3D Finite Element solver for Shallow-water free-surface Flows with k-ε turbulence model

A three-dimensional (3D) finite element method is proposed for shallow-water equations (SWE). The method is based on the Raviart-Thomas finite element approximation. A numerical solution for shallow-water flows is developed based on the unsteady Reynolds-averaged Navier-Stokes (RANS) equations. In this work the assumption of hydrostatic pressure is applied. The SWE equations are solved in a given multilayered system (which consists of an a priori subdivision of the vertical direction of the domain into layers of fixed thickness), with a semi-implicit time stepping method. The eddy viscosity is calculated usind the standard k-epsilon turbulence model. The boundary conditions at the bed are based on the equilibrium assumption of the production terms with vertical diffusion terms using wall functions. To test the validity of the new algorithm the model is applied to three-dimensional flows for which experimental data and other numerical results are available for comparison.

Published in:
Submitted for publication in J. Hydr. Engrg., ASCE

 Record created 2007-05-22, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)