 

It was found that the decalcification of the cement paste due to decomposition of portlandite 

and C-S-H phase is accelerated [19], leading to the formation of magnesium hydroxide 

Mg(OH)2 (brucite) and amorphous hydrous silica or magnesium silicate hydrate 

3MgO·2SiO2·2H2O (Fig. 2.9) as reported by Gollop and Taylor [31]. However, the barely 

soluble brucite can also act as a protective layer which decreases the ingress of further 

sufate ions as mentioned by Santhanam et al. [33]. 
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Effect of leaching and sulfate interaction 

Generally, leaching and sulfate attack cannot be separated. Physical and chemical changes 

during leaching have been observed and modeled by various authors [89-93]. It was reported 

that leaching, the dissolution of portlandite and decalcification of the C-S-H phase affects the 

pore structure and the stability of the major hydrate phases as mentioned in 2.2.1- 2.2.3. 

Haga et al. [94, 95] found that leaching leads to an increase in porosity, especially capillary 

porosity of the affected concrete structures.  

Investigations of Planel et al. [91] showed that calcium leaching in sulfate environments 

shows similar features as leaching in deionised water. However, the presence of sulfate led 

to the precipitation of ettringite and gypsum and the decomposition of the samples. The 

failure of the samples was observed to depend on their thickness as thin samples showed 

faster cracking and scaling. 

As sulfate ions migrate into the concrete structure chemical gradients and reactions zones 

are formed. Calcium ions are necessary for the formation of ettringite, gypsum or thaumasite 

during sulfate interaction which also leads to a decalcification, especially in the sulfate 

enriched zones. It was observed that almost all portlandite was transformed into gypsum. 

After the consumption of the portlandite the C-S-H phase starts to decalcify. The resulting 

siliceous S-H gel may act as a source of silicate for thaumasite formation as mentioned in 

section 2.2.3.2. 

Gypsum was observed to form as bands parallel to the surface [31] but also intermixed within 

the C-S-H phase and portlandite. The bands were observed to be 10 to 30 µm thick at 

intervals of 100 to 200 µm, partly discontinuous [31, 91]. Gypsum formation has also been 

reported to form protective layers thus decreasing further ingress of sulfate ions with reaction 

time.  

This physical increase in solid volume due to the formation of secondary sulfate phases like 

ettringite and gypsum, see 2.2.1, was reported to results in a temporary densification of the 

microstructure [96] which was accompanied by an increase in compressive strength at the 

early age of sulfate interaction according to Brown and Badger [97]. 

Sulfate interaction is often related to crack formation, observed to be partly parallel and partly 

perpendicular to the sample surface. The parallel cracks are often filled with gypsum, 

whereas the perpendicular cracks are often observed along the aggregates and at greater 

depth of the affected samples [64]. The regions where crack propagation is observed and 

expansion is taking place are described as areas where ettringite has formed described by 

Gollop and Taylor [31]. It appears that expansion is a delayed or possibly an indirect 
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consequence of ettringite formation and that gypsum recrystallises in cracks formed by other 

mechanisms. 

After the formation of the first micro and macro cracks due to sulfate interaction, the 

microstructure starts to break down, the compressive strength decreases and gypsum as 

well as ettringite are observed by Irassar et al. [9]. Furthermore in the presence of cracks the 

expansion of the samples was found to be accelerated due to an increase in sulfate uptake 

according to Monteiro and Kurtis [22].  

The changes in the microstructure are also influenced by the presence of aggregates in the 

microstructure. The Interfacial transition zone (ITZ) between aggregates and cement paste is 

characterised by higher porosities thus influencing the permeability and accelerating the 

migration of sulphate ions as described by Diamond [98]. 

 

Influence of mineral admixtures including limestone 

Investigations on the influence of limestone addition on durability of Portland cements during 

sulfate attack showed that the extent of deterioration varies with the amount of limestone 

added and the kind of aggregates used.  

In particular mortars made of cements with high amounts of limestone (up to 20 wt%) 

showed high expansion independent of the type of cement used (high or low C3A content), 

Irassar et al. [9]. Generally, sulfate attack on the samples containing limestone was found to 

be more destructive at 5 °C than at 20 °C [59, 99].  

Investigation of Higgins, Higgins and Crammond [100, 101] revealed that a replacement of 

70% of cement with slag improved the sulfate resistance of the concrete containing 

carbonate aggregate and cement with both high and low C3A content. Furthermore it was 

found that curing in air proved beneficial against conventional sulfate attack. They concluded 

that air curing leads to the formation of a carbonated surface layer which gives a dense 

microstructure before sulfate exposure.  

Other investigation from Tivillis et al. [6] of limestone cement mortar on different specific 

mineral replacements, e.g. natural pozzolans, fly ash, slag showed that the use of these 

mineral additives retards thaumasite formation in limestone cement mortar. They concluded 

that the incorporation of slag or fly ash substantially improves the resistance against sulfate 

attack. The effectiveness of pozzolans depends on the rate of reaction and their ability to 

form additional C-S-H. Pozzolans with high reactivity and high contents of silicon dioxide 

(SiO2) are reported to be effective [29, 20, 1, 15]. 
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2.3 Summary 
Sulfate attack has been under investigation for many years now. However, a complete 

understanding of the sulfate induced deterioration processes is still lacking. Especially, the 

investigations on thaumasite formation are often contradictory. Although, a lot of research 

has been done recently, it has not been definitively established to what extent sulfate 

concentration and limestone addition influence the formation of thaumasite. Furthermore, the 

influence of leaching, which has been observed to have an impact on thaumasite formation 

in real structures, is not well understood until now. 

This study of the literature reveals many questions on sulfate attack and thaumasite 

formation which this work seeks to address: 

• What are the factors favouring thaumasite formation? 

• What are the limiting factors for thaumasite formation? 

• Is there a correlation between chemical and physical effects during sulfate attack? 

• Is it possible to define the mechanisms of thaumasite formation? 

• What can we learn about TSA? 

 

Generally, this work attempts to further understand the complex mechanisms of sulfate 

attack and particularly thaumasite formation and tries to provide a more comprehensive 

understanding of the sulfate interaction.  

 

 

 



Chapter 2: State of research 
 
 

 23

2.4 References 
1. Taylor, H.F.W., Cement Chemistry. 1997 (London: Thomas Telford). 
2. Locher, F.W., Richartz, S., and S., S., Erstarren von Zement: I. Reaktion und 

Gefügeentwicklung. Zement-Kalk-Gips, 1976. 29, 435-442. 
3. Scrivener, K.L., The development of microstructure during the hydration of Portland 

cement. PhD thesis, 1984, University of London. 
4. Damidot, D. and Glasser, F.P., Thermodynamic Investigation of the CaO-Al2O3-

CaSO4-H2O System at 25 °C and the Influence of Na2O. Cement Concrete Research, 
1993. 23, 221-238. 

5. Collepardi, M., Baldini, G., and Pauri, M., Tricalcium aluminate hydration in the 
presence of lime, gypsum and sodiumsulfate. Cement Concrete Research, 1978. 5, 
571-580. 

6. Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J.H., and Swamy, R.N., Use of 
mineral admixtures to prevent thaumasite formation in limestone cement mortar. 
Cement Concrete Composites, 2003. 25 (8), 969-976. 

7. Stark, J., Oprimierte Bindemittelsysteme für die Betonindustrie. Beton, 2004. 10 486-
490. 

8. Uchikawa, H., Hanehara, S., and Hirao, H., Influence of microstructure on the 
physical properties of concrete prepared by substituting mineral powder for part of 
fine aggregate. Cement Concrete Research, 1996. 26, 101-111. 

9. Irassar, E.F., Bonavetti, V.L., and Gonzalez, M., Microstructural study of sulfate 
attack on ordinary and limestone Portland cements at ambient temperature. Cement 
Concrete Research, 2003. 33, 31-41. 

10. Torres, S.M., Sharp, J.H., Swamy, R.N., Lynsdale, C.J., and Huntley, S.A., Long term 
durability of Portland-limestone cement mortars exposed to magnesium sulfate 
attack. Cement Concrete Composites, 2003. 25 (8), 947-954. 

11. Kuzel, H. and Pöllmann, H., Hydration of C3A in the presence of Ca(OH)2, 
CaSO4*2H2O and CaCO3. Cement Concrete Research, 1991. 21, 885-895. 

12. Matschei, T., Lothenbach, B., Glasser, F.P., The role of calcium carbonate in cement 
hydration. unpublished, 2006. 

13. Lothenbach B., W.F., Thermodynamic modelling of the hydration of Portland cement. 
Cement Concrete Research, 2006. 36 (2), 209-226. 

14. Catinaud, S., Beaudoin, J.J., and Marchand, J., Influence of limestone addition on 
calcium leaching mechanisms in cement-based materials. Cement Concrete 
Research, 2000. 30 (12), 1961-1968. 

15. Taylor, H.F.W. and Gollop, R.S., Some chemical and microstructural aspects of 
concrete durability, in Mechansisms of chemical degradation of cement-based 
systems, K.L. Scrivener and J.F. Young, Editors. 1997, E & FN Spon: London. p. 
177-184. 

16. Scherer, G.W., Stress from crystalisation of salt. Cement and Concrete Research, 
2004. 34 (9), 1613-1624. 

17. Metha, P.K., Mechansim of expansion associated with ettringite formation. Cement 
and Concrete Research, 1973. 3 (1), 1-6. 

18. Famy, C. and Taylor, H.F.W., Ettringite in hydration of portland cement concrete and 
its occurence in mature concretes. ACI Materials Journal, 2001. 98, 350-356. 

19. Skalny, J., Marchand, J., and Odler, I., Sulfate attack on concrete. Modern concrete 
technology, ed. A. Bentur and S. Mindess. Vol. 10. 2002, London: Spon Press. 217. 

20. Stark, J. and Wicht, B., Dauerhaftigkeit von Beton. 2001 (Schädigende 
Ettringitbildung). 



Chapter 2: State of research 
 
 

 24

21. Kollmann, H., Untersuchungen über das Ausblühungs- und Treiberscheinungen 
durch Sulfate, Teil 3. Betonwerk und Fertigteil-Technik, 1979. 12, 741-746. 

22. Monteiro, P.J. and Kurtis, K.E., Time to failure for concrete exposed to severe sulfate 
attack. Cement Concrete Research, 2003. 33 (7), 987-993. 

23. Khatari, R.P. and Sirivivatnanon, Role of permeability in sulphate attack. Cement 
Concrete Composites, 1997. 27, 1179-1189. 

24. Lothenbach B., Wieland, E., A thermodynamic approach to the hydration of sulphate-
resiting Portland cement. waste management, 2006. 26 (7), 706-719. 

25. Neubauer, J. and Götz-Neunhoeffer, F., Efficiency of high sensitive heat flow 
calorimetry in examination of OPC hydration. Proc 24th Int. Conf. Cement 
Microscopy, San Diego, Californien, 2002. 

26. Möschner, G., Lothenbach, B., Rose, J., Ulrich, A., Figi, R., and Kretschmar, R., Solid 
solution between Al-ettringite and Fe-ettringite (Ca[Al1-xFex(OH)6]2(SO4)326H2O). 
Geochim Cosmochim Acta, 2007 (submitted). 

27. Anderson , M., Incorporation of aluminium in the C-S-H of hydrated portland cements: 
a high field 27Al and 29Si MAS NMR investigation. Inorganic chemistry, 2003. 42, 
2280-2287. 

28. Richardson, I.G. and Gorves, G.W., The incorporation of minor and trace elements 
into calcium silicate hydrate (C-S-H) gel in hardened cement pastes. Cement 
Concrete Research, 1993. 23, 131-138. 

29. Metha, P.K., Meachnism of sulfate attack on portland cement concrete-another look. 
Cement Concrete Research, 1983. 13, 401-406. 

30. Gollop R. and Taylor, H.F.W., Microstructural and Microanalytical Studies of Sulfate 
Attack, IV. Reactions of a Slag Cement paste with Sodium and Magnesium Sulfate 
Solution. Cement Concrete Research, 1996. 26, 1013-1028. 

31. Gollop R. and Taylor H.F.W., Microstructural and Microanalytical Studies of Sulfate 
Attack, I. Ordinary Portland Cement Paste. Cement Concrete Research, 1992. 22, 
1027-1038. 

32. Marchand, J., Samson, E., Maltais, Y., and Beaudoin, J.J., Theoretical analysis of the 
effect of weak sodium sulfate solutions on the durability of concrete. Cement 
Concrete Composites, 2002. 24 (3-4), 317-329. 

33. Santhanam, M., Cohen, M.D., and Olek, J., Sulfate attack research -- whither now? 
Cement Concrete Research, 2001. 31 (6), 845-851. 

34. Kollmann, H., Untersuchungen über Ausblühungs- und Treiberscheinungen durch 
Sulfate, Teil 2. Betonwerk und Fertigteil-Technik, 1979. 11, 671-677. 

35. Kollmann H. and Strübel G., Untersuchungen über Ausblühungs- und 
Treiberscheinungen durch Sulfate Teil 1. Betonwerk und Fertigteil-Technik, 1978. 10, 
609-613. 

36. Koch, A. and Steinegger, H., Ein Schnellprüfverfahren für Zemente auf ihr Verhalten 
bei Sulfatangriff. Zement-Kalk-Gips, 1960. 7, 317-324. 

37. Wittekindt, W., Sulfatbeständige Zemente und ihre Prüfung. Zement-Kalk-Gips, 1960. 
12. 

38. Bellmann, F., Moser, B., and Stark, J., Influence of sulfate solution concentration on 
the formation of gypsum in sulfate resistance test specimen. Cement Concrete 
Research, 2006. 36 (2), 358-363. 

39. Erlin, B. and Stark, D.C., Identification and occurance of thaumasite in concrete. 
Highway Research record, 1965. 113, 108-113. 

40. The Thaumasite Expert Group, The thaumasite form of sulfate attack: risks, 
diagnosis, remedial works and guidance on new constructions. 1999: London. p. 180. 

41. Nordenskiöld, A.E., Anmärkningar om thaumasiten. Geol. Fören. Förhandel., 1880. 
62, 270-272. 



Chapter 2: State of research 
 
 

 25

42. Barnett, S.J., Macphee, D.E., Lachowski, E.E., and Crammond, N.J., XRD, EDX and 
IR analysis of solid solutions between thaumasite and ettringite. Cement Concrete 
Research, 2002. 32 (5), 719-730. 

43. Bensted, J., Thaumasite -- background and nature in deterioration of cements, 
mortars and concretes. Cement Concrete Composites, 1999. 21 (2), 117-121. 

44. Crammond, N.J., Quantitative x-ray diffraction analysis of Ettringite, Thaumasite and 
gypsum in concretes and mortars. Cement Concrete Research, 1985. 15 (3), 431-
442. 

45. Macphee, D. and Diamond, S., Thaumasite in Cementitious Materials. Cement 
Concrete Composites, 2003. 25 (8), 805-807. 

46. Sibbick, R.G., Crammond, N.J., and Metcalf, D., The microscopical characterisation 
of thaumasite. Cement Concrete Composites, 2003. 25 (8), 831-837. 

47. Skipsted J., Hjorth L., and J., J.H., Quantification of thaumasite in cementitious 
materials by 29Si{1H} cross-polarisation magic-angle spinning NMR spectroscopy. 
Advances in cement research, 1995. 7, 69-83. 

48. Torres, S.M., Kirk, C.A., Lynsdale, C.J., Swamy, R.N., and Sharp, J.H., Thaumasite-
ettringite solid solutions in degraded mortars. Cement Concrete Research, 2004. 34 
(8), 1297-1305. 

49. Bensted, J., Mechanism of thaumasite sulphate attack in cements, mortars and 
concretes. Zement Kalk Gips, 2000. 53, 704-709. 

50. Crammond, N.J. and Halliwell, M.A. The thaumasite form of sulfate attack in 
concretes containing a source of carbonate ions -- a microstructural Overview. in 
International Symposium for Advances in Concrete Technology. 1995. 

51. Diamond, S., Thaumasite in Orange County, Southern California: an inquiry into the 
effect of low temperature. Cement Concrete Composites, 2003. 25 (8), 1161-1164. 

52. Collepardi, M., Thaumasite formation and deterioration in historic buildings. Cement 
Concrete Composites, 1999. 21 (2), 147-154. 

53. Hobbs, D.W., Thaumasite sulfate attack in field and laboratory concretes: implications 
for specifications. Cement Concrete Composites, 2003. 25 (8), 1195-1202. 

54. Hobbs, D.W. and Taylor, M.G., Nature of the thaumasite sulfate attack mechanism in 
field concrete. Cement Concrete Research, 2000. 30 (4), 529-533. 

55. Zhou, Q., Hill, J., Byars, E.A., Cripps, J.C., Lynsdale, C.J., and Sharp, J.H., The role 
of pH in thaumasite sulfate attack. Cement Concrete Research, 2006. 36 (1), 160-
170. 

56. Gaze, M.E. and Crammond, N.J., The formation of thaumasite in a cement:lime:sand 
mortar exposed to cold magnesium and potassium sulfate solutions. Cement 
Concrete Composites, 2000. 22 (3), 209-222. 

57. Jallad, K.N., Santhanam, M., and Cohen, M.D., Stability and reactivity of thaumasite 
at different pH levels. Cement Concrete Research, 2003. 33 (3), 433-437. 

58. M. Kalinowski and Trägardh, J., Thaumasite and Gypsum formation in SCC with 
sulfate resistant cement exposed to a moderate sulfate concentration. Second North 
American Conference on the Design and Use of Self-Consolidating Concrete, 2005. 
Section 3 (durability) 319-325. 

59. Hartshorn, S.A., Sharp, J.H., and Swamy, R.N., The thaumasite form of sulfate attack 
in Portland-limestone cement mortars stored in magnesium sulfate solution. Cement 
Concrete Composites, 2002. 24 (3-4), 351-359. 

60. Romer, M., Holzer, L., and Pfiffner, M., Swiss tunnel structures: concrete damage by 
formation of thaumasite. Cement Concrete Composites, 2003. 25 (8), 1111-1117. 

61. Collett, G., Crammond, N.J., Swamy, R.N., and Sharp, J.H., The role of carbon 
dioxide in the formation of thaumasite. Cement Concrete Research, 2004. 34, 1599-
1612. 



Chapter 2: State of research 
 
 

 26

62. F. Bellmann, R. Röck, and Stark, J., Thaumasite damage in a shotcrete tunnel lining. 
Cement International, 2005. 3, 103-109. 

63. Blanco-Varela, M.T., Aguilera, J., and Martinez-Ramirez, S., Effect of cement C3A 
content, temperature and storage medium on thaumasite formation in carbonated 
mortars. Cement Concrete Research, 2006. 36 (4), 707-715. 

64. Brown, P. and Hooton, R.D., Ettringite and thaumasite formation in laboratory 
concretes prepared using sulfate-resisting cements. Cement Concrete Composites, 
2002. 24 (3-4), 361-370. 

65. Nobst, P. and Stark, J., Investigations on the influence of cement type on thaumasite 
formation. Cement Concrete Composites, 2003. 25 (8), 899-906. 

66. Nobst P. and Stark J., Untersuchungen zur Thaumasitbildung bei inneren und 
äusseren Sulfatangriff. 16. Ibausil 2006, 2006. 2 2-0547-0542-0556. 

67. Juel, I., Herfort, D., Gollop, R., Konnerup-Madsen, J., Jakobsen, H.J., and Skibsted, 
J., A thermodynamic model for predicting the stability of thaumasite. Cement 
Concrete Composites, 2003. 25 (8), 867-872. 

68. Barnett, S.J., Adam, C.D., and Jackson, A.R.W., Solid solutions between ettringite 
and thaumasite. Journal of Material Science, 2000. 35, 4109-4114. 

69. Macphee, D. and Barnett, S.J., Solution properties of solids in the ettringite--
thaumasite solid solution series. Cement Concrete Research, 2004. 34, 1591-1598. 

70. Barnett, S.J., Macphee, D., and Crammond, N.J., Extent of immiscibility in the 
ettringite-thaumasite system. Cement Concrete Composites, 2003. 25 (8), 851-855. 

71. Glasser, F.P., The stability of ettringite. Internal sulfate attack and delayed ettringite 
formation (K.L. Scrivener and J.P. Skalny, eds.), 2002 (RILEM:Villars, Switzerland) 
43-63. 

72. Pajares, I., Martinez-Ramirez, S., and Blanco-Varela, M.T., Evolution of ettringite in 
presence of carbonate, and silicate ions. Cement Concrete Composites, 2003. 25 (8), 
861-865. 

73. Bensted, J., Thaumasite--direct, woodfordite and other possible formation routes. 
Cement Concrete Composites, 2003. 25 (8), 873-877. 

74. Lukas, W., Betonzerstörung durch SO3 - Angriff unter Bildung von Thaumasit und 
Woodfordit. Cement Concrete Research, 1975. 5, 503-518. 

75. Köhler, S., Heinz, D., Urbonas L., Effect of ettringite on thaumasite formation. Cement 
Concrete Research, 2005. 

76. Bellmann, F., On the formation of thaumasite CaSiO3CaSO4CaCO315H2O Part II. 
Advances in cement research, 2004. 16, 89-94. 

77. Bellmann, F., On the formation of thaumasite Part I. Advances in cement research, 
2004. 16 (2) 55-60. 

78. Mulenga, D.M., Nobst, P., and Stark, J., Thaumasitbildung in Beton als Folge des 
Sulfatangriffs. Wissenschaftliche Zeitschrift der Bauhaus-Universität Weimar, 2001. 5 
51-63. 

79. Oberholster, R.E., Deterioration of mortar, plaster and concrete: South Africa 
laboratory and field studies. First International Conference on Thaumasite in 
Cementitious Materials, 2002. paper 42 (Garston (UK)). 

80. Gaze, M.E., The effects of varying gypsum content on thaumasite formation in a 
cement:Lime:Sand mortar at 5 °C. Cement Concrete Research, 1997. 27 (2), 259-
265. 

81. Bickley, J.A., Hemmings, R.T., Hooton, R.D., and Balinski, J. Thaumasite related 
deterioration of concrete structures (V. Mohan Malhotra Symposium). in Concrete 
technology: past, present, and future. 1995: ACI. 

82. Crammond, N.J., Thaumasite in Failed cement mortars and renders from exposed 
brickwork. Cement Concrete Research, 1985. 15, 1039-1050. 



