
On the Cost of Modularity in Atomic Broadcast

Olivier Rütti†

olivier.rutti@epfl.ch
Sergio Mena‡

sergio.mena@cs.york.ac.uk
Richard Ekwall†

nilsrichard.ekwall@epfl.ch
André Schiper†

andre.schiper@epfl.ch

† École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
‡Department of Computer Science, University of York, York YO10 5DD, United Kingdom

Abstract

Modularity is a desirable property of complex software
systems, since it simplifies code reuse, verification, main-
tenance, etc. However, the use of loosely coupled modules
introduces a performance overhead. This overhead is often
considered negligible, but this is not always the case. This
paper aims at casting some light on the cost, in terms of per-
formance, that is incurred when designing a relevant group
communication protocol with modularity in mind: atomic
broadcast.

We conduct our experiments using two versions of
atomic broadcast: a modular version and a monolithic one.
We then measure the performance of both implementations
under different system loads. Our results show that the
overhead introduced by modularity is strongly related to
the level of stress to which the system is subjected, and in
the worst cases, reaches approximately 50%.

Keywords: atomic broadcast, modular design, microproto-
cols, performance cost, experimental evaluation

1 Introduction

Modularity has always been an important concern when
designing complex software systems. A modular system is
easier to maintain, its code being easier to debug, verify,
reuse and develop in a collaborative environment. How-
ever, modularity is not a panacea and its main drawback is
the performance overhead introduced by splitting the sys-
tem into several independent parts. Such overhead is often
deemed negligible when compared to all the good proper-
ties that modularity entails; but it is usually difficult to per-
form a quantitative analysis of the actual performance im-
pact.

Group communication has been argued to be an im-
portant enabling technology to render a distributed service
fault-tolerant by replicating such service at several loca-

tions [5, 8]. In this context, atomic broadcast is a well-
known protocol that allows to maintain replicas consistency
by ensuring a total order of message delivery. In [13, 7],
Chandra and Toueg propose a reduction of this protocol to
the consensus problem. This allows a modular design of
atomic broadcast based on consensus and reliable broad-
cast. In such a design, atomic broadcast knows that it is
interacting with a consensus module, but cannot make any
assumption on the implementation of the consensus module
(e.g., which algorithm is used). As a result, some algorith-
mic optimizations that make assumptions on the neighbor
protocol can not take place if the system is to be modular:
this is where the performance penalty is mostly located.

Is it not so easy to decide between a modular design or a
monolithic one: this decision has to be made at the early
stages of the software engineering process, whereas evi-
dence of the performance cost can only be obtained later,
when at least a prototype is available. Nevertheless, it is
possible to foresee the performance hit at design time using
an analytical method (See Sect. 5.2).

Contribution. This paper aims at shedding some light on
the performance cost that modularity induces in implemen-
tation of atomic broadcast reduced to the consensus prob-
lem. For our experiments, we use Fortika [18, 19], a toolkit
that includes two versions of atomic broadcast: monolithic
and modular. Both versions are based on the same algo-
rithms. In one version atomic broadcast is implemented as
a set of modules, whereas in the other, these modules are
merged to form a monolithic protocol. This merging allows
algorithmic optimizations, since we can assume that these
modules always operate together. Those optimizations aim
at (a) improving the performance in good runs (runs where
messages are timely and processes behave correctly1), and
(b) keep algorithmic correctness in all runs. For a fair com-
parison, we also optimize modular version of atomic broad-
cast.

1Good runs are the most frequent in practice

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

The performance of both modular and monolithic solu-
tions are then shown in both analytical and experimental
evaluations of the two stacks.2 Our results reveal that the
performance hit can reach 50% in some cases, showing that
the dilemma between a monolithic and a modular design
should not be taken lightly.

2 Atomic Broadcast

This section briefly presents the system model that we
consider and concisely describes the modules that constitute
the atomic broadcast stack.

2.1 System Model

We consider a system with a finite set of processes
Π = {p1, p2, . . . , pn}. The system is asynchronous, which
means that there is no assumption on message transmission
delays or relative speed of processes. The system is static,
which means that the set Π of processes never changes after
system start-up time. During system lifetime, processes can
take internal steps or communicate by message exchange.

Correct, Faulty and Failure Suspicion. Processes can
only fail by crashing. A process that crashes stops its op-
eration permanently and never recovers. A process is faulty
in a given run if it crashes in that run. A process is correct if
it is not faulty. Every process has a local module called fail-
ure detector (FD) that outputs a set of processes that have
crashed. This list can change over time, moreover it can be
inaccurate. We say that process p suspects process q if q is
in the output list of p’s FD.

Quasi-Reliable Communication Channels. Every pair
of processes is connected by a bidirectional network chan-
nel. The protocols presented later on assume quasi-reliable
channels, which verify the following property. If process p
sends message m to q, and both p and q are correct, then q
eventually receives m.

2.2 Description of Modules

Our atomic broadcast implementation consists of three
main protocols that are based on well-established algo-
rithms: reliable broadcast, consensus and atomic broad-
cast. We now give a concise description of these protocols
(see [13] for further details and formal specifications).

