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1 Motivation

Standard continuous Galerkin-based finite element methods have poor stability prop-
erties when applied to transport-dominated flow problems, so excessive numerical sta-
bilization is needed. In contrast, the Discontinuous Galerkin method is known to have
good stability properties when applied to first order hyperbolic problems.

2 Outline

In this semester project we will consider the Discontinuous Galerkin method.
In section 3, the transport-reaction problem is presented. It mentions also the hy-

pothesis under which uniqueness and existence of the variational formulation in L2 is
guaranteed. A stability result follows.

In section 4, the pure transport problem is presented as well as a stability result for
this problem.

Section 5 introduces the Discontinuous Galerkin method followed by a conver-
gence analysis. The main result of this project is the proof of the convergence theorem.

Section 6 deals with numerical results. In the framework of this semester project
a Matlab code is developed for the computation of a numerical approximation. The
method is applied to a simple test case with known solution. Finally, the results are
analysed.

Section 7 is the conclusion of the Discontinuous Galerkin method.
In sections 8 and 9 we give a rudimentary introduction to orthogonal polynomials

and numerical integration.

3 The Transport-Reaction Problem

In this section, the transport-reaction problem is studied with non constant coefficients.
The following problem is considered:

Find u : Ω → R such that:

uβ + µu = f in Ω (1)

u = g on Γ− (2)

where uβ = β · ∇u denotes the derivative in the β-direction. Γ− is defined by Γ− =
{x ∈ ∂Ω : n(x) · β < 0}, where n(x) is the outward normal unit vector at the point x.
Analogously Γ+ is defined by Γ+ = {x ∈ ∂Ω : n(x) · β ≥ 0}. β is a vector field such
that β ∈ [W 1,∞(Ω)]d, and µ ∈ L∞(Ω), f ∈ H1(Ω), g ∈ H

1
2 (Γ−). Let be

WΩ = {w ∈ L2(Ω) : β · ∇w ∈ L2(Ω)} ⊂ L2(Ω)

with norm
‖u‖2

W,Ω = ‖u‖2
L2(Ω) + ‖β · ∇u‖2

L2Ω

W is a Hilbert space.
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3.1 Uniqueness and existence of the variational formulation in L2(Ω)

Multiplying (1) by a smooth test function v : Ω → R and integrating on the domain Ω
leads to:

Find u ∈ W (K)

∫

Ω

(µu+ β · ∇u)v =

∫

Ω

fv ∀ v ∈ L2(Ω)

Let V be the space
V = {w ∈WΩ : w|Γ

−

= g} ⊂WΩ (3)

The bilinear form a : WΩ × L2(Ω) → R and the linear form F : L2(Ω) → R are
defined by

a(u, v) =

∫

Ω

(µu+ β · ∇u)v ∀u ∈WΩ, ∀v ∈ L
2(Ω)

F (v) =

∫

Ω

vf ∀v ∈ L2(Ω)

Then, the variational formulation in L2(Ω) is:
Find u ∈ V such that:

a(u, v) = F (v) ∀v ∈ L2(Ω) (4)

It can be shown that under the hypothesis that there exists a constant µ0 such that

µ(x)−
1

2
∇ · β(x) ≥ µ0 > 0 a.e. in Ω (5)

the conditions of the Nečas Theorem are satisfied. That implies that there exists a
unique solution of (4). In addition, condition (5) is also necessary for uniqueness and
existence. For more details see [1].

3.2 Stability

In this section, a stability result for the Transport-Reaction Problem on the whole do-
main is developed.

Lemma 3.1 (stability for the transport-reaction problem) If it exists a constant µ1

such that µ(x) ≥ µ1 > 0 ∀ x ∈ Ω, then the following stability result is given:

µ1‖u‖
2
L2(Ω) +

∫

Γ+

|β · n|u2 ≤
1

µ1
‖f‖2

L2(Ω) +

∫

Γ
−

|β · n|g2

PROOF. Let us take equation (1), multiply it by u and integrate over Ω. We get

(uβ, u)Ω + (µu, u)Ω = (f, u)Ω

Then, the following integration by parts is used

(uβ , u)Ω = −(u, uβ)Ω + (β · nu, u)∂Ω

= −(uβ, u)Ω + (|β · n|u, u)Γ+
− (|β · n|g, g)Γ

−
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so that

(µu, u)Ω +
1

2
(|β · n|u, u)Γ+

= (f, u)Ω +
1

2
(|β · n|g, g)Γ

−

Now, the Cauchy-Schwarz inequality is applied to (f, u)Ω. This leads to

2(µu, u)Ω + (|β · n|u, u)Γ+
= 2‖f‖Ω‖f‖Ω + (|β · n|g, g)Γ

−

Finally the Young inequality with ε = 1
2µ1

is applied. Then

µ1‖u‖
2
L2(Ω) +

∫

Γ+

|β · n|u2 ≤
1

µ1
‖f‖2

L2(Ω) +

∫

Γ
−

|β · n|g2

�

4 The pure Transport Problem

In this section, the pure Transport Problem is considered:
Find u : Ω → R such that

uβ = f in Ω ⊂ R
d (6)

u = g on Γ− (7)

Then the variational formulation of this problem is:
Find u ∈ WΩ such that:

(uβ , v)Ω = (f, v)Ω ∀v ∈ L2(Ω) (8)

u = g on Γ−

4.1 Stability

Lemma 4.1 (stability for the pure Transport Problem) In the case of the pure trans-
port problem, i.e. if µ ≡ 0 and under the hypothesis that there exists a vector function

γ ∈
(

L∞(K)
)d

such that it exists a constant γ1 which satisfies

~γ · ~β ≥ γ1 > 0

then, the following stability result is given

γ1‖e
−~γ·~xu‖2

L2(Ω) + (|β · n|e−~γ·~xu, e−~γ·~xu)Γ+

≤
1

γ1
‖e−~γ·~xf‖2

L2(Ω) + (|β · n|e−~γ·~xg, e−~γ·~xg)Γ
−

PROOF. Let be ũ(~x) = e−~γ·~xu(~x) and note that problem (6) is equivalent to the fol-
lowing problem:

Find ũ : Ω → R such that

~β · ∇ũ+ νũ = e−~γ·~xf in Ω

ũ = e−~γ·~xg on Γ−

where ν = ~γ · ~β. This is a transport-reaction problem and thanks to the hypothesis,
Lemma (3.1) can be applied, so that we get the result.

