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ABSTRACT: Images of a scene captured with multiple cameras will

have different color values because of variations in color rendering

across devices. We present a method to accurately retrieve color in-

formation from uncalibrated images taken under uncontrolled lighting
conditions with an unknown device and no access to raw data, but

with a limited number of reference colors in the scene. The method is

used to assess skin tones. A subject is imaged with a calibration tar-

get. The target is extracted and its color values are used to compute
a color correction transform that is applied to the entire image. We es-

tablish that the best mapping is done using a target consisting of skin

colored patches representing the whole range of human skin colors.
We show that color information extracted from images is well corre-

lated with color data derived from spectral measurements of skin. We

also show that skin color can be consistently measured across cam-

eras with different color rendering and resolutions ranging from 0.1 to
4.0 megapixels. VVC 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol,

17, 143–151, 2007; Published online in Wiley InterScience (www.interscience.

wiley.com). DOI 10.1002/ima.20114
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1. INTRODUCTION

Digital images have become a part of our everyday life and imaging

devices are everywhere, from higher end digital cameras to video

cameras integrated in laptops or cell phones. Taking pictures has

never been so easy, but objective color assessment remains an issue,

especially with the growth of low-quality devices such as cell phone

integrated cameras. Because of imperfect illuminant compensation

and to variable camera characteristics, the same scene imaged with

different devices can have important variations, which makes the

objective assessment of scene colors difficult. This is a problem for

online shopping, for example. It is impossible to accurately assign a

color from an uncalibrated image displayed on an uncalibrated dis-

play, but using calibrated devices is neither practical nor feasible.

The method we propose only requires that a calibrated target be

present in the scene, which is by far the cheapest calibrated

‘‘hardware’’ to distribute.

The object of interest is imaged together with a reference target,

which allows color correcting the image independently of the imag-

ing device and illuminant. There are potentially many applications,

particularly in the assessment of skin tones. In fashion, allowing

people to upload a portrait taken with any capture device would

enable automated suggestion of personal appearance products, such

as makeup or clothing that complement skin tone. Our method

could also be applied in computer graphics for skin color preserva-

tion in video conferencing or for the rendering of people’s avatars

in the next generation of online gaming.

The color properties of an object can be fully characterized by

its reflectance spectra, i.e. the percentage of light reflected by the

object’s surface at each wavelength and incident angle. The reflec-

tance spectra can be retrieved by direct spectrometric measurement

or by using a hyperspectral device. Adding constraints on the reflec-

tance smoothness allows defining the reflectance as a sum of a small

number of basis functions and hence reduce the number of

unknowns. In this framework, multichannel systems have been pro-

posed (Tominaga, 1999). However, for many applications it is suffi-

cient to retrieve only tristimulus values, which can be achieved

using an RGB camera. Several approaches using calibrated trichro-

matic imaging systems have been presented (Farell et al., 1994; Wu

et al., 2000).

In this article, we investigate the possibility of retrieving color

information from a single digital picture taken with an unknown,

casually posed consumer camera and under unknown lighting con-

ditions, using solely a calibrated reference target present in the

scene. The calibration target is imaged with the object of interest.

The extracted target values allow computing a color correction ma-

trix that is scene and camera dependent.

This transform is applied to the entire image. After color correc-

tion, the image is in a reference space. Face pixels are then

extracted, averaged, and the skin color classified. The color correc-

tion is limited to a small color gamut, in our example skin tones.

The system relies on the assumption that any camera output color

image encoding is sRGB (IEC 61966-2-1, 1999).

We show that using an appropriate target representative of skin

reflectances, skin colors can be mapped using a 3 3 4 linear trans-

form with an accuracy in terms of CIELAB color difference ofCorrespondence to: J. Marguier; e-mail: joanna.marguier@epfl.ch
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DE�
ab < 1. These extracted skin color values have high correlation

with skin colors derived from in vivo spectral measurements. We

also show that skin color can be consistently predicted across a

wide range of cameras from different manufacturers with different

quality levels. With our method, we can use any uncalibrated cam-

era as a colorimeter and determine skin tones accurately. No cali-

bration of the device, control of the illuminant, or access to sensor

raw data is needed.

The article is structured as follows: In Section 2 we discuss

methods to retrieve reflectance spectra and tristimulus values using

imaging devices, and present a brief review of color measurements

applied to skin. Section 3 presents our approach. Section 4

describes the experiments and reports the main results. Section 5

concludes the article.