2We use the terms “stack” and “implementation” interchangeably

Reliable Broadcast. This protocol defines the primitives
rbcast and rdeliver. Reliable broadcast ensures that mes-
sages are rdelivered either by all correct processes or by
none, even if the sender crashes while rbcasting a message.
However, it does not enforce any order in rdelivered mes-
sages.

Consensus. Consensus defines the primitives propose and
decide, which mark the protocol’s start and end at a given
process. Consensus ensures that processes eventually reach
an agreement on a value proposed by one of them, even in
the presence of crashes.

Atomic Broadcast. This protocol defines the primitives
abcast and adeliver. Atomic broadcast is a stronger form of
reliable broadcast where all messages are adelivered in the
same order at every process.

3 Modular Implementation

The current section describes the modular implemen-
tation of atomic broadcast (see Fig. 1, left). We present
the implementation of all modules following a bottom-up
order. These modules implement the protocols described
in Sect. 2.2. Detailed knowledge of these implementa-
tions is not necessary to keep up with the rest of the pa-
per. However, a succinct description will help the reader
to better understand (1) the monolithic implementation pre-
sented in Sect. 4 and (2) the analytical evaluation presented
in Sect. 5.2.

For each module, we present some optimizations that fo-
cus on good runs (runs with no suspicion, crash or unusual
message delay). Our optimizations, however, do not affect
the correctness of the algorithms in runs that are not good.
These improvements are necessary to obtain a comparison
as fair as possible, between the modular and monolithic
stacks.

RBcast

Consensus

ABcast

Network

Application

ABcast

Network

Application

Consensus

RBcast

+

+

Figure 1. Modular implementation(left) and
monolithic implementation(right) of Atomic
Broadcast (ABcast).

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

3.1 Reliable Broadcast (RBcast)

The classical implementation of this protocol is straight-
forward if we can assume quasi-reliable channels (see
Sect. 2.1). Here is the main idea [7]:

1. Upon broadcast of message m, send a copy of m to all
processes.

2. Upon receiving m for the first time, re-send m to all
processes.

Optimization. Note that this implementation sends n2

messages over the network for each rbcast message (n de-
notes the number of processes to which the message is
broadcast). This can be reduced by assuming that a ma-
jority of processes do not crash3. This optimization leads to
only (n − 1) · (bn−1

2 c + 1) messages per rbcast message.
The details of this optimization are omitted here.

3.2 Consensus

We base our implementation on the Chandra and Toueg
consensus algorithm [7] due to its overall good perfor-
mances [25]. Rather than presenting the full algorithm’s
details, we explain its principles by using a typical run, de-
picted in Fig. 2. The algorithm proceeds in a number of
asynchronous rounds. In each round, a different process
adopts the role of coordinator. A round consists of four
phases:

time

q

r

p
(coord)

proposalestimate ack decision

decide(v)

decide(v)

decide(v)

propose(v)

propose(v’)

propose(v’’)

rbcast(v)

Figure 2. Example execution of consensus
during good runs.

1. Estimate phase. All processes send their initial value
as estimate to the coordinator.

2. Propose phase. The coordinator chooses the eldest
value and sends a propose message with such value.

3. Ack phase. All processes wait for the coordinator’s
proposal and send an ack message when they receive
it, or a nack message if they suspect the coordinator.

3The same assumption is necessary to solve consensus

4. Decide phase. If the coordinator gathers ack messages
from a majority of processes, it decides and rbcasts
the decision to all processes. The last phase in Fig. 2
(grayed) is the re-send part of rbcast algorithm (see re-
liable broadcast implementation above in this section).

If the coordinator is faulty and/or suspected, the algo-
rithm may not be able to decide in the first round. In that
case, supplementary rounds with the same phases would be
needed in order to terminate. At any moment, if a running
process receives a decision, it decides the received value
and terminates. In runs where there are no crashes or suspi-
cions, all processes are able to decide at the end of the first
round (see dark upward triangles in Fig. 2).

Optimization. Figure 3 shows a typical run of the con-
sensus algorithm that we implemented. Firstly, we reduce
the first round by suppressing the estimate phase. Secondly,
contrary to classical implementation where round n+1 be-
gins immediately after round n terminates, a new round
starts only if the coordinator is suspected to be faulty. These
two improvements were previously described in [25]. Fi-
nally, we reduce the size of decision messages by sending a
tag DECISION instead of the complete decision. Note that,
even if this optimization works fine in good runs, additional
communication steps may be required if the coordinator
crashes.

Figure 3. Example execution of optimized
consensus during good runs.

3.3 Atomic Broadcast (ABcast)

We solve atomic broadcast by reduction to consen-
sus [13, 7]. In this approach, the atomic broadcast module
diffuses all messages abcast by the application. In paral-
lel, a consensus is started to decide on the delivery order
of those messages. Hence, consensus accepts a batch of
messages as initial values. Figure 4 depicts an example ex-
ecution where messages m (abcast by p’s application) and
m′ (abcast by r’s application) are abcast. First, both mes-
sages are disseminated to all processes; then, an instance
of consensus is started to order m and m′ consistently at
all processes. When consensus decides, atomic broadcast

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

adelivers the messages contained in the decision in some
deterministic order. In Fig. 4 for instance, m′ happens to be
ordered before m, but this order is consistent everywhere.
Finally, the whole mechanism is repeated as soon as further
messages are abcast.

