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Abstract. We present an exactly soluble optimal stochastic control problem

involving a diffusive two-states random evolution process and connect it to a non-

linear reaction-diffusion type of equation by using the technique of logarithmic

transformations. The work generalizes the recently established connection between

the non-linear Boltzmann like equations introduced by Ruijgrok and Wu and the

optimal control of a two-states random evolution process. In the sense of this

generalization, the non-linear reaction-diffusion equation is identified as the natural

diffusive generalization of the Ruijgrok-Wu Boltzmann model.

PACS numbers: 05.10.Gg, 05.40.-a

1. Introduction

In a recent address Hongler et al. connected the exactly soluble, nonlinear, discrete two-

velocities Boltzmann model of Ruijgrok and Wu (the RW-model, [22]) to an optimal

stochastic control problem, involving a two-states random evolution process [14]. The

authors apply the technique of logarithmic transformations (LT) which, in the context

of stochastic control, goes back to the works of Fleming [6] and Holland [10] in the

late 1970’s. The starting point of this rather general technique is the positive solution

φ of the linear equation Aφ = 0 where A is a backward evolution operator of some

given Markov process X. The function V , obtained via the LT: V = − ln(φ), satisfies a

nonlinear evolution equation which is the dynamic programming (DP) equation of some

stochastic control problem specified by a particular cost function L. The associated

optimal control u∗ is closely related to the space derivative of V (see [7]).

Using these relations, Hongler et al. showed that in the particular case of a simple two-

states random evolution, the total derivative of V is governed by the exactly solvable,

non-linear Boltzmann like RW-model. The diffusive analogue of this connection,

obtained by a central limit theorem (CLT) procedure, is the well known relation
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between the heat equation and the Burgers field equation, realized via the Hopf-Cole

transformation [15]. The authors indeed established the particular relations presented

in table (1).

I II III

Markov dynamics

Aφ = 0

LT−→
V = − ln(φ)

DP for V with

cost functional L
O−→

non-linear

field equation

Rand. Evolution −→ hyperbolic eq. for V
∂t±∂x−→ RW-model

LRE ∝ u ln(u) − u+ 1

↓ CLT ↓ ↓

Diffusion −→ parabolic eq. for V
∂x−→ Burgers eq.

LD ∝ u2

Table 1. Starting with Markovian dynamics in I , the LT leads to a stochastic control

problem II , whose value function V can be related via a differential operator O to

physically relevant non-linear field equations III . This construction leads in case of a

standard Brownian motion to the Burgers equation and in case of a two-states random

evolution to the RW-model.

The aim of this short note is threefold: (i), we put in section 2 the two-states dynamics

and the diffusive dynamics together and construct and solve via the logarithmic

transformation an exactly soluble stochastic control problem. (ii), we connect in section

3 the dynamic programming equation associated to this stochastic control problem to

a non-linear reaction-diffusion type of equation which appeared in an ad hoc manner in

[12]. This extends table (1) by the construction presented in table (2). (iii), we remark

I

diffusive

Rand. evolution

LT−→
V = − ln(φ)

II

4th. order eq. for V

L = LRE + LD

O±

→
III

non-linear

reaction-diffusion eq.

Table 2. Starting from a diffusive random evolution (I) we construct an exactly

solvable optimal control problem with running costs L (II) and connect it to a reaction-

diffusion type of equation (III) which is subsequently identified as the diffusive

generalization of the RW model.

in section 4 that the cost functions LRE and LD associated respectively to the control

of the two-states random evolution and the diffusion, are related to a large deviations

principle. The running costs LRE and LD therefore tax in a natural way deviations away

from the uncontrolled trajectories.
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2. An optimal controlled diffusive random evolution

We start with the backward evolution equation Aφ = 0 corresponding to a dynamical

system driven by the independent sum of the white Gaussian noise and a two-states

random evolution. The Langevin equation of motion of our state variable Xt (e.g. the

position of an overdamped particle moving on the line) is therefore of the form

dXs = Zsds+ σdBs, (1)

where Bs stands for the standard Brownian motion, σ > 0 is constant, Zs is a
time-continuous two-states Markov process taking values in the set {ν,−ν} ⊂ R.
The symmetric jump rates between ν and −ν are supposed to be constant and, for
convenience, we set them equal to 1. The pair process (Xs, Zs) is Markov with state
space Σ = R × {±ν}. The associated backward evolution operator A acts on functions
φ(t, x, z) in C2,1

0 ([0, t1] × R × {±ν}) with t1 > 0 fixed and is given by

Aφ(t, x, z) = ∂tφ(t, x, z) +
σ2

2
∂2

x,xφ(t, x, z) + z∂xφ(t, x, z) + (φ(t, x,−z) − φ(t, x, z)). (2)

In this paper we restrict ourselves to functions φ(·, ·,±z) not.
= φ±z solving Aφ = 0 which

are sufficiently regular (i.e. φz ∈ C4,1
0 , z ∈ {±ν}). In this case we can isolate φz (resp.

