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Abstract

Transactional memory (TM) is perceived as an appealing
alternative to critical sections for general purpose concur-
rent programming. Despite the large amount of recent
work on TM implementations, however, very little effort
has been devoted to precisely defining what guarantees
these implementations should provide. A formal descrip-
tion of such guarantees is necessary in order to check the
correctness of TM systems, as well as to establish TM op-
timality results and inherent trade-offs.

This paper presents opacity, a candidate correctness cri-
terion for TM implementations. We define opacity as a
property of concurrent transaction histories and give its
graph theoretical interpretation. Opacity captures pre-
cisely the correctness requirements that have been intu-
itively described by many TM designers. Most TM sys-
tems we know of do ensure opacity.

At a very first approximation, opacity can be viewed
as an extension of the classical database serializability
property with the additional requirement that even non-
committed transactions are prevented from accessing in-
consistent states. Capturing this requirement precisely,
in the context of general objects, and without preclud-
ing pragmatic strategies that are often used by modern
TM implementations, such as versioning, invisible reads,
lazy updates, and open nesting, is not trivial.

As a use case of opacity, we prove the first lower bound
on the complexity of TM implementations. Basically, we
show that every single-version TM system that uses in-
visible reads and does not abort non-conflicting transac-
tions requires, in the worst case, Ω(k) steps for an oper-
ation to terminate, where k is the total number of objects
shared by transactions. This (tight) bound precisely cap-
tures an inherent trade-off in the design of TM systems.
The bound also highlights a fundamental gap between
systems in which transactions can be fully isolated from
the outside environment, e.g., databases or certain spe-
cialized transactional languages, and systems that lack
such isolation capabilities, e.g., general TM frameworks.

∗EPFL Technical Report LPD-REPORT-2007-004. Submitted for pub-
lication.

1 Introduction

Transactional memory (TM) [15, 28] is a programming
paradigm in which concurrent threads synchronize via
in-memory transactions. A transaction is an explicitly de-
limited sequence of operations on shared objects. Trans-
actions are atomic: programmers get the illusion that ev-
ery transaction is executed instantaneously, at some single,
unique point in time, and does not observe any concur-
rency from other transactions. The changes performed
by a transaction on shared objects are immediately visi-
ble (to other transactions) if the transaction commits, and
are completely discarded if the transaction aborts.

The TM paradigm has raised a lot of hope for master-
ing the complexity of concurrent programming. The aim
is to provide the programmer with an abstraction, i.e., the
transaction [8], that makes concurrency as easy as with
coarse-grained critical sections, while exploiting the un-
derlying multi-core architectures as well as hand-crafted
fine-grained locking, which is difficult and error-prone. It
is thus not surprising to see a large body of work directed
at experimenting with various kinds of TM implementa-
tion strategies, e.g. [15, 28, 14, 12, 18, 5, 19, 11, 29, 25].
What might be surprising is the little formalization of
the precise guarantees that TM implementations should
provide. Without such formalization, it is impossible to
check the correctness of these implementations, establish
any optimality result, or determine whether TM design
trade-offs are indeed fundamental or simply artifacts of
certain environments.

From a user’s perspective, a TM should provide the
same semantics as critical sections: transactions should
appear as if they were executed sequentially. However,
a TM implementation would be inefficient if it never al-
lowed different transactions to run concurrently. Rea-
soning about the correctness of a TM implementation
goes through defining a way to state precisely whether
a given execution in which a number of transactions ex-
ecute steps in parallel “looks like” an execution in which
these transactions proceed one after the other. The role of
a correctness criterion in this context is precisely to cap-
ture what the very notion of “looks like” really means.

At first glance, it seems very likely that such a crite-
rion would correspond to one of the numerous ones de-
fined in the literature, e.g., linearizability [16], serializ-
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ability [24, 2], rigorous scheduling [4], etc. We argue,
however, that none of these criteria, nor any straightfor-
ward combination or extension thereof, is sufficient to de-
scribe the semantics of TM with its subtleties. In partic-
ular, none of them captures exactly the very requirement
that every transaction, including a live (i.e., not yet com-
pleted) one, accesses a consistent state, i.e., a state pro-
duced by a sequence of previously committed transac-
tions. While a live transaction that accesses an inconsis-
tent state can be rendered harmless in database systems
simply by being aborted, such a transaction might create
significant dangers when executed within a general TM
framework, as we illustrate later in this paper. It is thus
not surprising that most TM implementations employ
mechanisms that disallow such situations, sometimes at a
big cost. At a very high level, disallowing transactions to
access inconsistent states resembles, in the database ter-
minology, preventing dirty reads or, more generally, the
read skew phenomenon [1], when generalized to all trans-
actions (not only committed ones as in [1]) and arbitrary
objects.

In this paper, we present opacity, a correctness criterion
aimed at capturing the semantics of TM systems. The
technical challenge in specifying opacity is the ability to
reason about states accessed by live transactions, and to
do so in a model (a) with arbitrary objects, beyond sim-
ple read/write variables, (b) possibly with multiple ver-
sions of each object, and (c) without precluding various
TM strategies and optimization techniques, such as in-
visible reads, lazy updates, caching, or open nesting.

Most transactional memory systems we know of en-
sure opacity, including DSTM [14], ASTM [18], SXM [12],
JVSTM [5], TL2 [6], LSA-STM [25] and RSTM [19].
They do so by combining classical database concurrency
and recovery control schemes with additional validation
strategies, which ensure that every return value of an
operation executed by a transaction is consistent with
the return values of all previous operations of the very
same transaction. (This leads to aborting the trans-
action if there is any risk of accessing an inconsistent
state.) These strategies are usually implemented using
the single-writer multiple-readers pattern, with either ex-
plicit locks (e.g., TL2) or “virtual”, revocable ones (e.g.,
obstruction-free TMs, such as DSTM, ASTM and SXM),
sometimes with a multi-versioning scheme (e.g., LSA-
STM and JVSTM) or specialized optimization strategies.

There are indeed TM implementations that do not en-
sure opacity; these, however, explicitly trade safety guar-
antees, while recognizing the resulting dangers, for im-
proved performance. Examples are: a version of SI-
STM [26] and the TM described in [7]. We believe that
opacity can also be used as a reference point for express-
ing the semantics of such TM implementations and de-
riving other, possibly weaker, correctness criteria. This
would enable fair comparison between TM algorithms
and better recognition of their safety-performance trade-
offs.

Besides defining opacity, we also present its graph

characterization. Basically, we show how to build a graph
that visualizes dependencies between transactions in a
given execution, and how to express opacity in terms
of acyclicity of such a graph. This interpretation helps
proving correctness of TM implementations, highlighting
opacity of a given execution, or visualizing opacity viola-
tions.

As a use case for opacity, we establish the first com-
plexity bound for TM implementations. Roughly speak-
ing, we prove that TM implementations that ensure opac-
ity while (1) using invisible reads,1 (2) ensuring that no
transaction is aborted unless it conflicts with another live
transaction, and (3) employing a single-version scheme,
require, in the worst case, Ω(k) steps for per-operation
validation, where k is the total number of objects shared
by transactions.

This lower bound is tight: DSTM and ASTM ensure
opacity and have the above three properties, and require,
in the worst case, Θ(k) steps to complete a single oper-
ation (or, in other words, Θ(k2) steps to execute a trans-
action that accesses k objects). On the other hand, TM
implementations that use visible reads, e.g., SXM and
RSTM, or abort transactions more often, e.g., TL2, can
have a constant complexity.2

Indirectly, the lower bound also highlights a gap be-
tween database transactions, or, more generally, systems
that support full isolation of transactional code from the
outside environment, for which serializability is suffi-
cient, and memory transactions (in the sense of most TM
frameworks). Indeed, as we show in this paper, our
bound does not hold for serializability, even when con-
sidered in its strict form to account for real-time order
and combined with recoverability [10]. In this sense, re-
quiring opacity is a key to establish our lower bound and
hence capture the trade-off between implementations like
DSTM and ASTM on one hand, and implementations like
SXM, RSTM or TL2 on the other hand.

To summarize, this paper contributes to the study of
transactional memory systems: we present (a) a candi-
date correctness criterion to measure the correctness of a
TM implementation, together with its graph characteri-
zation, and (b) the first lower bound on the complexity of
TM implementations.

The rest of the paper is organized as follows. We
first give an intuitive description of what is generally ex-
pected from a TM and argue why a new correctness crite-
rion is indeed necessary to capture this intuition. We then
define our notion of opacity and describe its graph char-
acterization. Next, we establish our complexity lower
bound. We also give a TM implementation that serves as
an counterexample that the lower bound does not hold if

1With invisible reads, no process knows about read operations is-
sued by transactions executed by other processes. Several TM imple-
mentations optimize their performance with invisible reads, e.g. DSTM,
ASTM, and TL2.

2For multi-version TM implementations, like LSA-STM or JVSTM,
the complexity is not constant. However, it can be bounded by a func-
tion independent of k.
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opacity is not required. We conclude by discussing com-
plementary issues such as how one can deal with mixing
transactional and non-transactional operations [3], en-
compass nested transactions [20, 22], or specify progress
properties [27].

2 Expectations

Nearly every paper about TM gives some intuition about
what a TM implementation should ensure. Clearly, com-
mitted transactions should appear as if they executed in-
stantaneously, at some unique point in time, and aborted
transactions, as if they did not execute at all. Addition-
ally, the following two guarantees (both provided by crit-
ical sections) are considered (sometimes implicitly) as es-
sential aspects of TM semantics.

Preserving real-time order. It is generally required
from a TM that the point in time at which a transaction
appears to occur lies somewhere within the lifespan of
the transaction. This means that a transaction should not
observe an outdated state of the system, which can be
the case if extensive caching of object states is used. That
is, if a transaction T1 modifies an object x and commits,
and then another transaction T2 starts and reads x, then
T2 should read the value written by T1 and not an older
value. More generally, if a transaction Ti commits before
a transaction Tj starts, then Ti should indeed appear as if
it executed before Tj.

Violating real-time ordering may lead to counter-
intuitive situations, as explained in [24], and mislead pro-
grammers typically used to critical sections that naturally
enforce real-time ordering. Preserving real-time ordering
is also particularly important when transactions can read
from (or write to) devices that are not controlled by the
TM, e.g., clocks or storage devices.

Precluding inconsistent views. A more subtle issue is
related to the state accessed by live transactions (i.e.,
transactions that did not commit or abort yet). Because
a live transaction can always be later aborted, and its up-
dates discarded, one might simply assume that the rem-
edy to a transaction that accesses an inconsistent state
is to abort it. This is the case for databases, in which
transactions are executed in a fully controlled environ-
ment. However, memory transactions are autonomous
programs. As argued in [29], a transaction that accesses
an inconsistent state can cause various problems, even if
it is later aborted.