�
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5 Discontinuous Galerkin Method

5.1 Notations

Let us first introduce some notations. Consider an element K. K can be arbitrary a
simplex or a parallelepiped , then ∂K is split into

∂K− = {x ∈ ∂K : n(x) · β < 0}

∂K+ = {x ∈ ∂K : n(x) · β ≥ 0}

and we have that ∂K = ∂K− ∪ ∂K+.

v− = lim
s→0−

v(x + sβ)

v+ = lim
s→0+

v(x+ sβ)

[v] = v+ − v−

v̂(x) =

{

v+ x ∈ ∂K−

v− x ∈ ∂K+

Let be hK the diameter of the element K and h = maxK hK .
In addition, (u, v)Λ denotes the usual L2-scalar product on Λ.

5.2 The method

In this section, the principle of the Discontinuous Galerkin method is presented. Let
us consider the transport-reaction equations. We will begin by studying the problem
restricted to one element, meaning a simplex or parallelepiped. On the element K, the
following problem is considered:

Find u : Ω → R such that

uβ + µu = f in K (9)

u = u− on ∂K− (10)

where u− is a given function on ∂K−. The associated variational formulation is:
Find u ∈ WK

(uβ + µu, v)K = (f, v)K ∀v ∈ L2(K)

u = u− on ∂K−

Using integration by parts leads to:

(uβ , v)K + (µu, v)K = −(u, vβ)K + (β · nû, v̂)∂K + (µu, v)K = (f, v)K

where n is the outward unit vector of K. Boundary conditions are imposed weakly, so
that the problem is:

Find u ∈ WK such that:

(µu, v)K−(u, vβ)K+(β·nu−, v−)∂K+
= (f, v)K+(|β·n|u−, v+)∂K

−

∀v ∈ WK

Note that u− on ∂K− is the given function of the boundary condition, but that u− on
∂K+ is the solution on ∂K+.



5 DISCONTINUOUS GALERKIN METHOD 7

Now, a Galerkin approximation is used. That means that the space WK is replaced
by the finite dimensional space Vh which satisfies Vh ⊂ WK . The formulation is the
following:

Find uh ∈ Vh such that:

(µuh, vh)K − (uh, vhβ)K + (β · nu−h , v
−
h )∂K+

= (f, vh)K + (|β · n|u−h , v
+
h )∂K

−

∀v ∈ Vh

where u−h is an approximation of u− in the space Vh. Then using integration by parts
for (uh, vhβ)K a second time leads to:

Find uh ∈ Vh) such that:

aK(uh, vh) = (f, vh)K ∀v ∈ Vh (11)

where u−h is given on the inflow boundary ∂K− and

aK(uh, vh) = (uhβ + µuh, vh)K + (|β · n|[uh], v+
h )∂K

−

Choosing a basis {ϕi} for the space Vh and writing uh =
∑

j ujϕj(x) leads to a
algebraic system:

A~u = ~f (12)

where

Ai,j = (ϕj,β + µϕj , ϕi)K + (|β · n|ϕ+
j , ϕ

+
i )∂K

−

~fi = (f, ϕi)K + (|β · n|u−, ϕ+
i )∂K

−

To solve the problem on one element, one needs only to know the the inflow boundary
data and f . Because the data is given on the inflow boundary of the whole domain, one
can find an order of elements such that the problem can be solved element by element.
For an example see Fig. 1. Instead of solving a big system of linear equations, many
small systems of linear equations has to be solved when using Discontinuous Galerkin.

Now, we would like to show existence and uniqueness of the approximation uh.
Since the problem can be uncoupled, it is sufficient to prove well posedness for one
elementK. The following lemma shows the result in the case of the Transport-Reaction
problem.

Lemma 5.1 If µ ∈ L∞(Ω) is such that

µ(x) ≥ µ1 > 0 ∀ x ∈ Ω

then for each element K ∈ τh, it exists a unique solution of the linear system (12)

A~u = ~f

for every constant vector ~f .
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Figure 1: Example of an order of triangles for the Discontinuous Galerkin Method

PROOF. First, the test function vh ∈ Vh of the variational formulation is chosen
equal to uh. Using partial integration, we obtain

(uhβ, uh)K = −(uh, uhβ)K + (β · nu+
h , u

+
h )∂K

−

+ (β · nu−h , u
−
h )∂K+

(13)

so that
2 (uhβ, uh)K = (β · nu+

h , u
+
h )∂K− + (β · nu−h , u

−
h )∂K+ (14)

Secondly, the left hand side of the variational formulation is considered.