Chapter 2: State of research 
 
 

 27

83. Drabik, M., Galikova, L., and Janotka, I., Determination of the Presence of 
Thaumasite in Sulphate attached Concrete by Methods of Thermo Analysis. Ibausil, 
2003, 2-0701-0709. 

84. Gouda, G.R., Roy, D.M., and Sarkar, A., Thaumasite in Deteriorated Soil_Cements. 
Cement Concrete Research, 1975. 5, 519-522. 

85. Romer, M., Steam locomotive soot and the formation of thaumasite in shotcrete. 
Cement Concrete Composites, 2003. 25 (8), 1173-1176. 

86. Crammond, N., The occurrence of thaumasite in modern construction - a review. 
Cement Concrete Composites, 2002. 24 (3-4), 393-402. 

87. Crammond, N.J., The thaumasite form of sulfate attack in the UK. Cement Concrete 
Composites, 2003. 25 (8), 809-818. 

88. Matthews, S., available at http://bre.co.uk/service. BRE, Bucknalls Lane, Watford 
WD25 9XX, 2007. 

89. Andac Muberra and Paul, G.F., Long-term leaching mechanisms of Portland cement-
stabilized municipal solid waste fly ash in carbonated water. Cement Concrete 
Research, 1999. 29 (2), 179-186. 

90. Galle, C., Peycelon, H., and Bescop, P.L., Effect of an accelerated chemical 
degradation on water permeability and pore structure of cement-based materials. 
Advances in cement research, 2004. 16, 105-114. 

91. Planel D., Sercombe J., Le Besop P., Adenot F., and J.M., T., Long-term 
performance of cement paste during combined calcium leaching-sulfate attack: 
kinetics and size effect. Cement Concrete Research, 2006. 36, 137-143. 

92. Taylor, H.F.W., Famy, C., and Scrivener, K.L., Delayed ettringite formation. Cement 
Concrete Research, 2001. 31, 683-693. 

93. Yokozeki, K., Watanabe, K., Sakata, N., and Otsuki, N., Modeling of leaching from 
cementitious materials used in underground environment. Applied Clay Science, 
2004. 26 (1-4), 293-308. 

94. Haga, K., Shibata, M., Hironaga, M., Tanaka, S., and Nagasaki, S., Change in pore 
structure and composition of hardened cement paste during the process of 
dissolution. Cement Concrete Research, 2005. 35 (5), 943-950. 

95. Haga, K., Sutou, S., Hironaga, M., Tanaka, S., and Nagasaki, S., Effects of porosity 
on leaching of Ca from hardened ordinary Portland cement paste. Cement Concrete 
Research, 2005. 35 (9), 1764-1775. 

96. Mulenga, D.M., Zum Sulfatangriff auf Beton und Mörtel einschliesslich der 
Thaumasitbildung. 2002. 

97. Brown, P.W. and Badger, S., The distribution of bound sulfates and chlorides in 
concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cement Concrete 
Research, 2000. 30, 1535-1542. 

98. Diamond, S., A discussion of paper "Patch microstructure in cement based materials: 
fact or artefact?" Cement Concrete Research, 2006. 36, 998-1001. 

99. Irassar, E.F., Bonavetti, M.A., Trezza, M.A., and Gonzalez, M., Thaumasite formation 
in limestone filler cements exposed to sodium sulphate solution at 20 °C. Cement 
Concrete Composites, 2005. 27, 77-84. 

100. Higgins, D.D., Increased sulfate resistance of ggbs concrete in the presence of 
carbonate. Cement Concrete Composites, 2003. 25 (8), 913-919. 

101. Higgins, D.D. and Crammond, N.J., Resistance of concrete containing ggbs to the 
thaumasite form of sulfate attack. Cement Concrete Composites, 2003. 25 (8), 921-
929. 

 
 



Chapter 2: State of research 
 
 

 28

 



Chapter 3: Materials and methods 
 
 

 29

3 Materials and Methods 
 

This chapter describes the strategy of the experimental program, the materials and the 

analytical techniques used in this study. To understand how and to what extent limestone 

addition, sulfate concentration, leaching and storage temperature influence thaumasite 

formation and sulfate interaction, multiple techniques were used. In this project, laboratory 

cements based on industrial clinkers were produced to cover the compositional variations in 

C3A and limestone filler contents comparable to the commercial products used in 

Switzerland. The experimental program considers two main parts, the cement paste 

experiments, investigating the conditions of thaumasite formation including thermodynamic 

modelling. The mortar experiments investigate the consequences of sulfate interaction 

including frequent measurements, e.g. surface specific measurements, illustrated in Fig. 3.1. 

Fig. 3.1: Experimental program and overview of analysis for the study. 
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3.1 Laboratory cements 

The experiments were performed on laboratory cements which were prepared from industrial 

clinkers representing sulfate resistant Portland cement, HS (low C3A), and ordinary Portland 

cement, OPC (high C3A). The other constituents used for the production of the laboratory 

cements were synthetic gypsum (CaSO4·2H2O, Fluka Chemie) and fine natural, almost pure 

calcite powder (CaCO3, Omya, Orgon France) as limestone filler. The limestone filler used 

has a Blaine specific surface area of 5800 cm2/g – somewhat coarser than the calcite in 

interground cements. 

The chemical composition of the laboratory cements (HS, OPC) without limestone addition, 

the limestone filler used as well as the mineralogical composition of the cements are given in 

Table 3.1. 

Table 3.1: Composition of the HS and OPC cements including gypsum and limestone filler used 

Chemical composition [wt%] i  Mineralogical composition [wt%] ii 

  HS OPC Limestone    HS OPC 

SiO2  19.2 20.1 0.08  C3S  62 66 

Al2O3  4.7 4.4 0.17  C2S  9 10 

Fe2O3  7.2 2.7 0.03  C3A  0.4 7 

CaO  62.2 63.7 55.6  C4AF  22 8 

MgO  1.5 1.6 0.29      

K2O  1.1 0.9 0.01      

Na2O  0.13 0.15 0.01      

SO3  1.9 2.9 0.01      

CO2  0.1 0.2 43.7      

CaOfree  0.6 0.9       

LOI  0.68 1.21       

total  99.3 98.8 99.9      
  iobtained from XRF analysis; iiaccording to Bogue calculation 

 

For the production of the laboratory cements, the cement clinkers were ground using a 

laboratory ball mill as described in Appendix A.1. The cement clinkers were ground to Blaine 

specific surface area of 3500 cm2/g. 

After grinding of the clinker, pure analytical gypsum was used to adjust the appropriate 

sulfate content for HS (SO3 tot = 1.9 wt%) and OPC (SO3 tot = 2.9 wt%) cement using 

isothermal calorimetry (TAM Air). For this study, about 6g cement were mixed with 2.4g 

water in glass ampoules to give a water to cement ratio of 0.4 before placing the samples in 

the calorimeter. The twin configuration of laboratory cement samples and industry cement 

samples (reference) in the calorimeter channels allows to directly compare the heat flow of 
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the cement systems (Fig. 3.2). The heat of hydration of the laboratory cements was adjusted 

compared to the industry cements as shown in Appendix A 1 (Figs. A 1.3, A 1.4).  

Fig. 3.2: Batch samples on TAM Air 
calorimeter. 

To study the effect of limestone addition during exposure to sulfates some of the cements 

remained unchanged, without limestone addition (H0, P0) or were blended by replacing 5 

wt% (H5, P5) and 25 wt% (P25) cement by calcite as shown in Table 3.2.  

Table 3.2: Limestone addition and nomenclature of laboratory cements in wt% 

Cement clinker Limestone filler addition LF 

HS (low C3A) H0: 0 H5: 5  

OPC (high C3A) P0: 0 P5: 5 P25: 25 

 

For the final production of the laboratory cements the relevant constituents were mixed and 

homogenized mechanically as described in the Appendix A 1.1. All laboratory cements were 

tested according to the standard EN 196 (1-4) [1] and proved to conform with the commercial 

products as shown in Appendix A 1 (Table A 1.1). 
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3.2 Cement paste samples 

The aim of the cement paste experiments was to investigate the chemical aspects of sulfate 

interaction. The investigations used a concept - the Progressive Equilibrium Approach (PEA)- 

to analyse the conditions of thaumasite formation with respect to internal carbonate, sulfate 

concentration and leaching. To enhance the specific surface and to speed up the chemical 

interaction the experiments were performed with crushed hydrated cement paste. After 

interaction with a sulfate solution the compositions of the solid and liquid phase were 

determined and compared with the calculations from the thermodynamic model (section 3.5). 

In addition the microstructure of selected samples was investigated.  

 

3.2.1 Experimental set up 

The experiments were performed on hydrated cement pastes which were prepared from the 

laboratory cements. The cement pastes were produced at a water/binder ratio of 0.35 and 

fabricated as prisms of 40x40x160 mm3 and stored for 24h at 20 °C and 90 % relative 

humidity. After demoulding, the prisms were cured until 56d in saturated limewater at 20 °C 

before crushing the hydrated cement paste to particles of the size 0.5 – 2 mm (Fig. 3.4). 

Particles of smaller or bigger in size (< 30 wt%) were analysed to be chemically identical but 

not used in the experiments. 

          

Fig. 3.3: Hydrated cement paste prisms, 56d Fig. 3.4: Crushed, hydrated cement paste 

Artificially leached cement paste was obtained from the crushed cement paste by the 

following procedure. 70 g of crushed cement paste was mixed with 20l of deionised water 

and stored in sealed in polyethylene containers for four months at 20 °C. After 14, 28, 56 and 
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112 days the leaching water was exchanged with deionised water and the leachate was 

agitated frequently. The complete program for the leaching process is given in Table 3.3.  

Table 3.3: Entire leaching procedure of the crushed cement paste samples 

leaching process  

samples 

               size 

              mass 

crushed cement paste 

0.5-2.0 mm 

70g 

liquid demineralised water, volume: 20l 

temperature 20 °C 

liquid/solid ratio 286 

duration 4 month 

storage 

water exchange 

polyethylene containers 

after 14, 28, 56 and 112 days 

 

Before and after leaching the hydrated cement paste particles were dried for 2 days at 40 °C 

until constant weight was reached. A part of it was ground to ≤ 40 µm or left as paste 

particles and stored in a desiccator at 20 °C until further analysis as described in 3.2.3. 

The chemical composition of the laboratory cements before exposure to sulfates and before 

and after leaching was used as input data for the thermodynamic calculations as described in 

3.5. 

 

3.2.2 Progressive equilibrium approach PEA 

The PEA aims to simulate the chemical gradient which can be found in real situations on 

concrete structures undergoing external sulfate attack over durations of several years [2]. 

The chemical gradient arises due to a diffusive mass exchange involving external sulfate. In 

the PEA fixed chemical subsystems are defined and subsequently simulated. These 

subsystems (A-E, sulfate addition only) and (BL-DL, leaching and sulfate addition) are 

defined by different levels of sulfate addition (Fig. 3.5). 

The concentration of sulfate ions varies progressively from 20, 10, 5 to 2.5 wt% SO4
2- in 

subsystems A to D by weight cement paste. The subsystem E represents the unaffected, 

sound concrete. For the sulfate interaction after the leaching process the amount of the 

sulfate addition varies respectively from 10, 5 to 2.5 wt% SO4
2- in subsystem BL, CL and DL 

by weight of cement paste. 
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sulfate addition
by mass cement paste

ABCE D

cementitious material environment

sulfate 
interaction

leaching
distance from
surface

2010*5*2.5*0 SO4
2- [wt%] 

sulfate addition
by mass cement paste

ABCE D

cementitious material environment

sulfate 
interaction

leaching
distance from
surface

2010*5*2.5*0 SO4
2- [wt%] 

 
                                                   * sulfate concentration also used in leached subsystems 

Fig. 3.5: Schematic illustration of the concept for the progressive equilibrium approach (PEA) 

For each subsystem the crushed cement paste was immersed in aqueous reaction solution, 

which was prepared by dissolving adequate amounts of Na2SO4 in deionised water as 

described in more detail, see Appendix A 2. The experiments were then processed as closed 

subsystems at 8 °C and 20 °C and were shaken periodically (Fig. 3.6).  

 

 

pore solution

solid phases
cement paste

E-A

reaction solution

pore solution

solid phases
cement paste

E-A

reaction solution

pore solution

solid phases
cement paste

E-A

reaction solution

 

Fig. 3.6: Idealised scheme of subsystems according to the PEA experiments. 

Since the time to attain equilibrium was not known, the subsystems were examined after 3 

and 9 months. At equilibrium it can be assumed that the solution surrounding the cement 

paste is identical to the pore solution which itself is in equilibrium with the hydrate phase 

assemblage.  

t = 0 t = 3, 9 months 
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For the analysis of the PEA experiments the subsystems were filtered dividing the aqueous 

solution from the solid residue under vacuum using a 45 µm nylon membrane filter. The solid 

phase was immersed for 30 minutes in isopropanol to remove moisture and dried at 40 °C for 

2 days until constant weight was reached. For further analysis the particles were ground to ≤ 

40 µm and stored in a desiccator at 20 °C.  

 

3.2.3 Analytical methods 

For the analysis of the laboratory cements, their constituents and the hydrated cement paste 

before and during the experiments different analytical methods were applied. 

X-ray fluorescence (XRF) 

The chemical composition of the laboratory cements and the limestone filler was determined 

by wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF). Therefore, the 

cement powders were prepared as homogeneous fused glass beads with di-

lithiumretraborate as flux. The WD-XRF spectrometer (PANanalytical PW 1404) is equipped 

with a Cr X-ray tube, 60 kV maximum voltage, 125 mA maximum current. The elemental 

composition of the powders was calculated as the mass fraction of the corresponding 

element oxides. The element oxides composition was then used for the calculation of the 

phase composition of the laboratory cements according to Bogue. 

Thermogravimetric analysis (TGA) 

The method measures the mass difference of a sample as a function of the temperature 

level. The loss of weight corresponds to the dehydration of different phases present and the 

evaporation of gas and water. Thermogravimetric analysis (TGA, Mettler Toledo 

TGA/SDTA851e) was carried out in nitrogen environment on 10mg of ground cement powder 

at 20 °C/min over a temperature range of 30 up to 980 °C. The TGA analysis was used on 

ground cement paste powder to determine the amount of portlandite present in the initial and 

leached cement pastes. The content of portlandite was calculated from the weight loss 

between 420-500 °C as shown in Appendix A 2 (Figs. A 2.2, A 2.3).  

Mercury intrusion porosimetry 

The method uses mercury to penetrate the sample as a non-wetting fluid into various pore 

diameters d. By increasing the pressure P progressively smaller pores are filled with 

mercury. The method allows to measure the pore size distribution for particularly capillary 

pores and air pores of a given sample. The porosity of the initial and leached samples was 

determined on 3 to 4g cement paste particles by using (MIP, THERMOELECTRON 140/440) 

up to a pressure of max 400 MPa.  
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X-ray diffraction (XRD) 

X-ray diffraction (XRD) was used as an analytical technique for the identification of crystalline 

phases. The positions of reflections in the XRD pattern are determined by the spacing d of 

the crystallographic planes according to the wavelength λ of the radiation used and the angle 

θ of the diffraction peak. 

The ground cement powders were analysed on 27 mm standard sample holders by X-ray 

diffraction (XRD, PANalytical X`pert PRO X’Celerator) using CuKα radiation, an accelerating 

voltage of 40 kV, current of 40 mA, angles 5 – 80° 2Theta. Phase identification was achieved 

by comparing the X-ray pattern obtained with an internationally recognised database of 

reference patterns (ICDD – International Center for Diffraction Data). The XRD analysis was 

used for the characterisation of anhydrous, leached cement powder and on ground cement 

powder from the PEA experiments. 

Plasma optical emission spectrometry (ICP-OES, TIC) and pH 

The concentration of Al, sulfate, Ca, K and Na of the aqueous solutions were determined 

using inductively coupled plasma optical emission spectrometry (ICP-OES, Varian, VISTA 

Pro) and carbonate was determined as total inorganic carbon (TIC, Shimadzu TOC-5000A).  

The pH was determined immediately by a pH electrode (Knick pH-Meter 766 with a Knick SE 

pH7Pt 1000 electrode) which was calibrated against 0.1 to 1.0 molar KOH solutions using a 

part of the undiluted solution. For further analysis 1ml of pore solution was diluted with 9ml of 

6.5% HNO3 solution stored at 5 °C till further analysis. The analysis of the solutions was 

done after 3 and 9 months during the PEA experiments. 

Nuclear magnetic resonance 29Si-NMR 

The NMR experiments were performed on a Bruker Avance 400 NMR spectrometer using a 

7mm CP/MAS probe. The 29Si CP/MAS NMR spectra were recorded at 79.49 MHz using the 

following parameters: 3000 Hz spinning speed, 800µs contact time, 6s relaxation delay for 

cement mixtures and 60s for mineral thaumasite (29Si chemical shifts referenced to an 

external of tetramethylsilane). The quantities of thaumasite were determined using the 

method described in detail by Skibsted et al. [3, 4] with RF field strengths of 31.2 kHz during 

the polarisation transfer and 41.6 kHz for the 90º 1H excitation pulse and during the 

decoupling sequence. A sample of natural thaumasite originating from Akschal (Kazakhstan) 

was found to be almost 100% pure (XRD). The relaxation times T1
H and T1ρ

H were 

determined using standard Bruker pulse programs and processing software. For the mineral 

thaumasite T1
H ≈ 8s was determined, this value decreased to 1s for cement sample 

containing Fe3+. The CP build up rates TSiH were determined from least square two-

parameter-fits of the CP build up curves for a) Akschal thaumasite, b) 10 wt-% of Akschal 
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thaumasite mixed with 90 wt-% of hydrated cement powder and c) thaumasite formed in a 

mortar sample after 1.5 years sulfate interaction at 8 °C. The following pairs of parameters 

were determined TSiH [ms] / T1ρ
H [ms]: 0.42/3.83 (Akschal thaumasite); 055/3.39 (10% 

Akschal thaumasite) and 0.33/2.60 (thaumasite in mortar). The latter parameters were 

applied for the quantification of thaumasite in the PEA cement samples under investigation 

(accuracy of such results is believed to be within +/- 15%). 

For the 10% Akschal sample 9.7% thaumasite was determined and 6.5% was found in the 

clinker cement. Selected HS samples did not show any 29Si NMR signals at all owing to the 

increased amounts of iron therein.  
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3.3 Mortar samples 

The aim of the mortar experiments was to investigate the physical consequences of sulfate 

interaction and thaumasite formation during sulphate exposure. The investigations used 

traditional test methods, a newly developed and non destructive ultrasound method and 

microscopy to analyse the microstructural changes during sulfate exposure.  

 

3.3.1 Experimental set up 

For the experiments the mortars were fabricated according to EN 196 part 1 [5] with a 

water/binder ratio of 0.5. The sand used was CEN – Normsand with a maximum grain size of 

2mm. Slabs of 40 x 160 x 230 mm3 were cast. 

The mortar slabs were cured for 28 days in saturated limewater (Ca(OH)2, pH ≥ 12.5) at 

constant temperature (20 °C) to avoid leaching. After curing thin mortar samples were cut 

and ground to the size of 10 x 40 x 160 mm3. The size of the mortar prisms was comparable 

to the Wittekindt [6] method, but the exposed surface is sawn not cast (Fig. 3.7). 

Fig. 3.7: Flat prisms cut from of mortar slab Fig. 3.8: Mortar prisms sealed with plug gages. 

After that the samples were sealed and plug gages were glued, using two components glue 

(Araldit, AV 138M) with hardener (HV 998) at the ends of the prisms. The samples were 

stored at 8 °C and 20 °C for 12 h in deionised water before sulfate exposure. For exposure 

the mortar prisms were stored in Na2SO4 solutions at the above mentioned temperatures. 

The sulfate concentrations in the solutions were chosen close to common test conditions 

(30g SO4
2-/l) as well as closer to real situations in the field (3g SO4

2-/l). The liquid / solid – 

volume ratio of the batches was 4 to 1. The sulfate solutions were changed at regular 

intervals after 7, 14, 28, 56, 91, 180, 270, 365 days to maintain the conditions of constant 

sulfate concentration at the sample surface.  
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The reference samples were stored in limewater at the same temperatures. The 

experimental setup for the mortar experiments is summarized in Table 3.4. 

 

Table 3.4: Experimental setup for mortar experiments 

cement H0 H5 P0 P5 P25 

 HS (low C3A) OPC (high C3A) 

limestone 
addition [wt%] 0 5 0 5 25 

aggregate silica sand 

w/c – ratio 0.50 

compaction vibrated 

specimen type flat prism 

sample 
dimensions [mm] 10x40x160 

curing limewater [Ca(OH)2] 28d, pH ≥ 12.5 

field conditions 3g SO4/l (4,4g Na2SO4/l) 
exposure 

test conditions 30g SO4/l (44,4g Na2SO4/l) 

volume (l/s)i 4 to 1 
solution 

exchange [d] 7, 14, 28, 56, 91, 180, 270, 365 

ambient [°C] 20 
temperature 

low [°C] 8 

 iliquid/solid – volume ratio 

 

3.3.2 Ultrasonic measurements 

A non-destructive test method was developed to monitor the physical properties of mortar 

samples [7]. The method is designed to measure the velocity of the Rayleigh waves. The 

response is sensitive to the top layer (less than 2 mm) of the samples. 

The theory of surface sensitive Rayleigh waves as given by Bertoni and Tamir [8] uses an 

incident beam near the leaky Rayleigh angle θLR from the liquid onto the surface of the solid 

sample. This leads to a direct reflection of the beam (* in Fig. 3.9) and generates a leaky 

Rayleigh wave which causes a trailing field leaving the sample at the angle θLR (arrows in 

Fig. 3.9). The leaky Rayleigh or surface waves have a penetration depth of about one 

wavelength [9].  
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For a velocity of the leaky Rayleigh wave of 2 km/s and for a frequency of 1 MHz the 

wavelength λ corresponds to 2 mm which is suitable to study the top surface layer of a 

mortar. 

Fig. 3.9: Scheme 
for the mortar 
surface immersed 
in water and 
arrangement of 
ultrasonic probes 
modified from 
[10]. 

 

 

* direct reflection 

The ultrasonic experiments were performed in demineralised water as coupling medium. The 

probes (1 MHz, 0.75" diameter) were attached to two manual goniometers which could be 

moved horizontally (parallel to the sample surface). The whole assembly was fixed on a      

3-axis computer controlled stage to adjust the probes relative to the samples (Appendix A 5).  