Optimization. Note that in [13, 7], reliable broadcast is
used to disseminate the messages abcast by the applica-
tion. In our stack, messages are simply sent using quasi-
reliable channels (solid arrows in Fig. 4). This implemen-
tation is clearly equivalent to reliable broadcast when no
process crashes. Otherwise, it may violate the specification
of atomic broadcast. Consider for instance a message m ab-
cast by process p. If p crashes while sending a copy of m
to all processes, m may be delivered at some processes but
not at others. This violates reliable broadcast’s specifica-
tion (see [13]). Moreover, in this example, it may also lead
to a violation of atomic broadcast’s specification. To avoid
this in our implementation (and thus ensure correctness), if
a process q does not receive messages during a period of t
seconds (with t sufficiently big), q starts a consensus even
if no message arrives.

p

q

r time

consensus

(m)

adeliver(m’)abcast(m)

diffuse

adeliver(m’)

adeliver(m’)

order

(m’)
abcast(m’)

adeliver(m)

adeliver(m)

adeliver(m)

Figure 4. Example run of atomic broadcast by
reduction to consensus.

4 Monolithic Implementation

In the previous sections, we have presented the algo-
rithms (and optimizations) as they are implemented in the
modular atomic broadcast stack. When we implement these
algorithms as a single module in a monolithic stack, further
(algorithmic) optimizations are possible. In this section, we
present the optimizations that were carried out in the mono-
lithic stack (see Fig. 1, right). Again, our optimizations fo-
cus on good runs but ensure correctness in all runs.

For each of these optimizations we explain (1) what
changes are made compared to the modular version of
atomic broadcast (see Section 3), (2) why these changes
are possible, and (3) what (approximate) improvement in
performance can be expected from these changes.

Consensus K Consensus K+1

time

q

r

p
(coord)

proposal ack decision proposal ack decision

Figure 5. Consecutive consensus executions
in the modular implementation of atomic
broadcast.

4.1 Combining the Next Proposal with
the Current Decision

In the modular implementation of atomic broadcast (see
Fig. 4), atomic broadcast runs a sequence of consecutive
consensus instances to order the set of undelivered mes-
sages. Due to the modular design, all consensus instances
are black boxes from the point of view of atomic broad-
cast and are considered to be totally independent from each
other. Thus, we cannot take advantage of the fact that the
coordinator that sends a decision in consensus instance k
is the same coordinator that sends a proposal in consensus
instance k +1. Figure 5 shows this. Note that in normal ex-
ecutions, process p does not necessarily wait until processes
q and r decide to start another consensus. In other words,
process p may send its proposal for consensus instance k+1
just after having sent the decision of consensus instance k.

In the monolithic implementation the successive consen-
sus instances are run within the atomic broadcast module.
If consensus instance k decides in the first round (which is
the case in good runs), then the coordinator of consensus in-
stances k and k + 1 (in its first round) are the same process.
In this case, the decision of consensus k and the proposal
of consensus k + 1 are sent together as a single message
(denoted “proposal k + decision k − 1” in Figure 6).

This first optimization in the monolithic atomic broad-
cast stack allows a better use of network resources: instead
of sending one small message (tag DECISION) followed by
a larger message (the proposal of consensus k+1) the small
message is piggybacked on the larger one.

4.2 Piggybacking Messages Abcast on ack
Messages

In the modular implementation of atomic broadcast, a
process abcasting a message m starts by sending m to all
other processes. Whenever this message is received, it is
added to the set of proposed messages for the next consen-
sus instance. In good runs, this is inefficient for the follow-
ing reason: every process delivers m, but only the coordina-
tor of the next consensus execution actually needs m (in or-

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

time

q

r

p
(coord)

proposal k
+

decision k-1

ack
+

diffusion

(,[m])

ack
+

diffusion

proposal k+2
+

decision k+1

abcast(m)

abcast(m’)

abcast(m’’)

(ack,[m’])

(ack,[m’’])

(,[m’, m’’])
adeliver(m)

adeliver(m)

adeliver(m)

proposal k+1
+

decision k

(ack,[])

(ack,[])

adeliver(m’) adeliver(m’’)

adeliver(m’) adeliver(m’’)

adeliver(m’) adeliver(m’’)

(,[])DECISION DECISION DECISION

Figure 6. Consecutive consensus executions
in the monolithic implementation of atomic
broadcast.

der to propose m for consensus). This can not be optimized
in a modular stack, since the atomic broadcast module can-
not access information that is specific to the consensus mod-
ule (such as the identity of the coordinator). Furthermore, to
preserve modularity, atomic broadcast can not disseminate
messages abcast by the application within consensus mes-
sages. This is shown in Figure 7: messages m and m′ are
first sent (in the diffuse step), then consensus is executed (in
the order step).

A more efficient solution, which can only be imple-
mented in the monolithic stack, is to combine ack messages
with the sending of messages m and m′ (see solid arrows in
Fig. 7). This is done as follows. The sender of m directly
sends m to the (initial) coordinator of the next consensus ex-
ecution. Furthermore, instead of sending m as a standalone
message to the coordinator, it can be piggybacked on the
ack message of the consensus algorithm (denoted “ack +
diffusion” in Figure 6). If the coordinator changes (i.e. if a
suspicion occurs), message m is again piggybacked on the
estimate sent to the new coordinator.