2 (uhβ , uh)K + 2 (|β · n|u+
h , u

+
h )∂K

−

(15)

= −(|β · n|u+
h , u

+
h )∂K

−

+ (|β · n|u−h , u
−
h )∂K+

+2 (|β · n|u+
h , u

+
h )∂K

−

= (|β · n|u−h , u
−
h )∂K+

+ (|β · n|u+
h , u

+
h )∂K

−

=

∫

∂K

|β · n|ûh
2dσ

so that

2 (uhβ + µuh, uh)K + 2 (|β · n|u+
h , u

+
h )∂K

−

=

∫

∂K

|β · n|ûh
2dσ + 2

∫

K

µu2
hdx

Using the same basis of the space Vh as above, this is equivalent to the following
equation:

~uA~u =
1

2

∫

∂K

|β · n|u2
hdσ +

∫

K

µûh
2dx (16)

If A~u = 0 then ~uA~u = 0 and as consequence

0 ≥
1

2

∫

∂K

|β · n|ûh
2dσ + µ1

∫

K

u2
hdx ≥ ‖uh‖

2
L2(K) ≥ 0 (17)
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That implies that uh ≡ 0 and ~u = ~0. This proves the regularity of the matrix A as well
as the uniqueness and existence of the approximation uh.

�

In the case of the pure Transport Problem, we have the following result.

Lemma 5.2 We assume that one of the following conditions are satisfied.

• Vh = P 1(K)

• Vh = P 2(K) and each side Γ of the the triangle K satisfies

|β · n(x)| > C ∀x ∈ Γ

then, there exists a unique solution of the linear system (12), derived from the pure
transport problem,

A~u = ~f

for every constant vector ~f .

PROOF. Taking equation (16) with µ = 0 leads to:

~uA~u =
1

2

∫

∂K

|β · n|ûh
2dσ (18)

The uniqueness and existence of uh follows of the regularity of the matrix A. Let be ~u
so that A~u = ~0, then

∫

∂K

|β · n|ûh
2dσ = 0 (19)

If it can be shown that ~u = ~0, resp. uh = 0, A is a regular matrix and uh exists and is
unique for each ~f . But concluding that uh = 0 depends now from the space Vh.

• If Vh = P 1(K), then uh = 0, also if β is parallel to one side of the element K.

• If Vh = P 2(K) it is necessary that each side Γ of the triangle K satisfies

|β · n(x)| > C ∀x ∈ Γ (20)

where C > 0. This is a supplementary condition of the triangulation.

�

Remark: Figure 2 shows the interpolation points for the different spaces.
Remark: If Vh = PN (K) with N ≥ 3, there is no control over the basis functions
with support in the interior of the triangle. For example suppose that N = 3, then one
interpolation point pint is in the interior of the triangle. Let ψ be the function such that

ψ(pint) = 1 and ψ(x) = 0 ∀x ∈ ∂K

Then
∫

∂K

|β · n|ψ2 = 0 but ψ(x) 6= 0 ∀x ∈ int(K)
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Figure 2: The interpolation points for P 1(K), P 2(K) and P 3(K)

5.3 Convergence Analysis

In this section, a global convergence result for the Discontinuous Galerkin method
is developed under the hypothesis that µ = 1. Note that in this section C and CK

denotes generic constants taking different values. We will not pay attention to the
explicit form ot these constants but note that they are independent of h and N , unless
otherwise noted. We start from the local problem defined by (11). Then, the sum over
all elements K ∈ τh is taken and. This describes the global problem:

Find uh ∈ W
N
h such that

∑

K∈τh

aK(uh, vh) = (f, vh)Ω + (|β · n|g, v+
h )Γ

−

∀vh ∈W
N
h

where
WN

h = {w ∈ L2(Ω)| w|K ∈ Vh , ∀K ∈ τh}

In fact, this is equivalent to
Find uh ∈ W

N
h such that

a(uh, vh) = (f, vh)Ω + (|β · n|g, v+
h )Γ

−

∀vh ∈ WN
h (21)

where

a(uh, vh) = (µuh + uh,β, vh)Ω +
∑

K

(|β · n|[uh], v+
h )∂K

−
\Γ + (|β · n|u+

h , v
+
h )Γ

−

Note that the result is developed for µ = 1. Taking vh = uh and integrating by parts,
we obtain

a(uh, uh) = ‖uh‖
2
L2(Ω) +

∑

K

(uh,β , uh)K +
∑

K

(|β · n|[uh], v+
h )∂K

−
\Γ

+ (|β · n|u+
h , v

+
h )Γ

−

= ‖uh‖
2
L2(Ω) +

∑

K

(|β · n|[uh], u+
h )∂K

−
\Γ + (|β · n|u+

h , u
+
h )Γ

−

+
∑

K

1

2

(

(|β · n|u−h , u
−
h )∂K+

− (|β · n|u+
h , u

+
h )∂K

−

)

Now, the following equality is used

(a− b)a =
1

2
(a2 + (a− b)2 − b2)
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so that

(|β · n|[uh], u+
h )∂K

−
\Γ =

1

2

∫

∂K
−
\Γ

|β · n|
(

(u+
h )2 + [uh]2 − (u−)2

)

then

a(uh, uh) = ‖uh‖
2
L2(Ω) +

∑

K

[1

2

∫

∂K
−
\Γ

|β · n|
(

(u+
h )2 + [uh]2 − (u−h )2

)

+
1

2

∫

∂K
−
\Γ

|β · n|(u−h )2 −
1

2

∫

∂K
−
\Γ

|β · n|(u+
h )2

]

+
1

2

∫

Γ

|β · n|ûh
2

= ‖uh‖
2
L2(Ω) +

∑

K

(1

2

∫

∂K
−
\Γ

|β · n|[uh]2
)

+
1

2

∫

Γ

|β · n|ûh
2

This motivates us to define the following norm

‖|uh‖|
2 = ‖uh‖

2
L2(Ω) +

∑

K

(1

2

∫

∂K
−
\Γ

|β · n|[uh]2
)

+
1

2

∫

Γ

|β · n|ûh
2

and as consequence
‖|uh‖|

2 = a(uh, uh).

We immediately conclude that

‖|uh‖|
2 = (f, uh)Ω + (|β · n|g, u+

h )Γ
−

.