After the sample was placed under water the probes (immersed in water) were laterally set to 

a predefined position. The determination of the leaky Rayleigh wave velocity consisted of 

several steps. First the goniometers were set at Rayleigh angle and the goniometers angle of 

both goniometers where then adjusted repetitively with the focus of the probes on the sample 

surface (z-position) followed by scans with the receiver along the x-axis.  

 

Fig. 3.10: 
Determination of 
the velocity of the 
Rayleigh wave by 
moving the 
receiver 
horizontally. 

The probes were then adjusted and moved at intervals of ∆x = 5 mm away from the 

transmitter to determine the temporal delay of the signal at each position. The whole 

procedure was repeated for two additional scans with offsets in y-direction of ± 5 mm (Fig. 

3.10). 

Transmitter Receiver 

mortar sample
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y-axis 
∆x ∆x 
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LRθ  

x
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θ  
* 

atmosphere (air)



Chapter 3: Materials and methods 
 
 

 41

The velocity of the leaky Rayleigh wave with immersion technique can be determined by 

successively displacing the receiver probe by ∆x (Fig 3.10) and measuring the time 

difference ∆t of the signal relative to the preceding position of the receiver to give:  

  
t
xc

LR ∆
∆

=          (3.1) 

The result cLR of a sample is given as the average value of the velocities for three separate 

scans. The corresponding leaky Rayleigh angle θLR is determined by sinθLR = cl/cLR, with cl = 

1.48 km/s being the sound velocity of water. 

 

3.3.3 Analytical methods 

For the investigations of the mortar samples and to study the physical effects of the binder 

system including limestone addition as well as sulfate degradation mechanisms the following 

test methods were used. 

Porosity 

For the determination of porosity characteristics and the apparent density of the mortar 

samples a stepwise drying and wetting procedure was used according to the Swiss standard 

SIA 162-1 [11]. The porosity data were determined on mortar samples (20 x 40 x 40 mm3). 

Thereby, the total porosity is measured as the difference in mass of the water saturated 

sample to the dried (105 °C) sample. The air pores are obtained from the difference of the 

samples vacuum water saturated to the normal water saturated (7 days) sample. The 

capillary porosity was similarly obtained as the difference in mass of the water saturated 

sample (7 days) to the sample dried at 50 °C to constant weight. Finally, the gel porosity was 

calculated from the mass difference of the sample dried (105 °C) to the sample dried at      

50 °C to constant weight. 

Mass and length change 

The uptake of sulfate from test solution during the exposure was investigated by the mass 

change of the specimens. The mass of specimen mt was determined during exposure with a 

precision of 0.1g. The expansion behaviour of the mortar specimens was determined by 

measuring the length of the specimen lt at defined time intervals during exposure. The 

changes in mass (∆m in %) and length (∆l in mm/m) of the mortar specimens were calculated 

relative to the initial values determined before sulfate exposure m0 and l0 respectively.  

For the investigation changes in mass, length and Rayleigh wave velocity were followed up 

to one year of sulfate exposure according to the monitoring program. 
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3.4 Microscopy and microanalysis 

For the microstructural investigations Scanning Electron Microscopy (SEM, Philips ESEM 

FEG XL 30) was used to analyse the micro- and nanostructure of selected samples of 

cement paste and mortar experiments. The chemical analysis was done using Energy 

Dispersive Spectroscopy (EDS).  

The samples for SEM microscopy were prepared from mortar and cement paste by cutting, 

grinding and polishing to give representative micro sections of the surface and core regions. 

A detailed description is given in the Appendix A 4. 

The samples examined by SEM were investigated using backscattered electron images 

(BSE) of polished and secondary electron images (SE) of fracture surfaces. Through 

interaction of the initial electron beam with the atoms of the sample secondary electrons, 

backscattered electrons and X-rays are generated and emitted (Fig. 3.11). Energy dispersive 

spectroscopy (EDS) is based on the detection of the characteristic X-rays generated for the 

elements in the material. 

 

Fig. 3.11: Signal generation in the scanning electron 
microscope (SEM) reproduced from [12]. 

 

The polished samples were examined in high vacuum at a pressure of about 3.5·10-6 mbar. 

The electron accelerating voltage was 15-20kV. The chemical analysis using EDS was done 

with a Li/Si crystal detector and an acceleration voltage of 15kV to provide best spatial 

resolution. The fracture samples were examined in low vacuum at a pressure of 1-2 mbar. 

The accelerating voltage used was 20kV. 

The sulfate uptake was determined on selected, polished samples as the SO3 content by 

mass cement paste by window analysis (100x100 µm). At defined sample depths from 

affected surface towards the unaltered core the window analysis was done three times at 

each depth in order to gain good average values. 
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At specific sample depths, following the determined sulfate profile, EDS point analysis was 

done. The elements determined were Na, Mg, Al, Si, S, K, Ca, Fe, Ti and Mn; C and O were 

excluded to eliminate the effects of the resin and microporosity. The chosen elements were 

analysed as oxides and the EDS system software was used to automatically correct the 

analysis using ZAF corrections and suitable phase standard. 

The atomic ratios of selected elements were plotted as Si/Ca, Al/Ca and S/Ca to investigate 

the hydrate phase assemblage of the surface, the transition zone and the unaltered core of 

selected samples during sulfate interaction. The stoichiometric composition of the pure 

phases are plotted to indicate the hydrate phases present.  
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3.5 Thermodynamic modelling approach 

Thermodynamic calculations indicate the compositions of the investigated binder systems at 

equilibrium and can be applied to indicate the chemical reactions occurring during 

degradation processes. Thus it is possible to calculate the potential evolution of the cement 

systems under external sulfate attack and especially the conditions for thaumasite formation 

at equilibrium. However, kinetics will control the speed of chemical reactions at a given time 

until equilibrium is reached.  

 

As input to the thermodynamic calculations the composition of the laboratory cements 

(assuming complete hydration) as given in Table 3.1 plus the amount of Na2SO4 and H2O 

added to the system was used. The hydrate phases which were found to be stable in the 

investigated systems include C-S-H, portlandite, ettringite, thaumasite, monosulfate, 

monocarbonate, hemicarbonate, calcite, gypsum and hydrotalcite (M4AH10). 

For iron the precipitation of iron-hydroxide (Fe(OH)3) or FH3 was assumed. As detailed 

elsewhere [13, 14], C-S-H was calculated as a ideal solid solution between the end-members 

jennite C1.67SH2.1 and tobermorite C0.83SH1.3. The composition and the Ca/Si ratio of the C-S-

H can vary from approximately 1.6 to 0. For the modelling it was considered that the alkalis 

which originate from the cements and from the Na2SO4 solution used, partition between the 

aqueous solution and the precipitating C-S-H. The uptake of Na and K by C-S-H was 

calculated using a distribution ratio Rd of 0.42 ml/g [13, 14], where ⎥
⎦

⎤
⎢
⎣

⎡
=

g
ml

sc
wc

R
d

s
d , cs alkali 

concentration in the solid phase [mol/l], cd alkali concentration in the solution [mol/l] and w/s 

is the water/C-S-H ratio in ml/g.  

 

• Thaumasite solubility as a function of temperature 

Thaumasite (CaSiO3)2(CaSO4)2 (CaCO3)2·30H2O has a structure similar to ettringite and is 

reported to form limited solid solutions with ettringite. The solubility of synthetic thaumasite 

intermixed with ettringite has been measured by Barnett et al. [15]. For thaumasite from a 

geological source, a significantly lower solubility has been measured by Bellmann [16]. 

Based on the measured concentrations [15] a tentative solubility product of 10-49.4±1 was 

calculated for the reaction: 

(CaSiO3)2(CaSO4)2(CaCO3)2 30H2O(s) 6Ca2++2H3SiO4
-+2SO4

2-+2CO3
2-+2OH-+26H2O  

at a temperature of 25 °C.  
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As only a few solubility measurements in a relatively narrow temperature range are available 

(Fig. 3.12), the measured solubility data were not used for extrapolating these data to other 

temperatures. Instead these were estimated from entropy and heat capacity data.  

The entropy and heat capacity can be estimated using reference reactions based on 

structurally similar solids with known S° and C°p. If such reference reactions involve only 

solids and no “free” water, the heat capacity and the entropy equals approximately to zero. A 

more detailed discussion about approaches to estimate the entropy and heat capacities of 

solids can be found elsewhere [18-20]. Thus, S° and C°p of thaumasite were estimated from 

the S° and C°p values of  

3CaO·Al2O3·3CaSO4·32H2O(ettringte) + 2CaCO3(s) + 2SiO2(s) - CaSO4·2H2O(gypsum) - 

Al2O3(s) - CaO(s)  (CaSiO3)2(CaSO4)2(CaCO3)2 30H2O(thaumasite) resulting in S° = 1884 

and C°p = 2119 J/K/mol at 25 °C (Appendix A 3, Table A 3.1).  

The solubility products calculated for thaumasite based on these estimated data agree well 

with the measured solubility products as shown in Fig. 3.12. 

Further details of the thermodynamic model and data used are given in the Appendix A 3. 
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Fig. 3.12: 
Calculated and 
reported solubility 
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thaumasite as a 
function of 
temperature [17] 
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4 Binder systems before sulfate exposure 
The following chapter describes the investigation on the initial and leached binder systems 

before sulfate interaction. With thermodynamic modelling the development of the initial 

hydrate phase composition are compared with the experimental data.  

 

4.1 Characterisation of the binder systems 
The effect of limestone addition and the type of cement clinker was studied. The 

experimental data are discussed and compared with the thermodynamic modelled data. The 

results are presented taking into account the physical and chemical aspects of limestone 

addition and leaching before sulfate interaction. 

 

4.1.1 Influence of limestone addition on physical properties 

For the evaluation of the physical influence of the limestone filler and the type of cement 

clinker the porosity and the development of the compressive strength were investigated on 

mortar samples as described in section 3.3.3.  

The results obtained from the porosity measurements show that limestone addition of 5 wt% 

led to a decrease in total porosity independent of the type of cement clinker (HS, OPC) used 

compared to the reference samples without limestone addition (Fig. 4.1, Table 4.1). The 

results further showed that limestone addition up to 5 wt% lead to a decrease of capillary 

porosity. Gel porosity increases while the total porosity was observed to slightly decrease. 

Table 4.1: Porosity obtained from mortar samples after 28 days of curing in limewater. 

 

 

 

 

                                                                                                              iaccording to SIA 162-1 

 Porosityi in vol.-% 

sample H0 H5 P0 P5 P25 

gel pores 2.9 4.8 4.4 5.3 3.3 

capillary pores 14.5 12.1 11.5 10.0 14.5 

air pores 2.2 2.4 1.0 1.2 3.0 

total 19.6 19.3 16.9 16.5 20.8 

 

These findings indicated that the calcite grains in the cement system could provide additional 

surface for the nucleation of outer C-S-H during the hydration as described by Stark [1]. This 

supposition was confirmed by additional microscopic examination as shown in the Appendix 
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A 6 (Figs. A 6.1, A 6.2). It was found that more C-S-H is formed during hydration in case of 

limestone addition.  

That could explain the observed densification for 5 wt% limestone addition in the cement 

systems leading to a refinement of the microstructure, as described by Uchikawa et al. [2]. 

Alternatively, the formation of monocarbonate and stabilisation of ettringite could lower the 

porosity in the cement system as suggested by Matschei and Glasser [3]. 

The additional C-S-H could explain the decrease in capillary porosity as described by 

Thomas and Jennings [4] leading to lower permeability of the cement paste. The limestone 

filler is also known to act as a filler leading to a physical densification of the microstructure as 

described by Tsivilis et al. [5]. 

Higher amounts of limestone in the cement system as in P25 where 25 wt% were added 

result in an increase in total and capillary porosity for the investigated OPC cement system 

(Table 4.1, Fig. 4.1). The observations indicated that high amounts of limestone addition will 

lead to a higher permeability for P25 compared to the reference P0 without limestone 

addition. This agreed with the observations of Irassar et al. [6] and Torres et al. [7]. 
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Fig. 4.1: Influence of limestone addition and clinker type on porosity of 
mortar samples after 28 days of curing. 

The type of cement clinker also influenced the porosity. The mortar samples prepared from 

HS cement with low C3A showed higher porosities, especially an increased capillary porosity 

after 28 days of curing (Fig. 4.1). These observations could indicate that cements with low 

C3A but high C4AF contents contributed to slower strength development as mentioned by 

Kuzel and Pöllmann [8]; Taylor [9], Scrivener [10], Stark and Wicht [11]. As C4AF in cement 

systems generally hydrated only very slow and the investigated HS cement systems contain 
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about 22 wt% C4AF but almost no C3A, the expected lower degree of hydration would agree 

with the increased porosity observed.  

Alternatively, the relatively low amount of SO3 in the H0 and H5 cements, see Table A 1.2 in 

the Appendix A 1, could be the reason for the increased porosity as more AFm phases than 

AFt phases are formed during hydration. 

The results on the strength development of the investigated mortar samples showed that 

limestone addition of 5 wt% as in H5 and P5 slightly increased the compressive strength 

after 28 days of curing compared to the reference samples without limestone addition (Fig. 

4.2). However, a slightly negative influence of 5 wt% limestone addition was observed after 2 

days of curing. High amounts of limestone addition as in P25 (25 wt%) showed a significant 

negative effect on the compressive strength after 2 and 28 days of curing (Table 4.2). 

Table 4.2: Compressive strength of mortar samples after 2 and 28 days. 

 

 

 

                                                                                                   i according to EN 196-1 

 compressive strengthi 

sample H0 H5 P0 P5 P25 

2d 23.1 21.7 28.3 27.5 20.7 

28d 56.1  56.8 57.6 58.8 46.5 

The results showed that the compressive strengths were lower at 2 and 28 days. However, 

the OPC cement systems with 25 wt% limestone addition reached more than 75% of the 

compressive strength of the reference cement system without limestone addition after 28 

days of hydration. 
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Fig. 4.2: Influence of limestone addition and clinker type on compressive 
strength of mortar samples after 28 days. 
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Furthermore, the compressive strengths were observed to correlate inversely with the 

determined porosities. Limestone addition of 5 wt% led to a decrease in porosity, thus 

resulted in an increase of compressive strength compared to the cement system without 

limestone addition (Fig. 4.1, 4.2).  

The results further indicated that the HS cement systems (low C3A) had a lower compressive 

strength especially after 2 days of hydration than the OPC cement systems (high C3A) (Table 

4.2). It might be indicating that the hydration mechanisms were slower as mentioned 

previously with ongoing hydration this effect balanced.  

 

4.1.2 Chemical influence of limestone addition 

The influence of limestone addition on the resulting hydrate phases was investigated 

experimentally on cement paste and thermodynamic modelling was used to calculate the 

development of the solid phases during the hydration of the laboratory cements. 

 

• Modelled data 

The thermodynamic model of Lothenbach and Winnefeld [12] was applied to calculate the 

development of the solid phases during the hydration of the laboratory cement systems with 

or without limestone addition before sulfate exposure.  

In this model the composition of the solid and liquid phases was calculated based on (i) the 

measured composition of the unhydrated cement (ii) the calculated dissolution of the clinkers 

as a function of time using a set of empirical equations and (iii) a consistent thermodynamic 

dataset as given in [13]. The hydrate phase assemblage was summarised as volumetric 

percentages in the cementitious matrix at the given w/c ratio used. 

The hydrate phase assemblages of the cement systems without limestone addition (H0, P0) 

were calculated to be C-S-H, portlandite, ettringite and monosulfate as well as minor 

amounts of hemicarbonate and hydrotalcite (Fig. 4.3). In the model as described by 

Lothenbach and Winnefeld [12] the ferrite phase (C4AF) was assumed to participate and Fe 

is calculated to precipitate as AFt, AFm and hydrotalcite, respectively. 

With additional limestone filler (5 and 25 wt%) in the cement system the thermodynamic 

model predicted the development of C-S-H, portlandite, ettringite, monocarbonate and 

hydrotalcite (Figs. 4.4, 4.5). 
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Fig. 4.3: Modelled evolution of the solid phases during the hydration of OPC 
(w/c=0.5) in the absence of additional carbonate. 

Furthermore, beside some unhydrated clinker phases also calcite was predicted to be 

present in hydrated Portland cement indicating that only a part of the calcite is reacting to 

form hydrate phases as mentioned by Matschei and Glasser [3]. 
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Fig. 4.4: Modelled evolution of the solid phases during the hydration of OPC 
(w/c=0.5) in the presence of 5 wt% additional carbonate. 
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Another effect of limestone addition was calculated to be the dilution of the cement system 

leading to the formation of less hydrate phases (Figs. 4.3, 4.5). According to Lothenbach and 

Winnefeld [12] in the presence of additional carbonate somewhat more aluminium is bound 

in ettringite in the initial cement paste.  
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Fig. 4.5: Modelled evolution of the solid phases during the hydration of OPC 
(w/c=0.5) in the presence of 25 wt% additional carbonate. 

 

 

• Experimental phase evolution 

The phase assemblage of hydrated Portland cement systems were investigated for binder 

system with and without limestone addition after 56 days of curing in saturated limewater at 

20 °C.  

The investigations on the hydrated cement paste samples showed that limestone addition 

influences the formation of AFm phases during hydration.  

The XRD results for H5, P5, P25 showed that the presence of additional carbonate led to the 

formation of monocarbonate as stable AFm phase independent of the type of cement clinker 

present (Figs. 4.6, 4.7). In cement systems without limestone addition (H0, P0) the 

experimental results obtained from XRD analysis showed that monosulfate forms as a stable 

AFm phase.  

 

56d 
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However, also traces of hemicarbonate and hydrotalcite could be found experimentally 

indicating that these phases are present but their amounts formed during the hydration was 

rather small compared to the major hydrates C-S-H (TGA), portlandite, ettringite, 

monosulfate or monocarbonate (Figs. 4.6, 4.7). 
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Fig. 4.6: XRD results of OPC cement systems containing 0, 5, 25 wt% limestone filler 
hydrated for 56 days in limewater. CH = portlandite; Cc = calcite; Ett = ettringite; Hc = 
hemicarbonate; Ht = hydrotalcite; Mc = monocarbonate; Ms = monosulfate. 

 

Furthermore the XRD investigations showed the presence of a significant ferrite peak for the 

HS cement systems after 56 days indicating that the hydration kinetics of the ferrite phase 

(C4AF) was very slow, especially in the investigated alkaline conditions (Fig. 4.7). These 

observations agree with the mentioned slow reactions kinetics of the ferrite phase especially 

in alkaline conditions by Taylor [9], Collepardi et al. [14]. 

The results also showed that only a small amount of the ferrite (C4AF), being the major 

alumina source in the HS cement system, has reacted to form ettringite after 56 days of 

hydration.  

Generally, the experimental observations were in good agreement with the modelled data. 

Both modelling and experimental data show that in OPC and HS cement systems without 

limestone addition, monosulfate as well as traces of hemicarbonate and hydrotalcite were 

stable phases. 
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calcite; Ett = ettringite; F = ferrite; G = gypsum; Hc = hemicarbonate; Ht = hydrotalcite; 
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The modelled and experimental data show that in cement systems with limestone addition 

the formation of monocarbonate led to the formation of slightly more ettringite during the 

initial hydration. These findings agreed with the investigations of Kuzel and Pöllmann [15] 

and Bonavetti et al. [16] who found more ettringite in carbonate containing cement systems. 

In the limestone containing cement a higher percentage of available aluminium in the cement 

had reacted to form hydrate phases. This might increase chemically the sulfate resistance 

since ettringite was assumed to be stable in sulfate environment.  

 

4.1.3 Influence of leaching 

Portlandite was reduced by 80 wt% during the leaching process as shown in Table 4.3 and 

Appendix A 2.2. However, small amounts of portlandite (1-3 wt%) were still present indicating 

that the leaching process was not complete after 4 months.  

The MIP measurements of samples before and after leaching showed that the total porosity 

almost doubled (Table 4.3). The pore size distribution in the investigated samples showed 

significantly more small pores ≤ 10 nm and more pores between 10 – 100 nm to be present 

in leached samples (Fig. 4.8). The increase in pore volume can be attributed to the 

dissolution of large crystals of portlandite Ca(OH)2 [17-20]. 
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Table 4.3: Total porosity and portlandite content of the laboratory cements before and after    
      leaching. 

 Ca(OH)2 contenti [wt%]  total porosityii 

sample H0 H5 P0 P5 P25  H0 H5 P0 P5 P25 

initial 15 14 15 14 12  18 17 15 14 20 

leached 2 2 3 3 1  36 35 28 27 39 
 i obtained from thermogravimetric analysis (TGA); ii obtained from mercury intrusion (MIP) 

 

In addition, the dissolution of Ca from C-S-H might also increase the amount of small pores 

as mentioned by Planel et al. [21] and Galle et al. [22]. 
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Fig. 4.8: MIP pore size distribution of initial and leached cement pastes. 

 

4.1.4 Microstructural aspects 

The microstructural investigations of leached cement paste particles showed that the 

leaching process also resulted in a layered structure. The leached cement paste particles 

were composed of a) a strongly leached outer layer close to the surface and b) an 

unchanged inner layer in the center of the cement paste particles (Fig. 4.9a). 

The leached outer layer was characterised by reduced Ca and alkali contents and portlandite 

was absent. The outer layer appears to be inhomogeneous and was marked by high 

porosity. This agrees with the observations of Haga et al [20]. Part of the pore space, as 
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indicated by the darker areas, originated from partial or complete dissolution of portlandite 

(Fig. 4.9b). 

The inner layer of the leached cement paste particles is characterised by a high density of 

the cement paste matrix. The microstructural investigations showed that the amount of 

portlandite was decreasing going from the center of the paste particle towards the leached 

surface which was in good agreement to the findings of Yokozeki et al. [23]. 

a) b) 

Fig. 4.9: Backscattered electron images of the leached cement paste particles OPC with 25 wt% 
limestone addition. 

