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Foreword

In the break following the first hour of a Boolean seminar held in the late ’70s at the Ecole

Polytechnique Fédérale de Lausanne, one of the participants approached us with a fascinating

idea. He told us that he had noticed that by associating to a graph a certain pseudo-Boolean

function, simplifying afterwards a particular posiform of that function, and finally associating

a graph to the resulting expression, the stability number of the original graph would be reduced

by exactly one unit in this sequence of transformations.

The name of the seminar participant who made this remark was Christian Ebeneg-

ger, an economist by training, a member of the Faculty of Architecture, and an enthu-

siastic believer in operations research. Following Christian’s weekly persistent pointers

to more and more convincing examples of graphs whose stability number he had calcu-

lated by repeated applications of the above transformations, it was finally realized that

his proposed transformations were not only valid, but did in fact always yield the desired

result.

Christian left us suddenly and prematurely in 2002. It is to his memory that we dedicate

this note.
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1 An introduction

Among the integer programming problems that attracted the attention of many researchers,

the maximum weight stable set problem (MWSP) has generated a variety of contributions

based on very different techniques.

Given a graph G = (V, E) where each vertex i has a (positive) weight w(i) one wants to

find a stable set S (i.e., a subset S ⊆ V of vertices such that no two vertices in S are linked

by an edge (Berge, 1973) with maximum weight w(S) = ∑
(w(i) | i ∈ S). It is formulated

as follows:

Max z =
n∑

i=1

w(i)xi ≡ αw(G)

s.t. xi + x j ≤ 1 for all [i, j] ∈ E (MWSP)

xi ∈ {0, 1} for all i ∈ V

When all weights w(i) are one αw(G) will be written α(G); it is the stability number of G.

2 A formulation in pseudo-Boolean terms

As observed by Hamor (1980), this problem can also be viewed as the maximization of a

pseudo-Boolean function, i.e., a real-valued function of Boolean variables. It is obtained

as follows: we take a family of complete bipartite graphs (not necessarily induced) G j =
(A∗

j ; B∗
j ; E j ) ( j = 1, . . . , q) that cover the edge set E , we associate to each Gj a 0-1 variable

x j , and we set:

f (x1, . . . , xn) =
∑
i∈V

w(i)Ti

where

Ti =
∏
j∈Ai

x j

∏
k∈Bi

xk (1)

and

Ai = { j : i ∈ A∗
j }, Bi = { j : i ∈ B∗

j }

Notice that this representation of f is a posiform (there is no constant term and all

coefficients w(i) are positive). Clearly the maximum of f will give the maximum weight

of a stable set in G: each Ti with value 1 will correspond to a vertex i of G which will be

included in the set S; it follows from the construction of f that no two adjacent vertices of

G can both be in S.

In fact given any pseudo-Boolean function g, we can express it as g = K + f where K
is a constant and f a posiform, by using the equality x j = 1 − x j .

Any given pseudo-Boolean function g can generally be written as a constant plus a posi-

form in many different ways.
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3 The conflict graph and its use

Maximizing g amounts to maximizing an associated posiform f ; it was also observed that

conversely maximizing a posiform f can be reduced to finding a stable set with maximum

weight in a graph G f = (V, E) called the conflict graph of f , and defined in the following

way:

If f = ∑n
i=1 w(i) Ti where each Ti is defined by (1) where Ai , Bi ⊆ {1, . . . , n}Ai ∩ Bi =

∅, then to each i we associate a vertex i of G f with weight w(i), and define the edge set by

E = {[i, j] : (Ai ∩ B j ) ∪ (A j ∩ Bi ) �= ∅}. This means that in G f there is an edge between

vertices i and j if the terms Ti and Tj are in conflict (there is a k such that xk occurs in one

term and xk in the other term).

It is clear that max {w(S) : S stable set in G f } = max f (x1, . . . , xn).

So the problem of finding a stable set of maximum weight in a graph G is equivalent to

finding the maximum of a pseudo-Boolean function (and in particular of a posiform).

4 The struction

Now if we have a graph G = (V, E) with positive weights on its vertices, there are many

different ways of covering its edges by complete bipartite graphs; as a consequence there are

many different posiforms that could be maximized to find αw(G).