Existence and uniqueness of the discrete solution follows. For u ∈ H1(Ω) the numeri-
cal schema is consistent. This is expressed in the form of the Galerkin orthogonality in
the following lemme.

Lemma 5.3 (Galerkin orthogonality)

a(uh − u, vh) = 0 ∀ vh ∈WN
h

where u is the exact solution and uh solution of (21).

PROOF. First, since uh is solution of (21), it satisfies

a(uh, vh) = (f, vh)Ω + (|β · n|g, v+
h )Γ

−

∀vh ∈ WN
h (22)

Secondly, with u the exact solution, we have

(µu+ uβ , vh)Ω = (f, vh)Ω ∀vh ∈ WN
h

(u− g, vh)Γ
−

= 0 ∀vh ∈ WN
h

In addition, u ∈ H1(Ω) and as consequence u ∈ H1(K) ∀K ∈ τh. So that the trace
is well defined and hence

∫

∂K

|β · n|[u]v ≤ C

∫

∂K

[u]v = 0.

So that
a(u, vh) = (f, vh)Ω + (|β · n|g, v+

h )Γ
−

∀vh ∈ WN
h (23)

Taking the difference between (22) and (23) leads to

a(uh − u, vh) = 0 ∀ vh ∈ WN
h .

�



5 DISCONTINUOUS GALERKIN METHOD 12

Now, the local projection PN : L2(K) → WN
h is introduced. For all u ∈ L2(K),

there exists PNu ∈ W
N
h ∩ C0(K) such that

∫

K

(u− PNu)vh = 0 ∀vh ∈ W
N
h .

Let be hK the diameter of the element K defined by hK = maxx,y∈K |x− y|. Then h
is defined by h = maxK hK In addition, we refer to [2] for the following Lemma’s.

Lemma 5.4 (Local Projection Error on the boundary ∂K) Let K ∈ τh and sup-
pose that u ∈ Hk(K) for some integer k ≥ 1. Then, for any integer s, 1 ≤ s ≤
min(N + 1, k) and N ≥ 1, we have that

‖u− PNu‖L2(∂K) ≤ CK(d, s)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

Lemma 5.5 (Local Projection Error) Let K ∈ τh and suppose that u ∈ Hk(K) for
some integer k ≥ 1. Then, for any integer s, 1 ≤ s ≤ min(N + 1, k) and N ≥ 1, we
have that

‖u− PNu‖L2(K) ≤ CK

hs
K

Ns
|u|Hs(K)

We first state and proof two approximation lemmas.

Lemma 5.6 If there exists a constant C(β) such that |β · n| ≤ C(β), then

‖|η‖| ≤
∑

K

CK(d, s, β)
h

s− 1
2

K

Ns− 1
2

|u|Hs(K)

PROOF Lemma(5.6)

‖|η‖|2 = ‖η‖2
L2(Ω) +

∑

K

1

2

∫

∂K
−
\Γ

|β · n|[η]2 +
∑

K

1

2

∫

∂K∩Γ

|β · n|η̂2

Considering each term of this sum:

• ‖η‖2
L2(Ω) ≤

∑

K

(

C
hs

K

Ns |u|Hs(K)

)2
by Lemma(5.5)

•
∑

K

1

2

∫

∂K∩Γ

|β · n|η̂2 ≤
∑

K

1

2

∫

∂K

|β · n|η̂2

≤ C(β)
∑

K

‖η‖2
L2(∂K) ≤

∑

K

(

CK(d, s, β)
h

s− 1
2

k

(N + 1)s− 1
2

|u|Hs(K)

)2

•
∑

K

1

2

∫

∂K
−
\Γ

|β · n|[η]2 ≤
∑

K

1

2

∫

∂K
−
\Γ

|β · n|
(

η+2
+ η−

2)

≤ 2
∑

K

∫

∂K

|β · n|η̂2 ≤ C(β)
∑

K

‖η‖2
L2(∂K)

≤
∑

K

(

CK(d, s, β)
h

s− 1
2

k

(N + 1)s− 1
2

|u|Hs(K)

)2
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So that

‖|η‖| ≤
(

∑

K

(

CK(d, s, β)
h

s− 1
2

k

(N + 1)s− 1
2

|u|Hs(K)

)2

+
(

CK(d, s, β)
h

s− 1
2

k

Ns− 1
2

|u|Hs(K)

)2
)

1
2

≤
(

∑

K

(

CK(d, s, β)
h

s− 1
2

k

Ns− 1
2

|u|Hs(K)

)2
)

1
2

≤
∑

K

CK(d, s, β)
h

s− 1
2

k

Ns− 1
2

|u|Hs(K)

� Lemma(5.6)

Lemma 5.7 If there exists a constant C(β) such that |β · n| ≤ C(β), then

(

∑

K

∫

∂K

|β · n|(η−)2
)

1
2

≤
∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

PROOF Lemma(5.7)

(

∑

K

∫

∂K

|β · n|(η−)2
)

1
2

≤
(

∑

K

C‖η̂‖2
L2(∂K)

)
1
2

≤
(

∑

K

(CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K))
2
)

1
2

≤
∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

� Lemma(5.7)

Theorem 5.8 (Global Convergence) Suppose that u ∈ Hk(K) for some integer k ≥
1 and there exists a constant C(β) such that |β · n| ≤ C(β). Then, for any integer
s, 1 ≤ s ≤ min(N + 1, k) and N ≥ 1, we have that

‖|u− uh‖| ≤ C(d, s, β)
hs− 1

2

Ns− 1
2

|u|Hs(Ω)