2. STATE OF THE ART

The radiation falling on a sensor is the product of Eðx; kÞ, the spec-
tral power distribution of the illuminant with Sðx; kÞ, the reflectance
spectra of the object. The camera response qiðxÞ of the ith sensor

RiðkÞ at a spatial position x5 (x, y) is given by the image formation

model

qiðxÞ ¼ sðx; kÞT � diagðeðx; kÞÞ � riðkÞ; i ¼ 1 : n ð1Þ

where the vectors s(x, l), ri(l), and e(x, l) are, respectively S(x, l),
Ri(l), and E(x, l) represented by m samples (usually 31) taken over

the visible spectral range (Smith et al., 1992). diag(e(x, l)) is an

m 3 m matrix with e(x, l) on its diagonal and n is the number

of channels of the imaging device.

It is not a trivial task to retrieve reflectance values from camera

responses, especially when n � 31. For many applications, how-

ever, it is sufficient to retrieve colorimetric values instead of the

entire reflectance spectra. The human visual system is indeed

unable to recover spectral information, and two objects having the

same appearance under a given illuminant can have slightly differ-

ent reflectance spectra S(l). A three-channel camera is then suffi-

cient to retrieve tristimulus values. Several approaches using RGB

cameras as colorimeters have been proposed. Wu et al. (2000) used

a calibrated camera to compute calibration matrices from camera

RGB to CIEXYZ by either minimizing a cost function in CIELAB
space or by minimizing the mean square error in CIEXYZ color

space under several selected illuminant conditions. The application

was the colorimetry of human teeth. Hubel et al. (1997) present a

method to compute 3 3 3 color transform matrices intended for

camera calibration in digital photography by simple least squares

regression, white point preserving least squares regression, and

weighted white point preserving least squares regression. This type

of approach allows using a calibrated camera as a colorimeter under

known illuminant conditions.

Such calibration methods require the access to the raw data of the

sensors and the resulting color transform is camera dependent. The

transform is usually applied prior to the image rendering implemented

in the camera. In our method, we apply the transform after color ren-
dering. As such, we need no information about sensor characteristics

and in-camera processing, but we need to calculate a transform for

every single image. Our transforms are scene and camera dependent.

Camera calibration is generally performed using a standard cali-

bration target, such as the widely used Macbeth ColorChecker (Bar-

nard and Funt, 2002). We propose to color correct skin tones using

target embedded in the image, consisting primarily of color patches

characteristic of human skin. Cai (2002) presented a similar

approach for the determination of tongue color using a Macbeth

ColorChecker.

A. Skin Color Measurement. Skin appearance has been studied

in various domains: in computer graphics (for skin rendering), in com-

puter vision (for detection and tracking of faces), in medicine (for

diagnostic purposes), and in cosmetology (for makeup and skin care).

In particular, it has been shown that lightness varies more than chro-

maticity across the range of possible human skin tones (Störring et al.,

2001). The relative constancy of the skin chromaticity is often used as

a cue in face detection algorithms (Hsu et al., 2002).

Skin color is most often measured with reflectance spectrometry

(for a review see Igarashi et al., 2005). Perceived color of skin

depends on the pigmentation, the blood microcirculation, rough-

ness, sebum, and perspiration (Barel et al., 2001). The multiple

layers of the skin make accurate color measurement difficult as the

reflection is direction dependent (Igarashi et al., 2005). Even though

they are not optimal for skin measurements, traditional spectrome-

ters are inexpensive and simple to use and hence still widely

employed for skin colorimetry (Clarys et al., 2000). Narrow band

spectrometers were developed specifically for skin measurement af-

ter observing that the color of skin has two main components, the

melanin and hemoglobin, which selectively absorb wavelengths

(Taylor et al., 2006). The use of spectrometers has important draw-

backs: the area measured is about 0.05 cm2 while the skin is not ho-

mogeneous (Barel et al., 2001). The pressure of the probe on the

skin can be an important source of bias (Piérard, 1998).

A proprietary device composed of an integrating sphere, a spec-

trometer, and a tri-CCD camera was developed by Caisey et al.

(2006), allowing noncontact spectroscopy of different parts of the face

and simultaneous imaging for estimation of the skin unevenness.