 

However, in the transition zone between the two layers, relicts of portlandite were found 

around clinker and calcite grains (Fig. 4.10a) whereas in the center of the cement paste 

particle portlandite was still present in extensive areas in the outer C-S-H phase (Fig. 4.10b). 

a) b) 

Fig. 4.10: Backscattered electron images of cement paste particles of a) the transition zone 
between inner - outer layer and b) at the centre of the paste particles (OPC with 25 wt% limestone 
addition) 

a 

b pore space 

clinker 

clinker 

clinker 

clinker 

clinker 

portlandite clinker portlandite 

clinker 



Chapter 4: Binder systems 
 
 

 57

The thickness of the leached zone differed from 150 µm for P5 up to 1 mm for P25. The 

results showed that with lower initial porosity of the cement paste, the extent of leaching was 

reduced. The influence of leaching, mainly the reduction of portlandite and alkalies was 

found to increase the porosity which agreed to the findings of Planel et al. [21]. 

Similarly to cement paste particles exposed to sulfate, leaching of crushed cement paste 

particles leads to an inhomogeneous, layered structure within the particles. The few percent 

of portlandite in the leached samples analysed with bulk methods (TGA, XRD) results largely 

from the contribution of the unchanged cores of the cement paste particles. 
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4.2 Summary and conclusions 
 

Limestone addition influences the mineralogy of the AFm phases during hydration. 

Monocarbonate was formed instead of monosulfate, depending on the amount of carbonate 

available in the cement system. In systems with small amounts of carbonate hemicarbonate 

may form beside monosulfate. 

The presence of monocarbonate also increased the formation of ettringite since more sulfate 

was available during the hydration process. Thus, a higher fraction of the aluminium was 

present as ettringite which could chemically increase sulfate resistance.  

The addition of 5 wt% limestone in Portland cement systems led to an increase of the 

compressive strength and reduced the porosity, especially the capillary porosity. The 

compressive strength was observed to correlate inversely with the porosity. Thus, limestone 

addition of 5 wt% was resulting in an increase of compressive strength compared to the 

cement system without limestone addition. 

In the case of 25 wt% limestone addition the compressive strength was significantly reduced 

whereas the porosity, especially the capillary porosity, increases. It can be concluded that 

high amounts of limestone addition led to an increase of permeability of these cement 

systems.  

It should be mentioned that the thermodynamic model took into account the reaction of both 

aluminium and iron to form AFt and AFm phases. However, the results showed that 

significant amounts of C4AF were still present in the HS-cement systems.  

Leaching before sulfate interaction reduced the amount of portlandite and increased the 

porosity of the investigated cement paste. The thickness of the leached zone differed and a 

lower initial porosity of the cement paste reduced the extend of leaching. 

 

 



Chapter 4: Binder systems 
 
 

 59

4.3 References 
 

1. Stark, J., Optimierte Bindemittelsysteme für die Betonindustrie. Beton, 2004. 10/2004 
486-490. 

2. Uchikawa, H., Hanehara, S., and Hirao, H., Influence of microstructure on the 
physical properties of concrete prepared by substituting mineral powder for part of 
fine aggregate. Cement Concrete Research, 1996. 26, 101-111. 

3. Matschei, T., Glasser, F.P., The influence of limestone on cement hydration. ZGK 
International, 2006. 59, 78-86. 

4. Thomas, J.J. and Jennings, H.M., A colloidal interpretation of chemical aging of the 
C-S-H gel and its effects on the properties of cement paste. Cement Concrete 
Research, 2006. 36 (1), 30-38. 

5. Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J.H., and Swamy, R.N., Use of 
mineral admixtures to prevent thaumasite formation in limestone cement mortar. 
Cement Concrete Composites, 2003. 25 (8), 969-976. 

6. Irassar, E.F., Bonavetti, V.L., and Gonzalez, M., Microstructural study of sulfate 
attack on ordinary and limestone Portland cements at ambient temperature. Cement 
Concrete Research, 2003. 33, 31-41. 

7. Torres, S.M., Sharp, J.H., Swamy, R.N., Lynsdale, C.J., and Huntley, S.A., Long term 
durability of Portland-limestone cement mortars exposed to magnesium sulfate 
attack. Cement Concrete Composites, 2003. 25 (8), 947-954. 

8. Kuzel, H.-J. and Pöllmann, H., Hydration of C3A in the presence of Ca(OH)2, 
CaSO4.2H2O and CaCO3. Cement Concrete Research, 1991. 21 (5), 885-895. 

9. Taylor, H.F.W., Cement Chemistry. 1997 (London: Thomas Telford). 
10. Scrivener, K.L., The development of microstructure during the hydration of Portland 

cement. 1984 (University of London). 
11. Stark, J. and Wicht, B., Zement und Kalk. F.-A.-Finger-Institut für Baustoffkunde der 

Bauhaus-Universität Weimar; Birkhäuser, 2000. 
12. Lothenbach, B. and Winnefeld, F., Thermodynamic modelling of the hydration of 

Portland cement. Cement Concrete Research, 2006. 36 (2), 209-226. 
13. Lothenbach, B., Matschei, T., Möschner, G., Glasser, F.P., Thermodynamic 

modelling of the effect of temperature on the hydration and porosity of Portland 
cement. Cement Concrete Research, 2007 (submitted). 

14. Collepardi, M., Baldini, G., and Pauri, M., Tricalcium aluminate hydration in the 
presence of lime, gypsum and sodiumsulfate. Cement Concrete Research, 1978. 5, 
571-580. 

15. Kuzel, H. and Pöllmann, H., Hydration of C3A in the presence of Ca(OH)2, 
CaSO4*2H2O and CaCO3. Cement Concrete Research, 1991. 21, 885-895. 

16. Bonavetti, V.L., Rahhal, V.F., and Irassar, E.F., Sudies on the carboaluminate 
formation in limestone filler-blended cements. Cement and Concrete Research, 2001. 
31, 853-859. 

17. Andac Muberra and Paul, G.F., Long-term leaching mechanisms of Portland cement-
stabilized municipal solid waste fly ash in carbonated water. Cement Concrete 
Research, 1999. 29 (2), 179-186. 

18. Catinaud, S., Beaudoin, J.J., and Marchand, J., Influence of limestone addition on 
calcium leaching mechanisms in cement-based materials. Cement Concrete 
Research, 2000. 30 (12), 1961-1968. 



Chapter 4: Binder systems 
 
 

 60

19. Haga, K., Shibata, M., Hironaga, M., Tanaka, S., and Nagasaki, S., Change in pore 
structure and composition of hardened cement paste during the process of 
dissolution. Cement Concrete Research, 2005. 35 (5), 943-950. 

20. Haga, K., Sutou, S., Hironaga, M., Tanaka, S., and Nagasaki, S., Effects of porosity 
on leaching of Ca from hardened ordinary Portland cement paste. Cement Concrete 
Research, 2005. 35 (9), 1764-1775. 

21. Planel D., Sercombe J., Le Bescop P., Adenot F., and Torrenti, J.M., Long-term 
performance of cement paste during combined calcium leaching-sulfate attack: 
kinetics and size effect. Cement Concrete Research, 2006. 36, 137-143. 

22. Galle, C., Peycelon, H., and Le Bescop, P., Effect of an accelerated chemical 
degradation on water permeability and pore structure of cement-based materials. 
Advances in cement research, 2004. 16, 105-114. 

23. Yokozeki, K., Watanabe, K., Sakata, N., and Otsuki, N., Modeling of leaching from 
cementitious materials used in underground environment. Applied Clay Science, 
2004. 26 (1-4), 293-308. 

 
 



Chapter 5: Cement paste experiments 
 
 

 61

5 Cement paste experiments 
The following chapter describes the investigations on the conditions of thaumasite formation 

with different binder systems and the role of internal carbonate. The results evaluate the 

effects of sulfate concentration, temperature, time and leaching. The thermodynamically 

modelled data are discussed and compared with the experimental findings. 

 

5.1 Thermodynamic modelling and thaumasite formation 
The formation of thaumasite was investigated with the progressive equilibrium approach 

(PEA). This approach experimentally simulates the conditions of various levels of sulfate 

uptake in hardened cement pastes. The results are presented in phase diagrams with the 

modelled predictions of the hydrate phase composition (upper part) and the hydrate phases 

identified by XRD (lower part) as a function of the sulfate content in the cement paste.  

 

5.1.1 Model of initial hydrate phases 

The thermodynamic modelling approach, developed by Lothenbach and Winnefeld [1], was 

modified using the Gibbs free energy minimization program GEMS [2] to calculate the 

hydrate phase assemblages of the cement systems used. As described in section 4.1.2 the 

initial hydrate phase assemblage before sulfate interaction was calculated for the cement 

systems with and without limestone addition as shown in subsystems E (Figs. 5.1-5.5).  

Basically, the initial hydrate phase assemblage in cement systems without limestone addition 

was calculated to be C-S-H, portlandite, ettringite, monosulfate, hemicarbonate and 

hydrotalcite (Figs. 5.1, 5.3). With additional limestone in the cement system the hydrate 

phase assemblage was calculated to be C-S-H, portlandite, ettringite, monocarbonate and 

traces of hydrotalcite and calcite (Figs. 5.2, 5.4, 5.5). The iron in the cement systems was 

assumed to react to iron hydroxide Fe(OH)3.  

The modelled predictions agree well with the experimental observations. In the systems 

without limestone addition (H0, P0) the presence of C-S-H, portlandite, ettringite, 

monosulfate and traces of hemicarbonate were observed by XRD (bottom part Figs. 5.1, 

5.3). In the samples where limestone has been added, the presence of monocarbonate and 

ettringite can be observed (bottom Fig. 5.2, 5.4, 5.5). 
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5.1.2 Effect of sulfate interaction 

If sulfate is progressively added to the subsystems moving from E to A the results of 

thermodynamic modelling show that more ettringite was formed at the expense of the AFm-

phases (monosulfate, monocarbonate, hemicarbonate) and hydrotalcite until all available 

aluminium has been consumed (Figs. 5.1-5.5).  

With increasing sulfate content in the subsystems the calculated data show that thaumasite 

starts to form at sulfate contents between 10 to 20 wt% SO4
2- by weight cement paste. 

Portlandite was predicted to be consumed by the formation of ettringite and thaumasite. 

Thaumasite formed at the expenses of portlandite, calcite and C-S-H in the presence of 

water. In the presence of more than 5 wt% SO4
2- by weight cement paste, ettringite was 

calculated to be the main Al-containing hydrate phase independently of the original 

composition of the cement. However, the composition of the cement has a large impact on 

the amount of thaumasite formed. The thermodynamic calculations indicated that limestone 

containing cement systems independently of the type of cement clinker (high and low C3A) 

used, will be susceptible to thaumasite formation. It was calculated that all calcite in the 

cements with 5 wt% limestone addition will be consumed by the formation of thaumasite 

indicating that a limited amount of thaumasite can form within the range of sulfate addition 

(Figs. 5.2, 5.4, 5.5). The modelled data further show that small amounts of thaumasite are 

predicted even in the cement systems without limestone addition as the clinkers contain up 

to 0.2 wt% CO2, which was theoretically sufficient to form 3 wt% thaumasite at high sulfate 

concentrations (Figs. 5.1, 5.3).  

In the presence of 25 wt% limestone however, the amount of thaumasite formed was limited 

by the uptake of sulfate into the system which was theoretically sufficient to form thaumasite 

until all C-S-H and/or calcite is consumed (Fig. 5.5). Furthermore, the dilution effect 

mentioned in section 4.1.2, (25 wt% limestone addition) theoretically lead to thaumasite 

formation at lower sulfate additions according to the molar ratio of SO3/Al2O3.  

It was interesting to note that thermodynamic modelling indicates that thaumasite becomes 

stable only above 5 wt% SO4
2- by weight of cement paste. From a thermodynamic point of 

view, thaumasite is only stable in a cement system if the available Al has been incorporated 

into ettringite or, in other words, if the molar SO3/Al2O3 exceeds 3. These findings agree with 

the observations reported by Juel et al. [3]. 

The increase in solid volume with increasing sulfate content in the subsystems (Figs. 5.1-5.5) 

was due to the formation of the secondary sulfate phases ettringite and thaumasite. 

However, this increase in solid volume does not necessarily imply expansion of the cement 

paste as these sulfate phases will partially precipitate in the available pore space. 
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Fig. 5.1: Phase 
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cement system without 
limestone addition after 9 
months sulfate interaction 
at 8 °C.  
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FH3 = iron hydroxide 

LF = limestone filler 
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Fig. 5.5: Phase 
assemblages for OPC 
cement systems with 25 
wt% limestone addition 
after 9 months sulfate 
interaction at 8 °C. 

Hc = hemicarbonate; 

Ht = hydrotalcite; 

Mc = monocarbonate; 

FH3 = iron hydroxide 

LF = limestone filler 

 

 

For the experimental evaluation of the development of the hydrate phases during sulfate 

interaction, the phases were identified using XRD analysis as described in Chapter 3, section 

3.2.3. 

Experimentally, thaumasite was observed to form only at high sulfate contents in hydrated 

cement systems containing 5 and 25 wt% limestone and in the presence of 10 or 20 wt% 

sulfate, see bottom part of Figs 5.1- 5.5. These observations agreed with the results of 

thermodynamic modelling and with the findings from Juel et al. [3]. Obviously, thaumasite 

only formed in cement systems where enough sulfate has been added to transform all 

available aluminium into ettringite. Smaller amounts of sulfate present in the subsystems, 

e.g. subsystems C, D with < 10 wt% SO4 by weight cement did not lead to thaumasite 

formation (Figs. 5.1-5.5). 

Thaumasite was identified in samples where limestone has been added to the cement, in 

both cement systems with low C3A (H5) and high C3A (P5, P25) content as shown in Fig. 5.6 

and Table 5.1. The results agreed quite well with the findings from Macphee and Diamond [4] 

and Kalinowski and Trägardh [5] stating that already minor amounts of carbonate in cements 

(5 wt%) are sufficient to form thaumasite. Thaumasite could not be identified experimentally 

in samples without limestone addition as predicted from the thermodynamic data (Table 5.1).  

OPC + 25% LF at 8 °C
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From the results obtained by XRD, it was difficult to identify the relative amounts of 

thaumasite formed in the cement systems after 9 months of sulfate interaction. So far, the 

results did not show a significant difference in peak intensities of thaumasite for the 

investigated cement systems with high (P5, P25) and low (H5) C3A content after 9 months of 

sulfate interaction (Fig. 5.6). Thus, it could not be confirmed that low C3A contents influences 

or even promotes thaumasite formation as suggested by Nobst and Stark [6-8].  

However, in cement systems with low C3A content thaumasite was identified experimentally 

at very high sulfate concentrations (20 wt% SO4 by weight of cement paste) which could 

indicate that low C3A contents are not favouring thaumasite formation as suggested by Juel 

et al. [3]. 

The experimentally observed phase assemblages show that at higher sulfate contents 

beside thaumasite and ettringite, gypsum was also identified as sulfate containing phase, 

see Table 5.1 and lower part of Figs. 5.1-5.5). Between 3 and 9 months of sulfate interaction 

the amount of gypsum present decreased (Fig. 5.7, Table 5.1). Gypsum seemed to form as 

an intermediate sulfate phase parallel or instead of thaumasite at high sulfate concentrations 

and later acts as a source of sulfate applied for thaumasite formation as mentioned by 

Bellmann [9, 10] and Irassar et al. [11].  

In the experiments, thaumasite was observed to be the last sulfate phase forming during 

sulfate interaction. In subsystems with high sulfate concentrations, i.e. subsystems A, B, 

where the formation of intermediate gypsum was observed, thermodynamic calculations 

predict that all sulfate available should be present as ettringite and thaumasite. The model 

did not predict gypsum as a stable phase but obviously this would eventually occur as the 

final sulfate phase forming at very high sulfate additions. 

In reality, the last sulfate phase which formed during sulfate interaction was thaumasite due 

to its slow reaction kinetics as mentioned by Köhler et al. [12] and Lachowski et al. [13]. This 

discrepancy between thermodynamic calculations and experimental results indicates that 

equilibrium has not been reached in the experiments.  

The experimental data further show that some of the AFm phases (monosulfate, 

monocarbonate) formed during the hydration persist during sulfate interaction, see Figs. 5.1-

5.5 and Table 5.1, which is in contrast to the model predictions. This indicates that even 

though the hydrated cement has been ground to 0.5 – 2.0 mm, equilibrium has not been 

reached. Obviously, the reactions did not occur throughout the whole cement paste grains 

but layers have been established within the crushed cement paste. 
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Fig. 5.6: XRD results of selected PEA experiments for HS and OPC cement systems 
with 5 and 25 wt% limestone additions  from subsystem A after 9 months of sulfate 
interaction at 8 °C. CH = portlandite, Cc = calcite, Ett = ettringite; F = Ferrite, G = 
gypsum; Ht = hydrotalcite; Mc = monocarbonate, Th = thaumasite. 
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Fig. 5.7: XRD results of selected PEA experiments for OPC cement systems with 5 
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5.1.3 Effect of temperature 

To take into account the temperature aspect, the phase assemblage was modelled for 

sulfate uptake at 8 °C and 20 °C as shown in Figs. 5.5 and 5.8. In both cases the formation 

of thaumasite was calculated at higher sulfate concentrations and in the presence of 

limestone. However, at 20 °C somewhat less thaumasite was calculated to form than at 8 °C. 

This is due to the relatively strong increase of the solubility of thaumasite with increasing 

temperature and to the high water/solid ratio used in the experiments.  

The thermodynamic calculations indicate that thaumasite is formed at sulfate contents of 

more than 10 wt% SO4
2- by weight cement paste for both temperatures. Based on the 

thermodynamic calculations it was found that thaumasite could persist under these 

conditions up to temperatures of approximately 45 °C.  
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Fig. 5.8: Phase 
assemblage for an OPC 
cement system with 25 
wt% limestone addition at 
20 °C.  

Ht = hydrotalcite; 

Mc = monocarbonate; 

FH3 = iron hydroxide 

LF = limestone filler 

 

The quantities of thaumasite determined by Si-NMR for OPC cement systems (Fig. 5.9) 

showed that thaumasite was detectable after 3 months of sulfate interaction at 8 °C. At 20 °C 

only very small amounts of thaumasite could be detected even after 9 months of sulfate 

interaction. Furthermore, at 8 °C, significantly more thaumasite was detected experimentally 

than in the comparable OPC cement systems with 5 or 25 wt% limestone addition, similar 

contents of thaumasite were calculated in the thermodynamic modelling. Thist indicates that 

thaumasite formation is kinetically faster at 8 °C rather than at 20 °C. The observations of 

thaumasite formation at 20 °C in the laboratory cements investigated were in good 

OPC + 25 wt% LF at 20 °C 
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agreement with the findings of thaumasite formation at 20 °C and above in Italy and 

Southern California [14, 15]. The results also agreed with findings from other investigations 

indicating that thaumasite is favoured at lower temperatures [16, 17]. 

Up to 40 % more thaumasite had formed in the P25 than in the P5 cement system at 8 °C. 

The difference between subsystem A (10 wt%) and subsystem B (20 wt%) sulfate addition is 

almost negligible (Fig. 5.9). In contrast to the findings from Hartshorn et al. [18] and 

Kalinowski and Trägardh [5] increasing amounts of sulfate concentration (subsystem A, B) 

did not necessarily increase thaumasite formation, whereas higher amounts of limestone 

filler from P5 to P25 increased the amount of thaumasite formed during 9 months of sulfate 

interaction. 
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Fig. 5.9: Quantitative concentrations of thaumasite in selected experiments of OPC cement 
systems with 5 and 25 wt% limestone addition after 3 and 9 months of sulfate interaction (S); 
leaching and sulfate interaction (L+S) in relation to the calculated maximum amounts. 

 

Generally, the amounts of thaumasite determined by Si-NMR is only a small portion of what 

is predicted from the thermodynamic data, indicating that thaumasite formation seems to 

depend strongly on the temperature.  

The differences in the phase assemblages between modelled and measured data indicate 

that equilibrium was not reached after 9 months. However, the assessment of the total risk 
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potential of the binder systems for thaumasite formation with respect to temperature and 

sulfate concentration is possible with the help of thermodynamic modelling. 

A summary of selected results, e.g. those predicted to contain thaumasite as a consequence 

of sulfate interaction is given in Table 5.1. 

Table 5.1: Pore solution compositions and phase assemblages after 9 months reaction time.  
  Portlandite, C-S-H and clinker phases are present in all samples, Cc = Calcite; C =   
  inorganic carbon; Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = monosulfate, 
  S = sulfate; Th = thaumasite. 

Solution composition [mmol/l]ii Phase assemblage 
Samplei 

Siii Ciii Ca K Na 
pH 

identified modelled 

A 79 0.3 4.9 15.4 435 13.1 G Ett (Ms) Ett (Th) 
H0 

B 33 0.3 6.6 14.8 204 13.0 (G) Ett Ms Ett (Th) 
          

A 76 0.4 4.6 14.1 422 13.0 G↓ Ett Th (Mc) Cc Ett Th 
H5 

B 30 0.2 6.6 13.6 200 12.9 (G) Ett Mc Cc Ett Th Cc 
          

A 78 0.1 4.7 11.8 435 13.1 G Ett (Ms) Ett (Th) 
P0 

B 33 0.3 5.9 11.8 200 13.0 (G) Ett Ms Ett (Th) 
          

A 76 0.2 4.6 10.5 426 13.0 G↓ Ett Th (Mc) Cc Ett Th 
P5 

B 27 0.2 5.2 10.2 183 13.0 (G) Ett Th Mc Cc Ett Th Cc 
          

A 53 0.2 3.5 6.9 335 13.0 G↓ Ett Th (Mc) Cc Ett Th Cc 

8 
°C

 

P25 
B 23 0.2 4.5 7.2 152 12.9 (G) Ett Th Mc Cc Ett Th Cc 

A 79 0.5 4.9 14.8 435 13.0 G↓ Ett (Ms) Ett (Th) 
H0 

B 34 0.3 5.9 15.6 209 12.9 (G) Ett Ms Ett (Th) 
          

A 79 0.4 4.9 13.6 435 13.0 G↓ Ett (Mc) Cc Ett Th 
H5 

B 31 0.4 5.7 13.8 191 12.9 (G) Ett Mc Cc Ett Th Cc 
          

A 79 0.3 4.6 12.3 435 13.0 G↓ Ett (Ms) Ett (Th) 
P0 

B 31 0.4 5.1 12.3 204 13.0 (G) Ett Ms Ett (Th) 
          

A 78 0.3 4.3 10.5 426 13.0 G↓ Ett Th (Mc) Cc Ett Th 
P5 

B 28 0.2 5.1 10.5 335 13.0 (G) Ett Th Mc Cc Ett Th Cc 
          

A 56 0.2 3.9 6.9 344 13.0 G↓ Ett Th (Mc) Cc Ett Th Cc 

20
 °

C
 

P25 
B 25 0.2 4.5 7.2 152 13.0 (G) Ett Th Mc Cc Ett Th Cc 

 ↓ = decreasing between 3 and 9 months; () = traces 

 i A: 20 wt% SO4
2- ; B: 10 wt% SO4

2- by mass cement paste 

 ii measured Si and Al concentration were below the detection limit of 0.1 mmol/l 

 iii C = inorganic carbon, S = sulfate 
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5.1.4 Effect of leaching 

The formation of thaumasite was calculated for leached and unleached cement systems for 

the sulfate uptake at 8 °C. The phase assemblage for the leached cement was modelled 

using the composition of the laboratory cements after the leaching process as given in Table 

5.2. 