PROOF. Let be η = PNu− u and ξ = PNu− uh. Then

‖|u− uh‖| ≤ ‖|u− PNu‖|+ ‖|PNu− uh‖| = ‖|η‖|+ ‖|ξ‖|

Let us show the following inequality

‖|ξ‖| ≤
∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

The Galerkin Orthogonality is used for developing

‖|ξ‖|2 = a(PNu− uh, PNu− uh) + a(uh − u, PNu− uh) = a(η, ξ)

=
∑

K

(η, ξ)K +
∑

K

(ηβ , ξ)K +
∑

K

(|β · n|[η], ξ+)∂K
−
\Γ

+(|β · n|η+, ξ+)Γ
−
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Observe that ξ = PNu− uh ∈ W
N
h and as consequence

(η, ξ)K = 0

Using integration by parts of (ηβ , ξ)K :

(ηβ , ξ)K = (η, ξβ)K +
∑

K

(|β · n|η̂, ξ̂)∂K

and the fact that ξβ ∈WN
h and in consequence that (η, ξβ)K = 0 leads to

‖|ξ‖|2 =
∑

K

(|β · n|[η], ξ+)∂K
−
\Γ + (|β · n|η+, ξ+)Γ

−

+
∑

K

(|β · n|η−, ξ−)∂K+
−

∑

K

(|β · n|η+, ξ+)∂K
−

=
∑

K

(|β · n|η−, ξ−)∂K+
−

∑

K

(|β · n|η−, ξ+)∂K
−
\Γ

=
∑

K

(|β · n|η−, ξ− − ξ+)∂K
−
\Γ + (|β · n|η−, ξ−)Γ+

First, the Cauchy-Schwarz inequality is applied to

(|β · n|η−, ξ−)Γ+
≤

(

∫

Γ+

|β · n|(η−)2
)

1
2

(

∫

Γ+

|β · n|(ξ−)2
)

1
2

Observing that
(

∫

Γ+

|β · n|(ξ−)2
)

1
2

≤ ‖|ξ‖|

and
(

∫

Γ+

|β · n|(η−)2
)

1
2

≤
(

∑

K

∫

∂K

|β · n|(η−)2
)

1
2

Lemma(5.7) can be applied, so that

(|β · n|η−, ξ−)Γ+
≤

(

∫

Γ+

|β · n|(η−)2
)

1
2

(

∫

Γ+

|β · n|(ξ−)2
)

1
2

≤
(

∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

)

‖|ξ‖|

Secondly, using Lemma(5.7) and applying the Cauchy-Schwarz inequality a second
time leads to

∑

K

(|β · n|η−, ξ− − ξ+)∂K
−
\Γ ≤

(

∑

K

∫

∂K
−

|β · n|(η−)2
)

1
2

(

∑

K

∫

∂K
−

|β · n|[ξ]2
)

1
2

≤
(

∑

K

∫

∂K

|β · n|(η−)2
)

1
2

‖|ξ‖|

≤
(

∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

)

‖|ξ‖|
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y

7 8 9

4 5 6

321

(1,0)(0,0) x

(1,1)(0,1)

~β

Ω = (0, 1)× (0, 1)

~β

Figure 3: Order to compute the approximation on the elements

so that

‖|ξ‖|2 ≤
(

∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

)

‖|ξ‖|

and

‖|ξ‖| ≤
∑

K

CK(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K)

In addition, by lemma(5.6)

‖|η‖| ≤ CK(d, s, β)
h

s− 1
2

K

Ns− 1
2

|u|Hs(K)

so that

‖|u− uh‖| ≤ ‖|ξ‖|+ ‖|η‖|

≤
∑

K

C1,K(d, s, β)
h

s− 1
2

K

(N + 1)s− 1
2

|u|Hs(K) + C2,K(d, s, β)
h

s− 1
2

K

Ns− 1
2

|u|Hs(K)

≤
∑

K

CK(d, s, β)
h

s− 1
2

K

Ns− 1
2

|u|Hs(K)

≤ C(d, s, β)
hs− 1

2

Ns− 1
2

|u|Hs(Ω)

� Theorem(5.8)
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6 Numerical Results

In this section, the Discontinuous Galerkin method is tested numerically. The principal
aim is to verify the convergence result, developed in the previous section.

6.1 The code

The Discontinuous Galerkin method is implemented as Matlab code. You will find it
in Appendix A.
On each element, the linear system (12) is solved. As finite dimensional space Vh, the
polynomial space QN (K), the set of all tensor-product polynomials on K of degree
N in each coordinate direction is chosen. As basis of the polynomial space QN(K),
the tensor product of the Legendre’s polynomials is chosen. This means that each
basis ϕi(x, y) is the product of a Legendre’s polynomial in x and one in y, each of
maximum degree N . The Legendre’s polynomials belong to Jacobi polynomials, they
are orthogonal for the non weighted L2-scalar product. For more details about the
Legendre’s polynomials, see section(8).
For computing the matrix A and the vector ~f , symoblic calculation is used. In fact,
Matlab can use the Maple commands. This allows us to calculate the integrals exactly
and no numerical integration is needed. For more details about Matlab using Maple,
see the Matlab documentation. To solve the linear system, the GMRes-Algorithm is
used.
Then, in the case of the test problems, ‖|u − uh‖| is calculated where u denotes the
exact solution defined by (24) and uh is the corresponding approximation.