The gain of this optimization is twofold. Firstly, it re-
duces network congestion by avoiding an unnecessary dif-
fusion of abcast messages to all processes: messages are
only sent to the coordinator. Secondly, similarly to the
first optimization presented above, it allows a more efficient
use of network resources thanks to the aggregation of small
messages with bigger ones.

p

q

r time

rsend(m)

adeliver(m’)

abcast(m)

diffuse

adeliver(m’)

adeliver(m’)

order

rsend(m’)
abcast(m’)

adeliver(m)

adeliver(m)

adeliver(m)

proposal ack decision

Figure 7. Diffusion of two messages m and
m′, followed by their ordering. The diffu-
sion and ordering steps cannot be merged in
the modular implementation of atomic broad-
cast.

4.3 Reducing the Message Complexity of
Reliable Broadcast

Consensus decisions have to be reliably broadcast to
all processes. In the modular implementation, the reliable
broadcast algorithm requires (n − 1) · (bn+1

2 c) messages
to be sent on the network for each reliable broadcast to n
processes.

In the monolithic implementation, the cost of the deci-
sion diffusion is reduced to n messages: the decision is sim-
ply sent to all processes without any additional retransmis-
sions (in good runs). The reduction relies on the knowledge
that the successive consensus instances are executed on the
same set Π of processes (and thus, messages in consensus
k + 1 can serve as acknowledgments for messages sent in
consensus k). With this knowledge, the decision of consen-
sus execution k is acknowledged by the messages sent by
non-coordinators to the coordinator in consensus execution
k + 1.

Again, this optimization reduces the network congestion
since it considerably reduces from (n − 1) · (bn+1

2 c) to n
the number of messages sent by reliable broadcast.

5 Performance Evaluation

We now evaluate and compare the performance of our
two (optimized) implementations of atomic broadcast. We
specifically focus on the case of a system with three and
seven processes, supporting one, respectively three, fail-
ures. This system size might seem small. However, atomic
broadcast is usually used for relatively small degrees of
replication. If a a larger degree of replication is needed,
then alternatives that provide weaker consistency should be
considered [1].

The section starts by presenting the parameters consid-
ered. An analytical evaluation of the two implementations
is then presented, followed by the experimental evaluation
of these implementations.

5.1 Metrics, Workload, Faultload

The following paragraphs describe the benchmarks (i.e.
the performance metrics and the workloads) that were used
to evaluate the performance of the atomic broadcast algo-
rithms.

Performance Metrics. We use two performance metrics
to evaluate the algorithms: early latency and throughput.
For a single abcast message, the early latency L is defined
as follows. Let t0 be the time at which the abcast(m) event
completes and let ti be the time at which adeliver(m) oc-
curs on process pi, with i ∈ 1, . . . , n. The early latency L

is then defined as L
def
= (mini ti) − t0.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

The throughput T is defined as follows. Let ri be
the rate at which adeliver events occur on a process pi,
with i ∈ 1, . . . , n. The throughput T is then defined as

T
def
= 1

n

∑n
i=1 ri and is expressed in messages per second

(or msgs/s).
In our performance evaluation, the mean for L and T is

computed over many messages and for several executions.
For all results, we show 95% confidence intervals.

Workloads and Faultload. The early latency L and the
throughput T are measured for a certain workload, which
specifies how many abcast events are generated per time
unit. We chose a simple symmetric workload where all pro-
cesses abcast messages of a fixed size s at a constant rate r
(with s and r varying from experiment to experiment). The
global rate of atomic broadcast events is called the offered
load Toffered , which is expressed in messages per second.
We then evaluate the dependency between, on one hand,
the early latency L and the throughput T and, on the other
hand, the offered load Toffered and the size of the messages.

Furthermore, both implementations of the atomic broad-
cast protocol use the same flow-control mechanism that
blocks further abcast events when necessary. More pre-
cisely, the flow-control mechanism ensures that, on aver-
age, M = 4 messages are ordered per consensus execution.
This value of M optimizes performance of both modular
and monolithic stacks. We ensure that the system stays in
a stationary state by verifying that the latencies of all pro-
cesses stabilize over time.

Finally, we only evaluate the performance of the algo-
rithms in good runs, i.e. without any process failures or
wrong suspicions. The latency and throughput of the im-
plementations is measured once the system has reached a
stationary state (at a sufficiently long time after the startup).
The parameters that influence the latency and the through-
put are n (the number of processes), the implementation
(modular or monolithic) the offered load Toffered and the
size of the messages that are abcast.

5.2 Analytical Evaluation

As shown in Section 3, the Chandra-Toueg atomic broad-
cast algorithm reduces to a sequence of consensus execu-
tions. We assume a workload high enough so that consensus
execution k + 1 starts directly after execution k.4 This con-
dition is met if the offered load Toffered is greater than the
number of consensus executions that the system can execute
per second (i.e., if d is the average duration of a consensus
execution, we have T > d−1).

We now analyze two aspects of the performance of the
two implementations: (1) the number of messages that are

4Otherwise, there is no point in optimizing the algorithms.

sent and (2) the total amount of data that needs to be sent to
solve atomic broadcast.

