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Abstract

The aim of this thesis is to supply a theoretical study of the interaction mech-
anisms between quantum dots beyond the simple picture of macroatoms.
Coulomb interaction between excitons, exciton-phonon interaction as well as
radiative interaction are, in particular, considered. These mechanisms can be
exploited to coherently couple quantum dots, thus being the physical tool en-
abling quantum information processing using quantum-dot-based logic gates.
On the other hand, the same mechanisms are responsible for the decoherence
of the quantum-state that prevent the storing of the quantum information.

Already if considered as simple two-level systems, quantum dots are sub-
ject to mutual interaction. Quantum dots in the excited state can be consid-
ered as dipoles, and are thus coupled with each other via the dipole-dipole
electrostatic interaction. This results in excitation transfer between dots
over distances of a few tens of nanometers. In Chapter 2 we show that tak-
ing into account the retarded nature of the electromagnetic field results in
a correction to this effect, that become a leading contribution at large dis-
tances, effectively coupling quantum dots over distances of a few hundreds
of nanometers.

Strong exciton-phonon-coupling in quantum dots results in a very efficient
decoherence mechanism. The strongly localized polarization in an excited
quantum dot can induce virtual phonon emission and reabsorption processes
which act as a phase-destroying mechanism. In quantum dot molecules the
decay rate of the interband polarization is almost one order of magnitude
larger than in the single quantum dot case, and depends on the interdot
distance. The description of this coupling mechanism is possible only beyond
the marcoatom picture. In Chapter 3 we develop a model that describes
the phonon-mediated interaction between quantum dots in a dot molecule,
explaining the strong distance dependence of the exciton dephasing rates
in terms of a matching condition between the phonon wavelength and the
interdot distance, which enhances the phonon-assisted scattering from bright
to dark states.

The heterodyne spectral interferometry is a novel implementation of tran-
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sient nonlinear spectroscopy that enables to study the transient nonlinear
polarization emitted from individual localized electronic transitions, in both
intensity and phase. Two-dimensional spectra obtained by means of this
technique display signals that can be associated to the coherent coupling
between different resonances of the system under study. This technique is
theoretically modeled for the first time in Chapter 4, where a very satisfac-
tory description of the measured spectra is provided, showing that coherent
coupling between different optical transitions of a quantum system result in
off-diagonal peaks of the two-dimensional excitation spectrum. Furthermore,
we show that in the low intensity regime, each spectral signal can be asso-
ciate to a specific pair of coupled resonances as long as the level structure of
the system under study is known.

Keywords: semiconductors, excitons, nanostructures, quantum dots, quan-
tum dot molecules, Coulomb correlation, radiative interaction, resonant ex-
citation transfer, exciton-phonon coupling, nonlinear spectroscopy, four wave
mixing, heterodyne spectral interferometry.



Riassunto

Scopo di questa tesi è lo studio teorico di alcuni meccanismi di interazione
tra quantum dot descritti al di là del semplice modello di macroatomo. Sono
trattati, in particolare, l’interazione Coulombiana tra eccitoni, l’interazione
eccitone-fonone e l’interazione radiativa. Questi meccanismi possono essere
sfruttati per realizzare l’accoppiamento coerente tra quantum dot, e pertanto
risultano essere gli strumenti adatti a realizzare schemi computazionali di
informazione quantistica su porte logiche basate su quantum dot. D’altra
parte, gli stessi meccanismi sono responsabili della decoerenza dello stato
quantistico che impedisce di immagazzinare l’informazione.

Già se considerati come semplici sistemi a due livelli, i quantum dot
sono soggetti a mutua interazione. Quantum dot che si trovino nel pro-
prio stato eccitato possono essere considerati come dipoli elettrici, e quindi
sono accoppiati tramite interazione elettrostatica dipolo-dipolo. Ne risulta
un trasferimento dell’eccitazione su distanze di poche decine di nanometri.
Nel Capitolo 2 mostriamo che prendere in considerazione la natura ritardata
del campo elettromagnetico risulta in una correzione a questo effetto, che
diventa dominante a grandi distanze, accoppiando efficentemente quantum
dot su distanze di poche centinaia di nanometri.

L’accoppiamento forte eccitone-fonone nei quantum dot è causa di mec-
canismi di decoerenza efficienti. La polarizzazione fortemente localizzata in
un quantum dot eccitato può indurre processi virtuali di emissione e riassor-
bimento di fononi, che agiscono come meccanismi di perdita di fase. In mole-
cole di quantum dot il tasso di decadimento della polarizzazione interbanda è
circa un ordine di grandezza maggiore che in quantum dot isolati, e dipende
dalla distanza tra i dot. Una descrizione del meccanismo di accoppiamento
è possibile solo al di là dello schema di macroatomo. Nel Capitolo 3 svilup-
piamo un modello tramite cui è descritta l’interazione mediata da fononi tra
i quantum dot che formano una molecola, spiegando la forte dipendenza del
tasso di perdita di fase dell’eccitone in termini di una condizione di match-
ing tra la lunghezza d’onda del fonone e la distanza tra i dot, che favorisce
l’interazione assistita da fononi tra stati otticamente attivi e non attivi.
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La heterodyne spectral interferometry è una nuova implementazione di
spettroscopia transiente non lineare che permette lo studio sia dell’intensità
che della fase della polarizzazione emessa da transizioni elettroniche isolate e
localizzate. Negli spettri bidimensionali ottenuti tramite questa tecnica sono
osservati segnali che si suppone essere associati all’accoppiamento coerente
tra diverse risonanze del sistema in analisi. Nel Capitolo 4 sviluppiamo il
primo modello teorico capace di descrivere questa tecnica, che fornisce una
descrizione soddisfacente degli spettri misurati sperimentalmente, mostrando
che l’accoppiamento coerente tra diverse transizioni ottiche di un sistema
quantistico si manifesta in picchi non diagonali nello spettro bidimensionale
di eccitazione. Inoltre, mostriamo che nel regime di basse intensità, ogni seg-
nale spettrale può associarsi ad una specifica coppia di risonanze accoppiate,
fintanto che la struttura dei livelli del sistema in analisi è nota.

Parole chiave: semiconduttori, eccitoni, nanostrutture, quantum dot, mo-
lecole di quantum dot, correlazione Coulombiana, interazione radiativa, trasfer-
imento risonante d’eccitazione, accoppiamaento eccitone-fonone, spettroscopia
non lineare, mixing a quattro onde, heterodyne spectral interferometry.
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Chapter 1

Introduction

Semiconductor Quantum Dots (QDs) are solid-state structures that provide
a confinement of carriers. This results in a discrete energy spectrum for
electrons and holes and, consequently, in atomic-like electronic and optical
properties. In QD systems, the energy scales and other physical properties
can be tuned, by varying the structural properties of the QD. They therefore
represent an ideal system for both experimental and theoretical investiga-
tions, where the light matter interaction can be studied in a fully controlled,
well-characterized environment. All these features make semiconductor QDs
very appealing for the realization of highly performing electro-optical de-
vices [Bimb 99].

In the limit of strong confinement, the so-called macroatom [Zana 98,
Biol 00] regime, QDs can be considered as two-level systems. This makes
them good candidates for the realization of a quantum-bit (qubit), the basic
unit of a quantum computer, that can be thought of as a physical system
having a quantum mechanical degree of freedom whose quantum state can be
systematically controlled [Benn 00, Bouw 00]. Furthermore, the requirement
for a quantum information device to be scalable up to a large number of
qubits and to be integrated into conventional electronics, can be accomplished
by solid state implementations, making semiconductor QDs more interesting
than other systems, such as atomic or nuclear spins or photons [QCR 04].

Present ultrafast laser technology allows to coherently generate and ma-
nipulate exciton states in QDs over very short time scales in the 100 fs range.
Rabi oscillations (RO) of the population inversion that are typical of two
discrete level systems, have been observed and characterized in the exciton-
ground state transition of several QD ensembles [Kama 01, Borr 02, Htoo 02].
The inversion of the two-level QD-system can be induced via optical pump-
ing of the sample [Zren 02, Patt 05]. Several proposals of realizing all-optical
gates able to perfom single- and two-qubit operations on a subpicosecond
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time scale are based on single QDs [Troi 00, Li 03] or arrays of interacting
QDs [Zana 98, Biol 00, Love 03, Bert 04, Vill 04].