6.2 Test Problem

A two-dimensional problem is chosen. The domain is the rectangle Ω = (0, 1) ×
(0, 1) ⊂ R

2 and as exact solution, the following function is taken

u(x, y) =
(

(x− 1) + e−x
)

y. (24)

~β is chosen as ~β = (1 0)T , so that the differential equation is

~β · ∇u(x, y) + u(x, y) = xy = f(x, y)

Ω is divided in N2 sub-rectangles (the elements), where N is the number of sub-
intervals of [0, 1]. The order to compute the approximation on the elements is illus-
trated in Figure(3). The boundary condition on Γ− is

u(~x) = 0 ∀ ~x ∈ Γ−

It is obvious that u ∈ C∞(Ω) and u ∈ Hk(Ω) ∀k ≥ 0. Due to this regularity of the
solution u, s = min(N + 1, k) = N + 1 and the convergence result is in this case

‖|u− uh‖| ≤ C(d,N, β)
hN+ 1

2

NN+ 1
2

|u|HN+1(Ω) (25)

Note that the constant C is also depending on N. In figure(4) we plot the logarithm of
the DG-norm against the logarithm of h resp. 1

N
for each fixed N resp. h. These two

graphics are commented in the two following subsections.
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Figure 4: h- resp. N-refinement in the case of the test problem

6.2.1 h-refinement

In this case, we study the behavior of the error while varying h for each fixedN . Fixing
N in (25) leads to the following convergence in h:

|‖u− uh‖| ≤ CNh
N+ 1

2

In the case of a such behavior of the error, means

E = CNh
N+ 1

2 (26)

we expect a straight line in the log-log diagram. In fact, taking the logarithm of (26)
leads to

log(E) = (N +
1

2
) log(h) + log(CN )

Effecting the transformation of variables

y = log(h) ⇔ h = e−y (27)

leads to

log(E) = (N +
1

2
)y + log(CN ).

Therefor the expected straight line. As you can see in the first graphic of figure(4) we
observe exactly a such behavior, i.e. the slope of the straight line varies for each N . So
that ‖|u− uh‖| converge at the rate O(hN+ 1

2 ) as h tends to zero for each fixed N . As
you can observe, the bound is attained, means the error estimation is optimal.
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6.2.2 N -refinement

In this case, h is fixed. So that the convergence result gets

‖|u− uh‖| ≤ Ch,NN
−(N+ 1

2
)|u|HN+1(Ω)

We neglect the N -dependence of the constant Ch,N and the variation of hN+ 1
2 . As-

suming the following error behavior

E = CN−(N+ 1
2
)|u|HN+1(Ω) (28)

we expect the following behavior in the log-log diagram

log(E) =
(

e−y +
1

2

)

y + log(C|u|HN+1(Ω)) (29)

In fact, taking the logarithm of (28) leads to

log(E) =
(

N +
1

2

)

log(N−1) + log(C|u|HN+1(Ω))

Effecting the same transformation of variables as above, i.e. effecting the transfor-
mation defined by (27), leads to (29). This curve is plotted in the second graphic of
figure(4).
Motivated by this calculus, we model the error by the following function.

f(y) = (e−C1y +
1

2
)y + C2.

As you can remark, a supplementary constant C1 is added and the N-dependence of
|u|HN+1(Ω) is neglected. In the second graphic of figure(4), a such function with C1 =
2.5 and C2 = −1.3 is also plotted.
As predicted, we can also observe the exponential decrease of the error. Note that the
exponential decrease is only due to the regularity of the solution. For example, in the
case where u ∈ H1(Ω), we have that s = min(N + 1, 1) = 1, ∀N ≥ 0 and hence the
convergence result becomes

‖|u− uh‖| ≤ C(d, β)
h

1
2

N
1
2

|u|H1(Ω) (30)

i.e. a convergence rate of O
(

(N−1)
1
2

)

of ‖|u− uh‖| as N−1 tends to zero.

6.3 Conclusions of the numerical tests

In both cases, the h-refinement and N -refinement, the error estimations are optimal.
In the case where the solution is sufficient regular, it is more useful to refine in N than
in h, because of the exponential decrease of the error in the N -refinement. In the case
of a weak regularity of the solution, we have no numerical results, but a behavior of the
error described in (30) is expected.
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7 Conclusion

In this section, the advantages and disadvantages of the Discontinuous Galerkin method
are discussed. An advantage is that the global problem can be decoupled in a lot of
small problems. For each element, a linear system has to be solved.
In addition to that, it is also easy to use spectral methods. Since the approximation
does not have to be continuous, one can take an arbitrary basis of polynomials for each
element. But the fact that the approximation is discontinuous implies also a larger
amount of unknowns. One should compare in a further project the Continuous and
Discontinuous Galerkin method in the case of the same degree of freedom.
The fact that the approximation is discontinuous can be considered as an advantage
or a disadvantage. If the exact solution is continuous, then the approximation will be
discontinuous, but converge to the continuous solution. On the other hand if the exact
solution is discontinuous, and with a good choice of the computational mesh one may
catch better the effects of the disconinuous solution than with the Continuous Galerkin
method.
It should also be mentioned, that no oscillations are observed.

8 Introduction to Legendre’s polynomials

This section is a short introduction to the family of Legendre’s polynomials. The proofs
of the theorems are not presented.

Definition 8.1 Legendre’s polynomial of degree N is the polynomial defined by

PN (x) =
1

N !2N

dN

dxN
(x2 − 1)N ∀x ∈ [−1, 1]

Proposition 8.2 PN has exactly N different real zeros all included in (−1, 1)

Definition 8.3 The zeros of the Legendre’s polynomial are called the Gauss points.

Theorem 8.4 1. The Legendre’s polynomialsP1, . . . , PN build a basis of PN([−1, 1])

2. The Legendre’s polynomials satisfies
∫ 1

−1

Pn(x)Pm(x)dx =

{

0 if n 6= m
2

2n+1 if n = m

Note that if an orthogonal basis of PN ([−1, 1]) is given, it is simple to construct
an orthogonal basis of PN ([a, b]) by a simple affine transformation.