To illustrate this, consider two shared objects, x and y.
A programmer may assume that y is always equal to x2,
and x ≥ 2. Clearly, the programmer will then take care
that every transaction, when executed as a whole, pre-
serves the assumed invariants. Assume the initial value
of x and y is 4 and 16, respectively, and let T1 be a trans-
action that performs the following operations:

x := 2; y := 4; commit

Now, if another transaction T2 executes concurrently with
T1 and reads the old value of x (4) and the new value of
y (also 4), the following problems may occur, even if T2 is
to be aborted later: First, if T2 tries to compute the value
of 1/(y − x), then a “divide by zero” exception will be
thrown, which can crash the process executing the trans-
action or even the whole application. Second, if T2 enters
the following loop:

t := x
do array[t] := 0; t := t + 1
until t = y

then unexpected memory locations could be overwrit-
ten, not to mention that the loop would need to span
the entire value domain.3 Other examples [29] include
situations where a transaction that observes an incon-
sistent state performs direct (and unexpected) IO oper-
ations, which are difficult to undo and thus usually for-
bidden within transactions.

When programs are run in managed environments,
these problems can be solved by carefully isolating
transactions from the outside world (sandboxing), as in
databases. However, it is commonly argued that sand-
boxing is expensive and applicable only to specific run-
time environments [6].4

3 Why a New Correctness Criterion
for TM?

Given the large body of literature on concurrency control,
it seems a priori very likely that the intuition behind TM
semantics is already captured by some existing consis-
tency criterion. We argue below that this is not the case.

3.1 Linearizability

Linearizability [16], a safety property devised to describe
shared objects, is sometimes used as a correctness crite-
rion for TM. In the TM terminology, linearizability means
that, intuitively, every transaction should appear as if it
took place at some single, unique point in time during
its lifespan. Clearly, aborted transactions have to be ac-
counted for, e.g., through an extension of linearizability
described in [31].

Linearizability would be an appropriate correctness
criterion for TM if transactions were external to the ap-
plication using them, i.e., if only the end result of a trans-
action counted. However, a TM transaction is not a black

3Note that this situation does not necessarily result in a “segmenta-
tion fault” signal that is usually easy to catch. Basically, the loop may
overwrite memory locations of variables that belong to the application
executing the loop but are outside control of the TM implementation.

4Sandboxing would for instance be difficult to achieve for applica-
tions written in low-level languages (like C) and executed directly by
an operating system.
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box operation on some complex shared object but an in-
ternal part of an application: the result of every opera-
tion performed inside a transaction is important and ac-
cessible to a user. As indicated in the original paper on
linearizability [16], serializability and its derivatives are
more suitable a base to reason about the correctness of
transaction executions.

3.2 Serializability

Serializability [24] is one of the most commonly required
properties of database transactions. Roughly speaking, a
history H of transactions (i.e., the sequence of operations
performed by all transactions in a given execution) is se-
rializable if all committed transactions in H issue the same
operations and receive the same responses as in some se-
quential history S that consists only of the transactions
committed in H. (A sequential history is, intuitively, one
with no concurrency between transactions.)

Serializability, even considered in its strict form [24] to
account for real-time ordering, is not sufficient for mod-
elling a TM for various reasons: (a) it relies on the implicit
assumption that a read operation on a shared object x al-
ways returns the last value previously written to x; (b)
it is restricted only to read and write operations, and (c)
it does not say anything about the state accessed by live
(or aborted) transactions. As we discuss below, variants
of serializability tackle some of these issues but none of
them, nor any clear combination thereof, does the entire
job.

3.3 1-Copy Serializability

Memory transactions may create local or shared copies of
some shared objects and use them temporarily for their
operations. Thus, a transaction Ti, when reading a shared
object x, may be returned one of the many versions of x
that are globally or locally accessible to Ti, not necessarily
the most recent one.

1-copy serializability [2] is similar to serializability, but
allows for multiple versions of any shared object, while
giving the user an illusion that, at any given time, only
one copy of each shared object is accessible to transac-
tions. Besides not requiring anything about the state ac-
cessed by live transactions, a major limitation of 1-copy
serializability is the underlying model being restricted
only to read and write operations.

3.4 Global Atomicity

It is usually argued that providing shared objects with
richer semantics than simple read-write variables can de-
crease the probability of conflicts between transactions
and thus increase throughput [22, 23]. To illustrate this,
consider several transactions concurrently increasing a
counter x, without reading its value:

T1: T2: ... Tk:
x.inc() x.inc() x.inc()
commit commit commit

In a system that supports only read and write operations,
each transaction has to first read x and then write a new
value to x. Unfortunately, among the transactions that
read the same value from x, only one can commit (oth-
erwise, (1-copy) serializability is violated). Clearly, when
the system recognizes the semantics of the inc operation,
there is no reason why the transactions could not pro-
ceed and commit concurrently. More generally, a TM im-
plementation may exploit the benefits of operations that
are idempotent, commutative, or write-only (see [22] for
more elaborate examples).

Supporting arbitrary shared objects brings, however,
additional significant difficulties in reasoning about cor-
rectness. We can no longer assume that each operation is
either read-only or write-only, and that each shared object
is historyless, or even deterministic (in the most general
case). We need to consider a formal description of the
semantics of the implemented shared objects as an input
parameter to the TM correctness criterion, not as its inte-
gral part. A further complication comes from the fact that
certain operations cannot be undone. Some TM imple-
mentations might allow such operations to be executed
by a transaction, e.g., by buffering them until the transac-
tion is guaranteed to commit and speculating on return
values. Thus, we cannot include roll-back operations in a
history to model aborted transactions.

Global atomicity [30] is a general form of serializabil-
ity that addresses the above issue. It (a) is not restricted
only to read-write objects, and (b) does not preclude sev-
eral versions of the same shared object. Nevertheless,
global atomicity restricts only the execution of commit-
ted transactions and does not require anything about the
state accessed by live (or aborted) transactions. There-
fore, it needs to be extended accordingly.

3.5 Recoverability

Recoverability [10] puts restrictions on the state accessed
by every transaction, including a live one. Intuitively, re-
coverability precludes certain undesirable effects, such as
cascading aborts, which may occur when a live transac-
tion observes changes done by another live transaction.
In its strongest form, recoverability requires, intuitively,
that if a transaction Ti updates a shared object x, then no
other transaction can perform an operation on x until Ti
commits or aborts. It may seem at first that recoverability,
combined with global atomicity, and extended to account
for real-time ordering of transactions, matches the TM re-
quirements highlighted in Section 2. Unfortunately, this
is not the case, as illustrated by the following example.

Consider a history H corresponding to the scenario de-
picted in Figure 1. H satisfies global atomicity: transac-
tion T2 aborts and transactions T1 and T3 are sequential.
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T1

T2

T3

write(x, 1) commit

read(x)→ 1

write(x, 2) write(y, 2) commit

read(y)→ 2 abort

Figure 1: A history that satisfies global atomicity (with real-time ordering guarantees) and recoverability, but in
which an aborted transaction (T2) accesses an inconsistent state of the system (x and y are simple variables/objects
that implement read and write operations)

Moreover, H satisfies recoverability: T2 accesses x after
T1 commits and before T3 starts, whilst T2 accesses y af-
ter T3 commits. Nevertheless, T2 accesses an inconsistent
state: T2 could not have read x = 1 and y = 2 if T2 was
executed between T1 and T3, or after T3.

On the other hand, recoverability restricts TM imple-
mentations too much in a general model with arbitrary
shared objects. For instance, consider the example from
Section 3.4 in which many transactions try to increment
a shared counter. Recoverability does not allow them to
proceed concurrently, for each modifies the same shared
object. However, there is no reason why a TM implemen-
tation could not execute them in parallel: even if one of
these transactions aborts, it has no influence on the oth-
ers (at least as long as no transaction reads the value of
the counter).

3.6 Rigorous Scheduling

At a high level, what seems to be required is a correct-
ness criterion precluding any two transactions from con-
currently accessing an object if one of them updates that
object. Restricted to read-write objects (registers), this re-
sembles the notion of rigorous scheduling [4] in database
systems. As we argue through the following example,
however, this would be too strong and would preclude
valid TM implementations.

Consider the following situation in which several
transactions concurrently update overlapping sets of ob-
jects:

T1: T2: ... Tk:
x := 1 x := 2 x := k
y := 1 y := 2 y := k
z := 1 z := 2 z := k
commit commit commit

Rigorous scheduling requires that all but one of the trans-
actions get blocked or aborted. However, a user does not
really care as long as the end result is consistent (i.e., read-
ing x, y and z always gives x = y = z ∈ {1, . . . , k}).
We can imagine a TM implementation that executes the
write operations in a “smart” way (e.g., making sure that
some transactions do not overwrite results of other ones)
and thus allows for more concurrency. Such an imple-
mentation could be fine from a user’s perspective, and so
should not be considered incorrect.

3.7 Towards Extending Global Atomicity

In short, formalizing the TM semantics goes through
finding a way to extend global atomicity with the require-
ment that live (and aborted) transactions always access
consistent state, but without limiting the generality of the
model. This is not trivial, mostly for the following two
reasons. First, because we consider arbitrary objects’ op-
erations, some of which cannot always be undone, we are
not able to model aborted transactions by simply insert-
ing “virtual” events that roll-back the changes done by
these transactions.

Second, a user’s application commits a transaction by
submitting a commit request to a TM implementation
and waiting for the response. Thus, there is no single
commit event, unlike in database models: the transac-
tion gets committed somewhere between the request and
the response events. Even TM implementations do not
always commit transactions in a single step. While this
looks like a minor detail, it has important implications.
Basically, a live transaction for which a commit request
has been issued can appear as committed or aborted de-
pending on the context. Thus, expressing the semantics
of live transactions is a challenging problem.

4 Model of Transactional Memory

Before describing our new correctness criterion, we intro-
duce here a precise model of a TM as seen from a user’s
perspective. The formalism given here underlies our no-
tion of opacity, but is general enough to be a base for
other, possibly weaker, correctness criteria or alternative
properties. In Section 8, we will extend the model given
here to include operations (e.g., hardware instructions)
used by software TM implementations.5

Our model is similar to the one in [30]. The main differ-
ence is the way we treat the termination of transactions,
which is crucial in the TM context: We consider a pair of
commit-try and commit events instead of a single atomic
commit step (cf. Section 3.7). Besides, we define addi-
tional terms related to live transactions, which are used
for specifying opacity.

5Software TM implementations provide TM semantics to a user’s ap-
plication in systems that do not support memory transactions in hard-
ware.
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Ti

TM

invi(ob, op, args) reti(ob, op, val) tryCi Ai

Figure 2: Events of a transaction Ti

Transactions and shared objects. A TM allows for
threads of an application to communicate by executing
transactions. A transaction may perform operations on
shared objects, as well as local computations on objects
inaccessible to other transactions. An operation (on a
shared object) may take some arguments and return some
value. We denote by Obj the set of objects shared by trans-
actions.