Data processing needs quantum logic gates between, at least, two coupled
qubits. The coupling must be coherent so that the quantum information
is not lost during the gate operation. Among all the geometrical schemes
proposed for implementing quantum gates, that of QD molecules (QDM)
have attracted great attention. A QDM consists of a vertically stacked
pair of InAs QDs formed via strain-driven self assembly in a GaAs ma-
trix. Spectroscopic observation of coherent coupling between exciton states
in QDM and state manipulation using both magnetic [Ortn 03] and electric
fields [Baye 01, Kren 05, Ortn 05a, Stin 06] have been reported. The evi-
dence for the coherence of the two states is obtained from anticrossing in the
fine structure of their energy levels. The coupling between the exciton states
arises from the interplay between the tunneling of the carrier wave functions
and their Coulomb interaction.

One of the greatest obstacles to the implementation of quantum compu-
tation schemes is decoherence, i.e. the spoiling of the unitary character of
quantum evolution due to an uncontrolled coupling to environmental degrees
of freedom. Robustness against decoherence of the interband polarization in
QDs is expected as a result of quantum confinement, that results in discrete
energy levels with a very restricted phase space available for various scat-
tering mechanisms. This simplified view was however recently questioned,
after the observation of a very effective decoherence mechanism due to strong
electron-phonon coupling [Beso 01, Borr 01, Fave 03]. The strongly localized
polarization in an excited QD can induce virtual inelastic phonon emission
and reabsorption processes which act as a phase-destroying mechanism.

In the same simplified picture, QDs in an ensemble would basically be-
have as non-interacting objects, as long as no external field is applied. Ex-
periments performed on QDM [Borr 03] show instead that the decay rate of
the interband polarization is almost one order of magnitude larger than in
the single QD case, and depends on the interdot distance, thus proving that
the two dots in a QDM are not isolated.

Phonon-coupling is a typical example of an interaction mechanism oc-
curring via overlapping wave functions. However, interaction between polar-
izable media can also take place without tunneling. The prototype of this
class of mechanisms is the dipole-dipole electrostatic interaction, also known
as Förster Resonant Energy Transfer (FRET), that is responsible of excita-
tion transfer over distances of a few tens of nanometers. This mechanism
originates from the spin-scattering component of the exchange Coulomb in-
teraction, and then is contained in the instantaneous limit of the electromag-
netic interaction. Taking into account the retarded nature of the electromag-
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netic field gives a correction to FRET, that becomes a leading contribution
for large interdot distances [Para 05, Hugh 06, Para 07]. This means that
QDs are expected to generate a cooperative radiation field and then interact
through it over a distance range of the order of the wavelength, i.e. a few
hundreds of nanometers. This picture is supported by a recent experimental
observation [Sche 07] of the influence of the QD density on the photolumi-
nescence decay rate in single mesas.

This thesis presents a theoretical description of the various interaction
mechanisms between excitons in semiconductor QDs beyond the simple pic-
ture of macroatoms. The solutions and predictions of the theoretical models
are closely compared with recent experiments, mostly focusing on coherent
optical spectroscopy.

In Chapter 2 we develop a Maxwell–Schrödinger formalism in order to de-
scribe the radiative interaction mechanism between semiconductor quantum
dots. We solve the Maxwell equations for the electromagnetic field coupled to
the polarization field of a quantum dot ensemble through a linear non-local
susceptibility and compute the polariton resonances of the system.

The radiative coupling, mediated by both radiative and surface photon
modes, causes the emergence of collective modes whose lifetimes are longer or
shorter compared to the ones of non-interacting dots. The magnitude of the
coupling and the collective mode energies depend on the detuning and on the
mutual quantum dot distance. The spatial range of this coupling mechanism
is of the order of the optical wavelength. This part of the work was the first
theoretical prediction, back in 2005, of the radiative coupling mechanism,
that has been very recently the object of experimental verification [Sche 07].

In Chapter 3 we develop a theory of the linear optical spectrum of excitons
in QDM, including the effect of exciton-phonon coupling in the second-order
Born approximation. The model reproduces both the phonon broadband and
the broadening of the zero-phonon line (ZPL) that characterize the spectra
of exciton resonances in a QD system [Beso 01, Borr 01, Krum 02, Zimm 02,
Fave 03, Lang 04b, Mulj 04]. The general trend of the ZPL broadening as a
function of interdot distance that were recently measured [Borr 03], namely
the unexpectedly broad linewidths and their large variation as a function
of the distance, is explained in terms of both the non-Markov nature of
the coupling and of the matching of the phonon wavelength to the interdot
distance.

In Chapter 4 we supply a theoretical analysis of a novel implementa-
tion of transient nonlinear spectroscopy, the heterodyne spectral interferom-
etry (HSI) [Lang 06, Lang 07]. This technique is based on two-dymensional
Fourier transform spectroscopy and enables to study the transient nonlinear
polarization emitted from individual localized electronic transitions, in both
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intensity and phase. In the framework of a density matrix approach, written
for a multilevel system of Coulomb correlated exciton and biexciton states,
we show that the coherent coupling between two states results in off-diagonal
peaks of the two-dimensional FWM spectrum, thus confirming the interpre-
tation of Langbein et al. [Lang 06, Lang 07] of the observed HSI spectra. We
then give a solid theoretical support to a powerful experimental technique en-
abling to identify the coherent coupling between strongly confined quantum
systems independently from the coupling mechanism.

Throughout this thesis, QD states are modeled in the effective mass ap-
proximation – a powerful theoretical tool for studying the electronic and
optical properties of crystals. In the Sec. 1.1 we give a brief overview of
the calculation of the electronic structure of bulk semiconductors and nanos-
tructures and of the derivation of the Wannier exciton in semiconductors.
In particular, in Sec. 1.1.4 we briefly describe the system of self-organized
InAs/GaAs quantum dots, showing that the particular geometrical arrange-
ment of QDs in such a sample is intrinsically related to the self-assembling
growth technique. The envelope function for carriers confined in this model
QD system is calculated in Sec. 1.2, and will be at the basis of the three
presented results. Finally, in Sec. 1.3 we show how the Coulomb interac-
tion between the electron-hole pair states calculated in Sec. 1.2 is taken into
account in order to describe, at least partially, Coulomb correlation effects.

1.1 Semiconductor materials: from bulk to

quantum dots

1.1.1 Bulk semiconductors

The energy levels of electrons in isolated atoms are discrete. However, when
∼ 1023 atoms are closely packed in a crystal structure, the energy levels split
up into bonding and anti-bonding states leading to the formation of contin-
uous energy bands. In semiconductors, at zero temperature the electrons
completely fill the lower energy bands up to the so-called valence band (VB),
leaving unoccupied the successive conduction band (CB). For this kind of
material, the minimum of the CB and the maximum of the VB are separated
by a band gap Eg whose magnitude is of the order of 1 eV.

The calculation of the crystal band structure implies solving the Scrödinger
equation describing the many-body Coulomb interaction between all crystal
electrons and nuclei, here considered as spinless particles. This is an im-
possible task that requires a series of approximations. As the masses of the
nuclei are several order of magnitude larger than the free electron mass, their
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motion can be described on a timescale much larger than that of the electron
motion. One can assume that the nuclei, fixed in the equilibrium positions of
the lattice Ri, generate a potential V0({Ri}) in which the Coulomb interact-
ing electrons move (in the following, as Ri are fixed we set V0 = V0({Ri})).
Then, the eigenvalues of the electronic problem En({Ri}) enter as a potential
in the problem of the lattice vibrations. The described approach is known
as the adiabatic (Born-Oppenheimer) approximation, because the electrons
adiabatically follow the motion of the nuclei. The further step is to assume
the mean field approximation, that allows to solve of the electron problem
with the hypothesis that each electron experiences the same average poten-
tial V (r) due to the interaction with all the other electrons. The motion of
a single electron is the solution of the Scrödinger equation(

p2

2m
+ U(r)

)
ψn(r) = Enψn(r) , (1.1)

where n is the band index and U(r) = V0+V (r) is the periodic crystal poten-
tial, that can be calculated from first principles or by empirical approaches.
In the second case, U(r) is expressed in terms of parameters which are de-
termined fitting experimental results. In quantum optics experiments, one
measures both energy gaps and oscillator strengths of the transitions. In the
k · p method [Yu 96] the band structure over the entire Brillouin zone (i.e.
the elementary cell in reciprocal space) can be extrapolated from the zone
center energy gaps and optical matrix elements. Thus, the k · p method is
particularly suitable for interpreting the optical spectra. Using the Bloch
theorem, the solutions of Eq. (1.1) read