The melanin and hemoglobin components have been modeled as

independent and extracted using in vivo measurements by Nakai

et al. (1998). Tsumura et al. (1999) applied the independent compo-

nent analysis method to the pixel values of color images of faces

and also extracted two independent color components correspond-

ing to melanin and hemoglobin. These are indeed located in two

different layers of the skin. The results were used for skin color

reproduction and rendering, but not skin color classification as we

address here.

3. OUR APPROACH

We propose a method to retrieve skin color information from digital

images taken with a single, casually posed consumer camera under

unknown illuminants. We have no access to the raw data of the sen-

sors and no additional information on the automatic in-camera proc-

essing. However, the scene does contain reference color values in

the form of a color target. We want to color correct images such

that we can retrieve sRGB values for the face pixels. Figure 1 shows

the entire pipeline (Harville et al., 2005).

The method is targeted toward consumer applications. The user

is assumed to use an unknown camera in fully automatic mode and

under uncontrolled illuminant. We suppose that the automatic cam-

era mode performs white-balancing and encodes images in sRGB,
which has a defined illuminant of D65.

Because of imperfect illuminant compensation, different sensor

responses, variations in image processing, and in quality across

devices, uniform color rendering is never achieved. The resulting

image color values of a given scene imaged with different
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Figure 1. Overview of image processing pipeline for skin color measurement and classification.

Figure 2. Uncorrected images (odd rows) and corrected images (even rows) for cameras (from left to right) Canon S400, HP850, Nikon D1,

and Nokia 6820.
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uncalibrated cameras will have important variations. Figure 2

shows examples of possible variations in color across devices and

the results after color correction.

To be able to classify colors consistently, we need the same

object to have equal sRGB pixel values independently of the illumi-

nant and the camera. We thus compute a color transform using

known reference values, present in the scene in the form of a cali-

bration target. The patches are extracted, their color values are aver-

aged over each patch, and their mean values are compared with ref-

erence values of the target given by sRGB triplets. A 3 3 4 color

transform A maps the target patches mean color values M extracted

from the image onto reference target values T.

Tf33ng ¼ Af334g �Mf43ng ð2Þ

where T is a matrix whose ith column contains the ith value of the

n reference patches ti 5 (tredi , t
green
i , tbluei )T and M is a matrix whose

ith column contains the ith value of the n mean camera patch color

mi5 (mred
i , m

green
i , mblue

i , 1)T.

We want to find A minimizing kT� AMk2, i.e. minimizing the

least mean square error in sRGB color space. A is computed using

the Moore–Penrose pseudo-inverse denoted1. Right-multiplying

Eq. (2) by M1 5 MT(MMT)21 gives TM1 5 AMM1 5 A.

Finally, we obtain

A ¼ TMþ ð3Þ

The pseudo-inverse ofM is computed by singular value decomposi-

tion. A provides a 3 3 3 color transform plus a per-component off-

set. The linear transform A is recomputed for each image and will

thus differ depending on the camera characteristics and lighting

conditions.

Note that it is not possible to correctly map all colors with a sim-

ple linear transform. Minimizing the least mean square error in

sRGB is computationally fast and simple, but does not give any

control on the error repartition. Consequently, we apply the method

only to a limited gamut of colors. In this framework, skin tones can

be accurately assigned from uncalibrated images. Colors outside the

considered gamut may not be correctly mapped and the overall

color appearance of the image may be poor (see Fig. 2).

B. Reference Target. The target contains three rows of eight

patches set against a black background and surrounded by a frame

used for its automatic detection. The first row contains primary and

secondary colors and two shades of gray. The two last rows contain

16 patches characteristic of the range of human skin ordered by uni-

formly increasing lightness alternating on two rows. Figure 3 shows

the target.

We printed the target on photopaper medium and measured the

reflectance spectrum of each patch. Figure 4 shows the desired

patch spectra and the actual printed target spectra. These measures

allow computing first CIEXYZ values under illuminant D65 and

then sRGB values. With reference to Eq. (1), s(l) are the target

reflectances, e(l) is the standard CIE illuminant D65, and ri(l) are
the 1931 CIE x; y; z color matching functions. The CIEXYZ to sRGB
transform is specified in (IEC 61966-2-1, 1999). For each image,

the target patches are extracted and the color transform A (3) is

computed. This transform is then applied to the entire image prior

to face pixels extraction and color classification (Harville et al.,

2005).