Every shared object exports a certain set of operations.
For example, a register object (which is often used in the
examples in this paper) exports operations read and write.
The read operation takes no arguments (or an empty argu-
ment ⊥) and returns the current state of the register. The
write(v) operation sets the state of the register to the value
v given as an argument and always returns ok. (Clearly,
the domain of possible values of v will be restricted in
most cases.)

Every transaction has a unique identifier from a set
Trans = {T1, T2, . . .}. Every transaction is initially live
and may eventually become either committed or aborted,
as explained in detail in the following paragraphs. A
transaction that is not live does no longer perform any
actions. Retrying an aborted transaction (i.e., the compu-
tation the transaction intends to perform) is considered in
our model as a new transaction, with a different transac-
tion identifier.

Transactional events. In order to execute an operation
op on a shared object ob, a transaction Ti (i.e., a trans-
action with identifier Ti) issues an operation invocation
event invi(ob, op, args) and expects a matching operation
response event reti(ob, op, val), where args are the argu-
ments passed to the operation and val is the value re-
turned by the operation. A transaction is sequential, in
the sense that it does not invoke any operation until it
receives a response from the last operation it invoked.
An operation invocation event and an operation response
event match if they are issued by/for the same transaction
and refer to the same shared object and operation.

A transaction Ti might also issue two special events:
a commit-try event tryCi or an abort-try event tryAi. Af-
ter issuing tryCi or tryAi, transaction Ti waits for a com-
mit event Ci or an abort event Ai. Intuitively, tryCi ex-
presses the will of transaction Ti to commit. In response,
the transaction can get either committed (event Ci) or
aborted (event Ai). An event tryAi indicates that trans-
action Ti wants to be aborted and always results in an
abort event Ai for Ti.6 A commit-try/abort-try event and

6We could alternatively let a transaction issue an abort event directly,

a commit/abort event match if they are issued by/for the
same transaction.

An abort event might also be received by a transaction
instead of an operation response event. This usually hap-
pens if the TM knows that the transaction will not be able
to commit later (because of conflicts with other transac-
tions), or if the TM cannot return an operation response
event with no risk of violating opacity.

We divide events into two categories. Operation invo-
cation, commit-try and abort-try events are called invoca-
tion events. Operation response, commit and abort events
are called response events. Invocation events are initiated
by transactions, and response events—by a TM. As every
transaction is an integral part of an application, and is
fully controlled by its application thread, a TM does not
know in advance which invocation events will be issued
by a transaction. That is, the TM does not know which
operations on which shared objects a transaction will per-
form, and whether the transaction will request to be com-
mitted (commit-try event) or aborted (abort-try event).

Figure 2 illustrates an example interaction of a trans-
action Ti with a TM. The transaction accesses only one
shared object, ob, using a single operation op. Then, Ti
issues a commit-try event that informs the TM that Ti
wants to commit. However, the commit-try request of Ti
is rejected and Ti gets aborted (receives an abort event).

An operation execution is a pair of an operation invo-
cation event and a matching operation response event.
That is, an operation execution execi(ob, op, args, val) is a
sequence 〈invi(ob, op, args), reti(ob, op, val)〉.7 When there
is no ambiguity, we will say operation and operation execu-
tion interchangeably.

When considering register objects, we use the follow-
ing simplified notation. We denote by readi(r, v) a read
operation execution on register r, by transaction Ti, re-
turning value v, and by writei(r, v) a write operation exe-
cution on register r, by Ti, with value v given as an argu-
ment. More formally, readi(r, v) = execi(r, read,⊥, v), and
writei(r, v) = execi(r, write, v, ok).

Transaction histories. A (high-level) history is the se-
quence of all invocation and response events that were
issued and received by transactions in a given execution.8

but then it would be difficult to distinguish the case in which a trans-
action aborts itself voluntarily from the case in which the transaction is
aborted by the TM implementation (e.g., upon an unresolvable conflict).

7We denote by 〈e1, . . . , ek〉 the sequence of events e1, . . . , ek .
8Note that a history includes only transactional events, i.e., the events

described in the previous paragraphs of this section.
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Thus, we assume that all events of an execution can be to-
tally ordered according to the time at which they were is-
sued. Simultaneous events (e.g., on multi-processor sys-
tems) can be ordered arbitrarily.

We use the following notations. Consider any history
H:

• H|Ti denotes the longest subsequence of history H
that contains only events executed by transaction Ti,

• H|ob denotes the longest subsequence of history H
that contains only operation invocation events and
operation response events on shared object ob, and

• H · H′ denotes the concatenation of histories H and
H′.

We say that a transaction Ti is in history H, and write
Ti ∈ H, if H|Ti is a non-empty sequence, i.e., if there is at
least one event of Ti in H.

We assume that every history H is well-formed. Intu-
itively, this means that the sequence of events at each indi-
vidual transaction Ti (i.e., the history H|Ti) is of the form:
an invocation event, a matching response event, an invo-
cation event, and so on, where (1) no event follows a com-
mit or abort event, (2) only a commit or abort event can
follow a commit-try event, and (3) only an abort event
can follow an abort-try event. More formally, for every
transaction Ti ∈ Trans, history H|Ti is a prefix of a se-
quence O · F, where O is a sequence of operation execu-
tions issued by transaction Ti, and F is one of the follow-
ing sequences: (1) 〈invi(ob, op, args), Ai〉 (for some shared
object ob, an operation op of ob, and arguments args of op),
(2) 〈tryAi, Ai〉, (3) 〈tryCi, Ci〉, or (4) 〈tryCi, Ai〉.

Intuitively, we consider two histories to be equivalent,
if they contain the same transactions, and every transac-
tion issues the same invocation events and receives the
same response events in both histories. Thus, equivalent
histories differ only in the relative position of events of
different transactions. More precisely, we say that histo-
ries H and H′ are equivalent, and write H ≡ H′, if, for
every transaction Ti ∈ Trans, H|Ti = H′|Ti.

We say that an invocation event e issued by a transac-
tion Ti is pending in a history H, if there is no response
event matching e and following e in history H|Ti.

For example, the following (well-formed) history H1
corresponds to the execution depicted in Figure 1:

H1 = 〈write1(x, 1), tryC1, C1, read2(x, 1),
write3(x, 2), write3(y, 2), tryC3, C3,
read2(y, 2), tryC2, A2〉.

or, using more verbose notation:

H1 = 〈inv1(x, write, 1), ret1(x, write, ok), tryC1, C1,
inv2(x, read,⊥), ret2(x, read, 1),
inv3(x, write, 2), ret3(x, write, ok),
inv3(y, write, 2), ret3(y, write, ok), tryC3, C3,
inv2(y, read,⊥), ret2(y, read, 2), tryC2, A2〉

Clearly, there is no pending invocation event in H1. The
histories H1|T2 and H1|x are as follows:

H1|T2 = 〈read2(x, 1), read2(y, 2), tryC2, A2〉,
H1|x = 〈write1(x, 1), read2(x, 1), write3(x, 2)〉.

The following history H2 is one of the histories that are
equivalent to H1:

H2 = 〈write1(x, 1), tryC1, C1,
write3(x, 2), write3(y, 2), tryC3, C3,
read2(x, 1), read2(y, 2), tryC2, A2〉.

Status of transactions. If the last event of a transaction
Ti in a history H is Ci or Ai, then we say that Ti is, re-
spectively, committed or aborted in H. A transaction that
is committed or aborted is completed. A transaction that
is not completed is called live. An aborted transaction
that did not issue an abort-try event is said to be forcefully
aborted. A live transaction that has issued a commit-try
event is said to be commit-pending.

For example, in history H1 described before, all trans-
actions are completed. Transactions T1 and T3 are com-
mitted in H1, while transaction T2 is forcefully aborted in
H1. In the following prefix H′1 of H1, transaction T1 is live:

H′1 = 〈write1(x, 1)〉,

while in the following prefix H′′1 of H1, transaction T1 is
commit-pending:

H′′1 = 〈write1(x, 1), tryC1〉.

Real-time order of transactions. There is a clear
happen-before relation between a completed transaction
Ti and every transaction that issues its first event after
Ti becomes committed or aborted (in a given history H).
This happen-before relation in a history H, which we de-
note by ≺H , defines what we call the real-time order of
transactions in H. More precisely, for every history H,
relation ≺H is the partial order on the transactions in H,
such that, for any two transactions Ti, Tj ∈ H, if Ti is com-
pleted and the first event of Tj follows the last event of Ti
in H, then Ti ≺H Tj.

We say that transactions Ti, Tj ∈ H are concurrent in
history H if they are not ordered by the happen-before
relation ≺H , i.e., if Ti 6≺H Tj and Tj 6≺H Ti.

We say that a history H′ preserves the real-time order of a
history H, if ≺H ⊆≺H′ . That is, if Ti ≺H Tj, then Ti ≺H′

Tj, for any two transactions Ti and Tj in H.
For example, consider history H1 described before. In

H1, transactions T2 and T3 are concurrent, T1 ≺H1 T2, and
T1 ≺H1 T3. Any history H for which T1 ≺H T2 and T1 ≺H
T3 (e.g., history H2) preserves the real time order of H1.

Sequential histories. A (well-formed) history H is se-
quential if no two transactions in H are concurrent. Se-
quential histories are of special interest, because their cor-
rectness is trivial to verify, given a precise semantics of
the shared objects and their operations.
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For example, history H2 introduced before is sequen-
tial. On the contrary, history H1 (equivalent to H2) is not
sequential, because transactions T2 and T3 are concurrent
in H1.

Complete histories. We say that a history H is complete
if H does not contain any live transaction. For example,
histories H1 and H2 used in the previous examples are
both complete.

If a history H is not complete, then we can trans-
form it to a complete history H′ by aborting or commit-
ting the live transactions in H. More specifically, for ev-
ery history H we define a set of (well-formed) histories
Complete(H). Intuitively, every history H′ in Complete(H)
is obtained from history H by committing or aborting ev-
ery commit-pending transaction in H, and aborting ev-
ery other live transaction in H. More precisely, a history
H′ is in Complete(H), if (1) H′ is well-formed, (2) H′ is
obtained from H by inserting a number of commit-try,
commit and abort events for transactions that are live
in H, (3) every transaction that is live and not commit-
pending in H is aborted in H′, and (4) every transac-
tion that is commit-pending in H is either committed or
aborted in H′. Clearly, every history in a set Complete(H)
is complete.

For example, consider the following history H3:

H3 = 〈write1(x, 1), tryC1, read2(x, 1)〉.