φn,k(r) = un,k(r) exp(ik · r) , (1.2)

where k lies in the Brillouin zone, and un,k(r) has the periodicity of the
lattice. When φn,k(r) is substituted into (1.1) we obtain an equation for
un,k(r) of the form(

p2

2m
+

~k · p
m

+
~2k2

2m
+ U(r)

)
un,k(r) = En,kun,k(r) . (1.3)

Once En,k and un,k(r) are calculated for a fixed point k in the Brillouin
zone, the solutions at a neighboring point k + δk are found treating the
terms ~δk · p/m and ~2δk2/2m as perturbations in Eq. (1.3), using either
the degenerate or nondegenerate perturbation theory. Let us focus on the
case of a band that is nondegenerate at the energy En,k. Around k the
dispersion reads

En,k+δk = En,k +
~
m
δk · pn,n +

~2δk2

2m
+

~2

m2

∑
m6=n

|δk · pn,m|2

En,k − Em,k

, (1.4)
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where pn,m = 〈un,k|p|um,k〉 are the matrix elements of the optical transi-
tions and En,k − Em,k the energy gaps. The limit δk → (0, 0, 0) shows the
continuity of the energy in any point of the Brillouin zone where En,k is
nondegenerate. In this limit, one define the effective mass tensor, whose
components are

1

m∗
ij

=
1

~2

∂2En,k+δk

∂ki∂kj

(1.5)

=
1

m
δi,j +

1

m2

∑
m6=n

pi
n,mp

j
m,n + pj

n,mp
i
m,n

En,k − Em,k

.

In semiconductors, the interesting point in the Brillouin zone are the
minima of the CB and the maxima of the VB. In correspondence of the
extrema, and in terms of the effective mass tensor, Eq. (1.4) reads

En,k+δk = En,k +
~2

2

∑
i,j

δkiδkj

m∗
ij

. (1.6)

Around these points one can assume a constant, possibly direction dependent,
effective mass. Many semiconductors have an absolute minimum at k =
(0, 0, 0) where, moreover, the effective mass is scalar. Then, the electron
dispersion (1.6) in the CB simplifies to

En,k = En,0 +
~2k2

2m∗ , (1.7)

that is a function quadratic in |k|, and m∗ is given by

1

m∗ =
1

m
+

2

m2k2

∑
m6=n

∣∣k · pn,m

∣∣2
En,0 − Em,0

. (1.8)

The electron in the CB behaves as a free electron in the vacuum with mod-
ified mass m∗ that accounts for the coupling between the electronic states of
the different bands via the k · p term. The electron will e.g. accelerate when
it is subject to an electric field, yielding charge current. This description
of the electron in the crystal, derived from the k · p method, is known as
effective mass approximation (EMA). On the other hand, electrons in a fully
occupied VB will not be affected by small electric fields, since no free states
of higher energy are available in the VB. However, if an electron is removed
from the VB, a free state becomes available, which can move similarly to
the electron in the CB. Such a free VB state can be regarded as a positively
charged particle, which is referred to as a hole.
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Figure 1.1: Band structure of GaAs as resulting from the effective mass approxi-
mation. Around the Γ-point (k = 0) the energy bands have parabolic dispersion.

For the calculation of the VB structure, we focus on crystals with cubic
lattice symmetry (e.g. GaAs). In this case, a degeneracy for |k| = 0 has to
be taken into account. Coupling the degenerate bands via a Kohn-Luttinger
Hamiltonian matrix [Lutt 55] results again in a parabolic band description,
but with two different effective hole masses. Corresponding bands are referred
to as the heavy hole (hh) and light hole (lh) band with angular momentum
|J| = 3/2 and projections on the z-axis (i.e. the direction of the k vector)
Jz = ±3/2 and Jz = ±1/2, respectively. In addition, there is the split-off
band corresponding to |J| = 1/2 which is shifted down in energy as an effect
of spin-orbit coupling. The corresponding dispersion curves are illustrated
in Fig. 1.1.

Electron-hole recombination in semiconductors results in the emission of
a photon corresponding to the total energy of the electron hole pair. The
light emitted due to such an optical transitions is referred to as lumines-
cence. Due to momentum and energy conservation radiative recombination
is only allowed for electrons and holes with identical k, since the momentum
of the emitted photon is negligible as compared to that of the recombining
carriers. In general, the CB has additional local energy minima displaced
from k = (0, 0, 0). Materials with the global CB minimum at k = (0, 0, 0)
coinciding with the VB maximum are called direct semiconductors, as op-
posed to indirect semiconductors. The photon emission efficiency in direct
semiconductors is much better than in indirect semiconductors.
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1.1.2 Quantum wells, wires and dots

As we have seen in the last section, the quantum mechanical description of
the microscopic structure of crystals enables to explain the optical properties
of bulk materials in terms of their electronic structure. Nevertheless, until the
beginning of 1970s quantization effects were experimentally accessible only on
isolated particles and atoms. At the same time semiconductor devices were
mostly fabricated from bulk materials. The development of sophisticated
crystal-growth techniques such as molecular beam epitaxy (MBE) [Cho 71]
and metallic-organic vapor phase epitaxy (MOVPE) marked the beginning
of a new era in solid state physics. It became possible to sandwich a very thin
layer of semiconductor between two layers of another semiconductor with a
higher bandgap. Such a quasi-two-dimensional structure has been named
quantum well (QW) since quantum effects become apparent as the thickness
of the sandwiched layer becomes close to the de Broglie length of the elec-
tron. The discovery of quantum effects related to the reduced dimensionality
attracted many scientist to the study of quantum nanostructures, resulting
in the achievement of further electron confinement to one- (quantum wires
or QWR) and zero-dimensional (quantum dots or QD) systems. In QWs,
QWRs and QDs the energy dispersion is strongly modified as compared to
the band structure of a bulk semiconductor given in Eq. (1.7)

For any of these geometries, the energy of a single CB electron can be
calculated by extending the EMA to the envelope function approximation.
This yields expressions of the electron wave function as products of Bloch-
functions and the envelope functions Φ(r) for the confined directions or plane
waves for the non-confined ones. The envelope wave functions Φ(r) is the
solution of the Schrödinger equation [Bast 92](

−~2

2
∇r

1

m∗(r)
∇r + V (r)

)
Φ(r) = EΦ(r) . (1.9)

where the potential V (r) models the quantum confinement. Assuming in-
finitely deep rectangular confinement, it is possible to analytically calculate
the carrier energies as a function of the lateral confinement Li (i = x, y, z).
The dispersions for the two-dimensional (2D), 1D and 0D cases are

E2D
l (kx, ky) =

~2π2

2m∗
l2

L2
z

+
~2

2m∗

(
k2

x + k2
y

)
, (1.10a)

E1D
lm (kx) =

~2π2

2m∗

(
l2

L2
z

+
m2

L2
y

)
+

~2k2
x

2m∗ , (1.10b)

E0D
lmn =

~2π2

2m∗

(
l2

L2
z

+
m2

L2
y

+
n2

L2
x

)
. (1.10c)
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Figure 1.2: Density of states ρ(E) for a bulk semiconductor and for semiconductor
heterostructures of decreasing dimensionality.

These equations show that 2D and 1D energy bands are superposed to quan-
tized energy levels in the case of QWs and QWRs respectively, while the QD
spectrum is fully quantized. For this reason, QDs are also called artificial
atoms. Based on (1.10) it is possible to calculate the number of available
states per volume and energy unit, namely the density of states (DOS) ρ(E),
for the 3D, 2D, 1D and 0D case as a function of the electron energy E

ρ3D(E) =

(
~2

2m∗

)−3/2
E1/2

2π2
, (1.11a)

ρ2D(E) =

(
~2

m∗

)−1
1

πLz

∑
l

Θ
(
E − E2D

l (0, 0)
)
, (1.11b)

ρ1D(E) =

(
~2

2m∗

)−1/2
1

πLzLy

∑
lm

(
E − E1D

lm (0)
)−1/2

, (1.11c)

ρ0D(E) =
2

LzLyLx

∑
lmn

δ
(
E − E0D

lmn

)
, (1.11d)

where Θ(E) is the Heaviside step function and δ(E) the Dirac distribution.
Spin degeneracy is included and the resulting curves are schematically plotted
in Fig. 1.2 as a function of E. Again, this figure show the discrete character
of the energy structure of QD electrons.