5.2.1 Number of Sent Messages

In both the modular and monolithic implementations of
atomic broadcast, sets of unordered abcast messages are or-
dered in consensus executions. We assume that, on average,
M messages are ordered per consensus execution. In the
experimental evaluation, this is ensured by our flow-control
mechanism. We now derive the number of messages that
need to be sent in both stacks in order to adeliver these M
messages.

Modular Implementation. In the modular implementa-
tion of atomic broadcast, the M unordered messages are
first sent to all processes in the system, generating M · (n−
1) messages on the network. These messages are then re-
ceived by the coordinator of the consensus algorithm that
sends a proposal to all processes (n − 1 messages). All
processes reply by sending an ack message to the coordi-
nator (n − 1 messages), which then reliably broadcasts the
decision to all processes (which necessitates an additional
(n − 1) · bn+1

2 c messages).
To adeliver the M abcast messages, the modular imple-

mentation thus needs to send (n − 1)(M + 2 + bn+1
2 c)

messages.

Monolithic Implementation. In the monolithic imple-
mentation of atomic broadcast, the M unordered messages
are not immediately sent to all processes. Instead, they are
piggybacked on the ack messages of the previous consensus
execution. The coordinator starts the consensus execution
by sending both the decision of the previous consensus and
a new proposal in the same message. This message is sent
to all processes (n− 1 messages). The other processes then
reply by sending an ack message to the coordinator (n − 1
messages).

To adeliver the M abcast messages, the monolithic im-
plementation thus only needs to send 2 · (n − 1) messages.

In the case of a system of n = 3 processes for example,
with an average of M = 4 messages ordered per consensus
execution5, this means that the monolithic implementation
needs 4 messages to order these 4 abcast messages (assum-
ing of course that a previous consensus execution allows
some piggybacking of messages). In the case of the modu-
lar stack, 16 messages are needed for the same result.

5This value of M corresponds to the one that we chose for our experi-
mental evaluation.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

5.2.2 Total Amount of Sent Data

We assume that abcast messages all have a size of l bytes.
We further assume that messages sent by the algorithm that
have a constant size (e.g. ack messages and tag DECISION
in the modular implementation) only represent a negligible
part of the sent data. As above, we analyze how much data
is sent on average per consensus execution (i.e., to adeliver
M abcast messages).

Modular Implementation. In the modular implementa-
tion, abcast messages are sent to all other processes. The
M messages of size l are thus sent to n − 1 processes. The
coordinator then adds these messages to a consensus pro-
posal (sent to the n − 1 non-coordinator processes) which
thus has a size of M · l on average. The total amount of
data exchanged per consensus in the modular stack is then
Datamod = 2(n − 1)M · l bytes.

Monolithic Implementation. In the monolithic imple-
mentation, the processes do not diffuse their abcast message
to everyone and instead only send them to the coordinator
(by piggybacking them on ack messages). On average, M

n
abcast messages of size l are piggybacked by each one of
the n− 1 non-coordinator processes during a consensus ex-
ecution. The coordinator then creates a proposal with the M
messages (M

n messages abcast by itself and (n−1)M
n abcast

by the other processes) of size l that is sent to the n−1 other
processes. The total amount of data sent per consensus exe-
cution is thus on average Datamono = (n− 1)(1+ 1

n)M · l
bytes.

The overhead of the modular implementation with re-
spect to the monolithic implementation is therefore

overhead =
Datamod − Datamono

Datamono
=

n − 1
n + 1

In a system with n = 3 processes, the modular implementa-
tion needs to send 50% more data than the monolithic one.
In the case of n = 7, the overhead reaches 75%.

5.3 Experimental Evaluation

The paragraphs above presented an analytical evaluation
of the two atomic broadcast implementations from the per-
spective of two performance aspects. These two aspects are
however not sufficient to completely characterize the per-
formance cost of the modular implementation versus the
monolithic one. Indeed, the analysis above focuses on as-
pects related to the network communication of the two im-
plementations, whereas processing times for example are
not at all taken into account. The experimental evaluation
of the two stacks fills this gap.

group size=3; monolithic

 2000 3000 4000 5000 6000 7000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

group size=3; modular
group size=7; monolithic
group size=7; modular

message size = 16384 bytes

offered load (msgs/sec)

ea
rl

y
la

te
nc

y
(m

se
cs

)

 1000

Figure 8. Early latency vs. offered load for ab-
cast messages of size 16384 bytes.

The following paragraph presents the system setup used
in the experiments. Then, a performance comparison is pre-
sented between the modular and monolithic stacks.

5.3.1 System Setup

The benchmarks were run on a cluster of machines running
SuSE Linux (kernel 2.6.11). Each machine has a Pentium 4
processor at 3.2 GHz and 1 GB of RAM. The machines are
interconnected by Gigabit Ethernet (which is exclusively
used by the cluster machines) and run Sun’s 1.5.0 Java Vir-
tual Machine. The machines were dedicated to the perfor-
mance benchmarks and had no other load on them.