Then, in each history in set Complete(H3): (1) transaction
T1 is either committed or aborted, and (2) transaction T2
is (forcefully) aborted. The following histories are some
of the elements of Complete(H3):

H′3 = 〈write1(x, 1), tryC1, C2, read2(x, 1), tryC2, A2〉,
H′′3 = 〈write1(x, 1), tryC1, read2(x, 1), tryC2, A2, C1〉.

Sequential specification of a shared object. We use the
concept of a sequential specification to describe the seman-
tics of shared objects, as in [30, 16]. Intuitively, a sequen-
tial specification of a shared object ob lists all sequences
of operation executions on ob that are considered correct
when executed outside any transactional context, e.g., in
a standard, single-threaded application.9 For example,
the sequential specification of a register x, denoted by
Seq(x), is the set of all sequences of read and write opera-
tion executions on x, such that in each sequence that be-
longs to Seq(x), every read (operation execution) returns
the value given as an argument to the latest preceding
write (regardless transaction identifiers). (In fact, Seq(x)
also contains sequences that end with a pending invoca-
tion of read or write, but this is a minor detail.) Such a set
defines precisely the semantics of a read-write register in
a single-threaded, non-transactional system.

9An operation execution specifies a transaction identifier, but the
identifier can be treated as a part of the arguments of the executed op-
eration. In fact, in most cases, the semantics of an operation does not
depend on the transaction that issues this operation.

More formally, let an object-local history of a shared ob-
ject ob be any prefix S of a sequence of operation execu-
tions, such that S|ob = S. Then, a sequential specifica-
tion Seq(ob) of a shared object ob may be any prefix-closed
set of object-local histories of that object. (A set Q of se-
quences is prefix-closed if, whenever a sequence S is in Q,
every prefix of S is also in Q.)

Legal histories and transactions. Let S be any sequen-
tial history, such that every transaction in S, except pos-
sibly the last one, is committed. Intuitively, we will say
that S is legal if S respects the sequential specifications of
all the shared objects, operations on which are performed
in S. Note that the meaning of the word “respects” is clear
here, because in S no two transactions are concurrent and
no transaction comes after a live or aborted transaction.
More formally, a sequential history S is legal if, for every
shared object ob ∈ Obj, subsequence S|ob is in set Seq(ob).

Let S be any complete sequential history. In gen-
eral, for such a history the definition of a legal his-
tory does not necessarily apply, because there may be
many aborted transactions in S. Thus, we will instead
consider each transaction Ti in S separately (Ti being
committed or aborted), together with all the committed
transactions preceding Ti in S, and determine legality
of so-constructed sequential history. More precisely, let
visibleS(Ti) denote the largest subsequence S′ of S, such
that, for every transaction Tk ∈ S′, either (1) k = i, or (2)
Tk is committed and Tk ≺S Ti. Then, we say that a trans-
action Ti ∈ S is legal in S, if history visibleS(Ti) is legal.

For example, consider the sequential history H2 intro-
duced before. Then:

visibleH2(T1) = 〈write1(x, 1), tryC1, C1〉,
visibleH2(T3) = visibleH2(T1)·

〈write3(x, 2), write3(y, 2), tryC3, C3〉,
visibleH2(T2) = H2.

Histories visibleH2(T1) and visibleH2(T3) are both legal, be-
cause:

visibleH2(T1)|x = 〈write1(x, 1)〉 ∈ Seq(x),
visibleH2(T1)|y = 〈 〉 ∈ Seq(y),

visibleH2(T3)|x = 〈write1(x, 1), write3(x, 2)〉 ∈ Seq(x),
visibleH2(T3)|y = 〈write3(y, 2)〉 ∈ Seq(y).

Hence, transactions T1 and T3 are legal in H2. However,
history visibleH2(T2) is not legal, because the following se-
quence violates the sequential specification of a register
(i.e., it is not in set Seq(x)):

visibleH2(T2)|x = 〈write1(x, 1),
write3(x, 2), read2(x, 1)〉.

Therefore, transaction T2 is not legal in H2.

5 Opacity

Opacity is a safety property that captures the intuitive
requirements that (1) all operations performed by every
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committed transaction appear as if they happened at some
single, indivisible point during the transaction lifetime,
(2) no operation performed by any aborted transaction is
ever visible to other transactions (including live ones),
and (3) every transaction always observes a consistent
state of the system.

5.1 Intuition

The first requirement above is captured by the classical
notion of global atomicity [30]. This notion stipulates that
after removing all non-committed transactions from any
history H, the resulting history H′ is equivalent to some
sequential history S that respects the sequential specifi-
cation of every shared object (i.e., is legal). Additionally,
we also require that S preserves the real-time ordering of
transactions in H′.

Global atomicity (even if combined with recoverabil-
ity), however, does not guarantee the other two require-
ments, as explained in Section 3. Intuitively, when a
transaction Ti accesses some shared object, Ti should ob-
serve the changes done to the shared object by all trans-
actions that committed before Ti started, but should not
see any modifications done by transactions that are still
live (and not commit-pending) or aborted. Moreover, no
transaction should observe the changes done by Ti un-
til Ti commits, i.e., until some unique point in time, be-
tween commit-try and commit events of Ti, at which all
the changes done by Ti become instantaneously visible.

To see how we capture the second and third require-
ment, consider complete histories only. The key idea is
to check, for every such history H, that every (aborted
or committed) transaction Tk in H observes a state of the
system produced by a sequence of all committed trans-
actions preceding Tk, and some committed transactions
concurrent with Tk. More precisely, we require that there
exists a sequential history S, such that (1) S is equiva-
lent to H, (2) S preserves the real-time order of H, and
(3) every transaction in S is legal in S. The requirement
(3) means that, for every transaction Tk in S, the longest
subsequence of S made of (1) all committed transactions
preceding Tk in S, and (2) transaction Tk itself, is a legal
history, i.e., a history that respects the semantics of all op-
erations on shared objects. In a sense, S corresponds to
the (total) order in which transactions appeared to hap-
pen (instantaneously) in history H. As we already men-
tioned, legality is trivial to determine for complete se-
quential histories, in which no transaction (except pos-
sibly the last one) is aborted, given the semantics (i.e., the
sequential specifications) of all shared objects accessed by
transactions in S.

As for an incomplete history H, we transform it into
a complete history H′ by committing or aborting every
live transaction in H. A transaction that is live and not
commit-pending in H can only be aborted in H′: before
a transaction Tk invokes a commit-try event, the seman-
tics of Tk is the same as of an aborted transaction, i.e,
no changes made by Tk to shared objects should be vis-

ible to other transactions. A transaction that is commit-
pending in H can be either aborted or committed in H′:
all the changes made by a transaction to shared objects
become visible at some single unique point in time be-
tween commit-try and commit events of the transaction.

5.2 Definition

Definition 1 A history H is opaque if there exists a sequen-
tial history S equivalent to some history in set Complete(H),
such that (1) S preserves the real-time order of H, and (2) every
transaction Ti ∈ S is legal in S.

Two points of the definition contain subtleties that
need further explanation. Firstly, the step of transform-
ing a given history H into a complete history results in a
set of histories Complete(H). The reason why this set may
contain many elements is the dual semantic of commit-
pending transactions that may be considered as either
committed or aborted. Basically, the exact point in time at
which a commit-pending transaction Ti begins to appear
as committed to other transactions is not visible to a user,
and thus not expressed as an event in a history. While in
many TM implementations there is a single instruction at
which a commit-pending transaction commits, the safety
guarantees that a TM provides to a user should be ex-
pressed only with the events that the user can observe.
Thus, in a sense, a TM should be treated as a black box
the properties of which are defined using its external in-
terface.

There is, however, a subtlety in the way we treat
commit-pending transactions. Basically, if a transaction is
commit-pending, its changes to shared objects may be al-
ready visible to some transactions and, at the same time,
not yet visible to other ones. For example, consider the
following history H4 (x and y are registers with initial
value of 0):

H4 = 〈read1(x, 0), write2(x, 5), write2(y, 5), tryC2,
read3(y, 5), read1(y, 0)〉.

In H4, transaction T1 appears to happen before T2, be-
cause T1 reads the initial values of registers x and y that
are modified by T2. Transaction T3, on the other hand,
appears to happen after T2, because it reads the value
of y written by T2. Because the three transactions in H4
are pairwise concurrent, sequential history S = H4|T1 ·
〈tryC1, A1〉 · H4|T2 · 〈C2〉 · H4|T3 · 〈tryC3, A3〉, equivalent
to some history in Complete(H4), trivially preserves the
real-time order of H4. Because every transaction is legal
in S, history H4 is opaque. However, at first, it may seem
wrong that the read operation of transaction T3 returns the
value written to y by the commit-pending transaction T2
while the following read operation, by transaction T1, re-
turns the old value of y. But if T1 read value 5 from y, then
opacity would be violated, because T1 would observe an
inconsistent state of the system (x = 0 and y = 5). Thus,
letting T1 read 0 from y is the only way to prevent T1
from being forcefully aborted without violating opacity.
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T1

T2

T3

read(x)→ 1 write(x, 5) read(y)→ 2 abort

write(x, 1) write(y, 2) commit

write(y, 3) read(x)→ 1 commit

Figure 3: An opaque history H5

Multi-version TMs, like JVSTM and LSA-STM, indeed
use such optimizations to allow long read-only transac-
tions to commit despite concurrent updates performed
by other transactions. In general, it seems that forcing the
order between operation executions of different transac-
tions to be preserved, in addition to the real-time order of
transactions themselves, would be too strong a require-
ment.

The second subtlety in the definition of opacity is the
fact that it does not require every prefix of an opaque his-
tory to be also opaque. Thus, the set of all opaque his-
tories is not prefix-closed. However, a history of a TM
is generated progressively and at each time the history
of all events issued so far must be opaque. Hence, there
is no need to enforce prefix-closeness in the definition of
opacity, which should be as simple as possible.

5.3 Example

To illustrate our definition, consider the following history
H5, of three transactions accessing two registers (x and y),
corresponding to the execution depicted in Figure 3:

H5 = 〈write2(x, 1), write2(y, 2), tryC2,
inv1(x, read,⊥),
C2,
inv3(y, write, 3),
ret1(x, read, 1), inv1(x, write, 5),
ret3(y, write, ok),
ret1(x, write, ok), inv1(y, read,⊥),
inv3(x, read,⊥),
ret1(y, read, 2), tryC1,
ret3(x, read, 1), tryC3,
A1,
C3〉.