φ−z) from the system (2) and get two uncoupled fourth order equations for φz and φ−z:

([∂t +
σ2

2
∂2

x,x]
2 − ν2∂2

x,x)φ
z = (2∂t + σ2∂2

x,x)φ
z, z ∈ {±ν}. (3)

Having introduced the Markovian dynamics via the evolution operator eq.(2), we

construct now the control problem by

a) controlling the jump rates 1 → u(s) ≡ u(s,Xs, Zs)

b) and by adding a drift v(s) ≡ v(s,Xs, Zs) to the Brownian motion i.e. we replace

σdBs by v(s,Xs, Zs)ds+ σdBs.

The backward evolution operator for the controlled process Au,v is given by

Au,v(φz, φ−z) = ∂tφ
z +

(

z + v(·, ·, z)
)

∂xφ
z +

σ2

2
∂2

x,xφ
z + u(·, ·, z)(φ−z − φz). (4)

The controllers aim is to minimize the expected costs

J(t, x, z; (u, v)) := Et,x,z

(

∫ t1

t

L(s, u(s), v(s))ds+ ψ(t1, Xt1 , Zt1)
)

, (5)

incurred during the finite interval [t, t1], 0 ≤ t ≤ t1, when starting the process at the

initial point (Xt, Zt) = (x, z) and where ψ accounts for the final costs. The minimum,

denoted V (t, x, z), is taken over all admissible pairs of Markov controls (u(s), v(s)),

s ∈ [t, t1] with u(s) = u(s, ·, z) ∈ C0(R; R+) and v(s) = v(s, ·, z) ∈ C0(R; R). For the cost

function (or likewise, the Lagrangian) L, discussed in section 4, we choose

L(s, u, v) = L(u, v) = LD(v) + LRE(u), (6)

where the cost function accounting for the diffusive part is given by

LD(v) =
µ2

2
v2 (7)
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and where the one associated to the random evolution is

LRE(u) =

{

λ
(

u
2|z|λ

ln( u
2|z|λ

) − u
2|z|λ

+ 1
)

if u ≥ 0

∞ if u < 0.
(8)

The positive numbers λ and µ are two parameters of the system. For the associated
dynamic programming equation 0 = min(u,v) [Au,vV + L] (see e.g. [7] Chapt. III) we
get:

0 =min
u,v

{(

∂t +
σ2

2
∂2

x,x + v(t)∂x

)

V (t, x, z) + z∂xV (t, x, z) + u(t)[V (t, x,−z) − V (t, x, z)]

+
µ2

2
v(t)2 + LRE(u(t))

}

=
(

∂t +
σ2

2
∂2

x,x + z∂x

)

V (t, x, z) + min
v

{( µ√
2
v(t) +

1√
2µ

∂xV (t, x, z)
)2}

−
( 1√

2µ
∂xV (t, x, z)

)2
+ min

u

{

u(t)[V (t, x,−z) − V (t, x, z)] + LRE(u(t))
}

and the minima, satisfying
(

∂t +
σ2

2
∂2

x,x + z∂x

)

V (t, x, z) =
( 1√

2µ
∂xV (t, x, z)

)2

+ λ{e[V (t,x,z)−V (t,x,−z)]2|z| − 1},(9)

is attained for

u(t, x, z) = u∗(t, x, z) ≡ 2|z|λ exp
(

2|z|[V (t, x, z) − V (t, x,−z)]
)

, (10)

v(t, x, z) = v∗(t, x, z) ≡ − 1

µ2
∂xV (t, x, z). (11)

According to the LT we define now the functions

h(t, x, z) = exp(−2|z|V (t, x, z)), z ∈ {±ν} (12)

which, using eq.(9), solve the system

(

∂t+
σ2

2
∂2

x,x+z∂x

)

h(t, x, z)+2|z|λ(h(t, x,−z)−h(t, x, z)) =
(σ2

2
− 1

4µ2|z|
)(∂xh(t, x, z))

2

h(t, x, z)
.