In Sec. 1.2 we describe the model adopted throughout this thesis for the
carrier wave functions in a QD and derive the envelope wave functions for
the carriers confined in a many-QD system. In particular, we consider ei-
ther random planar distributions of QDs or vertically stacked quantum dots.
These are typical geometries of self-organized QDs, as shown in Sec. 1.1.4.
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1.1.3 Wannier excitons in semiconductors

In Sec. 1.1.1, we have solved the Schrödinger equation for the electron in a
crystal in the mean field approximation and derived the band structure of
the crystal in the effective mass approximation. In this framework, we have
shown that an empty electron state in the valence band can be described in
terms of a positively charged quasiparticle that we call hole. In the Hartree-
Fock (HF) approximation the first excited state of the crystal is assumed
to be a free electron-hole pair state. The actual excited state is instead
the exciton state, in which electron-hole Coulomb correlation is taken into
account. Properly speaking, using the solutions of Eq. (1.1), the electron-hole
pair state is given by the Slater determinant

Φck′+kex,vk′(r1, ..., rN) =
1√
N !

Det
{
φv

k1
(r1)...φ

c
k′+kex

(r′)...φv
kN

(rN)
}
, (1.12)

where N is the total number of electrons in the crystal and we are assuming
the two-band approximation, that consists in restrict to the topmost valence
band and the lowest conduction band states. In the state (1.12) all the
electrons are in the valence band, except one that has been promoted from the
valence state φv

k′(r
′) to the conduction state φc

k′+kex
(r′). The state has total

wave vector kex and energy E0 −Ev(k
′) +Ec(k

′ + kex), being E0 the energy
of the crystal ground state that has all the electrons in the valence band and
total wave vector equal to zero. The HF state (1.12) is not a good first excited
state, because the potential U(r) appearing in Eq. (1.1) is constructed in a self
consistent way by minimizing the expectation value of the full Hamiltonian of
the system Ĥ0 (i.e., describing the Coulomb interacting electrons and nuclei)
over the ground state. When an electron is promoted to the conduction
band, the total charge density is modified with respect to the ground state
and, consequently, the state (1.12) can be considered only as the zero-order
approximation of the first excited state. The first order state is obtained as
a linear combination of Slater determinants of the kind of (1.12)

Φex =
∑
k′

A(k′)Φck′+kex,vk′ . (1.13)

The coefficient A(k′) can be interpreted as the Fourier transform of a wave
function of the excited state in real space, i.e. F (r) =

∑
k′ A(k′) exp(ik′ · r).

These coefficients are chosen by minimizing the expectation value of Ĥ0

on the states (1.12) and imposing the normalization of (1.12), that writes∑
k′ |A(k′)|2 = 1. In the Wannier model, or weakly bound exciton, one

assume that the exciton wave function extends over a region much larger
than the lattice period or, equivalently, A(k′) involves only a small range
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of k′ around zero. Then, the single particle states have the explicit form
given in Eq. (1.2), and the energy bands have a parabolic dispersion as in
Eq. (1.7). Furthermore, one neglects the electron-hole exchange interaction
(for a consistent analysis of the short range exchange interaction see Sec. 1.3
and Appendix A). Using these approximations, an integral equation for the
coefficients A(k′) is obtained. The Fourier transform of this integral equation
in the variable k′ gives a differential equation for F (r), that reads(

−~2∇2

2µex

− e2

ε∞r

)
F (r) = (E − Eg)F (r) . (1.14)

that provides a simple description of the exciton states in terms of a hydrogen-
like atom with reduced mass 1/µex = 1/me +1/mh in a polarizable medium.
The background dielectric constant ε∞ exactly accounts for the screening
effect of all the electron states belonging to the energy bands that have been
neglected in the two-band approximation as well as for the coupling to the
lattice vibrations [Kohn 58, Knox 63, Sham 66]. The effective Rydberg of
the exciton problem (i.e. the binding energy Eex

B of the lowest exciton state)
is

Eex
B =

µexe
4

2ε2∞~2
= 13.6

µex

m

1

ε2∞
eV . (1.15)

Typically in semiconductors ε∞ ≈ 10 and µex/m ≈ 0.1 and thus the binding
energy is of the order of a few meV. The effective Bohr radius of the ground
exciton state is

aex =
~ε∞
µexe2

= aB
m

µex

ε∞ , (1.16)

so that the exciton wave function can extend over several thousand unit cells
in semiconductors.

A similar derivation of the Wannier exciton can be done in QW and
QWR structures, resulting in an hydrogen-like particle as in the case of the
exciton in bulk. In the case of an ideal 2D crystal, the binding energy of
the ground exciton state is four times larger than in the corresponding bulk
crystal, while it is infinite in the 1D case. Nevertheless the correction due
to the finite size of the crystal in the directions of the quantum confinement,
results in a slightly smaller binding energy for the QW exciton with respect
to the ideal 2D case and in a finite one for the QWR exciton.

In QDs the exciton picture is completely different. The electron energy
levels are fully quantized, and the quantum confinement effect typically dom-
inates over the Coulomb correlation. Electron-hole pair states are strongly
confined in the volume of the dot, and the Coulomb correlation induces
only an energy shift of the ground exciton energy and a moderate quan-
titative change in the probability amplitude of the ground exciton optical
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transition [Stie 99, Zimm 02]. On the other hand, the existence of bound
biexciton states can be explained only in terms of Coulomb correlation. It
is not possible to construct a biexciton state from only two exciton states.
Decreasing the QD size, the biexciton complex changes from bonding to
antibonding. This is attributed in particular to the decreasing of the num-
ber of localized excited states which quenches the impact of correlation and
exchange [Rodt 03]. In order to calculate the biexciton states, the full diag-
onalization of the Coulomb interaction is in principle required.

1.1.4 Quantum dot fabrication. Self-assembling

QD structures can be fabricated using several methods. In the early 1980s,
the nano patterning of a QW was considered to be the most straightforward
way to fabricate a QD. Here, one speaks of a top-down approach. For direct
lateral patterning the most developed approaches are electron beam lithog-
raphy [Howa 85], focused ion beam lithography [Komu 83] and nanoimprint
lithography [Krau 97]. Depending on the resolution of the particular litho-
graphic technique used, QDs of arbitrary lateral shape, size and arrangement
can be realized providing many degree of freedoms for the QD study. How-
ever these structures suffer from interface damage caused by the patterning
procedure that is strongly detrimental for the QD optical properties. Another
possibility is to use a bottom-up approach. The direct formation of QDs on
patterned substrates as V-grooves or corrugated surfaces has been demon-
strated to provide structures with good optical properties [Kapo 87, Lebe 90].
These structures can be interesting as they permit the deterministic position-
ing of the QDs in the desired sample region (of interest for the study and
application of single QDs), but don’t allow the achievement of high dot densi-
ties that would be required for conventional applications as in lasers, optical
amplifiers or superluminescent diodes. This requirement is accomplished by
the most investigated and widely used growth-technique, the self-assembled
growth, exploiting the self-organization of 3D strained islands generated in
lattice-mismatched materials.

Self-organized growth of quantum dots has been succesfully demonstrated
using both molecular beam epitaxy (MBE) [Gold 85, Berg 88, Mo 90, Gran 93,
Nabe 94] and metalorganic vapor phase epitaxy (MOVPE) [Carl 94, Notz 94].
For a lattice-mismatched system with small interface energy such as InAs/GaAs,
initial growth may occur layer by layer mostly by adapting the lattice param-
eter of the deposited material. With increasing thickness the accumulated
elastic energy increases until, reached a critical thickness, the 2D layer can
release its energy by forming isolated islands in which the strain is relaxed.
The nature of this process was already well known for a long time and is
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named Stranski-Krastanow (SK) growth mode, after an old paper of I. N.
Stranski and L. von Krastanow [Stra 37]. The QD size, shape, areal den-
sity and optical properties depend on growth parameters, such as growth
temperature, growth rate and amount of InAs deposed. The phase transi-
tion from the epitaxial structure to the random arrangement of QDs relieves
the strain elastically without introducing defects, which opens the door for
optoelectronic device applications. The natural process of QD formation im-
plies a statistical distribution of all the different QD properties such as size,
shape, strain and material composition, which results in an inhomogeneous
broadening of the DOS.