Theorem 8.5 If f : [a, b] → R is a continuous function and let be {Φ0, . . . ,ΦN} a set
of orthonormal polynomials on [a, b] where Φk is of degree k. Let be

cj =

∫ b

a

f(x)Φj(x)dx

Then, the polynomial defined by

P =

N
∑

j=0

cjΦj(x)

is such that

‖f − P‖L2([a,b]) ≤ ‖f −Q‖L2([a,b]) ∀Q ∈ PN ([a, b])
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9 Introduction to numerical integration

This section is an introduction to numerical integration. Like in the previous section,
only the results are presented.
Problem Let be f ∈ C([a, b]). One would like to approximate the functional

I(f) =

∫ b

a

f(x)ρ(x)dx ∀f ∈ C([a, b]) (31)

where ρ is a weight function. Let be a ≤ x0 < x1 < . . . < xN ≤ b N + 1 points in
[a, b].

Definition 9.1

IN+1(f) =
N

∑

j=0

f(xj)ωj (32)

is called a quadrature formula where ωj ∈ R are called the weights. {x0, . . . , xN} are
called the integration points.

Definition 9.2 A quadrature formula J is called exact of degree N if

• J(f) = I(f) ∀f ∈ PN

• J(xN+1) 6= I(xN+1)

Proposition 9.3 Let be I defined by (31) and IN+1 by (32). This formula is exact of
degree 2N + 1 if

• ωi =
∫ b

a
Li(x)ρ(x) where Li is the i-th component of the Lagrange basis

• The integration points are the zeros of PN+1, where PN+1 belongs to the family
of orthogonal polynomials on [a, b].