Clearly, Complete(H5) = {H5} and ≺H5 = {(T2, T3)}:
there is no live transaction in H5 and T1 is concurrent with
T2 and T3 in H5. Therefore, we can find three sequential
histories that are equivalent to H5 and preserve the rela-
tion ≺H5 (thus satisfying real-time order). However, T1
reads from x the value that has been written by commit-
ted transaction T2. Thus, a sequential history in which T1
precedes T2 is not legal. Similarly, T3 cannot precede T1:
T1 reads from y the value written by T2 and not the value
written by the committed transaction T3. Consider the
following sequential history S = H5|T2 · H5|T1 · H5|T3.
Clearly, S is equivalent to H5 and preserves the real-time
order of H5. Furthermore, every transaction is legal in

S, because sequential histories H5|T2, H5|T2 · H5|T1, and
H5|T2 · H5|T3 are legal. Therefore, history H5 is opaque.

However, complete history H1 depicted in Figure 1 is
not opaque for the following reason. Consider any se-
quential history S equivalent to H1 ∈ Complete(H1) =
{H1}. Because T1 ≺H1 T2 and T1 ≺H1 T3, history S may
only be one of the following: (1) H1|T1 · H1|T2 · H1|T3, or
(2) H1|T1 · H1|T3 · H1|T2. However, in both cases transac-
tion T2 is not legal in S. That is because: (1) in the first
case, the second read of T2 returns 2 instead of 0 (assum-
ing the initial value of y is 0), and (2) in the second case,
the first read of T2 returns 1 instead of 2 (the value written
by T3).

6 A Graph Characterization of
Opacity

Representing transactions as graph nodes and the causal
relation between them as edges helps visualize a given
history. Expressing opacity in terms of the acyclicity of
such a graph, on the other hand, makes it easier to prove
that the corresponding history is, or is not, opaque (we
use this in proving our complexity lower bound). In this
section, we present a framework, inspired by the works
on 1-copy serializability [2], that allows for such a graph-
based interpretation of opacity.

We focus here on histories in which every shared object
used by a transaction is a read-write register. To simplify
the discussion (but without loss in generality), we assume
that (1) no two write operations write the same value to
the same object (say, some local timestamp and a unique
writer’s id is added to the value), and (2) each history
starts with an initializing, committed transaction T0 that
writes some values to every register.

Let H be a history and Ti be a transaction in H. A read
operation (execution) readi(r, v) ∈ H|Ti is local if it is pre-
ceded in H|Ti by a write operation writei(r, v′). A write
operation writei(r, v) is local if it is followed in H|Ti by a
write operation writei(r, v′). A history H′ is the non-local
subhistory of H, denoted nonlocal(H), if H′ is the longest
subsequence of H that does not contain any local opera-
tion execution.

We say that Ti reads (value v from) register r in H, if H|Ti
contains readi(r, v). We say that Ti writes (value v to) reg-
ister r in H, if H|Ti contains invi(r, write, v). We say that
a transaction Tk reads (register r) from transaction Ti, if Ti
writes a value v to r and Tk reads value v from r.
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Figure 4: Opacity graph OPG(H5,�, ∅)

A history H is locally-consistent if, for every transaction
Ti and every local operation readi(r, v) ∈ H|Ti, the lat-
est write operation in (H|Ti)|r that precedes readi(r, v) is
writei(r, v). A history H is consistent if (1) H is locally-
consistent, and (2) for every transaction Ti ∈ H, if Ti reads
value v from register r in history nonlocal(H), then some
transaction Tk writes value v to r in nonlocal(H).

Let H be a history, �—a total order on the set of
transactions in H, and V—a subset of the set of commit-
pending transactions in H. We call an opacity graph
OPG(H,�, V) a directed, labeled graph constructed as
follows. Every transaction Ti in H corresponds to a ver-
tex in OPG(H,�, V), and the vertex is labelled Lvis if Ti is
in set V or is committed, or Lloc otherwise. For every two
transactions Ti, Tk ∈ H, there is an edge (Ti, Tk) (denoted
Ti −→ Tk) in OPG(H,�, V) in any of the following cases:

1. If Ti ≺H Tk; then the edge is labelled Lrt (and de-

noted Ti
rt−→ Tk);

2. If Tk reads from Ti; then the edge is labelled Lrf (and

denoted Ti
rf−→ Tk);

3. If Ti � Tk and Ti reads some register r that is writ-
ten by Tk; then the edge is labelled Lrw (and denoted
Ti

rw−→ Tk);

4. If Ti ∈ V or Ti is committed, and there exists a trans-
action Tm and a register r, such that Ti � Tm, Ti
writes to r, and Tm reads r from Tk; then the edge
is labelled Lww (and denoted Ti

ww−→ Tk).

We say that opacity graph OPG(H,�, V) is well-formed
if the following condition is satisfied: if Ti is a vertex of
OPG(H,�, V) labeled Lloc, then there is no edge (Ti, Tk)
labelled Lrf, for any vertex Tk of OPG(H,�, V).

For example, consider history H5 introduced in Sec-
tion 5.3 and depicted in Figure 3. Clearly, there is no local
read or write operation in H5, and so nonlocal(H5) = H5.
Also, there is no pending operation invocation event in
H5. Let � be the following total order of transactions
in H5:

T2 � T1 � T3.

Figure 4 depicts the opacity graph OPG(H5,�, ∅) of his-
tory H5. As the graph is well-formed and acyclic, and as
H5 is consistent, we have shown that H5 is opaque.

The following theorem, establishes a formal relation-
ship between the opacity of a given history H and the
properties of the opacity graph of H.

Theorem 2 A history H is opaque if, and only if, (1) H is con-
sistent, and (2) there exists a total order� on the set of trans-
actions in H and a subset V of the set of commit-pending trans-
actions in H, such that OPG(nonlocal(H),�, V) is well-
formed and acyclic.

Proof. (⇒) Let H be an opaque history. Clearly, H must be
consistent. By opacity, there exists a sequential history S
equivalent to some history in set Complete(H), such that S
preserves the real-time order of H and every transaction
Ti ∈ S is legal in S. Let V be the set of transactions that are
committed in S, and� be the relation ≺S. We will show
in the following that graph OPG(nonlocal(H),�, V) is
well-formed and acyclic.

Let us denote history nonlocal(H) by Hnl, and graph
OPG(Hnl,�, V) by G. Assume, by contradiction, that G
is not well-formed. This means that there are two transac-
tions Ti, Tk ∈ H, such that Tk reads some register r from
Ti in Hnl, and Ti is either live, but not in V, or aborted.
If Tk ≺S Ti, then transaction Tk could not be legal in S,
because Tk reads from r the value that is written (only)
by Ti, and Ti comes after Tk in S. Therefore, it must be
that Ti ≺S Tk. Let Sk be the history visibleS(Tk). By our
definition of set V, transaction Ti must be aborted in S,
and so Ti /∈ Sk. Thus, history Sk is not legal, because Tk
reads in Sk from register r a value that is never written in
Sk. Hence, Tk is not legal in S—a contradiction with the
assumption that every transaction in S is legal in S.

Assume now, by contradiction, that graph G is not
acyclic. Then, because relation � is a total order, there
must be some transactions Ti and Tk, such that Ti � Tk
and there is an edge Tk −→ Ti in G. Clearly, it is impossi-
ble that Tk

rw−→ Ti because Ti � Tk. It also cannot be that
Tk

rt−→ Ti, because if Tk
rt−→ Ti, then Tk ≺H Ti, and so,

as ≺H = ≺Hnl ⊆ ≺S = �, we would have that Tk � Ti,
contradicting our assumption that Ti � Tk.

Assume that Tk
rf−→ Ti. This means that there is a reg-

ister r, such that Tk writes a value v to r and Ti reads v
from r. Because Ti ≺S Tk, history Si = visibleS(Ti) does
not contain transaction Tk. Thus, Si is not legal, because
Ti reads value v from register r in Si and no transaction
writes value v to r in Si. Hence, Ti is not legal in S—a
contradiction with the assumption that every transaction
in S is legal in S.

Therefore, graph G contains edge Tk
ww−→ Ti. This

means that Tk ∈ V or Tk is committed in H, and there
exists a transaction Tm ∈ H and a register r, such that
Tk � Tm, Tk writes to r and Tm reads r from Ti. But
then Tk must be committed in S, and, by our assumptions,
Ti � Tk � Tm. Thus, both (committed) transactions Ti
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and Tk are in the sequential history Sm = visibleS(). Be-
cause, in Sm, transaction Tk writes to r after Ti writes to r
(and commits), and because Tm reads r after Tk commits,
Tm cannot read r from Ti. Hence, Tm is not legal in S—a
contradiction with the assumption that every transaction
in S is legal in S.

(⇐) Let H be a consistent history, such that there exists
a total order� in the set of transactions in H and a subset
V of the set of commit-pending transactions in H, such
that graph G = OPG(nonlocal(H),�, V) is well-formed
and acyclic. We will show that H must be opaque.

Let sequence Ts1 , . . . , Tsm be a result of a topological
sorting of graph G. Let Hc be a history in set Complete(H),
such that every transaction Ti that is live in H is (1) com-
mitted in Hc if Ti ∈ V, or (2) aborted in Hc if Ti /∈ V.
Consider the sequential history S = 〈Hc|Ts1 · . . . ·Hc|Tsm〉.
Clearly, S is equivalent to Hc, and S preserves the real-

time order of H (because of the rt−→ edges in G).
Assume, by contradiction, that there is a transaction

Ti ∈ S that is not legal in S, i.e., for which the history
Si = visibleS(Ti) is not legal. For simplicity, assume that
Ti is the earliest transaction that is not legal in S, i.e., that
every transaction preceding Ti in S is legal. This means
that there exists a read operation readi(r, v) in Si and ei-
ther (1) there is no write operation on register r that pre-
cedes readi(r, v) in Si, or (2) the latest write operation on
r preceding readi(r, v) in Si is writek(r, v′), where v′ 6= v.
Clearly, we can exclude situation (1) because we assume
that history H begins with a committed transaction T0
that writes some initial value to every register, and that
precedes every other transaction in H (and thus also in S
and Si, because of the rt−→ edges in G). Hence, we assume
situation (2).

Operation readi(r, v) cannot be local in S, because oth-
erwise history H would not be locally-consistent. Also,
because history H is consistent, there must be an event
invm(r, write, v) in H (issued by a transaction Tm). It must
be that m 6= i (i.e., Tm is different than Ti), as otherwise G
would contain a cycle Ti

rf−→ Ti. Hence, history S (and H)
contains: (1) operations writek(r, v′) and readi(r, v) (that
also belong to Si), where k 6= i and v 6= v′, and (2) in-
vocation event em = invm(r, write, v), where m 6= i. This

means that graph G contains edge Tm
rf−→ Ti.

Assume first that em /∈ Si. This means that either trans-
action Tm is aborted in S, or Ti ≺S Tm. If Tm is aborted in
S, then Tm is not committed in H and not in set V, and so
H is not consistent. Hence, Ti ≺S Tm. But this is impos-

sible, since G contains edge Tm
rf−→ Ti and relation ≺S

must preserve the direction of edges in G (by the proper-
ties of a topological sort). Therefore, invocation event em
must be in history Si.