Multiple layers of QDs are used to implement devices such as laser diodes.
In SK epitaxy vertical self-alignement of QDs occurs because the strain
field of a dot in the first layer facilitates the growth of a second dot above
it [Gold 85, Xie 95, Solo 96, Fafa 99, Fafa 00]. This happens if the GaAs
spacer between the two InAs layers is thin enough, so that a residual strain
field from the buried InAs island extend to the surface leaving the GaAs
locally strained and possibly distorted. In this way molecules consisting of
two or more vertically stacked QDs can be fabricated.

1.2 Quantum dot carrier wave functions

In this section we illustrate the model adopted in this thesis for the electron-
hole pair wave functions in QD systems. We assume elliptical dots lying
on the (x, y)-plane, as illustrated in Fig. 1.3.(a). Here, the semimajor and
the semiminor axes of the ellipse are %x and %y respectively and a is the
distance of each focus from the center of the ellipse. The anisotropy of an
ellipse can be quantified by means of a parameter, the eccentricity, that is
defined as the ratio e = a/%x and whose values vary in the interval ]0, 1[.
The circular symmetry is recovered in the limit e = 0. The height of the
QD in the z-direction is h, and a small aspect ratio h/%y (and h/%x) is
always assumed, as occurring for most real QD systems [Grun 95, Bona 98,
Hart 00, Li 03, Baie 04]. Moreover, two geometries of the many-QD system
are considered in the following chapters. In Chapter 2 we address random
planar (x, y) distributions of QDs, whose average interdot (center to center)
distance R is significantly larger then %x, %y. In Chapters 3 and 4 we consider
vertically stacked QDs with vertical separation comparable to h, as shown
in Fig. 1.3.(b) in the case of two QDs. As we have seen in Sec. 1.1.4, these
are two typical geometries for monolayers and multilayers of self assembled
QDs such as Stranky-Krastanov grown InAs/GaAs QDs. Let us focus on the
vertically stacked QD geometry for the moment. The choice of the cartesian
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Figure 1.3: (a) (x, y)-projection of a QD. %x and %y are the semimajor and semimi-
nor axis of the ellipse respectively, and a is the semi-distance between the foci.
The eccentricity of the ellipse is e = a/%x. (b) Schematic diagram of two vertically
stacked QDs. h is the height of each QD along the z-direction and R is the distance
between the two QDs.

coordinate system is such that the x and y axes coincide with the axes of the
ellipse as in Fig. 1.3.(a). We assume electron-hole pair wave functions which
are factored in their electron and hole part as

Ψ(re, rh) = Φe(re)Φ
h(rh) , (1.17)

thus neglecting for the moment the electron-hole Coulomb correlation. Here
we are implicitly using the two-band approximation. We assume that the
topmost valence states are heavy hole states which is typical for GaAs type
materials. States (1.17) can be used as a basis for diagonalizing the Coulomb
interaction and thus obtain exciton and biexciton states. In this way the
Coulomb correlation is taken into account. For a strongly confined single
QD, the Coulomb correlation induces only a moderate quantitative change
in the probability amplitude of the ground exciton optical transition [Stie 99,
Zimm 02]. This quantitative effect can be accounted for by adjusting the in-
terband matrix element in order to reproduce e.g. the single-QD radiative
recombination rate, while the factored states (1.17) are a good approximation
for the exciton wave function. On the other hand, the existence of bound
biexciton states can be explained only in terms of Coulomb correlation. It
is not possible to construct a biexciton state from only two exciton states.
In fact, the matrix element of the Coulomb interaction between the latter
results in a positive contribution to the energy, that is, to an unbound four
particle state [Rodt 03]. In order to calculate the biexciton states, the full
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diagonalization of the Coulomb interaction is in principle required. Neverthe-
less, in this thesis we are not interested to provide a complete description of
the biexciton states, that will enter in our models only through their energy
eigenvalue and dipole matrix element. For these reasons, we will use exciton
and biexciton states that are calculated by diagonalizing the Coulomb in-
teraction over a few electron-hole pair states. The carrier (electron or hole)
wave functions Φc(r) in Eq. (1.17), are the eigenvectors of the Hamiltonian

Ĥ = −~2

2
∇r

1

mc(r)
∇r + Vc(r) , (1.18)

describing the motion of a particle with position-dependent effective mass
mc(r), in a potential Vc(r) that models the band profile of the QD system.
We assume that the problem is separable in its in-plane and z-components,
namely the confinement potential can be written as

Vc(r) = V 0
c (r) + V 1

c (r) , (1.19a)

V 0
c (r) = Uc(ρ) +Wc(z) , (1.19b)

V1(r) = Vc(r)− Uc(ρ)−Wc(z) , (1.19c)

where Uc(ρ) is a single-well potential in the (x, y)-plane, Wc(z) a multiple-
well potential in the z-direction, each dip corresponding to a QD, and V1(r)
is a perturbation potential, whose contribution to the energy of the confined
state we neglect. Vc(r), Uc(ρ), Wc(z) and V1(r) are schematically represented
in Fig. 1.4. The consequence of the separation of variables is that the carrier
wave function is also separated as

Φc
ν(r) = φc(ρ)hc

ν(z) , (1.20)

and its (x, y)-projection φc(ρ) is the same for all values of z. In Eq. (1.20),
ν is the energy quantum number. We have evaluated, at the first order of
perturbation, the error introduced by neglecting V 1

c (r). This error is less
than 1% for the confined functions, that is negligible also considering the
other approximations made.

It is known that, in strong confinement regime, the exciton wave function
in a many-QD system is localized in one of the dots, as long as the QDs
are sufficiently far apart. This condition is fulfilled in the case of the planar
distribution of QDs considered in Chapter 2, but not in the case of vertically
stacked QDs considered in Chapters 3 and 4. In this case, the overlap of
the z-component of the carrier wave functions results in electron tunneling,
that plays a key role in the interaction mechanisms considered. In both
cases, the in-plane projection of the carrier wave function φc(ρ) is assumed
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Figure 1.4: Schematic representation of the potentials Vc(r), Uc(ρ), Wc(z) and
V1(r) defined in Eq. (1.19).

as being completely localized in a single potential dip, and can be calculated
by considering the QD centered at (x, y) = (0, 0). In the case of the planar
distribution of QDs, if Rα is the position of the α-th dot in the chosen
coordinate frame, the in-plane carrier wave function is then obtained via a
rigid shift as

ζc
α(ρ) = φc(ρ−Rα) . (1.21)

As we consider QDs with a small aspect ratio, the energy spacing between
the in-plane carrier states is expected to be much smaller then that between
the z states. Nevertheless, in the following chapters we will always consider
only the N lower electron and hole energy states for systems of N vertically
stacked QDs. It is easy to demonstrate that, in this geometry, the lower N
states differ from each other for their z-component, having the same ground-
state (x, y)-projection φc(ρ). Given the confining potential Uc(ρ), φc(ρ) is a
first kind Bessel function in the QD, while outside of the QD decays expo-
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nentially as a first kind Hankel function with imaginary argument [Para 05].
Nevertheless, we assume for φc(ρ) a gaussian shape [Mulj 05] resulting from
a parabolic confining potential and from setting mc(ρ) = mc, that well ap-
proximate the real ground state in-plane wave function. This assumption
will allow in the following to carry out many calculations analytically. Then,
we can write the in-plane carrier wave function as

φc(ρ) = f c(x)f c(y) , (1.22)

whose normalized x- and y-component read

f c(s) =
1

(πσ2
cs)

1/4
exp

(
−s2/2σ2

cs

)
, (1.23)

being σcs the standard deviation of the Gauss function. The energy of the
quantum state associated to the confinement is given by the expectation
value of the total hamiltonian (1.18) on the electron-hole pair wave function
Ψ(re, rh). As an example, taking into account only the kinetic Hamiltonian

Ĥ = −
∑
c=e,h

~2

2mc

∇2
rc
, (1.24)

the analytical expression for the kinetic term is

〈Ψ(re, rh)|Ĥk|Ψ(re, rh)〉 = ε0
e + ε0

h + ∆E(σe, σh) . (1.25)

Here ε0
e (ε0

h) is the contribution to the kinetic energy coming from the motion
of the electron (hole) along the z direction, and ∆E(σe, σh) is the (x, y)-
kinetic energy, whose analytical expression is

∆E(σe, σh) = 〈φe(ρe)φ
h(ρh)|Ĥk|||φe(ρe)φ

h(ρh)〉 =
∑
c=e,h

~2

4mcσ2
c

, (1.26)

and depends on the quantity σc, given by σ−2
c = σ−2

cx + σ−2
cy . In Chapter 2 we

will need the Fourier transform of the in-plane electron-hole wave function
φe(ρe)φ

h(ρh), evaluated at ρe = ρh. This quantity is proportional to the
dipole matrix element giving the interband transition amplitude, and reads

ϕk =
1

2π

∫
dρ exp (ik · ρ)φe(ρ)φh(ρ) (1.27)

=
σxσy

π
√
σexσeyσhxσhy

exp
(
−k2

xσ
2
x/2
)
exp

(
−k2

yσ
2
y/2
)
,

being σs defined by σ−2
s = σ−2

es + σ−2
hs .
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Figure 1.5: Profiles of the z-dependent confinement potential (solid line) and
effective mass (dashed line) for the carrier in the two-QD system in Fig. 1.3.(b).