Comparing this equation with eq.(2), we see that h(·, ·,±ν) is in the kernel of the

uncontrolled backward operator A exactly if we choose the parameters λ and µ according

to the relations

λ =
1

2|z| and µ2 =
1

2|z|σ2
. (13)

We suppose from now on eq.(13) to hold. The cost function takes than the form

L(u, v) =
1

2|z|
( v2

2σ2
+ (u ln(u) − u+ 1)

)

(14)

and the optimal controlled dynamics (X∗
s , Z

∗
s ) read as

dX∗
s =

(

Z∗
s + σ2∂x ln(h(t, x, z))

)

ds+ σdBs. (15)

The controlled two-states process Z∗
s has now inhomogeneous jump rates from z to −z,

z ∈ {±ν}, given by the ratio u∗ = h(t, x,−z)/h(t, x, z). The functions h(t, x,±z) are
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solutions to the linear system (3) which have to match the final conditions h(t1, x,±z) =

exp(ψ(t1, x,±z)). We note that eq.(3) already appeared in [18]. To find the fundamental

solutions to eq.(3) with initial conditions φ(0, x, z) = δxδν−z we follow [1]. We apply the

time inversion t→ τ = t1 − t and rewrite the equation as

det

(

−(O− + 1) 1

1 −(O+ + 1)

)

φ(τ, x, z) = 0, (16)

where the differential operators, O± defined on C2,1
0 (R × R

+; R), are given by

O± = ∂τ ∓ ν∂x −
σ2

2
∂2

x,x (17)

and where “det” denotes the determinant. It is then shown in [1] that a solution to

eq.(16) is, as expected by the independence of the two processes Zt and Bt, given by

the space-convolution

φ(τ, x, z) =

∫

R

G(y, τ)Tz(x− y, τ)dy (18)

of the fundamental solutions G and Tz corresponding respectively to the heat equation

operator ∂τ − σ2

2
∂2

x,x and the two-states random evolution operator ∂2
τ,τ + 2∂τ − ν2∂2

x,x

with initial state z. This solves the stochastic optimal control problem expressed in

eq.(5).

3. A solvable nonlinear Reaction-Diffusion Model

In this section we present a coupled set of nonlinear, exactly solvable 1 dimensional

reaction-diffusion equations and connect it to the above explicitly solved optimal control

problem. The reaction-diffusion equations studied in [12] read as:

(∂τ±ν∂x)f± =
σ2

2
(∂2

x,xf±)±B(f+, f−)±Kσ(f+, f−, ∂xf+, ∂xf−), (τ, x) ∈ R+×R,(19)

where the quadratic Boltzmann-like collision operator B is given by

B(f+, f−) = f+f− − f+ + f−

and where the operator Kσ is defined as:

Kσ(f+, f−, ∂xf+, ∂xf−) =
σ2

2ν

[ 1

2ν
S2 − SDx +

1

4ν
DS2

]

+ (20)

σ4

4ν2

[

− 1

16ν2
S4 − 1

2
(Sx)

2 +
1

2ν
S2Sx

]

.

Here we used the short hands S := f+(x, τ) + f−(x, τ) and D := f+(x, τ) − f−(x, τ),

where Dx (resp. Sx) stands for the space derivative of the quantity D (resp. S). We

interpret f− (resp. f+) as the distribution of particles moving on the line to the left

(the − particles) and right (the + particles) both with absolute speed ν > 0.

The eqs. (19) contain, for σ2 = 0, the Boltzmann-like equations of Th. W. Ruijgrok

and T.T. Wu, the RW-model, [22]:

(∂τ ± ν∂x)ρ± = ±B(ρ+, ρ−), ρ± = ρ±(x, τ). (21)
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This two-velocities Boltzmann-like model generalizes the viscous Burgers equation:

∂τρ(x, τ) −
ν

2
ρ(x, τ)∂xρ(x, τ) =

ν2

2
∂2

x,xρ(x, τ), (22)

which indeed can be obtained from the RW-model by performing a diffusive limit

[13]. Note that the explicit nature of this scaling limit is very appealing to investigate

numerical schemes and has recently regained some attention [17, 9]. For the fundamental

role played by the Burgers equation in shock wave analysis and fluid dynamics we refer

to [15] and [2]. The physical content of the RW-model in the domain of thermal fusion

is given in [22], its relevance for the theory of weak solutions to conservation laws resp.

for the theory of car traffic modeling is mentioned in [9] resp. [11].

The solutions to the generalized RW-model (19) are, for a large class of initial conditions,

explicitly given in terms of two linear differential operators O+ and O− defined in eq.(17).

They act on the logarithm of the convolution product of the densities associated to the

Gaussian measure and the two state random evolution measure [12]. We indeed have

that for sufficiently regular initial conditions, the two functions

f±(x, τ) = ±O± ln (φ(τ, x,±ν)) (23)

solve the system (19) with φ defined in eq.(18). The connection with the stochastic

control problem culminates therefore in the following

Proposition. The dynamic programming equations (9) are equivalent to the reaction-

diffusion type of equations given in (19).