The atomic broadcast algorithm was implemented
(twice) in Fortika ver. 0.46 [18, 19]. Fortika is a group com-
munication toolkit with various well-known off-the-shelf
protocol modules. These protocol modules can then be
composed using different protocol frameworks. The current
experiments were run with the Cactus protocol framework
[4, 24].

5.3.2 Performance Results

Latency of Atomic Broadcast. Figure 8 shows the evolu-
tion of the early latency (vertical axis) of atomic broadcast
using the two implementations as the offered load (horizon-
tal axis) increases. Results are shown for a system size of
n = 3 (two bottom curves) and n = 7 (two top curves),
with abcast messages of size 16384 bytes. Note that chang-
ing the size of messages does not significantly affect the
results.

The latency of both implementations is relatively close
for small offered loads. As soon as the offered load in-
creases, however, the monolithic implementation achieves
latencies that are between 30% (n = 7) and 50% (n = 3)
lower than the modular implementation. Note that the la-
tency of the two implementations remains relatively con-

6The current version of Fortika uses TCP connections rather than IP
multicast facilities.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

ea
rl

y
la

te
nc

y
(m

se
cs

)

 20

 30

 40

 50

 60

 70

 64 128 256 512 1024 2048 4096 8192 16384 32768
 0

offered load = 2000 msgs/sec

message size (bytes)

group size=3; monolithic
group size=3; modular
group size=7; monolithic
group size=7; modular

 10

Figure 9. Early latency vs. message size for
an offered load of 2000 msgs/s.

stant above a certain offered load. This is due to the flow-
control mechanism that is present in both stacks: as the of-
fered load increases, more and more abcast messages are
blocked so that the network load remains more or less con-
stant.

Figure 9 shows how the early latency of the two imple-
mentations is affected by the size of the messages that are
abcast. The graph shows the early latency in a system with
n = 3 (two bottom curves) and n = 7 (two top curves)
processes. The offered load is fixed to 2000 msgs/s. Re-
sults are similar with other values of offered load (except
with too small values where no significant differences can
be observed).

Once again, the monolithic implementation achieves la-
tencies about 50% lower than the modular implementation
when the size of the messages is small (up to 4096 bytes
when n = 7 and 8192 bytes when n = 3). When the size
of the messages increases, the early latency also increases:
here, the total amount of data that needs to be exchanged
influences the latency, whereas previously the latency was
determined mostly by the number of messages sent on the
network (these messages all require a certain amount of pro-
cessing, independently of their small size). Finally, with the
largest messages considered, the monolithic implementa-
tion achieves a latency that is 25% (n = 7) or 35% (n = 3)
smaller than the modular implementation.

Throughput of Atomic Broadcast. We now examine
what throughput is reached by the modular and monolithic
implementations of atomic broadcast. Figure 10 shows the
relationship between the throughput of atomic broadcast
(on the vertical axis) and the offered load (on the horizon-
tal axis) when the size of the atomic broadcast messages
is fixed at 16384 bytes. When the offered load is small
(less than 500 msgs/s), the throughput is equal to the of-
fered load. As the offered load increases, the flow-control
mechanism limits the throughput that can be achieved (as in
the early latency above, the throughput reaches a plateau as
the offered load increases). Furthermore, for a high offered

 400

 2000 3000 4000 5000 6000 7000

 600

 800

 1000

 1200

 0

 1400

offered load (msgs/sec)

th
ro

ug
hp

ut
 (m

sg
s/

se
c)

group size=3; monolithic
group size=3; modular
group size=7; monolithic
group size=7; modular

 0

message size = 16384 bytes

 200

 1000

Figure 10. Throughput vs. offered load for ab-
cast messages of size 16384 bytes.

group size=3; monolithic

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64 128 256 512 1024 2048 4096 8192 16384 32768

th
ro

ug
hp

ut
 (m

sg
s/

se
c)

message size (bytes)

group size=7; modular
group size=7; monolithic
group size=3; modular

offered load = 2000 msgs/sec

Figure 11. Throughput vs. message size for
an offered load of 2000 msgs/s.

load, the monolithic implementation sustains a throughput
that is 25% (n = 7) to 30% (n = 3) higher than the mod-
ular implementation. For a low offered load, the difference
between both stacks is almost negligible.

Figure 11 presents the throughput of both implementa-
tions as a function of the size of the messages that are ab-
cast. The offered load is fixed at 2000 msgs/s. When the
size of the messages is small, the monolithic implemen-
tation achieves between 10% and 15% higher throughputs
than the modular one (and the throughput remains constant
up to messages of size 4096 for n = 7 and 16384 for
n = 3). Surprisingly, the throughput is higher when n = 7
processes participate in the system than when n = 3. This
is once again due to the flow-control mechanism: each pro-
cess is allowed to have a certain backlog (i.e. abcast mes-
sages that have not been delivered yet). Hence, when the
number of processes grows, a larger number of abcast mes-
sages that have not been adelivered are allowed to circulate.

Finally, as the message size increases, the throughput of
the system with n = 7 processes degrades faster than in
the case of n = 3. This is due to the consensus proposal
(which contains large messages) that needs to be sent to all
processes in the system. As both the message size of and the
number of processes increase, sending these large proposals
results in an overall lower throughput (in msgs/s).