The z-component of the carrier wave function is calculated numerically
as the eigenfunction of the effective mass Hamiltonian operator

Ĥz = −~2

2

d

dz

1

mc(z)

d

dz
+Wc(z) . (1.28)

The profiles of the effective mass of the carrier mc(z) and that of the con-
fining potential Wc(z) are shown in Fig. 1.5 in the case of two QDs. The
confining potential is assumed to be a square potential that takes constant
values W b

c in the barrier and W j
c in the j-th QD. Assuming an asymmetry

between different QDs, we simulate the effect of the fluctuation of the struc-
tural properties from dot to dot [Mulj 05] that is typical of self-assembled
QDs. A similar assumption of piecewise constant value is made for mc(z),
as displayed in Fig. 1.5, in order to model different QD and barrier materi-
als. At the interfaces z̄ between the QDs and the surrounding medium, the
eigenfunctions of the Hamiltonian operator (1.28) must satisfy the boundary
conditions

hc
ν(z̄

−) = hc
ν(z̄

+) , (1.29a)

1

m−
c

[
d

dz
hc

ν(z)

]
z=z̄−

=
1

m+
c

[
d

dz
hc

ν(z)

]
z=z̄+

, (1.29b)

being z̄− and z̄+ the left and right limits of z to z̄ respectively and m±
c =

mc(z̄
±). In Fig. 1.6 we plot the lowest-energy electron and hole wave-

functions resulting from the diagonalization of the Hamiltonian (1.28) in the



1.3. Coulomb interaction in quantum dots 19

case of two QDs, in order to compare them in several cases. In particular,
we use InAs/GaAs parameters for the two-QDs potential and for the carriers
effective masses in the z-direction, namely

We/h(z) =


W b

e/h = 672 meV/288 meV , in the barrier

W 1
e/h = 0 , −h+R

2
≤ z ≤ h−R

2

W 2
e/h = 13.44 meV/5.76 meV ,

h−R

2
≤ z ≤ h+R

2

(1.30)

me/h(z) =

{
mb

e/h = 0.067m/0.327m , in the barrier

me/h = 0.027m/0.265m , in the QDs
(1.31)

being m the free electron mass. In Fig. 1.6.(a), the two lowest-energy electron
wave functions are plotted for an interdot distance R = 10 nm, small enough
to obtain states that are delocalized on the whole QD system. In Fig. 1.6.(b)
we compare the ground electron and hole wave functions, showing that the
electron wave functions are broader then those of the hole. This is because of
the smaller value of the effective mass of the electron with respect to that of
the hole (see Eqs. 1.31). In Fig. 1.6.(c) we plot the two lowest-energy electron
wave-functions for R = 30 nm. The comparison to Fig. 1.6.(a) shows that
a larger distance results in states that are strictly localized in one of the
two QDs. Finally, Fig. 1.6.(d) is a detail from Fig. 1.6.(a), where we show
that, according to the boundary conditions (1.29), the wave-function hc

ν(z) is
continuous at the border coordinates z̄, with a discontinuous first derivative.

1.3 Coulomb interaction in quantum dots

In the previous section we have calculated the electron-hole pair wave func-
tions for our model QD system, neglecting any Coulomb correlation between
the charged particles. Here, we discuss how the Coulomb interaction is in-
cluded in the quantum-mechanical description of the QD system, in the en-
velope function approximation. The microscopic derivation of the second
quantization Coulomb hamiltonian for a generic semiconductor medium is
given in Appendix A.

In the second quantization formalism the few-electron and -hole states
derived in Sec. 1.2 are represented by kets in a Fock space. In the follow-
ing the carrier wave function will be labeled with a spin quantum num-
ber σ = ±1 corresponding to electron (heavy hole) spin ±1/2 (±3/2). In
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Figure 1.6: (a) wave functions of the ground (solid line) and first excited (dashed)
electron states along the z-direction in a two-QD system, for an interdot distance
R = 10 nm. The thickness of each QD is h = 2 nm, the carriers band offsets are
given in Eq. (1.30) and their effective masses in Eq. (1.31). The wave functions
are delocalized on the whole system. (b) comparison between the wave functions
of the ground electron (solid) and hole (dashed) states, for the system in (a). The
electron wave function is broader than the hole one, because of the smaller value
of the effective mass. Note that both states are not symmetric with respect to
z-inversion, because of the asymmetry of the confining potential (see Eq. (1.30)
and Fig. 1.5). (c) The same as in (a), but for R = 30 nm. (d) Magnification
of (a). According to the boundary conditions (1.29), the carrier wave function is
continuous at the interface between the QD and the surrounding medium, with a
discontinuous first derivative.

fact, the Coulomb interaction allows spin transfer between different exci-
tonic states. The state Φe

i (r) (Φh
i (r)) of definite spin σ corresponds to the

ket ĉ†iσ|0〉 (d̂†iσ|0〉), where ĉ†iσ and ĉiσ (d̂†iσ and d̂iσ) are the electron (hole)
operators, obeying Fermi commutation rules, and |0〉 is the vacuum state in
the electron-hole representation. In this notation, the Coulomb Hamiltonian
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reads

Ĥc =
1

2

∑
ijlm

∑
σσ′

(
V ee

ijlmĉ
†
iσ ĉjσ ĉ

†
lσ′ ĉmσ′ + V hh

ijlmd̂
†
iσd̂jσd̂

†
lσ′ d̂mσ′ (1.32)

−2V eh
ijlmĉ

†
iσ ĉjσd̂

†
lσ′ d̂mσ′ + 2V ex

ijlm,σσ′ ĉ
†
iσd̂

†
jσd̂lσ′ ĉmσ′

)
.

where the four terms describe the repulsion between electrons and between
holes, the electron-hole attraction, and the exchange (Förster) interaction,
respectively. The spin transfer mechanism is contained in the exchange term
with σ = −σ′. The explicit expression of the direct and Förster Coulomb
matrix elements is

V cc′

ijlm =

∫
drdr′Φc

i
∗(r)Φc

j
∗(r)

e2

ε∞ |r− r′|
Φc′

l (r′)Φc′

m(r′) , (1.33a)

V ex
ijlm,σσ′ =

∫
drdr′Φe

i
∗(r)Φh

j

∗
(r)

e2

ε∞ |r− r′|
Φh

l (r
′)Φe

m(r′) , (1.33b)

where c (c′) is either e or h, and ε∞ is the background dielectric constant. In
our QD model, the carrier wave function is the factored product of a (x, y)-
and a z-component, according to Eq. (1.20). Then, the direct and exchange
Coulomb matrix elements can be written as

V cc′

ijlm =

∫
dzdz′hc

i
∗(z)hc

j
∗(z)V cc′

C (z − z′)hc′

l (z′)hc′

m(z′) , (1.34a)

V ex
ijlm,σσ′ =

∫
dzdz′he

i
∗(z)hh

j

∗
(z)V σσ′

F (z − z′)hh
l (z

′)he
m(z′) , (1.34b)

where the z-dependent potentials read

V cc′

C (z) =

∫
dρdρ′|φc(ρ)|2W cc′

C (ρ− ρ′, z) |φc′(ρ′)|2 , (1.35a)

V σσ′

F (z) =

∫
dρdρ′φe(ρ)φh(ρ)W σσ′

F (ρ− ρ′, z)φe(ρ′)φh(ρ′) .(1.35b)

Here, W cc′
C (R ≡ (ρ, z)) is the sum of the leading term of the multipole ex-

pansion of the direct Coulomb potential W 0
C(R) ∝ 1/R, and of the correction

∆W cc′
C (R) ∝ 1/R3. These two terms are explicitly calculated in Appendix A

and their expression are given in Eq. (A.11) and Eq. (A.12), respectively. In
the Förster potential the leading term is W σσ′