Table 5.2:  Composition of selected oxides of the laboratory cements before a) and after b) the  
       leaching process. 

 a) initial i b) leached ii 

  HS OPC  HS  OPC  

SiO2  19.2 20.1  19.2 (± 0) 20.1 (± 0) 

Al2O3  4.7 4.4  4.7 (± 0) 4.4 (± 0) 

Fe2O3  7.2 2.7  7.0 (- 3) 2.6 (- 3) 

CaO  62.2 63.7  34.6 (- 44) 38.2 (- 40) 

MgO  1.5 1.6  1.5 (± 0) 1.5 (- 6) 

K2O  1.1 0.9  0.01 (- 99) 0.02 (- 98) 

Na2O  0.13 0.15  0.01 (- 92) 0.01 (- 93) 

SO3  1.9 2.9  1.7 (- 11) 2.7 (- 7) 

CO2  0.1 0.2  0.4 (+ 300) 0.5 (+ 150) 
  i selected oxides from XRF analysis 

  ii normalized on the SiO2-content (difference in % to initial content) 

 

The calculation indicated that the leached cement system before the addition of sulfate 

consists of C-S-H, ettringite, AFm (e.g. monocarbonate) and traces of hydrotalcite as stable 

phases (Fig. 5.10). The main difference to the unleached system is the absence of 

portlandite as well as a slightly lower Ca/Si ratio of C-S-H. 

With progressive addition of sulfate to the cement system, the modelled data indicate that in 

the leached samples relatively more ettringite is formed (Fig. 5.10) than in the non leached 

experiments (Fig. 5.5). The calculations further showed that in the presence of sulfate, 

additional ettringite was formed at the expense of the AFm-phases consuming the available 

aluminium as shown in Fig 5.10. The modelled hydrate phase assemblages indicated that 

less thaumasite is formed under leached conditions, in the absence of portlandite, see also 

Fig. 5.9, samples BL. 

The experimental results showed that in leached cement systems the chemical composition 

and the pore structure changes. After a leaching process of 4 months the amount of calcium 

(≥ 50 wt%) and alkalies (≥ 90 wt%) was strongly reduced whereas the amounts of silicate, 
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aluminium and iron remained nearly constant (Table 5.2). In addition, during the leaching a 

limited uptake of CO2 into the cement systems is observed. 
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Fig. 5.10: Phase 
assemblages for an OPC 
cement system with 25 wt% 
limestone addition at 8 °C. 

Ht = hydrotalcite; 

Mc = monocarbonate; 

FH3 = iron hydroxide. 

LF = limestone filler 

 

The experimental results on the leached samples further indicated that with 2.5 wt% sulfate 

addition ettringite, monocarbonate and traces of hydrotalcite were present, see lower part of 

Fig. 5.10, subsystem DL. With more sulfate added to the cement systems more ettringite was 

formed than in the non leached experiments (Figs. 5.12). These observations agree with the 

calculated data indicating the relative increase of the fraction of aluminium present in leached 

systems as part of the calcium was removed during leaching. In addition, the increase of 

porosity in the leached systems may enhance sulfate interaction and thus ettringite 

formation. 

The Si-NMR results showed that significantly less thaumasite was formed in the leached 

cement systems with high C3A content (P5, P25) as shown in Fig. 5.9. Thaumasite could not 

be identified in cement systems with low C3A content (H0, H5) after 9 months of sulfate 

interaction following leaching and sulfate interaction which was in contrast to the non leached 

experiments (Table 5.4) where thaumasite was observed. These findings agreed with the 

observations of Zhou et al. [19], who found decreasing amounts of thaumasite with 

decreasing pH, but it is in contrast to the conclusions of Pfiffner and Holzer, Romer et al. [20, 

21], who suggested that leaching favours thaumasite formation. 

OPC + 25 % LF, leached 
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Although, leaching increased the porosity of the cement pastes and therefore accelerated 

interaction with sulfate, thaumasite formation is not enhanced. Thaumasite formation was 

found to be even slower in leached samples than in non leached samples at the same sulfate 

concentrations and exposure times. This could indicate that the precipitation kinetics of 

thaumasite were not diffusion controlled under these conditions.  

The XRD results showed that slightly more gypsum is present in leached subsystems with 10 

wt% sulfate addition compared to the unleached subsystems (Fig. 5.11) due to the very slow 

thaumasite formation. 
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Low temperatures seemed to favour thaumasite formation also under leached conditions 

(Fig. 5.9). A possible explanation for the enhanced formation of thaumasite at lower 

temperatures could be that silicate tends to adopt the octahedral coordination found in 

thaumasite more easily at lower temperatures as suggested by Bensted [16, 22]. 

A summary of selected experiments, e.g. those predicted to contain thaumasite under 

leaching conditions is given in Table 5.3. The differences in the phase assemblages between 

modelled and measured data indicate that also in the leached experiments equilibrium has 

not been reached. 
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Table 5.3: Pore solution compositions and phase assemblages for sulfate interaction (9 months) 
   after leaching. Portlandite and C-S-H present in all samples, Cc = Calcite;   
   Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = monosulfate, S = sulfate; 
   Th = thaumasite. 

Solution composition [mmol/l]ii Phase assemblage 
samplei 

Siii Ciii Ca K Na 
pH 

identified modelled 

H0 BL 33 0.8 0.9 0.2 169 12.5 G Ett Ms (Cc) Ett (Th) 

H5 BL 33 1.2 0.5 0.2 157 12.4 G Ett Mc Cc↑ Ett Th Cc 

P0 BL 33 1.0 0.6 0.3 169 12.7 G Ett Ms (Cc) Ett (Th) 

P5 BL 29 1.0 0.5 0.3 157 12.7 G Ett Th Mc Cc↑ Ett Th Cc 

8 
°C

 

P25 BL 29 1.4 0.4 0.1 122 12.5 G Ett Th Mc Cc↑ Ett Th Cc 

H0 BL 31 0.8 0.7 0.2 169 12.6 G Ett Ms (Cc) Ett (Th) 

H5 BL 33 1.0 0.4 0.3 161 12.7 G Ett Ms Cc↑ Ett Th Cc 

P0 BL 33 0.8 0.6 0.3 174 12.7 G Ett Ms (Cc) Ett (Th) 

P5 BL 29 0.8 0.6 0.4 165 12.8 G Ett (Th) Cc↑ Ett Th Cc 

20
 °

C
 

P25 BL 27 1.0 0.5 0.1 122 12.6 G Ett (Th) Mc Cc↑ Ett Th Cc 

 ↑ = increasing after leaching; () = traces 

 i BL: 10 wt% SO4
2- by mass cement paste 

 ii measured Si and Al concentration were below the detection limit of 0.1 mmol/l 

 iii C = inorganic carbon, S = sulfate 
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5.1.5 Aspects of reaction solution 

Beside the solid phases the reaction solutions of the PEA experiments were also 

investigated. The composition of the solution was calculated for all experiments at 8 and 20 

°C. The calculated and measured concentrations of selected ions for an OPC cement system 

with 25 wt% limestone addition for the non leached and leached experiments are given in 

Figs. 5.12, 5.13.  

In the subsystems where no sulfate has been added, the calculated reaction solutions were 

dominated by OH-, Ca, K and Na. The addition of Na2SO4 led not only to an increase of 

calculated Na and sulfate concentration but also to an increase of the hydroxide 

concentration as part of the sulfate added precipitates as gypsum, thaumasite or other 

sulfate containing phases. The concentration of Ca decreased according to the increased 

OH- concentration in the presence of portlandite (Fig. 5.12). 
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Fig. 5.12: Predicted and experimental composition of the pore solution of an OPC 
cement system with 25 wt% limestone addition analysed after 3 months (empty 
symbols) and 9 months (filled symbols) sulfate interaction. 

 

The concentrations of dissolved ions were measured after 3 and 9 months. In Figure 5.12 the 

data for an OPC with 25 wt% limestone addition were compared to the modelled 

concentrations assuming equilibrium. The concentrations measured in the subsystems 

without sulfate addition agree well with the modelled data. The addition of sulfate led to a 

significant difference between calculated and measured data. The observed trends of the 

measured ion concentrations over time indicate changes towards the predicted ion 

concentrations. After 9 months, only a fraction of sulfate added to the subsystem has been 



Chapter 5: Cement paste experiments 
 
 

 76

consumed due to the formation of ettringite and thaumasite; gypsum has precipitated 

instead. At higher sulfate additions, the measured Ca2+ and SO4
2- concentrations were 

buffered by the gypsum present. This indicates that equilibrium has not yet been reached 

after 9 months of sulfate interaction. 

 

The composition of the reaction solutions for leached cement systems containing 25 wt% 

limestone is reproduced, see Fig. 5.13. The prediction indicates that leaching reduces the 

concentration of Ca, Na, and K as well as the OH- in the solution. The carbonate, aluminium 

and silicate concentrations in the solution are calculated to be higher in leached then in non 

leached cement systems (Figs. 5.12, 5.13).  

The concentrations of Ca, Na and K as well as OH- were found to be significantly lower in the 

systems which had undergone leaching before sulfate interaction (Fig. 5.13). This was due to 

the fact that portlandite and alkalies are reduced in the leached cement systems as 

mentioned in 5.1.4 and agrees with the modelling data.  
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Fig. 5.13: Predicted and experimental composition of the pore solution of an OPC 
cement system with 25 wt% limestone addition analysed after 3 months (empty 
symbols) and 9 months (filled symbols) leached before sulfate interaction. 

 

The concentration of carbonate in solution was determined to be slightly increased as 

indicated by the modelled data. Also for the leached systems the experimental data for the 
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pore solution composition reproduced the trends which were predicted by the thermodynamic 

model. 

Generally, in the absence of sulfate and at low sulfate concentrations modelled and 

measured data agreed well. In the subsystem where sulfate has been added, modelled and 

measured data did not yet agree after 9 months indicating that equilibrium has not been 

reached. 
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5.1.6 Microstrucural aspects 

The microstructure of the cement paste particles was investigated after 9 months of sulfate 

interaction on samples where 20 wt% SO4
2- (subsystem A) has been added and on samples 

which have been leached.  

 

• Sulfate interaction 

The observations on the cement paste particles showed that the samples had a quite 

inhomogeneous structure after sulfate interaction. After 9 months of sulfate interaction the 

cement paste exhibited an outer and inner layer (Fig. 5.14). The outer layer was found to be 

up to 40 µm thick, forming discontinuously at the paste particles. The outer layer was almost 

completely detached.  

a) b) 

Fig. 5.14: Backscattered electron images of cross section through cement paste particles of 
subsystem A after 9 months sulfate interaction at 8 °C. 

 

The outer layer was interspersed with microcracks mainly parallel to the surface which 

indicate the loss of cohesion and binding capacity in the microstructure. The microsanalysis 

of the needle like matrix of the outer layer revealed the presence of mainly Si, Ca and sulfate 

and only minor amounts of Al, the latter especially around clinker grains (Figs. 5.15, 5.16). A 

maximum sulfate content of 20 wt% SO3 by weight cement paste was determined in the 

outer layer. 

The detailed investigation of the outer layer showed that the fine grained matrix consisted of 

needles with a maximum length of 2 µm as well as some clinker and calcite grains. It was 

concluded, that the needles were thaumasite which replaced almost completely the hydrated 

outer layer 

outer layer 

inner layer  

clinker 

calcite 

calcite 
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cement paste. The coexistence of gypsum could not be verified or excluded. Based on 

microanalytical data there is some evidence for the presence of ettringite around remaining 

clinker grains (Fig. 5.15). 

 

a) b) 

  

Fig. 5.15: Backscattered electron images of the outer layer from OPC with 5 wt% limestone 
addition and EDS spectra of a) near clinker grain and b) needle like matrix. 

 

The inner layer was composed of an unchanged region in the center of the cement paste 

particle and a transition zone between the center and the outer layer characterised by 

increased sulfate contents and higher density. The microanalysis of the inner part showed 

that mainly Si, Ca and Al are present; Al mainly near or in the cement clinker grains (Figs. 

5.15, 5.16). A maximum sulfate content of 15 wt% SO3 by weight cement paste was 

determined at the transition zone between inner and outer layer. Generally, the sulfate 

uptake was detectable to a depth of 10 µm in P5 and 100 µm in P25 approaching a minimum 

value of 4 wt% SO3 in the center of the particles.  

ettringite 

thaumasite 

gypsum 

clinker 
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OPC with 5 wt% CaCO3 – 9 months Ca 

  

Si S 

  

Al Na 

Fig. 5.16: EDS analysis after 9 months sulfate interaction in subsystem A at 8 °C showing 
the qualitative element distributions of the inner and the outer layer. 

 

A more detailed analysis of parts of the transition zone between the unchanged center and 

outer layers showed that in many areas mainly Al, S and Ca are present (Fig. 5.17a). Based 

on microstructural data it was concluded that the topmost part of the transition zone is 

enriched with secondary ettringite forming preferentially near cement clinker grains (source 

of aluminium). The observed ettringite formation led to expansion and thus to the separation 

of parts of the cement paste as indicated by the white arrows (Fig. 5.17a). 
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a) 

b) 

Fig. 5.17: Backscattered electron images of the transition zone of cement paste particles from OPC 
with 5 wt% limestone addition and EDS spectra of a) ettringite and b) thaumasite enriched areas.  

 

The microanalysis further showed that the contact between transition zone and outer layer is 

quite sharp leading to ettringite and thaumasite enriched areas in close vicinity and also 

thaumasite and C-S-H (Fig. 5.17b).  

The formation of a sharp boundary between the two layers indicates, that the penetration of 

sulfate from the reaction solution into the cement paste was slower than the chemical 

alteration transforming the inner layer of the cement paste into the outer layer of sulfate 

phases. It was further concluded that the diffusion of sulfate into the cement paste was 

slowed down by the formation of secondary ettringite. The formation of surface parallel 

cracks in the transition zone allows further reaction to proceed with the necessary high 

sulfate concentrations for the formation of gypsum and thaumasite. 

clinker 

calcite 

inner C-S-H 

outer C-S-H 
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Thus, the speed of the reaction front was not controlled by the rather slow formation of 

thaumasite but by the diffusion of sulfate into the cement paste particles. In the case of a 

rather dense microstructure (low w/c ratio) it can be assumed, that without the formation of 

microcracks due to ettringite formation the movement of the reaction front would be even 

slower. The transformation of cement paste into thaumasite would be faster, if a) microcracks 

formed earlier due to lower cohesion of the cement paste, or b) the maximum ettringite 

formation did not block the entire pore space and therefore the sulfate uptake would be 

faster. In principle ettringite forms first as long as there was a source of aluminium available 

and when the SO3/Al2O3 ratio exceeds 3 thaumasite forms as observed in the outer layer. 

The reaction of sulfate with the cement particles was far from complete after 9 months 

exposure. This explained why the phase composition by using bulk analytical techniques 

were quite different compared to the modelled phase assemblages. Such that assemblages , 

e.g. (i) AFm phases have been detected where only AFt phases were predicted and (ii) 

gypsum was detected in all subsystems, the latter representing the outer layer of the cement 

paste particles, where the sulfate content was very high. However, since the SEM 

investigations of the PEA experiments were done after 9 months and not after 3 months of 

sulfate exposure, no obvious amounts of gypsum could be found. These observations 

confirmed the assumption that gypsum possibly acts as a source of sulfate during the 

precipitation of thaumasite as described in section 5.1.2. The observed possible 

transformation of the C-S-H phase into thaumasite was the reason for the loss of cohesion 

and the formation of the fine grained, needle like matrix in the outer layer as described by 

various authors [23, 24, 21, 25]. 
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5.2 Summary and conclusions 
 

On exposure to high sulfate concentrations monosulfate, monocarbonate and hemicarbonate 

reacted first to form ettringite. Subsequently, thaumasite precipitated at high sulfate contents. 

Experimental data as well as thermodynamic modelling indicated, that thaumasite can only 

be formed under conditions where the molar SO3/Al2O3 ratio in the cement system exceeds 

3. If less SO3 was added to the cement system, only ettringite was formed. 

In Portland cement systems with 5 wt% limestone addition, the amount of calcite limits the 

extent of thaumasite formation if more than approximately 10 wt% SO4
2- is present. In the 

case of 25 wt% limestone much more thaumasite can be formed and it was limited by the 

amount of sulfate added in the range studied. 

Gypsum was observed to form in parallel to or instead of thaumasite at high sulfate 

concentrations. In the experiments gypsum was formed initially since the formation of 

thaumasite was kinetically very slow. Gypsum acts as a source of sulfate for the precipitation 

of additional thaumasite. Thaumasite was found to be the last sulfate phase forming during 

sulfate interaction. 

The experimental results further show that limestone containing cement systems with both 

high and low C3A content can be affected by thaumasite formation. The C3A content was not 

found to have a significant influence on thaumasite formation.  

Low temperatures (8 °C) favour thaumasite formation. At lower temperatures thaumasite was 

formed faster. In addition, somewhat higher amounts of thaumasite were calculated to be 

stable at lower temperatures. 

Leaching reduced the amount of portlandite and increased the porosity of the cement paste 

systems. Furthermore leaching reduced the amount of alkalis and calcium in the cement 

systems resulting in lower pH values in the reaction solution. Thaumasite was also formed in 

leached cement systems. However, experimental and modelling results showed that in 

leached cement systems the amount of thaumasite formed is smaller than in unleached 

cement systems, whereas secondary gypsum and ettringite formation are favoured under 

these conditions. 

The progressive equilibrium approach PEA used to investigate the chemical aspects of 

sulfate attack appeared to be a good tool for simulating various levels of sulfate uptake due 

to an external sulfate attack. Generally, thaumasite was detected were it has been modelled 

to be a stable phase in significant amounts. However, the experimental setup, especially the 



Chapter 5: Cement paste experiments 
 
 

 84

selection of a w/c ratio of 0.35 in this study did not allow to reach equilibrium after 9 months 

of sulfate interaction.  
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6 Mortar experiments 
The following chapter describes the investigations on external sulfate attack on mortar 

samples with different binder systems. The results evaluate the influence of sulfate 

concentration, storage temperature, time, limestone addition and clinker type on the 

performance of the mortar samples.  

 

6.1 Physical and microstructural aspects of sulfate attack 
The consequences of external sulfate attack were investigated by traditional test methods, 

i.e. length and mass change. Furthermore, a newly developed, surface sensitive ultrasonic 

method was used to determine successive changes in the topmost surface layer of the 

mortar samples during sulfate attack. The macroscopical changes are discussed and 

compared with microstructural findings. 

 

6.1.1 Expansion and mass change 

The results of the length change measurements of mortar samples are shown in Fig. 6.1. 

The measurements indicate that a limestone addition of 5 wt% (H5, P5) reduced expansion 

at both high (30g SO4
2-/l) and a low (3g SO4

2-/l) sulfate concentration. Higher amounts of 

limestone addition, i.e. 25 wt% in P25 generally led to high expansion during sulfate 

exposure. The results further showed that up to about 56 days expansion of the samples 

stored at 3g SO4
2-/l days was close to the expansion measured for the reference samples 

stored in limewater, (Fig. 6.1 a, b). 

The measurements showed further that cement systems with low C3A (H0, H5) generally had 

a slightly higher expansion at the beginning of sulfate exposure than the cement systems 

with high C3A content (P0, P5). The higher initial porosity of the HS cement systems could 

lead to accelerated sulfate ingress as indicated by the reference samples stored in 

limewater. 

The evolution of expansion had a different behaviour depending on the sulfate concentration 

in solution (Fig. 6.1). At high sulfate concentration (30g SO4
2-/l) the mortar samples 

investigated showed an exponentially accelerating expansion behaviour which started after 

28 to 56 days of sulfate exposure (Figs. 6.1 e, f). The samples stored at low sulfate 

concentration showed a relative moderate and steady expansion during the first 91 days 

(Figs. 6.1 c, d). Significant differences were observed for samples H0 and H5, P0 and P5 as 

well as P25 respectively after 91 days of sulfate interaction at 20 °C.  
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At 8 °C only P25 was different compared to the other samples. The observed expansions 

were slightly higher at 20 °C than at 8 °C indicating that sulfate interaction, diffusion and 

reaction of sulfate ions might be accelerated at higher temperatures. However, at low 

temperatures thaumasite formation may participate in sulfate expansion. 

 

a) limewater at 20 °C b) limewater at 8 °C 
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Fig. 6.1: Expansion of HS and OPC mortar samples immersed in Na2SO4 solution at given 
temperature and sulfate concentration and reference samples stored in saturated limewater. 
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The corresponding investigations on the mass change of the mortar samples (Fig. 6.2) 

indicate that at high sulfate concentration and 20 °C in solution, limestone addition of 5 wt% 

(H5, P5) reduced the sulfate induced increase of mass compared to the reference samples 

without limestone addition (H0, P0), see Fig. 6.2e. Limestone addition of 25 wt% (P25) led to 

a significant increase in mass after 91 days of sulfate exposure at 20 °C.  
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Fig. 6.2: Mass change of HS and OPC mortar samples immersed in Na2SO4 solution at given 
temperature and sulfate concentration and reference samples immersed in saturated limewater. 
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The initial higher porosity determined for cement systems without and with high amounts of 

limestone addition, led to a high sulfate induced mass increase only at high sulfate 

concentration. 