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

Discussion. From the results above, we see that the differ-
ence in performance between a modular and a monolithic
implementation of the same distributed protocol is signifi-
cant: the difference in latency is up to 50%, while the dif-
ference in throughput varies between 10% and 25%. This
is the cost that a user must expect to pay when choosing
between a modular system that is easier to maintain and up-
date and a monolithic system that has better performance
characteristics.

Furthermore, it is interesting to note that the experimen-
tal results do not always match the analysis in Section 5.2.
These two results are, however, complementary. As ex-
plained earlier, the analytical evaluation of the two imple-
mentations focuses solely on the messages exchanged by
the algorithm. Processing costs and resource contention,
for example, are not at all considered in the analysis. On the
other hand, in evaluating throughput and message latency,
experimental results are strongly influenced by such ele-
ments (but do not consider explicitly number of messages
exchanged). For instance, 99% of CPU resources were used
with an offered load bigger than 500 msgs/s. The discrep-
ancy between the analytical and experimental evaluations
of the stacks stem from these elements (that are difficult to
estimate a priori).

6 Related Work

A number of group communication toolkits have im-
plemented atomic broadcast during the last two decades.
While early implementations (Isis [5, 6], Phoenix [17] and
Totem [2], among others) were designed with a mono-
lithic architecture, more recent systems (Horus [27], En-
semble [14], Transis [11], JavaGroups [3], Eden [15], and
Fortika[18, 19]7) present a modular design. A comparison,
from the architectural point of view, of most of these group
communication toolkits can be found in [20]. However,
the issue of performance overhead induced by modularity
(i.e. comparing performance of a modular and a monolithic
stack based on the same architecture) has not been covered
extensively. In Ensemble, the performance was improved
through several techniques [26, 14]: optimizing the inter-
facing code, improving the format of headers from different
modules and compressing them, extracting and inlining fre-
quently executed functions (from many modules), etc. Ap-
pia, a system inspired by Ensemble, included and furthered
these techniques [21]. While these techniques significantly
improved the performance of these systems (e.g., in [14],
they reduce by approximately 20 the time of processing),
they are rather general lower-level solutions. Their aim is
not at the algorithmic level: the algorithms stayed the same

7Actually, Fortika provides both modular and monolithic implementa-
tions of atomic broadcast.

after the optimizations. On the other hand, our algorith-
mic improvements can not be applied to Ensemble or Ap-
pia, where atomic broadcast is not solved by reduction to
consensus, but rather relies on group membership in order
to avoid blocking. In [12], the authors propose to extend
the specification of consensus. The new specification al-
lows the consensus layer to share some state with the above
layers (e.g. atomic broadcast) in order to reduce the amount
of data sent over the network. This technique improves sig-
nificantly performance (reduction by 4 of the message la-
tency). However, this result is not comparable to current re-
sult due to significant differences in the system setup. Note
that the Eden group communication toolkit [15] proposes a
very similar technique.

In a more general context, there is more extensive work
on protocol layer optimization. For instance, the influen-
tial x-Kernel modular system was improved with the help
of various techniques like protocol multiplexing [23]. Stan-
dard compilation techniques can be combined with annota-
tions in the code to optimize the most frequently executed
functions [22]. This approach is somewhat similar to the
work done in Ensemble, but for more more basic stacks like
TCP/IP. Another technique to improve performance across
a protocol stack is Application Level Framing [9, 10]. The
intuition here is that all protocols should know the typical
size of application messages, so that they are not unneces-
sarily fragmented on their way down the stack. Again, in all
these techniques, protocols are treated as black boxes: the
optimizations did not involve any modification in the pro-
tocol logic. Hence, most of these techniques can easily be
combined with the ones proposed in this paper.

Modularity is a necessary property to achieve good per-
formance in parallel computing and concurrent program-
ming [16]. However, this is not applicable to our work,
since very few tasks can be parallelized in atomic broad-
cast: only message diffusion and ordering can be executed
concurrently.

7 Conclusion

The paper presented two versions (monolithic and mod-
ular) of a fairly complex protocol: atomic broadcast. We
showed that a monolithic stack allows several algorithmic
optimizations. This is principally due to (1) the fact that
consensus instances are not considered independently, and
(2) the possibility for different modules to share their state.
We then analytically and experimentally quantified the gain
obtained thanks to these optimizations. Our analytical eval-
uation concluded that a monolithic implementation signif-
icantly reduces the number of messages sent over the net-
work. On the other hand, our experimental evaluation re-
vealed an overhead incurred by the modular version that
reaches 50% in the worst workload conditions.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

In summary, if we are to implement atomic broadcast,
it is commonly agreed that a modular design is the most
sensible approach. In this paper, we have shown that we
cannot be so sure of this (apparently undisputed) choice, if
we care about our system’s performance.

Acknowledgments

We would like to thank the anonymous reviewers for
their comments and helpful suggestions.

References

[1] L. Alvisi and K. Marzullo. Waft: Support for fault-tolerance
in wide-area object oriented systems. In Proc. of the 2nd
Information Survivability Workshop – ISW ’98, pages 5–10.
IEEE Computer Society Press, October 1998.

[2] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agar-
wal, and P. Ciarfella. The Totem single-ring ordering and
membership protocol. ACM Trans. on Computer Systems,
13(4):311–342, Nov. 1995.