F (R) ∝ 1/R3 because the term
of order 1/R vanishes (see discussion in Appendix A). The explicit expres-
sion of W σσ′

F (R) for σ = σ′ or σ = −σ′ is given in Eq. (A.22) and in (A.23),
respectively. Then, the correction ∆W cc′

C to the direct Coulomb potential is
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of the same order of the Föster potential and must be taken into account for
consistence. Using the in-plane gaussian wave functions given in Eq. (1.22)
and Eq. (1.23), the two contributions to the direct z-potential become

VC0(z) = Λ

∫
dθ
η [a(θ)|z|]
a (θ)

, with Λ =
e2

πε∞σ̄xσ̄y

(1.36)

∆V cc′

C (z) = ξcc′Λ

∫
dθ

[
a(θ)

[
1

2
+ a2(θ)z2

]
η [a(θ)|z|]− a2(θ)z2

]
(1.37)

where σ̄2
s = σ2

es+σ
2
hs, a

2(θ) = cos2 θ/σ̄2
x+sin2 θ/σ̄2

y , ξ
cc′ is defined in Eq. (A.24)

and η(x) = 2 exp(x2)
∫∞

x
dt exp(−t2) is the modified error function. The spin-

conserving and spin-scattering Förster potentials read instead

V σσ
F (z) = µ2Λ

∫
dθ

[
b(θ)

[
1

2
+ b2(θ)z2

]
η [b(θ)|z|]− b2(θ)z2

]
(1.38a)

V σ−σ
F (z) = µ2Λ

∫
dθ exp(−2iθ) (1.38b)

×
[
b(θ)

[
3

2
+ b2(θ)z2

]
η [b(θ)|z|]− b2(θ)|z|

]
,

where µ is the basic dipole moment calculated in Appendix A, and we have
defined b2(θ) = cos2 θ/4σ2

x + sin2 θ/4σ2
y with σ−2

s = σ−2
es + σ−2

hs . Note the
similarity between Eqs. (1.37) and (1.38a) (see Eq. (A.25) and the following
discussion). For an isotropic QD with σe/hx = σe/hy ≡ σe/h, the θ dependence
in Eqs. (1.36), (1.37) and (1.38) can be integrated analytically, resulting in
the following simplified expressions for the z-potentials

VC(z) =
e2

ε∞σ̄
η (|z|/σ̄) , (1.39a)

∆V cc′

C (z) =
e2ξcc′

ε∞σ̄3
χ (|z|/σ̄) , (1.39b)

VF (z) =
e2µ2

ε∞σ̄2σ
χ (|z|/σ) , (1.39c)

with σ̄2 = σ2
e+σ

2
h, σ

−2 = (σ−2
e +σ−2

h )/4 and χ(x) = η′′(2) = (2x2+1)η(x)−2x.
The Förster potential in Eq. (1.39c) is the spin-conserving component, while
the spin-scattering component is zero. Then, in two-dimensional isotropic
systems the two orthogonally polarized exciton states are degenerate, as we
will explain in detail in Sec. 2.3.1. For equal in-plane confinement of electron
and hole, σe = σh, we have σ̄ = σ and, assuming the approximation (A.26),
get identical values for the Förster potential and electron-hole Coulomb cor-
rection in the z-direction.



Chapter 2

Long-range radiative coupling
between semiconductor QDs

Physical phenomena based on reduced dimensionality have been one of the
main subjects of research in condensed matter physics in the last three
decades. As we have seen in Chapter 1, quantum confinement at nanoscale
gives rise to electronic-states whose energy levels are discrete. This resulted
in an atom-like picture of QDs, where electronic states are expected to be
strongly isolated from the environment and to show long coherence-times, an
essential feature for applications in many fields (e.g. quantum information
technology [Burk 99]). Nevertheless, experiments demonstrate that interac-
tion mechanisms, whose relevance increases dramatically with increasing the
extension of the quantum system, are still cause of decoherence. These mech-
anisms can be grouped into two classes. In a first class, the interaction occurs
via overlapping wave functions. In simpler terms, when two confined systems
are brought sufficiently close, the electronic states are extended over the two
parts, effectively corresponding to the situation of a confined system of larger
extension. As an example, in Fig. 1.6 we have shown that the carrier wave
function in a many QD system is localized in one of the dots as long as they
are far apart, while it is delocalized over the whole QD system if the dots are
sufficiently close in space. To a larger system correspond more closely spaced
energy levels and more efficient inelastic scattering mechanisms mediated by
a thermal bath, thus increasing the decoherence rate. An example is the
acoustic-phonon dephasing in QD molecules, described in Chapter 3.

Interaction between polarizable systems can also occur without tunneling.
In this case, one speaks of excitation transfer mechanisms. The prototype of
this class of mechanisms is the electrostatic dipole-dipole interaction, known
as Förster Resonant Energy Transfer (FRET) [Fors 65, Govo 03]. This mech-
anism has a key role in many biological processes, such as the transfer of
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excitation from an excited donor molecule to an acceptor molecule [Kuri 88]
or in the photosyntesis [Oppe 41, Van 94]. In semiconductors, the Förster
mechanism corresponds to the so-called electron-hole exchange part of the
electrostatic Coulomb interaction [Bass 75]. Within a two-band Hartree-
Fock model of the exciton, this effect corresponds to the direct (Hartree)
Coulomb interaction in the conduction-valence-band picture, whereas the
conduction-valence exchange term (Fock) gives the direct electron-hole elec-
trostatic interaction responsible of the excitonic Rydberg [Bass 75]. Within
the envelope-function approximation, the Förster potential is expressed by
the dipole-dipole coupling

WF (R) =
R2 |µcv|2 − 3 |R · µcv|2

ε∞R5
, (2.1)

where ε∞ is the background dielectric constant, R is the distance between
the two dipoles and

µcv = e

∫
drw∗

c (r) rwv (r) , (2.2)

is the dipole matrix element of the interband optical transition, here ex-
pressed in terms of the conduction and valence Wannier functions wc/v (r).
In Eq. (2.2), e is the electron charge, and the integral is extended to the
elementary cell volume. Eqs. (2.1) and (2.2) are derived in Appendix A. The
dipole-dipole potential in Eq. (2.1) decays versus distance as R−3. Moreover,
FRET is a strongly resonant mechanism. The probability of a transition
from an initial state |n〉 to any accessible final state |m〉 is given by the
Fermi golden rule

Wn =
2π

~
∑
m

|〈n|VF |m〉|2 δ (En − Em) . (2.3)

The electrostatic FRET is contained in the instantaneous limit c→∞ of
a full Maxwell-Schrödinger description of light-matter interaction [Andr 90,
Andr 94]. The eigenmodes of the Maxwell equations coupled to the polar-
ization field of a semiconductor structure are the exciton-polaritons. Bulk
exciton-polaritons are mixed modes of one exciton and one photon mode hav-
ing the same momentum, as imposed by translational invariance [Hopf 58].
This one-to-one selection rule results into a strong mixing and an energy-
dispersion that displays the anticrossing typical of normal-mode coupling
[Andr 94]. In GaAs, the normal-mode splitting at resonance is 16 meV,
larger than the exciton binding energy. In systems with reduced dimen-
sionality, such as quantum wells and quantum wires, the partial breaking
of the translational symmetry allows coupling of excitons to a continuum
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of photon modes, and the polariton becomes a resonance of a discrete ex-
citon state linearly coupled to a photon continuum, analogously to a Fano
resonance [Fano 61]. In this case the importance of the coupling, expressed
by the magnitude of the polariton self-energy correction to the bare exciton
energy, is considerably smaller [Tass 90, Citr 92, Citr 93a, Citr 93b, Jord 93,
Andr 94, Jord 94, Tass 95]. When the dimensionality of the electromagnetic
field is also reduced, e.g. in semiconductor planar microcavities, the one-
to-one coupling typical of a bulk semiconductor is recovered and strongly-
coupled polaritons with full exciton-photon mixing characterize the optical
spectrum [Weis 92, Houd 94, Savo 95, Savo 96].

In the case of a QD, where the electron-hole system is fully confined in the
three spatial directions, it is already established [Bock 93, Citr 93b, Gil 02]
that the coupling to the electromagnetic field results in a finite probabil-
ity of recombining via emission of one photon. In presence of more than
one QD, the emitted photon can propagate and eventually be absorbed by
another QD, resulting in an excitation transfer process. Since the emitted
photon propagates as a spherical wave, the transfer probability amplitude is
expected to vary as R−1 as a function of the QD distance R, in the limit
R→∞. However, this radiative mechanism must describe also the FRET in
the electrostatic limit of instantaneous light propagation, c → ∞. We thus
expect the radiative transfer to be a small correction to FRET for small R
and to dominate over FRET at larger R where FRET depends on R−3.