The results further showed that HS cement systems (low C3A) had constantly higher, almost 

linear increase in mass than the OPC cement systems at high sulfate concentration. This 

indicated that the higher initial porosity as determined for the HS cements led to higher 

sulfate induced mass increases right from the beginning of sulfate exposure. The evolution of 

the mass change with time showed a significant influence of the sulfate concentration. In 

comparison to the reference samples stored in limewater, (Figs. 6.2 a, b), the samples stored 

at low sulfate concentration showed a slight but constant increase in mass with time 

indicating a constant sulfate induced mass increase during sulfate interaction (Figs. 6.2 c, d). 

The mortar samples stored at high sulfate concentration had an almost linear increase in 

mass during sulfate exposure (Fig. 6.2 e, f). 

The investigations on the mass change further showed an influence of storage temperature 

on sulfate interaction (Figs 6.2 e, f). At 8 °C the mortar samples with limestone containing 

cement systems showed a significant drop in mass between 91 to 180 days (P25) and 180 to 

270 days (H5, P5) indicating a significant loss of material. Thereby, increasing amounts of 

limestone addition (P25) led to an increased sulfate induced mass decrease. This indicated 

that the observed mass loss could be due to the formation of thaumasite and the successive 

loss of material due to the loss of cohesion as observed macroscopically, see section 6.1.3.  

The comparison of the mass change and the expansion of the mortar samples at both 8 and 

20 °C showed that in the beginning of sulfate exposure the weight gain was increased while 

the expansion was moderate (Fig. 6.3). This suggests that during the first 3 months the 

uptake of sulfate results mainly in the filling of pores and voids. After approximately 91 days, 

expansion became more pronounced while the mass gain slowed down indicating the 

formation of cracks. This effect started approximately after 3 months at high sulfate 

concentration and after 6 months at low sulfate concentration in solution (Fig. 6.3 a, b). 

However, mortar samples stored at 30g SO4
2-/l showed a higher mass gain to expansion 

ratio than the mortar samples stored at 3g SO4
2-/l. 

At 8 °C the mortar samples containing carbonate showed a significant drop in mass whereas 

the expansion level remained similar independent of the storage temperature. These 

observations indicated progressive mass loss during sulfate exposure possibly due to 

thaumasite formation as mentioned above (Fig. 6.3 a). 
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Moreover, at low sulfate concentration in solution the HS mortar samples showed a lower 

total expansion compared to the OPC mortar samples after 270 days exposure whereas at 

high sulfate concentration the opposite was observed (Fig. 6.3 a, b). 
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Fig. 6.3: Mass change versus expansion of HS and OPC mortar samples 
immersed in Na2SO4 solution. The lines are intended as eye guides only. 
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6.1.2 Ultrasonic surface velocity 

The ultrasonic measurements were done as described in Chapter 3, section 3.3.2 and the 

equipment is shown in the Appendix A 5 for both 8 and 20 °C. 

The ultrasonic surface velocity of the Leaky Rayleigh wave cLR was measured periodically 

according to the monitoring program of the mortar samples during sulfate exposure. The 

results of the ultrasonic measurements are shown in Fig. 6.4. The ultrasonic method allows 

to follow the degradation processes of the topmost layer of the samples surface (1- 2 mm). 

The signal is not affected by the unchanged bulk of the samples. 

The investigations showed that in the beginning of sulfate exposure the Leaky Rayleigh wave 

velocity mainly increased indicating an densification of the surface. This effect was also 

observed for the reference samples stored in limewater, (Figs. 6.4 a, b). As sulfate exposure 

continued the Leaky Rayleigh wave velocity started to decrease. The observed reduction of 

the surface density possibly resulted from progressive disintegration and a decrease of the 

density of the microstructure.  

The results further showed that in case of 5 wt% limestone addition in the cement systems 

(H5, P5) the relative values of Leaky Rayleigh wave velocity are generally high (Figs. 6.4a-

d). That indicates a generally dense microstructure compared to the cement systems without 

limestone addition. The decrease of the density in the surface of the mortar samples was 

smaller in samples with 5 wt% limestone addition. High amounts of limestone addition as in 

P25 led to an accelerated decrease in Leaky Rayleigh wave velocity which indicates a 

deterioration of the surface layer of the sample due to sulfate attack. 

The sulfate concentration in solution also influenced the development of the Leaky Rayleigh 

wave velocity during exposure. Mortar samples stored at high sulfate concentration (30g 

SO4
2-/l) showed an accelerated reduction of the surface density after 56 days at 20 °C of 

sulfate interaction (Figs 6.4e, f). At low sulfate concentration (3g SO4
2-/l) the measured 

ultrasound velocity did not show significant differences of the investigated mortar samples up 

to 180 days (Figs. 6.4 c, d) except the P25 mortar samples with 25 wt% limestone addition. 

At low temperature (8 °C) the mortar samples with 5 wt% limestone addition (H5, P5) 

showed an increased reduction of the surface density after 91 days of sulfate exposure at 

30g SO4
2-/l (Fig. 6.4f). At 20 °C the mortar samples with 5 wt% limestone addition (H5, P5) 

had a higher surface density than the mortar samples without limestone addition. 

The measurements of the Leaky Rayleigh wave velocity showed a relatively high variation of 

the measurements especially at the early age of sulfate exposure. The determined 

ultrasound velocities of the mortar samples did not exhibit significant differences in the 

beginning of sulfate exposure. 
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Fig. 6.4: Relative Rayleigh wave velocity cLR of HS and OPC mortar samples immersed in Na2SO4 
solution at given temperature and sulfate concentration. Reference samples immersed in saturated 
limewater. 
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The comparison of the Leaky Rayleigh velocity and the expansion of mortar samples stored 

at 8 and 20 °C at high sulfate concentration are given in Fig. 6.5. The results show that in the 

beginning of sulfate exposure the density of the surface layer in the mortar samples 

increased accompanied by a first moderate expansion of the whole sample.  
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Fig. 6.5: Rayleigh velocity versus expansion of HS and OPC mortar 
samples immersed in Na2SO4 solution (30g SO4

2-/l) at 8 and 20 °C. The 
lines are intended as eye guides only. 

 

As sulfate interaction proceeded the density of the surface layer was decreased whereas the 

expansion of the mortar samples was increased indicating the extended sulfate degradation 

due to crack formation and disintegration of the sulfate layer, see also Appendix A 5 (Figs. A 

5.3-5.8). After 91 days a generally linear dependency between Leaky Rayleigh velocity and 

expansion of the mortar samples was observed indicating the progress of sulfate interaction 

with exposure time. Thereby, carbonate containing mortar samples (H5, P5, P25) showed a 

somewhat higher reduction in the surface densities when stored at low temperatures than the 

reference mortar samples (H0, P0). These observation indicate that carbonate containing 

mortar samples stored at low temperatures (8 °C) are characterised by a certain surface 

softening as observed macroscopically in section 6.1.3 or given in the Appendix A 5 (Figs. A 

5.3-5.8). 

Generally, this lower surface density of samples stored at low temperatures correlates well 

with the observed mass loss of these samples (section 6.1.1) due to the formation of 

thaumasite. The disintegration of the microstructure due to thaumasite formation was 

confirmed by SEM microscopy as investigated in section 6.1.4.  
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6.1.3 Visual appearance 

The visual inspection of the mortar samples was carried only for the samples stored in 

sulfate solution during exposure. The observation are summarised in Table 6.1. Photos of 

selected samples stored in sulfate solution under different conditions are presented in Fig. 

6.6. 

The samples stored at high sulfate concentration (III), i.e. 30g SO4
2-/l showed first signs of 

deterioration already after 56 days of exposure. The samples stored at low sulfate 

concentration (II), i.e. 3g SO4
2-/l did not show any visual signs of sulfate sulfate attack up to 

270 days (Fig. 6.6c). Therefore, the observations below concern mainly the samples stored 

at high sulfate concentration. 

 

  

 

 

 

Fig. 6.6: Selected mortar samples of HS (H) 
and OPC (P) cement systems stored in II) 3g 
SO4

2-/l and III) 30g SO4
2-/l in sodium solution at 

8 and 20 °C with 0, 5 and 25 % limestone 
addition (LF) after 365 days. 

a – b) HS, OPC, no CaCO3 

c – d) OPC, 5 wt% CaCO3 

e – f) OPC, 25 wt% CaCO3 

 

Macroscopically, sulfate deterioration started with spalling and crack formation especially at 

the edges of the samples (Figs. 6.6 a, b). Sulfate deterioration also led to curvature of the 

mortar samples (Fig. 6.6 d) indicating imperfections during fabrication of the samples and a 

non-uniform expansion. A complete catalog of macroscopical observations during sulfate 

exposure of up to one year is given in Appendix A5 (Figs. A 5.3- 5.8). 

 

a 

b 

c 

d 

e) 

d f) 
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The influence of storage temperature was found to be significant for cement systems 

containing limestone (Figs. 6.6 e, f). It was observed that at 8 °C storage temperatures the 

mortar samples containing limestone showed a significant softening starting at the sample 

surface. The damage due to sulfate attack was increased with 25wt% limestone in the 

cement as shown in (Fig. 6.6f). 

Generally, a longer time of sulfate immersion was required for samples containing 5 wt% 

limestone (H5, P5) until sulfate deterioration was visible. 

The two types of cement clinkers used (HS and OPC) did not show any apparent visible 

difference in the extent of damage of the mortar samples (Figs. 6.6 a, b). In all cases, the 

deterioration was progressively enhanced starting with crack formation, spalling and finally 

deformation and finally destruction of the samples. A summary of visual observations is given 

in Table 6.1. 

Table 6.1: Appearance of mortar samples immersed in Na2SO4 for up to one year at given 
temperature and sulfate concentration. 

sulfate concentration 
sample 

3 SO4
2-/l 30 SO4

2-/l 

H0 no visible deterioration microcracks at the edges after 91d 

H5 no visible deterioration spalling along edges after 180d,            
softening extensive spalling after 270d 

P0 no visible deterioration visible cracks along the edges after 91d,     
signs of curvature after 270 d 

P5 thin coating at the surface crack formation, spalling along surface after 91d, 
softening at edges after 270d 

8 
°C

 

P25 some spalling after 180d, extensive 
spalling, destruction after 270d 

spalling, crack formation after 56d,         
softening after 180d 

    

H0 no visible deterioration begin of spalling at the edges after 56d 

H5 no visible deterioration spalling, crack formation at edges after 180d 

P0 small crack formation along edges 
after 270d 

crack formation, spalling after 91d,              
signs of curvature after 270d 

P5 thin coating at the surface visible cracks, small spalling at edges after 180d, 
sign of curvature after 270d 

20
 °

C
 

P25 crack formation along edges after 
270d, spalling at edges 

crack formation after 56d,                               
signs of curvature after 91d 
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6.1.4 Sulfate uptake and relevant phases 

For the characterisation of the mortar samples, SEM and EDS analysis were used to 

investigate the evolution of the microstructure and the changes in the phase assemblage 

under sulfate attack. 

In the presents study the sulfate uptake was determined by EDS as described in section 3.4 

on selected samples according to test conditions after 56 days of sulfate interaction at high 

sulfate concentration (30g SO4
2-/l) and field conditions after 270 days at low sulfate 

concentration (3g SO4
2-/l) for Portland cement systems with 0, 5 and 25 wt% limestone 

addition.  

The hydrate phases present in the specific regions (core, transition zone and surface region) 

are indicated qualitatively based on the EDS analysis. The error bars indicate (i) the area (up 

to 300µm) covered by the beam during the EDS analysis and (ii) the distribution of the 3 

measurements at one specific depth. 
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Fig. 6.7: Sulfate profile of mortar samples and phase assemblage 
(qualitatively) in Portland cement systems containing up to 25 wt% 
limestone filler. 

Sulfate interaction was investigated from the surface towards the core of the mortar samples. 

The results show that three different zones can be distinguished if mortar was exposed to 

sulfate solution. These zones are the unaltered core, a sulfate transition zone and the 
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surface region. Each of these zones was found to be characterised by different phase 

assemblages and specific microstructural appearance as shown in Fig. 6.9. 

At high sulfate concentration in solution the samples with 5 wt% limestone addition showed a 

sulfate maximum of about 18 wt% SO3 by weight cement paste which was limited close to 

the surface (≤ 0.4 mm) indicating dense microstructure. The samples without limestone 

addition exhibited a sulfate maximum of about 20 wt% SO3 by weight cement paste which 

was observed to be at 0.5 mm depth and the sulfate ingress was determined up to 2.5 mm in 

depth. In case of 25 wt% limestone addition the sulfate uptake led to a distinct sulfate 

maximum up to 1.0 mm depth and the sulfate ingress was determined up to 3 mm in depth. 

The results show that limestone addition of 5 wt% reduced the sulfate uptake in the cross 

section of the mortar samples compared to the reference sample without limestone, both at 

low and high sulfate concentration (Figs. 6.7, 6.8). 
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Fig. 6.8: Sulfate profile of mortar samples and phase assemblage 
(qualitatively) in Portland cement systems containing up to 25 wt% 
limestone filler. 

At low sulfate concentration in solution no distinct sulfate maximum could be determined for 

the investigated mortar samples (Fig. 6.8). The total sulfate absorption was determined to be 

higher between 1 – 3 mm depth whereby the samples with 5 wt% limestone showed lower 

and the samples with 25 wt% limestone showed higher sulfate uptake than the reference 

without limestone addition. It was observed that after 270 days, portlandite was depleted 
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within the outer 1.5 mm. Thus, portlandite was reduced to greater depths in the investigated 

samples than in samples after 56 days (Figs. 6.7, 6.8).  

At 56 days in 30g SO4
2-/l, some indication for the precipitation of thaumasite was found in the 

carbonate containing cement systems stored at 8 °C (Fig. 6.7). In the whole cross section of 

the mortar samples, thaumasite could only precipitate in regions with high sulfate contents of 

≥ 15 wt% SO3 at the sample surface in the presence of gypsum. No indication for the 

precipitation of thaumasite was found at lower sulfate contents (≤ 10 wt% SO3) by weight 

cement paste (greater depths), at low sulfate concentration in solution and in samples 

without limestone addition. 

 

6.1.5 Microstructure and microanalysis 

The sequence of changes observed in the microstructure of the different mortar samples was 

generally similar. This was exemplified for a Portland cement mortar without limestone 

addition (see below and Fig. 6.9). The microstructure of the other samples is reported in the 

Appendix A 6 (Figs. A 6.3 and 6.4). 

The microstructure of the unaltered core (4.0 – 5.0 mm depth from surface) did not show 

any signs of damage due to sulfate attack. The core region was characterised by a dense 

and compact microstructure and a good bonding between cement paste and aggregates. 

Occasional cracks as shown in Fig. 6.9 a might have originated from sample preparation. 

The sulfate transition zone (1.0 – 3.0 mm depth from surface) showed first signs of changes 

in the microstructure of the cement paste. In this zone, first signs of transformation reactions 

were observed indicating increasing sulfate contents (Fig. 6.9 b). The zone appeared to be 

less compact with visually darker areas in the cement paste indicating some reduction of Ca. 

The depth of this zone was found to dependent on the permeability or in other words the 

density of the cement system as shown in the sulfate uptake (Figs. 6.7, 6.8). 

In the surface region (0 – 1.0 mm depth from surface) of samples, the microstructure was 

characterised by crack formation forming between or around aggregates. The cracks were 

either parallel or perpendicular to the sample surface. The mortar samples with 5 wt% 

limestone addition (H5, P5) showed the smallest crack depths (≤ 0.5 mm) whereas the 

samples with 25 wt% limestone addition (P25) showed significantly deeper cracks of up to 

1.0 mm during sulfate exposure. The reference samples without limestone addition (H0, P0) 

showed cracks depths between 0.5 and 0.8 mm. The sulfate concentration in solution also 

influenced the crack width; widths up to 10 µm where observed at 30g SO4
2-/l already after 

56 days and widths up to 4 µm were observed at 3g SO4
2-/l after 270 days. The surface 
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region appeared to be strongly influenced by leaching of Ca and disintegration of the 

microstructure due to sulfate transformation reactions (Fig. 6.9c).  

a) unaltered core (4.0 – 5.0 mm) b) transition zone (1.0 – 3.0 mm) 

c) surface region (0 – 1.0 mm) 

 

Figure 6.9: Typical microstructure of specific regions in mortar samples immersed in Na2SO4 
solution as shown for a Portland cement mortar without limestone addition.  

 

A more detailed analysis of the microstructure of selected experiments with element ratios 

S/Ca, Al/Ca and Si/Ca was carried out by EDS as described in Chapter 3, section 3.4. The 

stoichiometric composition of the pure phases was used to evaluate the phase assemblages. 

For the analyses specific regions of the core, the transition zone and the surface region were 

investigated. Further data are also provided in Appendix A 5 (Figs. 5.9 – 5.13). 
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• P0 at 30g SO4
2-/l after 56 days (8 °C) 

The results from the microanalysis of the OPC mortar without limestone addition showed that 

in the core of the sample (5 mm depth), beside portlandite also monosulfate was found to be 

present as AFm phase (Fig. 6.10c). Ettringite was identified in minor amounts intermixed 

within the C-S-H phase.  

In the transition zone at 1.5 mm depth, increasing amounts of ettringite were detected 

indicating the progress of sulfate attack into the mortar sample. That indicates that more and 

more monosulfate was transformed into ettringite. The phase analysis further showed that 

portlandite was still present in the transition zone after 56 days of sulfate interaction.  

In the surface area at 0.5mm depth, the analysis showed that gypsum was present and 

accompanied by the depletion of portlandite. Gypsum was detected to be partly intermixed 

within the C-S-H phase. In the surface region no indication for thaumasite was found for the 

mortar without limestone addition (Fig. 6.10a).  

The analysis of C-S-H phase showed that part of the Ca was reduced in the surface region 

indicating leaching effects and the consumption of portlandite due to the formation of 

secondary sulfate phases (Fig. 6.11a). 

 

• P25 at 30g SO4
2-/l after 56 days (8 °C) 

The microanalysis of the mortar sample containing 25 wt% limestone showed that in 

carbonate containing cement systems, monocarbonate was present in the core region as 

stable AFm phase beside portlandite, traces of ettringite and C-S-H (Fig. 6.10c). 

The analysis further showed that in the transition zone at 1.5 mm depth, more ettringite was 

detected indicating sulfate uptake and thus, the formation of secondary ettringite from 

monocarbonate, consuming sulfate and calcium. Portlandite was still detectable, not being 

completely leached or consumed by the transformation from monocarbonate into ettringite 

(Fig. 6.10b). 

The maximum ettringite formation was present in the surface region partly intermixed with 

the C-S-H phase. At 0.5 mm depth from the surface no portlandite was found, whereas the 

maximum gypsum content was detected. Beside that, some indication for the presence of 

thaumasite was found. At that stage of deterioration (56 days), thaumasite possibly first 

precipitated together with gypsum intermixed in the C-S-H phase as indicated by SEM 

microscopy and EDS (Figs. 6.10a, 6.17). 
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P0 without CaCO3 P25 with CaCO3 

a) unaltered core (5 mm) d) unaltered core (5 mm) 
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Figure 6.10: Phase assemblages of a Portland cement mortar a-c) without limestone addition and 
d-f) with 25 wt% limestone addition after 56 days in Na2SO4 solution (30g SO4

2-/l) at 8 °C. CH = 
portlandite; Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = monosulfate; Th = 
thaumasite 
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The analysis of the C-S-H phase showed the depletion of Ca towards the sample surface. 

This observation seems to indicate the consumption of Ca due to the formation secondary 

sulfate phases (gypsum, ettringite) and the depletion of Ca due to leaching (Fig. 6.11 b). 

P0 without CaCO3 P25 with CaCO3 

a) C-S-H phase b) C-S-H phase 
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Figure 6.11: Analysis of the C-S-H phase of Portland cement mortars a) without limestone addition 
and b) with 25 wt% limestone addition after 56 days sulfate exposure (30g SO4

2-/l) at 8 °C 

 

• P0 at 3g SO4
2-/l after 270 days (20 °C) 

The microanalyses of the mortar sample without limestone addition immersed for 270 days at 

3g SO4
2-/l in solution are shown in Fig. 6.12. The results show that the core region remained 

unchanged with monosulfate as the stable AFm phase and portlandite as well as minor 

amounts of ettringite present. The latter was partly intermixed in the C-S-H phase. 

In the transition zone at 1.5 mm depth, somewhat more ettringite than monosulfate was 

detected indicating the progress of sulfate interaction with time. No portlandite could be 

detected in this area. It was completely consumed either by phase transformation or by being 

leached as sulfate exposure proceeded. 

In the surface region slightly less ettringite was determined from EDS than in the transition 

zone. It indicates that ettringite tends to get leached with ongoing sulfate interaction         

(270 days) in the surface regions. In contrast to the samples immersed at 30g SO4
2-/l at low 

sulfate concentration no gypsum was found in the surface area. The absence of portlandite 

in the surface area at low sulfate concentration was caused by the formation of ettringite as 

well as leaching.  

At 270 days the analysis of the C-S-H phase showed the influence of leaching between the 

core and the surface region. The results show that the C-S-H in the surface region was 

somewhat more affected by leaching after 270 days than after 56 days (Figs. 6.11, 6.12). 
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P0 without CaCO3 

a) unaltered core (5 mm) b) transition zone (1.5 mm) 
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Fig. 6.12: Phase assemblages of a Portland cement mortar without limestone addition after 270 days 
of sulfate exposure (3g SO4

2-/l) at 20 °C. CH = portlandite; Ett = ettringite; G = gypsum; Mc = 
monocarbonate; Ms = monosulfate; Th = thaumasite 

 

• Ettringite formation 

Secondary ettringite formation was observed in the regions of increased sulfate 

concentration in the cement paste (5 – 10 wt% SO3) which corresponds to the conditions in 

the transition zone. In this region, secondary ettringite was observed to precipitate close to 

the cement grain particles intermixed with the C-S-H phase (Fig 6.13). This ettringite, 

intermixed with the C-S-H phase in the sulfate enriched cement paste of the transition zone 

(1.2 mm depth) might be expansive as indicated by the small cracks forming in the matrix of 

the microstructure. 

At higher sulfate contents in the cement paste (10 – 20 wt% SO3), i.e. at the surface region of 

the mortar samples, secondary ettringite was increasingly observed filling voids, cracks or 

space around aggregates (Fig. 6.14). Although, the ettringite formation was extensive in the 

surface region at about 0.5 mm in depth, the observed ettringite formation might be less 

CH 
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expansive when filling space, voids or already existing cracks during sulfate exposure. The 

observed ettringite formation at high sulfate contents might expand already existing cracks 

and thus accelerate sulfate interaction. 