As Ti is the last transaction in history Si, and because
m 6= i, event em must precede operation readi(r, v). Also,
em cannot be pending in Si, i.e., Si must contain oper-
ation execution writem(r, v). As writek(r, v′) is the lat-
est write preceding readi(r, v) in Si, operation writem(r, v)

must precede writek(r, v′) in Si. Hence, history Si|r must
contain a sequence:

〈writem(r, v), . . . , writek(r, v′), readi(r, v)〉.

Note also that Tm and Tk must be different transactions,
as otherwise writem(r, v) would be a local operation, and
so history H would not be consistent.

Transaction Tk is in Si, and so Tk must be committed in
S. Thus, Tk is either committed in H, or commit-pending
in H and in set V. It must be that Tk � Ti, because oth-
erwise there would be an edge Ti

rw−→ Tk, and so it could
not be that Tk ≺S Ti (by the properties of a topological
sort). Therefore, there is an edge Tk

ww−→ Tm—a contra-
diction with the assumption that Tm precedes Tk in the
topological sort of G. �

7 Low-Level Histories of TM
Implementations

A TM implementation is an algorithm that interprets the
events issued by transactions and sends back appropri-
ate responses. Let Π = {p1, . . . , pn} be the set of pro-
cesses that execute such an algorithm. We assume that
each transaction is executed by a single process, and that
each process executes transactions sequentially. We also
assume that the events issued by transactions are not
known in advance to processes.

Each process communicates with other processes by is-
suing instructions on base shared objects. We assume that
instructions are atomic (i.e., linearizable [16]) and wait-
free [13]. Therefore, we will only consider a single event
for each instruction execution, called a step.10 Each pro-
cess might also perform local computations on objects in-
accessible to other processes. Unless explicitly stated oth-
erwise, we will allow processes to fail by crashing.11 A
process that crashes does not execute any further steps
and does not receive or issue any further events.

A low-level history is a sequence of steps and events. If E
is a low-level history, then E|H denotes the longest sub-
sequence of E that does not contain any step. We will
say that H = E|H is a high-level history corresponding to
E. For every process pi, we denote by E|pi the longest
subsequence of E that contains only events and steps ex-
ecuted by process pi. We assume that every low-level his-
tory E is well-formed. That is, history E|H is well-formed
and for every transaction Tk ∈ E|H, all events of Tk are in
(E|H)|pi for some process pi.

We say that a low-level history E is opaque, if E|H is
opaque. We say that a TM implementation is opaque if
all its low-level histories are opaque.

We assume that every TM implementation guarantees
the following: every transaction Tk which issues an invo-
cation event eventually gets a response, unless the pro-
cess executing Tk has crashed. More precisely, we assume

10Instead of a pair of invocation and matching response.
11Note that the proof of Theorem 7 does not rely on the assumption

that processes can crash.
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that, for every low-level history E and every process pi, if
E|pi is infinite, then there is no pending invocation event
in E|pi.

Consider a low-level history E and a process pi. We
say that E is indistinguishable for pi from a low-level his-
tory E′, if E|pi = E′|pi. If e is an operation execution in
(E|H)|pi, then every step in E|pi that is between the two
events of e is said to be corresponding to e. If s is a step in
E|pi and Tk is a transaction in (E|H)|pi, then we say that
s is corresponding to Tk if the latest event that precedes s in
E|pi is an invocation event issued by Tk.

8 A Complexity Lower Bound

A crucial choice in a TM implementation is that of visible
vs. invisible read strategy [19]. To illustrate this, consider
a situation in which a transaction Ti invokes a read-only
operation op on a shared object ob. The TM implemen-
tation that executes Ti, at some process pk, and receives
the invocation event of op, must somehow get the cur-
rent state of ob, apply op locally and return the resulting
value to Ti. Additionally, pk may also write somewhere
in base (hardware) shared objects the information that Ti
is currently accessing ob, in which case the operation op
becomes visible to other processes. If pk never modifies
any base shared object when processing op, then the op-
eration is always invisible to other processes.

A practical advantage of invisible reads is that pk,
while executing op, does not invalidate any processor
cache lines. For read-dominated applications, the traf-
fic on the bus between processors is thus greatly reduced,
and so the overall throughput of operations is potentially
larger. The problem, however, is that while Ti reads some
shared objects, other transactions may at any time mod-
ify these objects, because read-only operations of Ti are
visible only to pk. An additional cost of per-operation val-
idation might thus be required to guarantee that Ti always
observes a consistent state.12

We make use of opacity to precisely determine when
invisible reads indeed induce a high operation complex-
ity. Basically, we prove a lower bound of Ω(k) (where
k = |Obj|) on the worst-case operation complexity for ev-
ery TM implementation that uses invisible reads, (1) is
single-version, and (2) does never abort a transaction un-
less it conflicts with some other live transaction. If any
of the two conditions is not required, or if we allow visi-
ble reads, one can devise a TM implementation with op-
eration complexity not bounded by Ω(k). That is, the
lower bound does not hold for TMs that use visible reads
(e.g., RSTM), are multi-version (e.g., JVSTM), or provide
strictly weaker progress guarantees (e.g., TL2).

Opacity is crucial here. As we show in this paper, one
can devise an algorithm that ensures a combination of
global atomicity (with real-time ordering) and strict re-
coverability instead of opacity, uses invisible reads and

12The problem of visible vs. invisible reads is similar to the “readers
must write” issue in register implementations [17].

satisfies properties (1) and (2) above, and that has con-
stant operation complexity. In this sense, our bound high-
lights the complexity gap between systems that support
full isolation of transactional code from the outside en-
vironment, e.g., databases or virtual machines for lan-
guages that can provide “sandboxing” of code blocks,
and those that do not. The former systems can render
aborted transactions completely harmless and so a cor-
rectness criterion weaker than opacity can be used.

Before giving the outline of the proof, we define certain
elements that underly the very notion of a TM implemen-
tation, and give definitions of the properties used in the
proof.

8.1 Properties of TM Implementations

Basic assumptions. Intuitively, we will assume that ev-
ery TM implementation I satisfies the following condi-
tions: (1) it does not require information about more than
a constant number of shared objects to be retrieved from
a single base shared object (i.e., in a single step), and (2) it
does not force processes to execute steps of the TM al-
gorithm when they do not have any pending invocation
event (i.e., it does not use any specific background ser-
vices).

More precisely, let Q be a subset of Obj, and c be a
one-to-one function c : Q → Q. For any two histories
H and H′, we will write H ∼c H′ if H′ is created from
H by substituting every invocation event invi(ob, op, args)
with event invi(c(ob), op, args), and every response event
reti(ob, op, val) with event reti(c(ob), op, val) (for every pro-
cess pi, shared object ob ∈ Q, operation op and any values
of args and val). For any two low-level histories E and E′,
we will write E ∼c E′ if E|H ∼c E′|H.

Let E be a low-level history and Tk be a transaction in
E|pi, for some process pi. We say that Tk is invisible in E,
if every low-level history E′ = E · Es, where Es|pi = 〈 〉, is
indistinguishable for every process except pi from history
E′′ = Er · Es, where Er is obtained from E by removing
every step corresponding to Tk.

Then, for every low-level history E of I the following
conditions are satisfied:

1. Limited capacity. For every process pi, if E = Ep · Em ·
Ei, where:

• there is no live transaction in Ep|pk for every
process pk other than pi, and the live transac-
tion in Ep|pi (if any) is invisible in Ep,

• Em|pi = 〈 〉, and

• Ei consists only of s steps of pi,

then there exists a set Q of size |Obj| −O(s), such that
for every one-to-one function c : Q → Q and every
low-level history E′m ∼c Em, if Ep · E′m is a valid low-
level history of I, then Ep · E′m · Ei is also a valid low-
level history of I.
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2. No background threads. Every step of E is correspond-
ing to some transaction in E|H.

Properties of TM implementations. By conflict we
mean, roughly speaking, a situation in which a number of
concurrent transactions try to perform some operations
on a common shared object. Intuitively, a TM implemen-
tation is progressive if it does not forcefully abort a trans-
action Ti unless Ti, at some point in time, has a live con-
flicting transaction.13

More precisely, let ObjH(Ti) denote the set of shared
objects accessed by transaction Ti in history H, i.e., the
set of shared objects, such that ob ∈ ObjH(Ti) if there is
an event in H|ob that is also in H|Ti. A conflict of a trans-
action Tk in a history H is each operation invocation event
on a shared object in set ObjH(Tk), issued by a transaction
concurrent to Tk and different from Tk (called a conflicting
transaction of Tk).14 Then we say that:

Definition 3 A transactional memory I is progressive if, for
every history H of I and every transaction Ti ∈ H that is force-
fully aborted, there exists a prefix H′ of H and a transaction
Tk ∈ H′ that is live in H′, such that Tk is a conflicting trans-
action of Ti in H′.

Intuitively, a TM implementation is single-version if,
whenever a transaction Ti invokes an operation on a
shared object ob for the first time, Ti accesses the latest
committed state of ob (as opposed to multi-version TM
implementations, e.g., [5, 25]). More precisely:

Definition 4 A transactional memory I is single-version if
every history H of I satisfies the following condition: for every
prefix H′ of H, every transaction Ti that is live in H′, and every
shared object ob, the longest subsequence H′′ of H′, such that
H′′|Ti = (H′′|Ti)|ob, is a valid history of I.

Roughly speaking, we say that an operation op of a
shared object ob is read-only if op never modifies the state
of object ob. Intuitively, a TM implementation uses invis-
ible reads if no base shared objects are modified when a
transaction performs a read-only operation on a shared
object.

More precisely, operation op is read-only if, for ev-
ery object-local history S = S1 · S2 ∈ Seq(ob) and ev-
ery value of args, there exists a value val, such that S1 ·
execi(ob, op, args, val) · S2 ∈ Seq(ob). We say that a transac-
tion Ti is read-only if Ti invokes only read-only operations.
Then we say that:

Definition 5 A transactional memory I uses invisible reads
if, for every low-level history E of I and every process pi, E is
indistinguishable for pi from a low-level history E′ that is ob-
tained from E by removing every read-only operation execution
e that is not in (E|H)|pi and every step corresponding to e.

13The property resembles the concept of C-respecting in [27].
14This definition does not account for the fact that some operations

do not really conflict, e.g., read-only ones. Clearly, an actual TM imple-
mentation may treat read-only or commutative operations in a special
way.

Note that even if invisible reads are used, read-only op-
erations of transactions executed by a process pi are visi-
ble to pi and thus may change the state of pi.