[3] B. Ban. JavaGroups 2.0 User’s Guide, Nov 2002.
[4] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu.

Coyote: A system for constructing fine-grain configurable
communication services. ACM Trans. on Computer Systems,
16(4):321–366, Nov. 1998.

[5] K. P. Birman. The process group approach to reliable dis-
tributed computing. Comm. ACM, 36(12):36–53, Dec. 1993.

[6] K. P. Birman and T. A. Joseph. Reliable communication
in presence of failures. ACM Trans. on Computer Systems,
5(1):47–76, Feb. 1987.

[7] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of ACM, 43(2):225–
267, Mar. 1996.

[8] G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: A comprehensive study. ACM Com-
puting Surveys, 33(4):427–469, May 2001.

[9] D. D. Clark and D. L. Tennenhouse. Architectural consid-
erations for a new generation of protocols. In SIGCOMM
’90: Proceedings of the ACM symposium on Communica-
tions architectures & protocols, pages 200–208, New York,
NY, USA, 1990. ACM Press.

[10] J. Crowcroft, J. Wakeman, Z. Wang, and D. Sirovica. Is Lay-
ering Harmful? IEEE Network 6(1992) 1 pp. 20-24. IEEE
Network 6(1992) 1 pp. 20-24, 1992.

[11] D. Dolev and D. Malkhi. The Transis approach to high avail-
ability cluster communication. Comm. ACM, 39(4):64–70,
Apr. 1996.

[12] R. Ekwall and A. Schiper. Solving atomic broadcast with
indirect consensus. In 2006 IEEE International Conference
on Dependable Systems and Networks (DSN 2006), 2006.

[13] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. TR 94-1425, Dept.
of Computer Science, Cornell University, Ithaca, NY, USA,
May 1994.

[14] M. Hayden. The Ensemble system. Technical Report TR98-
1662, Dept. of Computer Science, Cornell University, Jan.
8, 1998.

[15] M. Hurfin, R. Macêdo, M. Raynal, and F. Tronel. A gen-
eral framework to solve agreement problems. In Proceed-
ings of the 18th Symposium on Reliable Distributed Systems
(SRDS), pages 56–67, Lausanne, Switzerland, Oct. 1999.

[16] L. V. Kalé. Performance and productivity in parallel pro-
gramming via processor virtualization. In Proc. of the First
Intl. Workshop on Productivity and Performance in High-
End Computing (at HPCA 10), Madrid, Spain, February
2004.

[17] C. P. Malloth. Conception and Implementation of a
Toolkit for Building Fault-Tolerant Distributed Applications
in Large Scale Networks. PhD thesis, École Polytechnique
Fédérale de Lausanne, Switzerland, Sept. 1996.

[18] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia
vs. cactus: Comparing protocol composition frameworks. In
Proc. of 22th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’03), Florence, Italy, Oct. 2003.

[19] S. Mena, O. Rütti, and A. Schiper. Fortika: Robust Group
Communication. EPFL, Laboratoire de Systèmes Répartis,
may 2006.

[20] S. Mena, A. Schiper, and P. T. Wojciechowski. A step to-
wards a new generation of group communication systems. In
Proc. of Conference on Middleware, Rio de Janeiro, Brasil,
June 2003.

[21] H. Miranda, A. Pinto, and L. Rodrigues. Appia: A flex-
ible protocol kernel supporting multiple coordinated chan-
nels. In 21st Int’l Conf. on Distributed Computing Sys-
tems (ICDCS’ 01), pages 707–710, Washington - Brussels
- Tokyo, Apr.16–19 2001.

[22] D. Mosberger, L. L. Peterson, P. G. Bridges, and
S. O’Malley. Analysis of techniques to improve protocol
processing latency. In SIGCOMM ’96: Conference proceed-
ings on Applications, technologies, architectures, and proto-
cols for computer communications, pages 73–84, New York,
NY, USA, 1996. ACM Press.

[23] L. Peterson, N. Hutchinson, S. O’Malley, and M. Abbott.
Rpc in the x-kernel: evaluating new design techniques. In
SOSP ’89: Proceedings of the twelfth ACM symposium on
Operating systems principles, pages 91–101, New York, NY,
USA, 1989. ACM Press.

[24] The University of Arizona, Computer Science Depart-
ment. The Cactus Project. Available electronically at
http://www.cs.arizona.edu/cactus/.

[25] P. Urbán. Evaluating the Performance of Distributed Agree-
ment Algorithms: Tools, Methodology and Case Studies.
PhD thesis, École Polytechnique Fédérale de Lausanne,
Switzerland, Aug. 2003. Number 2824.

[26] R. van Renesse. Masking the overhead of protocol layer-
ing. In SIGCOMM ’96: Conference proceedings on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 96–104, New York, NY, USA,
1996. ACM Press.

[27] R. van Renesse, K. P. Birman, B. B. Glade, K. Guo, M. Hay-
den, T. Hickey, D. Malki, A. Vaysburd, and W. Vogels.
Horus: A flexible group communications system. Techni-
cal Report TR95-1500, Dept. of Computer Science, Cornell
University, Ithaca, NY, USA, Apr. 1996.

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)
0-7695-2855-4/07 $20.00 © 2007