Fig. 6.13: Ettringite formation close to cement 
clinker grains in P25 mortar after 56 days in 
30g SO4

2-/l at 1.2 mm depth. 

Fig. 6.14: Ettringite formation in pores, voids and 
cracks in P0 mortar after 180 days after 180 days in 
30g SO4

2-/l at 0.5 mm depth. 

 

Substantial depots of secondary ettringite were also observed in the surface region at 0.8 

mm depth (10 wt% SO3) for samples immersed in 3g SO4
2-/l after 270 days (Fig. 6.15). The 

ettringite found intermixed in the C-S-H phase or close to cement clinker grains might be 

expansive as indicated by the observed cracks observed and the expansion measured as 

described in section 6.1.1.  

 

6.15: Ettringite formation intermixed in the C-S-H phase and close to former cement clinker 
grains in P0 mortar after 270 days in 3g SO4

2-/l at 20 °C in 0.8 mm depth. 

 

Beside that, some indication of secondary ettringite formation from the C4AF phase in HS 

cement systems (low C3A) was observed at sulfate contents between 10 – 15 wt% SO3 (Fig. 

ettringite 

ettringite 

ettringite 
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6.15). Although substantial depots of secondary ettringite were observed in that context in 

the cement paste, no indication of expansion and crack formation was found in the matrix, 

see Appendix A 6 (Figs. A 6.5 – 6.6). 

 

• Gypsum formation 

Gypsum was observed to precipitate in bands parallel to the surface, around aggregates or 

pores (Figs. 6.16a, c). In the sections, gypsum was detected of the surface of the samples, in 

regions where the maximum ettringite formation was observed. Gypsum was present in the 

areas where high amounts of SO3 (15-20 wt%) were found and only in samples stored at 

high sulfate concentration in solution (30g SO4
2-/l).  

 

The formation of gypsum with increasing sulfate contents in the mortar samples was also 

observed at regions where portlandite is present (Fig. 6.16b). Gypsum also formed 

intermixed within the C-S-H phase.  

 

Fig. 6.16: Gypsum formation in a) H0 mortar as surface parallel bands, b) P25 mortar from 
portlandite in C-S-H both 56 days and c) P0 mortar filling air pore after 180 days. 

a b

c 

gypsum 

gypsum 

portlandite 

quartz 
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The microstructural investigations further showed that massive gypsum formation e.g. in 

pores led to the formation of some radial cracks indicating that some stress was generated 

especially at later ages (Fig. 6.16c) during sulfate exposure.  

At low sulfate concentrations in solution (3g SO4
2-/l), no gypsum could be detected in the 

investigated mortar samples. 

 

• Thaumasite formation 

After 56 days of sulfate interaction first indications for the precipitation of thaumasite were 

found in the regions where high amounts of SO3 (15 – 20 wt%) were present. At that time 

rather small amounts of thaumasite were formed intermixed with gypsum, ettringite, calcite 

and the C-S-H phase in mortar samples stored at 8 °C (Fig. 6.17).  

 

Fig. 6.17: Microstructure of the surface region of an OPC cement with 5 wt% limestone addition 
after 56 days stored in 30g SO4

2-/l at 8 °C and EDS spectra of ettringite enriched area and first 
precipitation of thaumasite.  

 

After 180 days of sulfate interaction, the selected mortar samples showed clear signs of 

thaumasite formation. It was found that the microstructure of carbonate containing mortar 

samples (H5, P5, P25) was characterised by the formation of a fine, needlelike compound 

forming within the C-S-H phase (Figs. 6.18a, b). These observations were made in the 

surface regions of the samples.  

The microstructure of the samples was found to be already damaged from previous sulfate 

deterioration, i.e. ettringite formation as indicated by the crack formation and mentioned 

earlier (Fig. 6.18a). 

calcite 

gypsum 
C-S-H 
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The microanalysis of these structures revealed mainly Ca, S and Si to be present beside 

some minor amounts of Al. The latter, Al was found especially in regions close to former 

clinker grains. 

 

Fig. 6.18: Microstructure of the surface region of a) OPC and b) HS cements with limestone 
addition after 180 days stored in 30g SO4

2-/l at 8 °C and EDS spectra of thaumasite enriched areas. 

 

It was found that the fine, needle-like structures indicating enrichments of thaumasite 

preferentially formed within the C-S-H with gypsum depots present (Fig. 6.18a, b). Beside 

that, parts of the microstructure indicate preferred regions of ettringite formation close to 

clinker grains (Fig. 6.18b).  

Generally, the observed transformation of the C-S-H phase corresponded to a complete loss 

of cohesion of the cement paste and a structural breakdown of the mortar samples beginning 

at the surface of the samples as mentioned in section 6.1.3. 

 

 

ettringite 

calcite 

thaumasite 

gypsum 

thaumasite 

a b 
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The overview of the hydrate phases of the investigated mortar samples of OPC and HS 

cement systems (Table 6.2) showed that with increasing sulfate content towards the sample 

surface, the AFm phases (monosulfate, monocarbonate) are transformed into ettringite. At 

270 days, these reactions were observed to occur at greater depths in the mortar samples 

stored in sulfate solution with low sulfate concentration than in mortar samples stored in high 

sulfate solution after 56 days. At that age, ettringite was still present in the surface regions. 

At high sulfate concentration in solution, gypsum was detected to be present in all mortar 

samples between 10 – 20 wt% SO3 by weight cement paste (surface region) whereas 

accordingly portlandite was absent from these regions. Gypsum did not precipitate in the 

mortar samples stored at low sulfate concentration. 

 

Table 6.2:  Summary of investigated mortar samples immersed in Na2SO4 solution at given   
temperature and sulfate concentration; C-S-H and calcite assumed to be present in all 
samples. 

30g SO4
2-/l after 56 days 

sample affected surface unaltered core 

(H5) gypsum, ettringite, thaumasite portlandite, monocarbonate, ettringite 
   

P0 gypsum, ettringite portlandite, monosulfate, ettringite 

(P5) gypsum, ettringite, thaumasite portlandite, monocarbonate, ettringite 

8 
°C

 

P25 gypsum, ettringite, thaumasite portlandite, monocarbonate, ettringite 

(H0) gypsum, ettringite portlandite, monosulfate, ettringite 
   

(P0) gypsum, ettringite portlandite, monosulfate, ettringite 
   

20
 °

C
 

(P25) gypsum, ettringite, thaumasite portlandite, monocarbonate, ettringite 

3g SO4
2-/l after 270 days 

P0 ettringite portlandite, monosulfate, ettringite 

(P5) ettringite portlandite, monocarbonate, ettringite 

20
 °

C
 

(P25) ettringite portlandite, monocarbonate, ettringite 

  
 italic = small amounts 

() = results refer to Appendix A 5 (Figs. A 5.9 – 5.13) 
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6.2 Discussion 
 

The results presented here, indicate that sulfate attack on Portland cement mortars is a 

progressive phenomena starting at the surface of the samples. This agrees with the 

observations of Taylor and Gollop [1]. Based on the results presented here, physical, 

chemical and microstructural aspects play an important role.  

 

• Physical aspects 

The observed increase of the surface velocity of the Leaky Rayleigh wave can be explained 

by the densification of the microstructure. The densification is caused by the formation of 

secondary sulfate phases like gypsum and ettringite. With ongoing sulfate exposure the 

extended influence of secondary sulfate phases, e.g. thaumasite, cracks and leaching, leads 

to microstructural disintegration and reduces ultrasound surface velocity as discussed in 

detail by Neuenschwander et al. [2]. 

The results showed that in the beginning of sulfate attack the uptake of sulfate results mainly 

in the filling of pores and voids and the increase in mass and length were almost linear. Later 

during sulfate attack, when all available space was filled by the formation of sulfate phases 

expansion became more pronounced whereas the mass gain was slowed down. 

The monitoring techniques of length, mass change and ultrasound showed that limestone 

addition of 5 wt% by weight cement with high and low C3A content, physically improved the 

resistance against sulfate attack at ambient temperatures (20 °C). However, at low 

temperatures (8 °C), limestone addition of 5 wt% was disadvantageous and sulfate attack 

was characterised by a certain softening of the samples surface. These findings agree with 

the investigation of Irassar et al. [3] and Higgins [4]. High amounts of limestone addition of 25 

wt% led to accelerated deterioration during sulfate interaction independent of storage 

temperature and sulfate concentration in solution.  

The intensity of sulfate deterioration processes depended on the initial porosity of the mortar 

samples. Cement systems with 5 wt% limestone addition had a lower capillary and total 

porosity. Thus the sulfate uptake was somewhat lower and reduced to the topmost layer of 

the mortar samples. These findings are supported by the findings from Stark and Wicht [5] 

and Kalinowski and Trägardh [6], who found that about 5 wt% limestone addition led to a 

decreased permeability of the investigated cement systems.  
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In the case of 25 wt% limestone addition, the higher capillary porosity led to a higher sulfate 

uptake. Higher amounts of limestone addition (≥ 25 wt%) in cement systems led to higher 

permeability at equivalent water/cement ratios. These findings agree with the investigations 

of Irassar et al [3] and Torres et al [7].  

 

• Chemical aspects 

The investigations on the chemical influence of limestone addition during sulfate interaction 

in samples with limestone addition showed the conversion of monocarbonate into ettringite. 

Cement systems without limestone addition showed the conversion of the monosulfate 

present into ettringite.  

The results further showed that chemical composition of the clinker e.g. low C3A content in 

the cement systems, did not necessarily protect the mortars from sulfate deterioration. In the 

present study, HS (low C3A) and OPC (high C3A) cement systems partly showed an 

accelerated sulfate degradation especially at high sulfate concentration. Thus, as also 

observed by Monteiro at al. [8] , the initial porosity (permeability) of the cement system 

seemed to have a major impact on the failure of the samples during sulfate attack. 

The sulfate concentration in solution was found to significantly influence the performance of 

the mortars during sulfate attack, independently from the type of cement clinker (low and 

high C3A) used. At high sulfate concentration (30g SO4
2-/l), the deterioration processes were 

found to be accelerated and gypsum is formed. The Wittekindt test [9] conditions, used here 

do not represent real situations of sulfate exposure under field conditions, where lower 

sulfate concentrations are present, Maltais et al. [10]. At low sulfate concentration (3g SO4
2-

/l), the deterioration processes were somewhat slower and no gypsum formation was 

detected. These observations agreed with the investigations from Marchand et al. [11], who 

reported that at low sulfate concentration gypsum is rarely observed. 

 

• Microstructure  

At the beginning of sulfate interaction, ettringite precipitated mainly intermixed within the C-S-

H phase or close to cement grain particles. The observed precipitation of secondary ettringite 

might have been the cause for the initial expansion due to the confinement in the 

microstructure leading to first crack formation as noted by Gollop and Taylor [12].  
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Later during sulfate interaction, ettringite formation reached the maximum near the surface 

region. The ettringite crystals forming in cracks or voids do not necessarily generate these 

cracks as reported by Kollmann et al [13-15] but can lead to a widening of already existing 

cracks and consequently accelerate sulfate attack. These observations agree with the 

findings of Bonen and Cohen. [16] and Irassar et al. [3]. However, ettringite started to be 

dissolved towards the sample surface, where lower pH values are present. This observation 

agrees with the findings of Damidot and Irassar [17] and Metha [18]. 

The results also indicate secondary ettringite can also be formed from C4AF. However the 

C4AF dissolves slowly and hardly any crack formation was observed in that region. These 

findings agree with the investigations of Stark and Wicht [19], Gollop and Taylor [1].  

 

The precipitation of gypsum was only detected at sulfate contents of 15 – 20 wt% SO3 by 

weight cement paste in the mortar samples stored at high sulfate concentration in solutions. 

According to Juel et al. [20] it can be assumed that gypsum precipitates in the cement paste 

only if all available aluminium present was consumed by the formation of ettringite. Gypsum 

formation was preferentially observed in the surface regions of the mortar samples. As 

gypsum was found to form intermixed within the C-S-H phase or in already existing cracks it 

can possibly expand already existing cracks and thus lead to an acceleration of sulfate 

interaction. These observations agree with the findings reported by Irassar et al. [3] and 

Santhanam et al. [21]. Gypsum formation has been reported to decalcify the C-S-H phase 

[18] which could later form reactive silica and thus support thaumasite formation [22].  

 

Thaumasite formation was found to be generally possible in both cement systems with high 

and low C3A contents as long as they contain a source of carbonate. This agrees with the 

investigations of Brown and Hooton [23] and Macphee and Diamond [24]. This was in 

contrast to the observations of Nobst and Stark [25], who found that low C3A contents 

increased the amount of thaumasite formed since less sulfate is needed to form ettringite 

from the available aluminium.  

Already after 56 days of sulfate interaction at 30g SO4
2-/l the precipitation of rather small 

amounts of thaumasite was observed in the mortar samples stored at high sulfate 

concentration in solution. In all cases the precipitation of thaumasite was observed to be 

enhanced at low temperatures (8 °C) which agrees to the results by Bensted et al. [26].  
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Thaumasite was found to precipitate only in the surface near regions at high sulfate contents 

in the cement paste mostly accompanied by gypsum.  

Thaumasite formation was found to occur directly from C-S-H reacting with carbonate and 

sulfate as described by Bensted [27] and Crammond  [28]. No indication for thaumasite 

formation was present in samples stored at low sulfate concentration after 270 days of 

sulfate interaction. These findings indicate that that at low sulfate concentration the formation 

of thaumasite must be even slower as shown by the investigations of Mulenga et al. [29], 

who found thaumasite at low sulfate concentration after about 5 years.  
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6.3 Summary and conclusions 
 

The immersion technique using low frequency (1 MHz) and ultrasonic surface waves was 

successfully applied for the investigation of degradation processes on mortar samples. The 

measured Leaky Rayleigh wave velocity indicates surface specific changes which can be 

related to the formation of secondary sulfate phases and the subsequent disintegration of the 

cement paste. 

The addition of 5 wt% limestone in Portland cement systems led to a decrease in sulfate 

uptake during sulfate interaction due to a lower porosity. Thus the sulfate induced 

deterioration was reduced especially at ambient temperatures. In case of 25 wt% limestone 

addition the porosity was increased and the sulfate induced deterioration was accelerated.  

The experiments showed that during sulfate interaction at sulfate contents ≤ 10 wt% SO3 in 

the cement paste, ettringite first formed intermixed within the C-S-H phase from AFm phases 

or near cement clinker grains causing initial expansion and cracking. At higher sulfate 

contents of 10 – 15 wt% SO3 in the cement paste close to the sample surface ettringite 

formation was observed to form in voids, cracks. 

In the presence of carbonate, thaumasite was formed preferentially at low temperatures in 

the regions where gypsum has been detected near the sample surface leading to a specific 

softening of the sample surface. Thaumasite was determined within the C-S-H phase in the 

cement paste reacting with the available carbonate and sulfate. Some expansion but a 

significant weight loss was observed due to thaumasite formation. At low sulfate 

concentration in solution no gypsum and thaumasite could be detected after 270 days of 

exposure.  

The experiments indicated that the thaumasite form of sulfate attack (TSA) was not a cause 

but a consequence of sulfate attack and that the initial sulfate induced destruction of the 

concrete was caused by ettringite and gypsum. 

The type of cement clinker did not necessarily protect from sulfate deterioration. Cement 

systems with high and low C3A content showed an accelerated sulfate degradation at high 

sulfate concentration. The observations exhibited that the initial porosity (permeability) of the 

cement system influences sulfate resistance more strongly. Beside that, the results showed 

that the ferroaluminate phase (C4AF) also participated and secondary ettringite was formed.  
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7 General discussion and conclusions  
 

The focus of this study was on the conditions of thaumasite formation. The study involved 

modelling, experimental and microstructural investigations. The influence of limestone 

addition, sulfate concentration, C3A content, temperature and leaching were studied 

systematically. The study is based on two different industrial clinkers which were used to 

produce 5 laboratory cements. 

A good agreement was achieved between the different techniques of thermodynamic 

modelling, bulk analytical methods, microscopy, and ultrasound measurements. The 

potential risk of external sulfate attack and, especially, the conditions for thaumasite 

formation can be described by combining experimental and calculated data.  

 

• Thermodynamic modelling approach 

The modelling approach indicated that during sulfate uptake first all aluminium available in 

the cement paste is consumed to form secondary ettringite before thaumasite forms. It was 

shown that thaumasite is stable only at high sulfate contents in the cement paste; more than 

10 wt% SO4
2- by weight cement paste or in other words if the molar SO3/Al2O3 ratio in the 

cement paste exceeds 3. 

Thermodynamic modelling predictions further indicated that when only small amounts of 

limestone are present in Portland cement systems it is this, which limits the amount of 

thaumasite formed whereas high amounts of limestone in Portland cement systems increase 

the potential amount of thaumasite which can be formed. It was further shown, that cement 

clinker systems with both high and low C3A content can be affected by thaumasite formation 

as long as they contain a source of carbonate.  

The experiments on pastes and mortars confirmed, that carbonate is needed in the cement 

systems to form thaumasite but that the amount of thaumasite formed during 9 months of 

sulfate exposure is not directly related to the amount of limestone addition.  

The thermodynamic predictions indicated that thaumasite is only stable when all reactive 

aluminium is transformed into ettringite and that gypsum should be stable only at even higher 

levels of sulfate addition. In fact, the cement paste experiments revealed that gypsum formed 

in parallel to or before thaumasite during sulfate ingress due to the very slow formation of 

thaumasite. Furthermore, the mortar experiments confirmed that gypsum only forms with 

immersion in solutions of high sulfate concentration and there are only few signs of rather 
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small amounts of thaumasite in the samples surface regions of the samples after 56 days of 

exposure. 

The thermodynamic modelling showed that thaumasite is also stable at ambient 

temperatures (20 °C). However, it was confirmed experimentally that the formation of 

thaumasite was much more significant at low temperatures (8 °C) after 9 months. 

The thermodynamic modelling indicated that thaumasite is stable, both in the presence and 

in the absence of portlandite indicating that prior leaching of cement paste (reduced pH level, 

portlandite and alkalies content) does not significantly influence the stability of thaumasite. 

However, the experimental investigations showed that in pre-leached cement pastes 

thaumasite precipitated more slowly than in the unleached pastes. 

The slow formation of thaumasite as confirmed by microstructural and microanalytical 

investigations is the reason for the difference between modelling and experimental 

observations. Generally, thaumasite was detected were it has been modelled to be stable in 

significant amounts. It was found that thaumasite is the last sulfate phase forming during 

sulfate attack. 

The progressive equilibrium approach (PEA) used to investigate the chemical aspects of 

sulfate attack turned out to be a good tool for simulating external sulfate attack. However, in 

this study, the predicted equilibrium conditions have not been reached after 9 months 

exposure. 

 

• Physical effects of sulfate attack 

During sulfate attack, the progress of sulfate deterioration and crack formation was 

somewhat different between the cement paste and mortar samples. In the case of paste 

samples, the sulfate ingress was limited to a few micrometer at the sample surface and crack 

formation was observed after 9 months of sulfate exposure mainly parallel to the sample’s 

surface. The mortar samples revealed a distinct zonation of sulfate ingress up to some 

millimetres and the cracks were forming already after 2 – 3 months either parallel or 

perpendicular to the sample surface. These difference may be attributed either to the 

difference in w/c ratio (paste: 0.35; mortar: 0.50) used or the influence of inhomogeneities in 

the microstructure (aggregates) giving additional pathways for sulfate interaction. 

In the paste and in the mortar samples, the crack formation originated from the precipitation 

of ettringite within the cement paste matrix. This caused the initial expansion due to a 

confinement in the microstructure. After some months of sulfate attack, the storage 

temperature and the ongoing leaching processes influenced sulfate degradation. The 
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formation of thaumasite, which occurred in the sample containing limestone especially at low 

temperatures (8 °C) also show a dramatic softening and disintegration starting at the sample 

surface. 

The investigations showed that at the early stages of sulfate interaction, after 1-3 months the 

AFm phases (monosulfate, monocarbonate) present are transformed into secondary 

ettringite leading to a densification of the microstructure and the above mentioned initial 

crack formation. As sulfate deterioration continues, after 3 to 9 months the formation of 

thaumasite was observed as long as sulfate (from solution or as gypsum) and carbonate 

(limestone filler) are available leading to a successive disintegration and finally to the 

complete destruction of the microstructure. 

 

• Effects of limestone addition 

The addition of limestone (5, 25 wt%) influenced chemically the mineralogy of the AFm 

phases formed during hydration; monocarbonate was formed instead of monosulfate. The 

presence of monocarbonate in the carbonate containing cement systems also stabilized 

ettringite. These findings agree well with other experimental findings reported in the literature 

[1, 2]. The stabilisation of ettringite in the presence of calcite might have increased the 

chemical resistance against sulfate attack, as a significant part of the aluminium was already 

bound in ettringite.  

The experimental results showed that limestone addition of 5 wt% in Portland cement 

systems improved the physical properties leading to a lower porosity and higher compressive 

strength compared to the corresponding cements without limestone addition. Thus, the 

reduced permeability decreased the sulfate uptake and the sulfate resistance was improved 

independent of the type of cement clinker used. With 25 wt% limestone addition in Portland 

cement the compressive strength was decreased, whereas the porosity of these cement 

systems increased which led to an accelerated sulfate degradation. These findings agree 

well with the investigation in the literature [3, 4]. 

In this study, both chemical and physical effects in cement with 5 wt% limestone addition 

have been observed. Somewhat more ettringite was found in the initial cement paste and a 

lower porosity and decreased expansion indicating an increased sulfate resistance. 

However, it is difficult to distinguish between pure chemical and physical aspects since both 

depend and influence each other. 
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• Summary and conclusions 

In summary, it can be concluded that: 

(1) Only carbonate containing cement systems were affected by thaumasite formation 

independently of the type of cement clinker (high and low C3A content) used 

(2) High sulfate contents of more than 10 wt% by weight cement paste (SO3/Al2O3 > 3) 

are necessary to form thaumasite  

(3) Leaching, i.e. the reduction of alkalies and portlandite, has no significant influence on 

the stability of thaumasite, it slightly reduced the amounts of thaumasite formed 

(4) Low temperatures (8 °C) accelerate thaumasite formation but thaumasite is also 

formed and stable at ambient temperatures (20 °C) 

(5) Thaumasite formation is not the first stage of sulfate attack. The disintegration known 

as thaumasite form of sulfate attack (TSA), occurs only in the later (last) stages of 

sulfate attack 

(6) The initial sulfate induced deterioration is caused by ettringite and partly gypsum 

formation 

(7) The addition of a few percent limestone increase the resistance of Portland cement 

systems against sulfate attack 

 

• Outlook and implications for sulfate testing 

The PEA approach used to investigate sulfate attack could be further improved by using a 

higher water to cement ratio (≥ 0.35) in the cement paste and smaller particle fractions (≤ 0.5 

mm) in order to shorten the reaction time for the experiments. Additionally, the batch 

experiments could be shaken permanently to accelerate sulfate interaction. 