Roughly speaking, the time complexity of a given
TM implementation is the maximum possible number of
steps that a process may execute while processing an op-
eration issued by a transaction (i.e., from an operation in-
vocation event until the matching response event). More
precisely:

Definition 6 The time complexity of a transactional mem-
ory I is the maximum number of steps corresponding to any
operation execution, in any low-level history of I.

8.2 Complexity Result

Theorem 7 Every progressive, single-version TM implemen-
tation that ensures opacity and uses invisible reads has the time
complexity of Ω(k), where k = |Obj|.

The intuition behind the proof is the following. Con-
sider any progressive, single-version TM implementa-
tion that ensures opacity and uses invisible reads. Con-
sider the following scenario: two transactions, T1 and T2,
executed by two different processes, p1 and p2, respec-
tively, are accessing only read/write objects. Transaction
T1 reads some Θ(k) objects. Then, T2 writes some Θ(k)
objects and commits. Now, if T1 invokes a read opera-
tion on an object r that has been modified by T2 (and that
has not been read by T1 so far), then T1 will be returned
the value written to r by T2 (because the TM implemen-
tation is single-version). However, p1 needs to determine
whether any other object read by T1 has been updated
by T2. If yes, T1 has to be aborted (instead of returning
from the read operation): otherwise opacity would be vi-
olated. Indeed, then T1 would read some values before
T2 overwrote them with different ones, and some values
written by T2. If no, p1 has to let T1 eventually com-
mit; this is because the TM implementation is progressive
(and we assume that T1 does not invoke tryA1).

The key point is that because the TM implementation
uses invisible reads, p2 does not know which objects were
read by T1. Thus, p2 cannot help p1 detect a situation in
which T2 has updated an object that has just been read by
T1 before. Now, because only constant-size information
can be obtained by p1 in each step, p1 needs to execute
Ω(k) steps to be sure whether it has to abort T1 immedi-
ately or let T1 commit.
Proof. Assume that the only shared objects are regis-
ters r1, . . . , rk. By contradiction, assume that there is a
progressive, single-version transactional memory imple-
mentation that ensures opacity, uses invisible reads and
has the worst-case time complexity of an operation of
o(k).

Let E be a low-level history corresponding to the fol-
lowing execution, in which only processes p1 and p2 take
steps:
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Phase 1. Transaction T1, executed by process p1, writes
to all shared registers some values (known only to
T1), and commits.

Phase 2. Transaction T2, executed by process p2, per-
forms read operations on Θ(k) different registers
from some set Q2 known only to T2.

Phase 3. Transaction T3, executed by process p1, per-
forms write operations on Θ(k) different registers
from some set Q3 known only to T3, such that Q2 ∩
Q3 = ∅, changing the state of all the written regis-
ters. Then T3 commits.

Phase 4. Transaction T2 reads a register r ∈ Q3 and com-
mits.

Claim 8 E|H is a valid history of I.

Proof. To prove the claim, we show that none of the trans-
actions in E can be forcefully aborted. Firstly, transactions
T1 and T3 cannot be forcefully aborted, because I is pro-
gressive. (Note that there is no conflict between T2 and
T3 until Phase 4, at which T3 is already committed.) Sec-
ondly, T2 has only one conflict, and the conflicting trans-
action of T2 is T3. However, in no prefix of E|H, in which
T3 is a conflicting transaction of T2, T3 is live. There-
fore, as I is progressive, transaction T2 cannot be force-
fully aborted. �

Low-level history E is of the form Ep · Em · E2, where
Ep corresponds to Phases 1 and 2, Em—to Phase 3, and
E2—to Phase 4. In Ep, T2, executed by p2, is the only live
transaction. By the invisible reads and no background
threads properties of I, T2 is invisible in Ep. Sequence Em
does not contain any step of process p2, and sequence E2
consists of only steps and events of process p2, because
of the no background threads property of I. Also, by our
assumption, the number of steps process p2 executes in
E2 is o(k). Therefore, by the limited capacity property of
I, there exists a set Q of shared objects, of size |Obj| − o(k),
such that for every function c : Q → Q and for every
E′m ∼c Em, if Ep · E′m is a valid low-level history of I, then
Ep · E′m · E2 is also a valid low-level history of I.

Claim 9 For sufficiently large k, there is a function c : Q →
Q and a sequence E′m, such that (1) E′m ∼c Em, (2) E′m|H is
the same as Em|H, except for one operation execution which in
E′m|H accesses a register r′ from set Q2, instead of a register
r′′ ∈ Q3, r′′ 6= r, and (3) Ep · E′m is a valid low-level history
of I.

Proof. Firstly, the size of set Q is k− o(k). This means that
for sufficiently large k, there are some registers r′ ∈ Q2
and r′′ ∈ Q3, r′′ 6= r, that are both in set Q, for the size of
both Q2 and Q3 is Θ(k). Let c : Q → Q be the function,
such that: (1) c(r′) = r′′, (2) c(r′′) = r′, and (3) c(r) = r
if r 6= r′ and r 6= r′′. Clearly, for such a function c there
exists a low-level history E′m, for which conditions (1) and
(2) are satisfied.

Transactional memory cannot restrict the operations
performed by a transaction in any other way than by
(forcefully) aborting the transaction. The only transac-
tion that is issuing events in E′m is T3. Thus, to prove that
condition (3) is satisfied for some sequence E′m, which
satisfies (1) and (2), we only need to show that transac-
tion T3 cannot be forcefully aborted in low-level history
E′ = Ep · E′m. Indeed, E′ is indistinguishable for process
p1 from a low-level history E′′, in which transaction T2
does not issue any operation invocation events. That is
because all operations performed by T2 are read-only and
I uses invisible reads. But in E′′ transaction T3, executed
by p1, cannot be forcefully aborted, because I is progres-
sive. Thus, T3 cannot be forcefully aborted in E′. �

From Claim 9 and the limited capacity property of I we
have that sequence E′ = Ep · E′m · E2 is a valid low-level
history of I. We will lead to a contradiction by proving, in
the following claim, that E′ violates opacity.

Claim 10 Low-level history E′ is not opaque.

Proof. By the single version property of I, the value re-
turned to T2 in Phase 4 must be the value written to reg-
ister r by transaction T3. However, in E′, T2 must have
already read from register r′ a value written by T1, not
the value written by T3. That is because T2 returned from
the read operation on r′ before T3 started.

Assume, by contradiction, that E′|H is opaque. Con-
sider H′ = nonlocal(E′|H) = E′|H. By Theorem 2, there
exists a total order� on the set of transactions in H′, such
that OPG(H′,�, ∅) is well-formed and acyclic (note that
there is no commit-pending transaction in H′). Regard-
less relation�, there are the following edges in the opac-
ity graph:

• T1
rt−→ T2 and T1

rt−→ T3 (because T1 precedes both
T1 and T2),

• T1
rf−→ T2 and T3

rf−→ T2 (because T2 reads all regis-
ters from set Q2 from T1, and register r from T3).

We have two possibilities concerning total order�:

1. If T2 � T3, then there is an edge T2
rw−→ T3, because

T2 � T3, T2 reads r′ and T3 writes r′. Hence, there is
a cycle T2

rw−→ T3
rf−→ T2.

2. If T3 � T2, then there is an edge T3
ww−→ T1, be-

cause T3 is committed, T3 � T2, T3 writes to r′,
and T2 reads r′ from T1. Hence, there is a cycle

T3
ww−→ T1

rt−→ T3.

Thus, for every possible total order � among transac-
tions T1, T2 and T3, graph OPG(H′,�, ∅) has a cycle, and
so E′|H (and thus also E′) is not opaque—a contradiction.

�
�

Even from the intuition of the proof, it should be clear
that all the properties we require, i.e., invisible reads, pro-
gressiveness, and the single-version scheme, as well as
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the assumptions we make, are necessary for the lower
bound to hold. This is confirmed by the already men-
tioned counterexample TM implementations that have
the time complexity either constant or at least indepen-
dent of k (e.g., RSTM, JVSTM, TL2, etc.).

The lower bound is tight because DSTM and ASTM are
progressive and single-version, ensure opacity and use
invisible reads, and have the worst-case time complexity
of an operation Θ(k) (with most contention managers). It
is worth noting that TL2 has a constant time complexity
of an operation, although it ensures opacity, uses invis-
ible reads, and is single-version. That is because TL2 is
not progressive: it may forcefully abort a transaction Ti
that conflicts with a concurrent transaction Tk, even if Ti
invokes a conflicting operation after Tk commits.

8.3 Non-opaque TM Implementation with
Constant Time Complexity

An example implementation of a progressive, single-
version TM that uses invisible reads and ensures global
atomicity (with real-time ordering) and strict recoverabil-
ity, and that has constant time complexity, is presented
in Algorithm 1. The algorithm is similar to the one of
TL2 [6]: every shared object accessed by a transaction
with a non-read-only operation is locked, and the new
state of the object is not written to shared memory (ar-
ray M) until the transaction invokes tryC. When a shared
object is accessed with a read-only operation, its state is
stored locally at the process executing the transaction,
and the state is re-read and validated at commit time.
Clearly, the algorithm works only in systems in which no
process can crash.

Each shared object ob is mapped to two base shared ob-
jects: M[ob], storing the current state and version (times-
tamp) of ob, and L[ob], storing the lock that needs to be
acquired by every process that wants to modify M[ob].
Additionally, the algorithm uses a global counter V for
generating unique and monotonically increasing times-
tamps. The algorithm uses function isReadOnly to deter-
mine whether a given operation is read-only. We also as-
sume that the following locking-related functions are im-
plemented outside the algorithm: (1) lock, which acquires
a given lock, if it is not acquired by any process, and re-
turns true, or returns false otherwise (i.e., it does not block
waiting until the lock is released), (2) unlock, which re-
leases a given lock, and (3) isLocked, which returns true if
a given lock is acquired by some process and false other-
wise. We use the notation: state.op(args) to denote the ac-
tion of performing operation op with arguments args on a
shared object in state state. We assume that such an action
returns the new state of the object and the value returned
by op.

The main differences between our algorithm and TL2
are the following. Firstly, as our algorithm uses a weaker
correctness criterion than opacity, it can defer valida-
tion of read-only operations until a transaction invokes
tryC. Clearly, this means that inconsistent state might be

accessed by transactions (though these will be aborted
later). Secondly, because our algorithm is progressive,
unlike TL2, it cannot use the read timestamp of a transac-
tion Ti (i.e., the value of V when Ti issues its first event) to
validate operations issued by Ti. Instead, our algorithm
checks, after Ti invokes tryCi, whether any of the times-
tamps of shared objects accessed by Ti has changed. If
yes, Ti is aborted. Thirdly, for simplicity reasons (our al-
gorithm is devised for the sole purpose of complement-
ing the lower bound proof) we assume that both the state
of a shared object and a timestamp can be stored in a sin-
gle base shared object.