Since there is usually a choice, one may wonder whether there are some “good” choices

to be made. This is precisely what Christian Ebenegger noticed and this idea was exploited in

Ebenegger, Hammer, and de Werra (1984) for defining the struction (from STability number

RedUCTION).

For any vertex v of a graph, let N (v) be the set of its neighbors. Consider now a graph G =
(V, E) and choose a vertex ao in V ; Assume N (ao) = {a1, . . . , ap} and let R = V − N [ao] =
{ap+1, . . . , a|V |−1} where N [ao] = N (ao) ∪ {ao}. We construct the following covering of the

edge set E by |V | − 1 stars:

(a) For each i = 1, . . . , p , we take the star with vertex set

{ai , ao} ∪ {a j ∈ N (ai ) ∩ N (ao) : j > i} ∪ (N (ai ) ∩ R)

and with center ai .

(b) For each i = p + 1, . . . , |V | − 1, we take the star with vertex set

{ai } ∪ {a j ∈ N (ai ) ∩ R : j > i}

and with center ai .

One obtains the posiform

f =
|V |−1∑
i=o

w(ai ) T (ai )

where

T (ao) =
p∏

i=1

xi
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Fig. 1 A graph G with the posiform f
.

T (ai ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi
∏

a j ∈N (ai )
1≤ j<i≤p

x j (1 ≤ i ≤ p),

xi
∏

a j ∈N (ai )∩N (a0)

x j
∏

a j ∈N (ai )∩R
p< j<i<|V |

x j

For simplicity purposes we shall assume that all weights are one. An example is given in

Fig. 1. For this example, after the transformation of f , we get

f = 1 + x1x3 + x1x2x3 + x3x1x4 + x1x3x2x4 + x1x3x2x5 + x1x2x3x4x5

In general, this covering is always such that
∑|V |−1

i=o T (ai ) can be rewritten as:

1 +
∑

aq �∈N (ar )
1≤q<r≤p

xq xr

∏
1≤s<q

xs

∏
at ∈N (ar )
q<t<r

x t .

which is of the form 1 + g, where g is a posiform. So in case all weights w(ai ) are one, we

have f = 1 + g. Since g is a posiform, we can now consider its conflict graph, which we

call G(ao); for the example of Fig. 1, we get the graph given in Fig. 2.

Since α(G) = max f = 1 + max g, for the graph G(ao), we have α(G(ao)) = α(G) − 1.

5 A direct reduction

In fact G(ao) could have been obtained directly from G by the following transformation:

(1) remove vertices ao, a1, . . . , ap from G
(2) add to the rest R of the graph a set of new vertices

W = {vi j : 1 ≤ i < j ≤ p and [vi , v j ] /∈ E}
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Fig. 2 The graph G(ao) for the
graph G of Fig. 1

(3) join two new vertices vi, j and vk,l by an edge whenever i �= k or if [v j , v�] ∈ E ; join a

new vertex vi, j to a vertex u ∈ R by an edge whenever [vi , u] ∈ E or [v j , u] ∈ E .

One can then show that α(G(ao)) = α(G) − 1; but it is worth insisting on the fact that this

construction was inspired by pseudo-Boolean manipulations and the choice of an appropriate

covering of edges of E by complete bipartite graphs was crucial for deriving this reduction

of the stability number α(G).

6 Using the struction in an algorithm

We may now think of computing α(G) by repeatedly applying the struction until one gets a

graph Gk−1 with α(G(k−1)) = 1; G(k−1) is a clique and we get α(G(o)) = α(G) = k.

This does clearly not provide a polynomial algorithm for a general graph G; the number

of vertices in the consecutive graphs G(�) may increase exponentially.

However in special classes of graphs, by making systematically good choices of the center

ao of the struction, one may avoid this inconvenience; this was exploited for some subclasses

of claw-free graphs for instance (see Hammer, Mahadev, and de Werra, 1985).

For a weighted graph G, the basic struction operation can be extended to reduce αw(G)

by a fixed amount (for instance, the minimum weight of the nodes of G), but we shall not

discuss this here.