However, the PEA experiments used to investigate the chemical aspects of an external 

sulfate attack, revealed a good handling in the laboratory and turned out to be a very 

promising approach for systematic investigations. 

The test conditions of sulfate tests should use lower sulfate concentrations (<< 30g SO4
2-/l) in 

order to better match real conditions. Tests, such as Wittekindt [5] often use a criteria at 56 

days and high sulfate concentrations (30g SO4
2-/l) in order to accelerate sulfate degradation. 
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The sulfate concentration (3 or 30g SO4
2-/l) in solution significantly influenced the progress of 

degradation and the formation of sulfate phases, e.g. gypsum being absent or present. 

The test criteria of 56 days according to Wittekindt [5] should be further extended, e.g. ≥ 91 

days in order to reach the relevant level of expansion due to secondary ettringite formation 

as observed experimentally. Due to the very slow formation of thaumasite, a thaumasite test 

would have to have a long duration and low temperatures.  

Further studies should investigate the reactivity of C4AF in relation to sulfate attack. The 

reactivity of C4AF during sulfate attack will determine the availability of further aluminium. In 

addition, the fate of iron which is released during C4AF hydration is also an open question, 

either it precipitates as iron ettringite or as amorphous iron hydroxide will have a significant 

influence on the expansion. 
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A.1 Laboratory cements 
 

• Grinding and production 

The cement clinkers were ground using a laboratory ball mill as shown in Figure A.1.1. The 

grinding was done in several steps with different sets of balls (70/40 mm, 17/17 mm). 

 

Fig. A.1.1: Ball mill used for the grinding of the cement clinker 

The constituents of the laboratory cements were mixed mechanically in batches using plastic 

bottles of 2 liters volume. For the preparation of the laboratory cements batches of 6 plastic 

bottles a 1.5 kg filled with rubber cubes were placed in a barrel and homogenized for 2 hours 

under constant axial rotation (Fig. A.1.2). 

 

Fig. A.1.2: Barrel arranged with plastic bottles for homogenisation 
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• Testing and performance 

The laboratory cements were tested according to the standard EN 196 (1-4) and proved to 

fulfil the technical requirements for the given commercial Portland cements as shown in 

Table A 1.1.  

 

Table A 1.1: Characterisation of laboratory and industrial cements according to EN 196 (1-4) 

cement  CEM I 

42.5 

H0 H5 CEM I 

42.5 

P0 P5 P25 

type: 

limestone 
addition LF: 

 

 

[wt%] 

HS HS 

0 

HS 

5 

OPC OPC 

0 

OPC 

5 

OPC 

25 

Strength 

[N/mm2] 

fc 2d 23.4 23.1 21.7 26.6 28.3 27.5 20.7 

 fc 28d 52.9 56.1 56.8 54.2 58.2 58.8 46.5 

 ft 2d 5.4 5.2 5.0 5.7 6.1 5.1 4.8 

Blaine [m2/kg] 311 331 348 302 356 363 408 

Density [g/cm3] 3.18 3.19 3.17 3.10 3.12 3.10 3.01 

begin 235 220 200 200 160 155 145 setting 

[min] end 270 270 245 235 195 190 170 

Le Chatelier [mm] 1.5 2.0 2.0 2.5 2.0 2.0 2.0 

water demand [%] 24.5 25.3 25.5 25.8 26.0 26.3 26.8 
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• Isothermal calorimetry 

The analysis of the heat of hydration was performed on laboratory and industry cements 

using isothermal calorimetry (TAM Air). The given SO3 contents are relative to the cement 

clinker used. 
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Fig. A 1.3: Heat of hydration of HS cement systems 
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• Chemical and mineralogical analysis 

 

Table A 1.2: Chemical analysis of the laboratory and industry cements and mineral composition 
according to Bogue in wt% 

cement 
CEM I 

42.5 
H0 H5 

CEM I 

42.5 
P0 P5 P25 

type 

limestone 
addition LF 

HS 
HS 

+0% 

HS 

+5% 
OPC 

OPC 

+0% 

OPC 

+5% 

OPC 

+25% 

Chemical Analysis:       

SiO2 18.7 19.2 18.1 20.0 20.1 19.6 15.2 

Al2O3 4.3 4.7 4.4 4.8 4.4 4.3 3.4 

Fe2O3 6.2 7.2 6.7 2.5 2.7 2.6 2.0 

CaO 61.2 62.2 61.2 63.4 63.7 63.7 61.4 

MgO 1.8 1.5 1.5 1.8 1.6 1.5 1.3 

K2O 1.0 1.1 1.1 0.9 0.86 0.78 0.61 

Na2O 0.13 0.13 0.12 0.1 0.15 0.15 0.11 

SO3 2.3 1.9 1.7 2.8 2.9 2.7 2.2 

CaOfree 0.47 0.55 0.55 0.76 0.85 0.77 0.66 

CO2 2.56 0.15 2.39 1.85 0.25 2.37 10.5 

LOI 2.74 0.68 2.79 2.29 1.21 3.30 11.4 

Minerals by Bogue:       

C3S 53 62 57 56 66 60 50 

C2S 14 9 9 15 10 11 7 

C3A 0.9 0.4 0.4 9 7 7 6 

C4AF 19 22 20 8 8 8 6 

gypsum 4.9 4.2 4.2 6.0 6.2 6.2 6.2 
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A.2 Cement paste experiments 
 

• Experimental setup 

For the experiments of the PEA approach the subsystems were processed with 10g of the 

hydrated and crushed cement paste and 70 ml of aqueous reaction solution which was 

prepared by dissolving the respective amounts of Na2SO4 in deionised water. The 

experiments were processed as sealed plastic containers at 8 °C and 20 °C. 

 

 

Fig. A 2.1: Constituents of a subsystem according to the PEA experiments 
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• Thermogravimetric measurements 

The thermogravimetric analysis was used to determine the amount of portlandite present in 

the hydrated, initial and successive leached cement paste samples for the HS and OPC 

cement systems. 
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Fig. A 2.2: Leaching of HS cement systems after 4 months 
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Fig: A 2.3: Leaching of OPC cement systems after 4 months 
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A.3 Thermodynamic software and data 
 

The Gibbs free energy minimization program GEMS [1] is a broad- purpose geochemical 

modelling code which uses Gibbs energy minimization and computes equilibrium phase 

assemblage and speciation in a complex chemical system from its total bulk elemental 

composition. Chemical interactions involving solids, solid solutions and aqueous electrolyte 

are considered simultaneously. Thermodynamic data for aqueous species as well as for 

many solids were taken from PSI thermodynamic dataset [2], which has been adapted for the 

use in GEMS [3]. Solubility products for cement minerals at 25 °C were taken from the 

compilation of Lothenbach et al. [4], who prepared a consistent thermodynamic dataset for 

cement minerals (data relevant for the investigated system are reproduced in Table A.3.1). 

The Gibbs free energy of formation ∆fG° at 25 °C as given in Table A 3.1 is related to the 

Gibbs free energy of reaction  °∆ = °∆ ∑ GG
i

fir ν  and to the solubility product   = 
°∆−

RT
G

S

r

eK 0 , 

where  iν  are the stoichiometric reaction coefficients, R = 8.31451 J/mol/K and T the 

temperature in K. The apparent Gibbs free energy of formation ∆aG° at 8 and 20 °C is 

calculated by GEMS from the data at 25 °C according to [5]: 
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where a0, a1, a2, and a3 are the empirical coefficients of the heat capacity equation C°p=a0 + 

a1T + a2T-2 + a3T-0.5, T0 the reference temperature (298.15 K) and S° the entropy. The 

apparent Gibbs free energy of formation ∆aG°T refers to the free energies of the elements at 

298 K. A more detailed description of the temperature corrections used in GEMS is given in 

Kulik et al. [6] and in the online documentation of GEMS [1]. 

 

 

 

 

 

 

(1)
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Table A 3.1: Standard thermodynamic properties of solids at 25 °C. All data with exception of 

thaumasite are taken from Lothenbach et al. [4]. 

Log KS0
 a ∆fG° ∆fH° S° a0 a1 a2 a3 V° b 

  [kJ/mol] [kJ/mol]  J/K/mol] [J/K/mol]                                          [cm3/mol] 

ettringite -44.90 -
15205.94 

-17535 1900 1939 0.789   707 

thaumasitec -49.40 -
15128.46 

-17373 1883 1860 0.703 -3.94e6 1600 663 

          

C3AH6 -20.84 -5010.09 -5540 419 292 0.561   150 

          

C4AH13 -25.40 -7326.55 -8302 700 711 1.047  -1600 274 

C2AH8 -13.56 -4812.75 -5432 440 392 0.714  -800 184 

C4A S H12 -29.26 -7778.50 -8750 821 594 1.168   309 

C4A C H11 -31.47 -7337.46 -8250 657 618 0.982 -2.59e6  262 

C4A C 0.5H12 29.13 -7335.97 -8270 713 664 1.168 -1.30e6 -800 285 

C2ASH8 -19.70 -5705.15 -6360 546 438 0.749 -1.13e6 -800 216 

          

M4AH10 -56.02 -6394.56 -7196 549 -364 4.21 3.75e6 629d 220 

brucite -11.16 -832.23 -923 63 101 0.017 -2.56e6  25 

          

C1.67SH2.1 -13.17 -2480.81 -2723 140 210 0.120 -3.07e6  78 

C0.83SH1.3 -8.00 -1744.36 -1916 80 85 0.160   59 

portlandite -5.20 -897.01 -985 83 187 -0.022 0 -1600 33 

          

SiO2, am 1.476 -848.90 -903 41 47 0.034 -1.13e6  29 

gypsum -4.58 -1797.76 -2023 194 91 0.318   75 

anhydrite -4.36 -1322.12 -1435 107 70 0.099   46 

calcite -1.85 -1129.18 -1207 93 105 0.022 -2.59e6  37 

Fe(OH)3 -4.60 -711.61 -844 88 28 0.052   34 

Al2O3 1.64 -1586.26 -1662 51 115 0.012 -3.51e6  26 

a0, a1, a2, a3 are the empirical coefficients of the heat capacity equation: C°p = a0 + a1T+a2T-2 +a3T-0.5, a All solubility products 
refer to the solubility with respect to the species Al(OH)4

-, Fe(OH)4
-, SiO(OH)3

-, OH-, H2O, Ca2+, Mg2+ or SO4
2-,  bMolar volumes 

V° at standard conditions were calculated from densities derived from crystallographic data; cthis work; V° calculated from unit 
cell given in Jacobsen et al. [7]; d C°p= a0 + a1T + a2T-2 + a3T-0.5 – 0.00424*T2 + 2.11E-6*T3 
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A.4 SEM sample preparation 
 

The mortar samples were prepared from sections cut from the flat prism to give a cross 

sections perpendicular to the surface representative for the microstructure of surface and 

core regions (Fig. A 4.1). The cement paste samples of the crushed particles from the PEA 

experiments were prepared to give microsections (Fig. A 4.2). Before impregnation the 

samples were immersed for 30 min in isopropanol and then dried for 2 days at 40 °C. 

The samples preparation included pressure impregnation with two components epoxy resin 

(Araldit BY 158, Aradur 21), cutting, grinding and polishing. The polishing was done in 

several steps by using diamond suspensions from 9 to 0.25 µm (BUEHLER, Beta-vector) as 

described elsewhere [8, 9]. The polished samples were then coated with carbon to get an 

electrically conductive surface. For the fracture surfaces selected parts of the sample were 

carefully broken off and prepared directly used for the investigation in the microscope. 

mortar sample [mm]:

SEM sample: (10 x 10 x 10 mm3)

10

40

160

t0 - tn
mortar sample [mm]:

SEM sample: (10 x 10 x 10 mm3)

10

40

160

t0 - tn

Fig. A 4.1: SEM sample preparation for mortar samples. 

 

     

Fig. A 4.2: SEM sample preparation for paste samples. 

 

SEM sample: (0.5 – 2.0 mm) 
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A.5 Mortar experiments 
 

• Ultrasonic measurements 

For the ultrasonic measurements a 3-axis computer manipulator was used with adjusted 

probes of transmitter and receiver. The probes were set relative to the samples surface 

immersed in demineralised water. To achieve nearly isothermal conditions, the 

measurements at 8 °C were done in a thermal insulated basin. 

Fig. A 5.1: Situation for 

measurements at 20 °C 

in demineralised water 

at the same temperature 

Fig. A 5.2: Situation for 

measurements at 8 °C 

with thermal insulated 

basin and demineralised 

water at the same 

temperature 

∆ x 

∆ x 
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• Additional results from monitoring 

The following Table shows the measurements of the expansion and mass change of the 

mortar samples stored Na2SO4 with high and low sulfate concentration at 8 and 20 °C.  

 

Table A 5.1: Expansion and mass change of mortar samples at given sulfate concentration and 
temperature. 

30g SO4
2-/l  3g SO4

2-/l 
Sample 

91d 180d 270d 365d  91d 180d 270d 365d  

8 °C 1.23 3.60 11.28 20.02  0.43 0.70 0.98 1.44  
H0 

20 °C 3.78 11.28 20.84 27.51  0.58 1.59 2.41 2.75  
            

8 °C 1.24 7.15 25.92 -  0.41 0.59 0.88 1.23  
H5 

20 °C 1.44 4.35 12.21 21.67  0.30 0.62 1.04 1.51  
            

8 °C 0.69 1.92 6.64 17.22  0.35 0.65 1.09 1.66  
P0 

20 °C 1.33 6.39 16.49 30.97  0.62 1.62 3.13 6.46  
            

8 °C 0.67 1.99 12.29 -  0.31 0.56 0.83 1.29  
P5 

20 °C 0.93 2.71 8.54 33.73  0.46 0.75 1.16 1.72  
            

8 °C 1.82 19.20 - -  0.35 1.34 9.05 -  

E
xp

an
si

on
 [m

m
/m

] 

P25 
20 °C 2.38 32.40 - -  0.38 1.59 3.86 6.74  

8 °C 1.15 2.08 3.25 3.37  0.58 0.71 0.82 0.93  
H0 

20 °C 1.66 3.06 4.44 5.23  0.55 0.72 0.87 0.98  
            

8 °C 0.93 2.35 1.30 -  0.57 0.69 0.79 0.93  
H5 

20 °C 1.01 1.91 3.29 4.56  0.60 0.74 0.87 1.01  
            

8 °C 0.82 1.46 2.18 2.55  0.59 0.63 0.72 0.86  
P0 

20 °C 1.07 2.32 4.21 5.65  0.55 0.64 1.03 1.43  
            

8 °C 0.74 1.42 0.64 -  0.52 0.61 0.70 0.85  
P5 

20 °C 0.77 1.45 2.72 4.71  0.52 0.59 0.70 0.84  
            

8 °C 1.15 0.66 - -  0.61 0.83 - -  

M
as

s 
ch

an
ge

 [%
] 

P25 
20 °C 1.24 4.82 - -  0.51 0.75 1.25 2.03  

 (-) samples destroyed 
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• Macroscopical investigations (180 days) 

The visual appearance of the mortar samples was investigated during sulfate exposure for 

up to one year. The photo documentation of the samples is carried out after 180, 270 and 

365 days of storage in sulfate solution. 

HS + 0% limestone addition at 20 °C HS + 0% limestone addition at 8 °C 

 
HS + 5% limestone addition at 20 °C HS + 5% limestone addition at 8 °C 

 

Fig. A 5.3: HS cement systems after 180 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l 
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OPC + 0% limestone addition at 20 °C OPC + 0% limestone addition at 8 °C 

 
 

OPC + 5% limestone addition at 20 °C OPC + 5% limestone addition at 8 °C 

 
 

OPC + 25% limestone addition at 20 °C OPC + 25% limestone addition at 8 °C 

 

Fig. A 5.4: OPC cement systems after 180 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l 

 



Appendix 
 
 

 XV

• Macroscopical investigations (270 days) 

 

HS + 0% limestone addition at 20 °C HS + 0% limestone addition at 8 °C 

HS + 5% limestone addition at 20 °C HS + 5% limestone addition at 8 °C 

 

Fig. A 5.5: HS cement systems after 270 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l 
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OPC + 0% limestone addition at 20 °C OPC + 0% limestone addition at 8 °C 

 

OPC + 5% limestone addition at 20 °C OPC + 5% limestone addition at 8 °C 

 

OPC + 25% limestone addition at 20 °C OPC + 25% limestone addition at 8 °C 

 

Fig. A 5.6: OPC cement systems after 270 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l 
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• Macroscopical investigations (365 days) 

 

 

HS + 0% limestone addition at 20 °C HS + 0% limestone addition at 8 °C 

 
HS + 5% limestone addition at 20 °C HS + 5% limestone addition at 8 °C 

 

Fig. A 5.7: HS cement systems after 365 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l 
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OPC + 0% limestone addition at 20 °C OPC + 0% limestone addition at 8 °C 

 
OPC + 5% limestone addition at 20 °C OPC + 5% limestone addition at 8 °C 

 
OPC + 25% limestone addition at 20 °C 

 

Fig. A 5.8: OPC cement systems after 365 days of exposure, II = 3g SO4
2-/l, III = 30g SO4

2-/l
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• Microstructural investigations (56 days) 

The following pages show the atomic ratio plots from additional EDS-analysis representing 

S/Ca versus Al/Ca ratios of selected samples. 

 

HS, 5wt% CaCO3, surface region HS, 5 wt% CaCO3, unaltered core 
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Fig. A 5.9: Phase assemblages of Portland cement mortars after 56 days sulfate exposure in 30g 
SO4

2-/l at 8 °C. CH = portlandite; Ett = ettringite; G = gypsum; Ms = monosulfate; Th = thaumasite 

 

 

OPC, 5 wt% CaCO3, surface region OPC, 5wt% CaCO3, unaltered core 

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Al/Ca

S/
C

a

phases

outer CSH

inner CSH

sec. phases

gypsum

Th

CSH

Ett

Ms

Mc

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Al/Ca

S/
C

a

phases

outer CSH

inner CSH

sec. phases

portlandite

gypsum

Th

CSH

Ett

Ms

Mc

Fig. A 5.10: Phase assemblages of Portland cement mortars after 56 days sulfate exposure in 30g 
SO4

2-/l at 8 °C. CH = portlandite; Ett = ettringite; G = gypsum; Mc = monocarbonate; Th = thaumasite 
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• Microstructural investigations (56 days) 

HS, no CaCO3, surface region HS, no CaCO3, unaltered core 
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Fig. A 5.11: Phase assemblages of Portland cement mortars after 56 days sulfate exposure in 30g 
SO4

2-/l at 20 °C. CH = portlandite; Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = 
monosulfate; Th = thaumasite 
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• Microstructural investigations (270 days) 
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Fig. A 5.12: Phase assemblages of Portland cement mortars after 270 days sulfate exposure in 3g 
SO4

2-/l at 20 °C. CH = portlandite; Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = 
monosulfate; Th = thaumasite 
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Fig. A 5.13: Phase assemblages of Portland cement mortars after 270 days sulfate exposure in 3g 
SO4

2-/l at 20 °C. CH = portlandite; Ett = ettringite; G = gypsum; Mc = monocarbonate; Ms = 
monosulfate; Th = thaumasite 
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A.6 Additional microstructural aspects 
 

Figures A 6.1 and A 6.2 show the C-S-H forms a 1 µm thick rim around the calcite grains of 

the limestone filler in the cement paste matrix. Cc = calcite 

 

 

Fig. A 6.1: C-S-H rims formed around calcite grains in the cement paste of P5 

 

 

Fig. A 6.2: C-S-H boundary on the surface of a calcite grain in cement paste of P25 
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Figures A 6.3 and A 6.4 show the sulfate deteriorated microstructure at the surface region of 

mortar samples after 91 and 180 days of sulfate exposure (30g SO4
2-/l) at 8 °C. 

 

 

Fig. A 6.3: Surface region of H5 mortar sample after 91 days in Na2SO4 solution. 

 

Fig. A 6.4: Surface region of P25 mortar sample after 180 days in Na2SO4 solution. 
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Figures A 6.5 and A 6.6 show ettringite formation in the surface region at between 0.5 and 

0.8 mm depth after sulfate exposure at the given time and temperature. 

 

 

Fig. A 6.5: Ettringite formation from C4AF phase in H5 mortar after 180 days at 8 °C. 

Fig. A 6.6: Ettringite formation from C4AF in H0 
mortar sample after 56 days sulfate exposure 
(30g SO4

2-/l) in the surface region at the 
maximum sulfate content in the cement paste. 
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Figure A 6.7 and A 6.8 show gypsum formation in mortar samples after 56 days of sulfate 

exposure in Na2SO4 solution. Cc = calcite; G = gypsum 

 

 

Fig. A 6.7: gypsum formation in P25 mortar sample stored at 8 °C. 

 

Fig. A 6.8: gypsum depot in P5 mortar sample stored at 20 °C 
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Figures A 6.9 A-D show the deteriorated microstructure of the surface region of mortar 

samples after 180 days of sulfate exposure in Na2SO4 solution at 8 °C. Cc = calcite; Ett = 

ettringite; G = gypsum; Th = thaumasite 

 

A B 

C D 

Fig. A 6.9: Microstructure of A) P25 mortar fracture sample and polished samples of B,C) P25 mortar 
samples and D) H5 mortar samples stored at 30g SO4

2-/l. 
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Figures A 6.9 A-D show the deteriorated microstructure of the surface region of cement 

paste samples after 9 months of sulfate exposure in Na2SO4 solution at 8 °C. Cc = calcite; Ett 

= ettringite; Th = thaumasite 

 

A B 

C D 

Fig. A 6.10: Microstructure of cross section through cement paste particles of A-D) P5 in 
subsystems A with 20g SO4

2- by weight cement paste.  
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