4. EXPERIMENT

Fifty-three people were imaged holding a copy of the calibration

target, captured with four different RGB cameras. The cameras

were an HP850 (3.9 megapixels), a Nikon D1 (2.7 megapixels), a

Canon S400 (4.0 megapixels), and a Nokia 6820 cell phone camera

(0.1 megapixels). The images contain mixed illuminants: a side

daylight illumination through a window and an overhead fluores-

cent lighting. The images are white-balanced and color rendered in

automatic mode, and the output color encoding is sRGB.
Figure 2 shows three examples of before and after color correc-

tion computed using the 16 skin tones. Rows 1, 3, and 5 show the

uncorrected images having resolutions from 0.1 to 4.0 megapixels

and different color qualities, and rows 2, 4, and 6 the same images

corrected using the method described in Section 3. Table I shows

the corresponding mean face color values extracted from the color

corrected images and the equivalent color correction magnitude in

normalized color coordinates.

To investigate the accuracy of our method, we first study the

colorimetry of the target color patches to determine which color

patches should be used to compute the color transform A. We then

Figure 3. Calibration target, the skin patches are numbered by

increasing lightness. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 4. Desired (solid line) and achieved (dotted line) target patch
spectra. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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compare the image extracted mean face colors with face color val-

ues derived from measured skin spectra. We finally investigate the

consistency of skin color assessment across several cameras by

studying the correlation between the different resulting skin tones

extracted from images of the same people captured with four differ-

ent devices.

C. Which Reference Values to Use in the Color
Transform?. Previous work (Harville et al., 2005) showed that

not considering the primaries and secondaries in the computation of

the color transform gave better results in terms of skin color classifi-

cation, despite a poorer visual appearance of the whole image. It

was not yet clear whether or not the neutral patches should be taken

into account. The black and white target background could also be

used in the color correction, but those colors are more likely to be

clipped in the images and were thus not considered.

The target is the only well-defined element in the image; we thus

use it to estimate the color transform performance. Several subsets of

eight skin patches, with and without the gray patches, are used to com-

pute A using (3). The error is then computed on the remaining skin

patches. To allow better comparison between the different transforms,

we also computed the error on the entire set of skin patches.

The five tested transforms were computed using the following

patches (see Fig. 3):

1. The first row of skin tones (odd numbers) and the two middle

gray patches.

2. The first row of skin tones (odd numbers) only.

3. The second row of skin tones (even numbers) and the two

middle gray patches.

4. The second row of skin tones (even numbers) only.

5. Eight patches (1, 2, 5, 8, 9, 10, 12, and 15) forming a convex

hull of all skin colored patches in CIELAB, including two

patches in the center.

These five transforms were tested on the entire set of 53 images

taken with the HP850 camera. The error was estimated by comput-

ing color differences in CIELAB, i.e. the Euclidian distances

between the values extracted from images and the target reference

values

DE�
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�ref � L�imageÞ

2 þ ða�ref � a�imageÞ
2 þ ðb�ref � b�imageÞ

2
q

ð4Þ

DE�
ab ¼ 1 is usually considered to be the minimum distance be-

tween two distinguishable color stimuli.

Table II shows the values of DE�
ab for the five transforms. Com-

paring the results for the transforms using the gray patches (trans-

forms 1 and 3) with the transforms using skin colored patches only

(transforms 2, 4, and 5), we see that leaving out the gray patches

allows a color prediction of DE�
ab � 0:8 as opposed to DE�

ab � 1

with the middle grays. The skin tones are better mapped if the color

transform is computed using skin tones only. There is no significa-

tive difference among the DE�
ab values obtained for the three trans-

forms using solely skin patches and we cannot determine which of

the three transforms performs the best. However, it is important to

cover the whole range of lightness in the choice of skin patches for

the color transform computation. Figure 5 shows the same image

corrected with transforms, from left to right, computed using all 16

skin patches, eight skin patches covering the whole range of light-

ness, and the eight lighter patches, respectively.

The number and size of the patches have an influence on the

quality of the color correction. To compute Eq. (2), Tf33ng and

Mf43ng must have at least four columns, and thus the minimal set

contains four patches. The mean face color values obtained using

four patches (1, 8, 10, and 12) forming a convex hull in CIELAB
space and the mean face color values obtained using the 16 skin

colored patches are close. Table III shows the difference between

the color corrected patch values, using 4 and 16 patches for the

color correction, averaged over all 53 images.