Theorem 11 Algorithm 1 implements a progressive, single-
version transactional memory that uses invisible reads, satisfies
global atomicity and strict recoverability, and preserves real-
time ordering of transactions.

Proof. (sketch) Let us denote by I the implementation
shown in Algorithm 1. We divide the proof into five
parts. Firstly, we prove that I guarantees global atomic-
ity. Secondly, we show that I always preserves real-time
order of transactions. Thirdly, we prove that I satisfies
strict recoverability. Fourthly, we show that I is progres-
sive. Finally, we show that I satisfies the assumptions we
made for TM implementations, is single-version and uses
invisible reads.

Global atomicity. Let us observe first that a process exe-
cuting a transaction Tk can only write to array M when Tk
is commit-pending and when Tk can no longer be aborted
(i.e., after line 26 of the algorithm). Therefore, no transac-
tion can observe any modifications to shared objects done
by transactions that are live, and not commit-pending,
or aborted. As global atomicity does not put any re-
quirement on non-committed transactions, we can con-
sider only histories in which every transaction is either
commit-pending or committed.

Let E be any low-level history of I, and Ec be the longest
subsequence of E that contains only events and steps of
transactions that (1) are committed, or (2) are commit-
pending and can no longer be aborted (i.e., their corre-
sponding process executed already lines 20–25 of the al-
gorithm). Let h be the longest subsequence of Ec that
contains only steps executed in line 13 (reading the value
of M[ob]) or in line 30 (writing to M[ob]). It is straight-
forward that if h is serializable (in the classical sense of
conflict serializability; see, e.g., [10]), then E|H satisfies
global atomicity (after events of live and aborted transac-
tions are removed).

To simplify the discussion, we will say that a transac-
tion Ti executes a read (write) on M[ob], instead of saying
that the process executing Ti executes a read (write) in-
struction on base shared object M[ob] in h. We will also
say that a transaction Ti is in h, meaning that some steps
corresponding to Ti are in h. It is worth noting that each
transaction first executes all reads, and then all writes (if
any).
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Algorithm 1: An implementation of a progressive,
single-version transactional memory that uses invisi-
ble reads and ensures global atomicity (with real-time
ordering) and strict recoverability

upon invi(ob, op, args) do1

if ob ∈ wset then (state, ts)← localcopy[ob];2

else3

if not isReadOnly(op) then4

locked← L[ob].lock();5

if not locked then6

reset();7

return Ak;8

else if L[ob].isLocked() then9

reset();10

return Ak;11

if ob ∈ rset then (state, ts)← localcopy[ob];12

else (state, ts)← M[ob];13

(newstate, val)← state.op(args);14

localcopy[ob]← (newstate, ts);15

if isReadOnly(op) then rset← rset∪ {ob};16

else wset← wset∪ {ob};17

return reti(ob, op, val);18

upon tryCi do19

foreach ob ∈ rset do20

(state, ts)← localcopy[ob];21

(curstate, curts)← M[ob];22

if L[ob].isLocked() or curts > ts then23

reset();24

return Ak;25

if wset 6= ∅ then26

wts← V.inc();27

foreach ob ∈ wset do28

(state, ts)← localcopy[ob];29

M[ob]← (state, wts);30

reset();31

return Ck;32

upon tryAi do33

reset();34

return Ak;35

procedure reset()36

foreach ob ∈ wset do L[ob].unlock();37

rset← wset← ∅;38

We say that transaction Ti writes after transaction Tk
writes, if Ti executes a write on M[ob] after Tk executes
a write on M[ob], in h, for some shared object ob. In the
same way we can define when Ti writes after Tk reads,
and when Ti reads after Tk writes.

A serialization graph of h is a graph in which each
transaction in h is a vertex of the graph, and there is an
edge from vertex Ti to vertex Tk if (1) Tk writes after Ti

writes, or (2) Tk reads after Ti writes, or (3) Tk writes af-
ter Ti reads. The theory of serializability says that history
h is conflict serializable if the corresponding serialization
graph is acyclic.

Assume, by contradiction that the serialization graph
of h is not acyclic. That is, there is a cycle C in the graph.
Let Ti be the transaction from cycle C that executes the
last write. Let Tk be the transaction that follows Ti in cycle
C. We will lead to a contradiction by showing that it is not
possible that all transactions in C commit.

Assume first that Tk is not read-only, i.e., Tk invokes at
least one non-read-only operation on some shared object.
Clearly, Tk cannot write after Ti writes, because then all
writes of Tk would have to follow every write of Ti, con-
tradicting the assumption that Ti is the transaction from
C that executes the last write. That is because the process
executing transaction Ti locks all the shared objects ac-
cessed by transaction Ti with a non-read-only operation
(line 5) before writing to any of the corresponding base
shared object M[ob] (line 30), and unlocks them only just
before committing Ti (line 37, reset called in line 31). Thus,
either (1) Tk reads after Ti writes, or (2) Tk writes after Ti
reads.

If Tk reads some M[ob] after Ti writes M[ob], then Tk
observes that L[ob] is locked in line 5 or 9. That is for
the following reasons. Firstly, the read executed by Tk on
M[ob] must be between writes executed by Ti, for Tk is
not read-only and its last write precedes the last write of
Ti, and follows the last read of Tk. Secondly, L[ob] must
be locked by Ti from before its first write, until after its
last write. Thus, Tk must be aborted in line 8 or 11—a
contradiction.

If Tk writes some M[ob] after Ti reads M[ob], then Ti
must read, in line 22, the value written to M[ob] by Tk.
That is because Ti invokes tryCi after executing its last
write, which follows every write of Tk. Thus, Ti observes,
in line 23, that curts > ts (for a timestamp of an object can
never decrease) and aborts in line 25—a contradiction.

Therefore, transaction Tk is read-only, and Tk reads
some M[ob] after Ti writes M[ob]. In fact, Tk reads M[ob]
after Ti performs all writes and unlocks M[ob]. Other-
wise, Tk would observe that L[ob] is locked in line 9 and
abort.

Let Tm be the transaction that follows Tk in cycle C.
Clearly, Tm writes after Tk reads. Moreover, the last write
of Tm must be before the last read of Tk, which follows the
last write of transactions in C. Therefore, Tk must observe
in line 22 the value written by Tm, and abort—a contradic-
tion.

Real-time order. Assume, by contradiction that there is
a history H in which real-time order is not preserved.
That is, there are two transactions Ti and Tk in H, such
that Ti ≺H Tk, but there is a path C from Tk to Ti in the se-
rialization graph of corresponding history h (constructed
from H in the same way as in the global atomicity part
of the proof). But then we can follow the same argument
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as when proving global atomicity and show that some
transaction in C must be aborted—a contradiction.

Strict recoverability. In our model, strict recoverability
can be defined (informally) as follows: If a transaction
Ti changes the state of a shared object ob to some value s,
different then the last committed state of ob, then no other
transaction observes that ob is in state s until Ti commits.
By Ti commits we mean the point in time at which up-
dates done by Ti to shared objects become visible to other
transactions, not the point in time at which Ti receives a
commit event.

Clearly, I satisfies strict recoverability: Every transac-
tion that is to modify some shared object first locks the
object, and does not unlock any object until all updates
are performed. Moreover, if another transaction tries to
execute an operation on a locked object, the transaction
will get aborted, and thus will not be able to observe the
state of the locked object.

Progressive. A transaction can be forcefully aborted in
one of the following two cases. Firstly, a process pi can
forcefully abort a transaction Tk (executed by pi) that
invoked invk(ob, op, args), if pi detects that ob is already
locked by some other process pj, executing a transaction
Tm. But then Tm is a conflicting transaction of Tk, and Tm
must be live (and conflicting with Tk) at the point when
pi checks the corresponding lock. Secondly, pi can force-
fully abort Tk when Tk invokes tryCk, and some shared
object in set rset either is locked (which is the same as the
previous case), or has been updated since Tk accessed this
object with a read-only operation. But in the latter case
there must have been a transaction Tm that was live, and
that updated some shared object ob, at some point after
Tk accessed the object ob. Thus, I is progressive.

Other properties. In every pair of base shared objects
M[ob] and L[ob] only information about shared object ob
is stored. Thus, limited capacity is satisfied. The single-
version and no background threads properties are also
satisfied by I: this is clear from the algorithm.

When invi(ob, op, args) is invoked and op is a read-only
operation, no lock is acquired in line 5. Also, shared ob-
ject ob is not added to set wset in line 17, and so base
shared object M[ob] is not modified later, in line 30, when
the transaction tries to commit (unless some non-read-
only operation is invoked on ob by the transaction). Thus,
I satisfies the invisible reads property. �

9 Concluding Remarks

This paper presents opacity: a correctness criterion for
TM systems. Opacity constitutes a first step towards a
theory of transactional memory. Such a theory is badly
missing to reason about the correctness of TM algorithms
and establish underlying optimality results and inherent

trade-offs, as well as serve as a reference point for weaker
models that would be more efficient to implement (cf. se-
rializability vs. lower isolation levels in databases). Many
related issues were, however, not addressed in this paper.

In particular, we considered a concurrency scheme
where all accesses to shared objects are performed within
transactions, and we focused on a flat transaction model.

It is often argued that, in practice, transactions might be
mixed with non-transactional code [3], especially when
coping with legacy components. A model where transac-
tions would observe concurrent updates made by non-
transactional code, and where changes made by live
transactions would be visible to operations outside trans-
actions is, clearly, imprecise. It is preferable to require
that every non-transactional operation has the seman-
tics of a single transaction. This preserves the illusion
that transactions appear as if they were executed instan-
taneously and disallows race conditions between trans-
actional and non-transactional code. We can encom-
pass such a model in our context by encapsulating ev-
ery non-transactional operation into a committed trans-
action.15 Clearly, an actual transactional memory im-
plementation may take advantage of the fact that such
a transaction contains only a single operation and can
thus be executed more efficiently (e.g., without logging
changes).

The model within which we express the notion of opac-
ity can also be extended to account for nested transac-
tions (with either closed [21] or open [22] nesting seman-
tics). Basically, we can treat events of each committed
nested transaction as if they were executed directly by the
parent transaction. Aborted and live nested transactions
can be accounted for in a similar way as we deal with
aborted and live (flat) transactions in the definition of
opacity. The main difference here is that a nested transac-
tion should observe the changes done by its parent trans-
action. We can capture this by always considering opera-
tions of a nested transaction together with all the preced-
ing operations of its parent transaction.

Finally, it is also worthwhile noticing that opacity, by it-
self, does not say when transactions should commit. Our
work is in this sense complementary to [9, 27] which de-
fine progress properties and classify contention manage-
ment strategies. It would be interesting to see which com-
binations with opacity are possible and at what cost.
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