The equivalence is understood in the sense that sufficiently regular solutions to (9)

(typically C4,1) are, upon a time inversion t → t1 − t, solutions to (19) and vice versa.

This establishes the relation exposed in table (2).

4. Interpretation of the cost function L

Let us now informally discuss our choice for the cost function

L =
1

2|z|(
v2

2σ2
+ u ln(u) − u+ 1). (24)

We focus in a first step on a small noise diffusion without random evolution i.e. we

consider the controlled dynamics

dXn
s = v(s,Xn

s )ds+
1√
n
σdBs, (25)

with small noise parameter 1/
√
n, control v and Lagrangian LD(v) = v2

2σ2 . If one thinks

of v as a velocity, then LD is just the classical action integrand of a particle of mass

1/σ2 (see also [7], Chapt. III Ex. 8.2). It reminds also the integrand of the Onsager-

Machlup (OM) functional in case we interpret v ≡ φ̇ as the time derivative of a smooth

curve φ because the probability for the uncontrolled X of moving close along φ for

asymptotically large n is ∝ exp(−
∫ t1

0
LD(v)dt). This classical large deviations result

reads more precisely [8]:

lim
δ↘0

lim
n→∞

1

n
lnP (|Xn

t − φ(t)| < δ, for all t ∈ [0, t1]) = −
∫ t1

0

LD(φ̇(s))ds. (26)
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The quadratic OM-functional LD associated to eq.(25) is formally obtained via the

Fenchel-Legendre transform of the function H defined on R × R by (see e.g., [16]):

H(x, ξ) = lim
t↘0

t−1 ln
(

Ex[ exp (ξ(Xt − x))]
)

(27)

where Ex denotes the conditional expectation with respect to the uncontrolled process

with X0 = x. We have H(x, ξ) = ξ2σ2/2 and the Fenchel-Legendre transform of H(x, ξ)

is:

sup
ξ∈R

{

ξu−H(x, ξ)
}

=
v2

2σ2
= LD(v). (28)

The OM function has an entropy-like nature and is related to the entropy production

density of the most probable path i.e., the trajectory φ which maximizes the asymptotic

estimate in eq.(26). It is for example shown in [3] that the two diffusion processes

given in (25) with v ≡ 0 and v = v∗ ≡ σ2∂x ln (h(t, x)) – where h is in the kernel

of the evolution operator associated to the process (25)– do have the same extremal

trajectories. In this sense, the optimal control (v = v∗) interferes as less as possible

with the uncontrolled trajectories (v = 0). It is this spare and clever interaction with

the uncontrolled trajectory which realizes the minimization of the costs. Note that this

connection between the variational principle for controlling diffusions and the Onsager-

Machlup principle is explicitly studied in [19] (see also [4] and [5] for associated results

in large deviations theory). The case with jump diffusions has been treated in [21].

Let us now exploit this connection in the case of the two-state noise Zs with switching

rates λ. Similar to eq.(27) we define

HZ(z, ξ) = lim
t↘0

t−1 ln
(

Ez[ exp (ξ(Zt − z))]
)

, z ∈ {±ν}, ξ ∈ R. (29)

Straightforward calculation of the conditional expectation Ez, using the measure of Zt

with Z0 = z (see e.g. [20] Prop. 0.1.), yield HZ(z, ξ) = λ(e−2zξ − 1). The Fenchel-

Legendre transform of HZ(z, ξ) for u ∈ R+ is:

sup
ξ∈R

{

ξu−HZ(z, ξ)
}

= λ
( u

2|z|λ ln
( u

2|z|λ
)

− u

2|z|λ + 1
)

= LRE(u). (30)

Hence our cost functional LD + LRE appears to be the natural candidate for the local

rate function of the large deviations principle associated to the small noise stochastic

dynamics defined by eq.(4).

5. Concluding remark

The technique of logarithmic transformations is well suited to construct exactly solvable

non-linear field equations. The exactly solvable examples include the Burgers equation,

the Boltzmann-like model of Rujgrok and Wu and its natural diffusive extension

presented in this paper. Starting from Markovian dynamics, one gets via the logarithmic

transformation a stochastic optimal control problem whose value function is directly

related to the non-linear field equations. The cost structure associated to the control

problem is related to the large deviations probabilities of the controlled dynamics.
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Besides its physical relevance, the presented non-linear field equations are, thanks to

the explicit nature of the solutions, appealing for numerical studies.
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