Reducing the number of patches allows increasing their size.

Larger color patches will be better detected, especially for low-reso-

lution cameras. In the images taken with the Nokia 6820 cell phone,

patches can be as small as 10 3 10 pixels. At this scale, JPEG arti-

facts can introduce important errors in the estimation of patch color

values. Even though skin tones can be color corrected using only

four patches, the color correction will be less robust. If, for exam-

ple, shadows are projected on just one patch, the resulting color

transform becomes inconsistent. Thus, a higher number of patches

Table I. Mean face color values after correction in normalized color coordinates for each of the three examples of Figure 2.

Canon S400 HP 850 Nikon Dl Nokia 6820

Y r g Y r g Y r g Y r g

Face 1

Resulting mean skin color 0.483 0.446 0.315 0.466 0.442 0.311 0.522 0.429 0.316 0.495 0.437 0.308

Color correction D(Y, r, g) 20.005 0.019 0.013 0.017 0.048 0.009 20.200 0.062 20.002 0.037 0.021 20.006

Face 2

Resulting mean skin color 0.466 0.422 0.311 0.497 0.438 0.318 0.533 0.423 0.329 0.486 0.438 0.315

Color correction D(Y, r, g) 0.028 0.015 0.017 0.083 0.037 0.006 20.218 0.061 0.005 0.049 0.002 0.001

Face 3

Resulting mean skin color 0.362 0.490 0.320 0.397 0.464 0.322 0.383 0.469 0.325 0.379 0.455 0.313

Color correction D(Y, r, g) 20.031 0.033 0.019 20.002 0.047 0.012 20.283 0.089 0.006 0.026 0.004 0.000

Y ¼ ðRþ Gþ BÞ=3, r ¼ R=ðRþ Gþ BÞ, and g ¼ G=ðRþ Gþ BÞ.

Table II. Error in terms of color differences for each transform, averaged

over the 53 images.

DE Estimated

on 8 Patches

DE Estimated

on 16 Patches

Transform Mean DE Var DE Mean DE Var DE

1. Skins 11 gray 1.19 0.12 1.08 0.11

2. Skins 1 1.05 0.05 0.82 0.04

3. Skins 21 gray 1.45 0.05 1.17 0.11

4. Skins 2 1.18 0.26 0.79 0.20

5. Skins in lab 0.81 0.03 0.82 0.04
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allows a finer sampling of skin tones and in general more accurate

transforms. The trade-off depends mainly on the camera resolution.

D. Face Color Values Derived from Spectral Mea-
surements. The faces are extracted using the Viola–Jones face

detection (Viola and Jones, 2001; Harville et al., 2005) and only

pixels having a lightness between 10 and 90% (computed as Y 5 (R
1 G 1 B)/3) are considered to remove outliers due to hair, eye-

brows, eyes, and lips. The mean color values of the remaining pix-

els after color correction are then used as the skin color estimate.

The skin reflectance of each face was also measured on a uniform

area of the cheek with a portable Microflash spectrometer using 08/
458 measurement geometry.

We computed sRGB skin values for each of the 53 people using

the skin reflectance spectra. sRGB values are converted into normal-

ized color coordinates Y 5 (R 1 G 1 B)/3, r 5 R/(R 1 G 1 B),
and g 5 G/(R 1 G 1 B). These values were compared with face

colors extracted from the HP850 images color corrected with the

transform computed using all skin patches. The correlation between

extracted (Yimage, rimage, gimage) face color values and spectrally

derived (Yspectra, rspectra, gspectra) values is high (see Fig. 6). How-

ever, spectrally derived values have systematically smaller r com-

ponents and larger Y components than values extracted from the

images. These differences can have several causes: direct measure-

ment of skin reflectance by spectrometry is not optimal as there are

often important differences of shades within one face, the pressure

of the probe can be a source of error, and the skin is not lambertian,

flat, and un-textured. Moreover, there is still a significant amount of

shadow in the estimated skin pixels despite the lightness bounds

applied to remove nonskin pixels.

E. Color Correction Consistency Across Cameras. Skin

color values extracted from color corrected images cannot be

directly matched with sRGB values derived from spectra. Neverthe-

less, the systematic discrepancies indicate that the color correction

of skin tones is coherent across cameras. Figures 7 and 8 show the

lightness values Y and normalized chromaticity coordinates (r, g)
extracted from images taken with the four cameras, displayed for

each pair of cameras, respectively. The black dotted line indicates

the linear relation.