Proposition 9.4 Let be x0, . . . , xN N + 1 distinct points and

ωj =

∫ b

a

Lj(x)ρ(x)dx

Then IN+1 is at least exact of degree N for all f ∈ CN+1.
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10 Appendix A
0001 function Norms=DG(a,b,Nx,Ny,mu,N,f,gcoeff)
0002
0003 % test arguments
0004 s=size(gcoeff);
0005 if (Ny ˜= s(1))
0006 errordlg(’N+1 ˜= length(gcoeff)’);
0007 end
0008 if (N+1 ˜= s(2))
0009 errordlg(’N+1 ˜= length(gcoeff)’);
0010 end
0011
0012 % load maple orthogonal polynomials
0013 maple(’with’,’orthopoly’)
0014
0015 % define constants
0016 Beta=[1 0]’;
0017 hx=a/Nx;
0018 hy=b/Ny;
0019 Nel=Ny*Nx;
0020 if N<2
0021 numb=1;
0022 else
0023 numb=5;
0024 end
0025 h1 = hx/numb;
0026 h2 = hy/numb;
0027 counter=1;
0028
0029 % Get order of triangles and other bouandary informations
0030 % seq(1,:) = numberof element
0031 % seq(2,:) = x-coordinate
0032 % seq(3,:) = y-coordinate
0033 % seq(4,:) = number of the element which is on the left (if on the boundary=-1)
0034 % seq(5,:) = if on the bottom-boundary
0035 % seq(6,:) = if on the top-boundary
0036 % seq(7,:) = if on the right-boundary
0037 seq=zeros(5,Nel);
0038 seq(1,1:Nel) = [1:1:Nel];
0039 if(Nel>1)
0040 for i=0:Nel-1
0041 % x0
0042 seq(2,i+1) = mod(i,Nx)*hx;
0043 % y0
0044 seq(3,i+1) = (i-mod(i,Nx))/Nx*hy;
0045 % previous
0046 if (mod(i+1,Nx)==1)
0047 seq(4,i+1) = -1;
0048 else
0049 seq(4,i+1) = i;
0050 end
0051 if i<Nx
0052 seq(5,i+1) = 1;
0053 end
0054 if i>=(Nel-Nx)
0055 seq(6,i+1) = 1;
0056 end
0057 if mod(i+1,Nx)==0
0058 seq(7,i+1) = 1;
0059 end
0060 end
0061 else
0062 seq(4,1) = -1;
0063 seq(5,1) = 1;
0064 seq(6,1) = 1;
0065 seq(7,1) = 1;
0066 end
0067
0068 % define matrices
0069 U = zeros((N+1)ˆ2,Nel);
0070 A = zeros((N+1)ˆ2,(N+1)ˆ2);
0071 Ak = zeros((N+1)ˆ2,(N+1)ˆ2);
0072 Bk = zeros((N+1)ˆ2,(N+1)ˆ2);
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0073 Ck = zeros((N+1)ˆ2,(N+1)ˆ2);
0074 Aint = zeros(N+1,N+1);
0075 Ufunc = cell(Nel,1);
0076
0077 for i=0:N
0078 Aint(i+1,i+1) = 2/(2*i+1);
0079 end
0080
0081 % for the norm
0082 if (strcmp(f,’x*y’) | strcmp(f,’(10*cos(10*x)+sin(10*x))*yˆ3’) & mu==1)
0083 if (strcmp(f,’x*y’))
0084 exactsol = ’((x-1)+exp(-x))*y’;
0085 else
0086 exactsol = ’(sin(10*x))*yˆ3’;
0087 end
0088 Lnorm2=0;
0089 DGnorm2=0;
0090 else
0091 ’error norm calculation is not possible, exact solution is not known’
0092 %warndlg(’error norm calculation is not possible, exact solution is not known’);
0093 end
0094
0095 % Construction of Ak
0096 Tk = [[hx/2 0];[0 hy/2]];
0097 for i=0:N
0098 for j=0:N
0099 for k=0:N
0100 for l=0:N
0101 Iind = i*(N+1)+j+1;
0102 Jind = k*(N+1)+l+1;
0103 % Ak
0104 Ak(Iind,Jind) = mu*det(Tk)*Aint(i+1,k+1)*Aint(j+1,l+1);
0105 % Bk
0106 Bk(Iind,Jind) = det(Tk)*dot(Beta,inv(Tk)’*...
0107 [Aint(j+1,l+1)*getInt(i,k); Aint(i+1,k+1)*getInt(j,l)]);
0108 % Ck
0109 val1 = str2num(maple(’P’,i,-1));
0110 val2 = str2num(maple(’P’,k,-1));
0111 Ck(Iind,Jind) = hy/2*val1*val2*Aint(j+1,l+1);
0112 end
0113 end
0114 end
0115 end
0116 Ak = Ak + Bk + Ck;
0117
0118 % loop on the elements
0119 for k=1:Nel
0120 % get f
0121 bk = [seq(2,k)+hx/2 seq(3,k)+hy/2]’;
0122 x0 = seq(2,k);
0123 x0str = maple(’eval’,x0);
0124 x0strPlus = maple(’eval’,x0+hx);
0125 y0 = seq(3,k);
0126 y0str = maple(’eval’,y0);
0127 y0strPlus = maple(’eval’,y0+hy);
0128 invTransX = [’2/(’ maple(’eval’,hx) ’)*(x-’ maple(’eval’,x0) ’)-1’];
0129 invTransY = [’2/(’ maple(’eval’,hy) ’)*(y-’ maple(’eval’,y0) ’)-1’];
0130 if (seq(4,k)==-1)
0131 coeff = gcoeff(counter,:);
0132 else
0133 coeff = outflow(:,seq(4,k));
0134 end
0135 for i1=0:N
0136 % First Term
0137 pi1 = maple(’P’,i1,invTransX);
0138 func = [’(’ f ’)*(’ pi1 ’)’];
0139 str = maple(’int’,func,[’x=’ x0str ’..’ x0strPlus]);
0140 % Second Term
0141 pi1atmin1 = str2num(maple(’P’,i1,-1));
0142 for i2=0:N
0143 % First Term
0144 pi2 = maple(’P’,i2,invTransY);
0145 func = [’(’ pi2 ’)*(’ str ’)’];
0146 str2 = maple(’int’,func,[’y=’ y0str ’..’ y0strPlus]);
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0147 % Second Term
0148 second = abs(Beta’*[-1 0]’)*hy/2*pi1atmin1*coeff(i2+1)*2/(2*i2+1);
0149 % Sum
0150 fk(i1*(N+1)+i2+1) = str2num(str2) + second;
0151 end
0152 end
0153
0154 if (seq(4,k)==-1)
0155 counter=counter+1;
0156 end
0157
0158 % get solution
0159 U(:,k) = gmres(Ak,fk’,20,10e-15,500);%Ak\fk’;
0160
0161 % Get grid for evaluation
0162 x = [x0:h1:x0+hx];
0163 y = [y0:h2:y0+hy];
0164 [X(:,:,k) Y(:,:,k)] = meshgrid(x,y);
0165
0166 % get outflow
0167 outflow(:,k) = zeros(N+1,1);
0168
0169 % get solution function in form of string
0170 % loop over x-basis
0171 for i=1:N+1
0172 % loop over y-basis
0173 for j=1:N+1
0174 % get func
0175 if (i==1 & j==1)
0176 Ufunc(k) = {[’(’ num2str(U(1,k),15) ’*(’ maple(’P’,0,invTransX)...
0177 ’)*(’ maple(’P’,0,invTransY) ’))’]};
0178 else
0179 Ufunc(k) = {[char(Ufunc(k)) ’+(’ num2str(U((i-1)*(N+1)+j,k),15)...
0180 ’*(’ maple(’P’,i-1,invTransX) ’)*(’ maple(’P’,j-1,invTransY) ’))’]};
0181 end
0182 % get i-th outflow-coeff for element k
0183 outflow(i,k) = outflow(i,k) + str2num(maple(’P’,j-1,1))*U((j-1)*(N+1)+i,k);
0184 end
0185 end
0186
0187 % evaluate solution function on grid points for visualization
0188 s = size(X(:,:,k));
0189 for i=1:s(1)
0190 for j=1:s(2)
0191 x=X(i,j,k);
0192 y=Y(i,j,k);
0193 v(i,j,k) = eval(char(Ufunc(k)));
0194 end
0195 end
0196
0197 % calculates norms of this element
0198 if (strcmp(f,’x*y’) | strcmp(f,’(10*cos(10*x)+sin(10*x))*yˆ3’) & mu==1)
0199 if (strcmp(f,’x*y’))
0200 Lnorm2 = Lnorm2 + L2norm(x0,y0,hx,hy,char(Ufunc(k)),exactsol)ˆ2;
0201 DGnorm2 = DGnorm2 + pureDGnorm(x0,y0,hx,hy,Ufunc,seq(:,k),k,exactsol)ˆ2;
0202 else
0203 Lnorm2 = Lnorm2 + L2norm(x0,y0,hx,hy,char(Ufunc(k)),exactsol)ˆ2;
0204 DGnorm2 = DGnorm2 + pureDGnorm(x0,y0,hx,hy,Ufunc,seq(:,k),k,exactsol)ˆ2;
0205 end
0206 end
0207 end
0208
0209 % norm calculation
0210 if (strcmp(f,’x*y’) | strcmp(f,’(10*cos(10*x)+sin(10*x))*yˆ3’) & mu==1)
0211 Norms(1) = sqrt(Lnorm2);
0212 Norms(2) = sqrt(DGnorm2);
0213 Norms(3) = sqrt(DGnorm2+Lnorm2);
0214 else
0215 Norms = [-1 -1 -1];
0216 end
0217
0218 % visualisation
0219 figure(33)
0220 for k=1:Nel
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0221 patch(surf2patch(X(:,:,k)’,Y(:,:,k)’,v(:,:,k)’,v(:,:,k)’));
0222 shading faceted;
0223 view(3)
0224 end
0225 hold off;
0226