The example of the struction is an interesting illustration of a situation in which pseudo-

Boolean techniques have led to the discovery of some graph transformation (reducing the

stability number in our case) which could afterwards be explained and justified directly. In

that sense pseudo-Boolean algebra has played a role of catalyst in the procedure of designing

a graph transformation.

There are other situations where the same phenomenon occurred (see for instance (Alexe

et al., 2004; Hertz, 1995, 1997) for variations and extensions of such transformations).

7 Another reduction of pseudo-Boolean inspiration

It is worth mentioning also the case of “magnets” that generalize a simple neighborhood

reduction. A magnet in a graph G = (V, E) is a pair (a, b) of adjacent vertices such that

every vertex in N (a) − N (b) is adjacent to every vertex in N (b) − N (a). If (a, b) is a magnet
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Fig. 3 The magnet transformation

in G, then the edges adjacent to a or b can be covered by the following two complete bipartite

subgraphs G1 = (N (b) − N (a), N (a) − N (b), E1) and G2 = ({a, b}, N (a) ∩ N (b), E2) of

G. If we cover the edges of E − (E1 ∪ E2) with complete bipartite subgraphs G3, . . . , Gq ,

then the associated posiform f = ∑
v∈V T (v) is such that Ta = x1 · x2, Tb = x1 · x2, so we

have Ta + Tb = (x1 + x1)x2 = x2 (assuming all weights equal to one). Hence f has the same

maximum as g = ∑
v∈V −{a,b} T (v) + x2.

The conflict graph G ′ = (V ′, E ′) associated with g satisfies |V ′| = |V | − 1 and α(G ′) =
α(G). This construction is illustrated in Fig. 3.

Again, one could have constructed directly the graph G ′ by deleting in G vertex a together

with all edges [v, b] with v ∈ N (b) − N (a). Notice that G ′ is not an induced subgraph of

G and also that the simple neighborhood reduction corresponds to the case where N (b) −
N (a) = ∅.

8 Minimizing posiforms

Having observed the equivalence of the weighted maximum stable set problem and the

maximization of a posiform, we may wonder whether the minimization of a posiform also

has some interpretation. In fact, there is one which is illustrated by the following example:

Let f = 3 x1x2x3x4 + 4 x1x3x5 + x4x5 + 2 x2x5

We can associate with each term Ti = ∏
j∈Ai

x j
∏

k∈Bi
xk (with Ai ∩ Bi = ∅) a clause

Ci =
( ∨

j∈Ai

x j

) ∨ (∨
k∈Bi

xk

)

with weight w(i).
Here we would have:

C1 = x1 ∨ x2 ∨ x3 ∨ x4 with w(1) = 3

C2 = x1 ∨ x3 ∨ x5 with w(2) = 4

C3 = x4 ∨ x5 with w(3) = 1

C4 = x2 ∨ x5 with w(4) = 2
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Assume we want to find an assignment of values true or false (1 or 0) to the variables

x1, . . . , x4 such that the set of clauses that are satisfied has a maximum total weight.

Obviously, this is the so called weighted satisfiability problem (WSP)(Garey and John-

son, 1979). One sees that a clause Ci will be violated if and only if the corresponding term

Ti is one.

So minimizing f will minimize the total weight of the set of violated clauses; this amounts

to maximizing the weight of the set of clauses that are satisfied. This is precisely the WSP.

Obviously to every WSP one can associate a posiform f such that its minimum will solve

the WSP. The two problems are thus equivalent.

Notice that the WSP may be interpreted as a weighted covering problem of edges by

vertices in a hypergraph.

However a simple interpretation in terms of stable sets in a graph does not seem to be at

hand for the minimization of a posiform.

9 A brief conclusion

We have seen here how some pseudo-Boolean methods may contribute to discovering purely

graph theoretical operations that have proven to be essential in several procedures related to

the stability number of graphs.

Besides this we have observed that minimizing a posiform is equivalent to the weighted

MAX SAT problem, which is another famous integer programming problem.

This may again suggest new approaches and may lead to discovering other polynomially

solvable cases as well.

It is likely that there are still many situations in graph theory and in combinatorial op-

timization in general where such pseudo-Boolean methods will suggest original ways of

computing exact or approximate solutions.
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