The correlation is high across all pairs of cameras and the relation

is linear. Table IV reports the correlation coefficients for the corre-

sponding (Y, r, g) values for each pair of cameras and the equivalent

CIELAB DE�
ab color difference averaged over all images. Correla-

tion coefficients range from 0.90 to 0.98 for Y, from 0.57 to 0.96 for

r, and from 0.82 to 0.91 for g. DE�
ab ranges from 1.8 to 5. The qual-

ity of the estimation depends clearly on the quality of the camera.

The data extracted using the Nokia cell phone is noisier, but still

correlates well with data extracted using higher quality cameras.

The resulting error DE�
ab � 5 is quite large, but the extracted face

color still allows for a good classification of skin tones. An accuracy

of DE�
ab ¼ 1, considered as the distance between two distinguish-

able color stimuli, may not be required for all applications.

Note that these results were obtained using four cameras from

four different manufacturers and without bypassing any of the

image processing implemented in the camera.

5. CONCLUSION

Accurate color cannot be retrieved from uncalibrated images taken

with uncalibrated cameras. However, a limited range of colors can

be estimated by using appropriate color information in the form of a

Figure 5. The same image corrected with transforms computed using all 16 skin patches, eight skin patches covering the whole range of

lightness, and the eight lighter patches, respectively. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Table III. Difference between the patch color values color corrected using 4 and 16 patches.

Color differences for Y Mean jDYj MaxjDYj MeanjDYnormj MaxjDYnormj
0.03 0.11 1.2% 6.1%

Color differences for r MeanjDrj MaxjDrj MeanjDrnormj MaxjDrnormj
0.01 0.05 0.7% 4.9%

Color differences for g MeanjDgj MaxjDgj MeanjDgnormj MaxjDgnormj
0.01 0.02 0.9% 2.7%

The symbol D (�)norm Indicates the difference between (Y, r, g) values of the two sets normalized by their sum. The values are averaged over all 53 images.
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target present in the scene. A color transform mapping the scene

target color values onto pre-computed target reference values is

computed by least mean square estimation in sRGB and applied to

the entire image.

Using this method, skin tones can be consistently classified

using uncalibrated images taken with a large variety of cameras and

color corrected using a target consisting of patches characteristic of

the range of human skin tones. With this mapping, skin tones can

Figure 6. Spectrally derived values (x-axis) vs. image extracted values (y-axis) for Canon S400, HP850, Nikon D1, and Nokia 6820. The top

row shows lightness values Y 5 (R 1 G 1 B)/3. The bottom row shows normalized color coordinates r 5 R/(R 1 G 1 B) and g 5 G/(R 1 G 1 B).

The black dotted line indicates the linear relation. [Color figure can be viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 7. Lightness Y 5 (R 1 G 1

B)/3 values compared for each pair of

cameras. The x-axis shows (from left
to right) cameras HP850, Nikon D1,

and Nokia 6820 and the y-axis shows

(from top to bottom) cameras Nikon

D1, Nokia 6820, and Canon S400. The
black dotted line indicates the linear

relation.
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theoretically be estimated with an error of DE�
ab < 1. There is noise

in the measurement of face colors using real images, due to the esti-

mation of the face pixels and the unevenness of skin. However,

results correlate well with spectral data and across a variety of devi-

ces, with resolution as low as 0.1 megapixels and poor image

quality.

The high correlation across devices indicates that with a solid

ground truth, the system can be correctly trained to give consistent

results. The assessment of color is not perfect though, but this

method does not require any expensive calibrated imaging devices

or controlled illuminant and can be performed with any consumer

camera.

The least mean square estimation of the color correction matrix

in sRGB allows a fast and computationally low color correction,

which can be used in a variety of applications.

The method assumes a uniform illuminant across the image,

shadows and mixed illuminants can be an important source of

error. A comparison between the two halves of the face allows

eliminating some failing cases. Also, the number and size of

the patches have an influence. A higher number of patches

ideally give a finer sampling of skin tones and more robustness.

Reducing the number of patches allows increasing their size

and thus improves the extraction and estimation of the target

color values, especially for low-resolution cameras. The trade-

off depends on the application and on the type of cameras

used.
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