In this chapter we develop a theory for the radiative coupling between
QDs ditributed on a plane, embedded in a homogeneous bulk semiconductor
medium. We solve the Maxwell equations for the electromagnetic field cou-
pled to the interband polarization field of the QD ensemble and compute the
polariton resonances of the system. In the resulting analytical expression for
the probability amplitude of the transfer process, the instantaneous Förster
term and the retarded correction are well distinguished. They decay as R−3

and R−1 respectively. In the instantaneous limit (c→∞) we recover the pure
R−3 FRET. The collective modes of the coupled QD system display modified
radiative lifetimes, some of them being strongly sub-radiant or super-radiant
with respect to the bare QDs lifetime.

The chapter is organized as follows. In Sec. 2.1, starting from the Maxwell
equations and a linear non-local susceptibility tensor, we analytically derive
the eigenmode equations that hold in presence of radiative coupling. In
Sec. 2.2 we discuss the dependence of the interaction on the QD distance.
Sec. 2.3 contains the results of the numerical diagonalization of the problem
in the case of a single anisotropic dot and of two- and many-QD systems,
followed by a discussion of the computed results. In Sec. 4.4 we present some
concluding remarks.
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2.1 The Maxwell-Schrödinger formalism

The semiclassical model of QD interband excitation in interaction with the
electromagnetic field is based on the solution of Maxwell equations coupled
to a nonlocal linear susceptibility which accounts for the interband optical
transition. This is done in full analogy with the polariton formalism in bulk
semiconductors and heterostructures [Tass 90, Andr 94]. In what follows, we
restrict the discussion to the transition between the semiconductor ground
state and the ground electron-hole pair state (i.e. the first excited state) in
each QD.

2.1.1 The linear susceptibility tensor

The QD system under study consists in a random distribution of cylindrical
dots lying on the (x, y)-plane. The QD labeled with α has radius %α and
height h, with a small aspect ratio h/%α. We are therefore treating a quasi
two-dimensional system, as illustrated in Fig. 2.1 in the case of two QDs α
and β. This QD system is completely described by the linear susceptibil-
ity tensor derived from the linear response theory [Kubo 57] and calculated
within the effective mass approach. In particular, we consider the electron-
heavy-hole optical transition in a semiconductor with cubic lattice symmetry.
In this case, in analogy with a quantum well [Savo 02], the component of the
interband electron-hole polarization vector in the confinement direction z is
zero. Then, only the x- and y-components are coupled to the electromagnetic
field, and the susceptibility tensor reads

χ̂ (r, r′, ω) =
µ2

cv

~
∑

α

Ψα (r, r) Ψ∗
α (r′, r′)

ωα − ω − i0+

 1 0 0
0 1 0
0 0 0

 . (2.4)

The susceptibility is non-local in the three spatial coordinates, as expected
from the breaking of translational invariance. In Eq. (2.4), the quantities
~ωα and Ψα (re, rh) are respectively the electron-hole pair energy and wave
function in the α-th dot, that have been calculated in detail in Sec. 1.2.
Note that in (2.4) the wave function Ψα is evaluated at re = rh, according
to the effective mass theory of the interband optical transition [Andr 94].
By using simple Lorentz resonances in Eq. (2.4), we assume that the non-
radiative lineshape of each QD is a Dirac delta function. As we thoroughly
discuss in Chapter 3, non-perturbative coupling of the exciton with acoustic
phonons is responsible for a broad phonon-assisted contribution to the non-
radiative QD spectral function [Borr 01, Krum 02, Zimm 02]. However, at
low temperatures the phonon sidebands tends to be small, especially for low
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Figure 2.1: Schematic diagram of the cylindrical dot ensemble. h is the height of
QD α in the z-direction, %α its radius in the (x, y)-plane, and Rαβ is the distance
between the two QDs.

quantum confinement. The zero-phonon line (ZPL) on the other hand is
the sum of two contributions. The first comes from the finite lifetime of the
carriers populations, due to both radiative and non-radiative recombination.
The second is the so called pure dephasing, that is the loss of coherence of the
polarization without a corresponding decrease of populations, whose nature
is still debated. Nevertheless, it has been recently shown that the dephasing
time is dominated by the radiative lifetime at low temperature [Lang 04b].
This is also an outcome of the present approach, as we show in the following.

2.1.2 The scattering approach

The Maxwell equation for the electric field E , expressed in the space and
frequency domain, can be written as

∇ ∧∇ ∧ E (ρ, z, ω)− ω2

c2
[ε∞E (ρ, z, ω)

+4π

∫
dρ′dz′χ̂ (ρ,ρ′, z, z′, ω) · E (ρ′, z′, ω)

]
= 0 , (2.5)

where we distinguish between the z- and the in-plane ρ-direction. In what
follows we omit the ω-dependence in the notation for the electric field, unless
required. In Eq. (2.5) we assumed an uniform background with dielectric con-
stant ε∞, which models the semiconductor medium surrounding the QD. The
in-plane and z-components of the electric field are defined as E = (E, Ez).
Because of the particular matrix form of tensor (2.4), Ez is not coupled to the
polarization field and can be easily eliminated from Eq. (2.5). We solve the re-
sulting equation for the in-plane electric field in reciprocal space. The Fourier
transform to in-plane k-space is defined as E (ρ, z) =

∑
k Ek (z) exp [ik · ρ].
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After some algebra, the resulting equation for the in-plane components Ek(z)
reads

−
(

1 +
1

k2
z

∂2

∂z2

)(
k2

0 − k2
y kxky

kxky k2
0 − k2

x

)
Ek (z) = (2.6)

4π
k2

0

ε∞

∑
k′

∫
dz′χ̂k,k′ (z, z

′) · Ek′ (z
′) ,

where k0 = (ω/c)
√
ε∞ is the photon dispersion, k and kz =

√
k2

0 − k2 are
the in-plane and the z-component of the photon wave vector respectively. In
what follows, the ω-dependence of the various quantities in the equations
is implicitely contained in their k0- and kz-dependence. In Eq. (2.6) the
susceptibility χ̂k,k′ (z, z

′) is now a rank-2 tensor acting on the (kx, ky)-plane,
obtained by Fourier transforming to k-space the (x, y)-block of the tensor
(2.4). Eq. (2.6) can be solved using the scattering approach proposed in
Ref. [Mart 98]. The background Green’s function of the system is defined
as the solution of the left-hand side of Eq. (2.6) with an inhomogeneous
term Îδ (z) (Î, being the 2 by 2 unit matrix) on the right-hand side and
with outgoing boundary conditions. This Green’s function can be derived
analytically and reads

Ĝk (z) =
i

2k2
0kz

(
k2

0 − k2
x −kxky

−kxky k2
0 − k2

y

)
exp (ikz |z|) . (2.7)

The basis of this 2 by 2 tensor corresponds to the x and y directions of
the electric field polarization and of the interband optical polarization. The
nondiagonal terms give rise to the long-range part of the electron-hole ex-
change interaction, which is contained in a full Maxwell-Schrödinger formal-
ism [Andr 94]. For a single QD having cylindrical symmetry, the nondiagonal
terms average to zero when evaluating the optical transition amplitude, as
expected in an isotropic system. If the system displays an anisotropy, as
is the case for two or more QDs, these nondiagonal terms are responsible
for the longitudinal-transverse (LT) or fine structure splitting of the result-
ing polariton modes. This result is discussed in detail in [Tass 90] in the
case of a quantum well, where a complete description of the propagation
of electromagnetic waves in an inhomogeneous material with translational
symmetry broken in the z-direction is formulated using a non-local suscep-
tibility analogous to (2.4), together with the Maxwell equations (2.5). The
contributions to the susceptibility tensor are divided in those coming from
the quantum confined electronic states of the well and those which are not
dependent on these states. Two types of solutions of the Maxwell equations
are identified, that are resonant polariton modes extending away from the
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quantum-confining system, and surface polaritons which are confined into
the well. Radiative shifts from the dispersion of the bare quantum well exci-
ton and lifetimes of these resonances are analytically calculated, whose value
is different if the polariton mode propagates in a direction that is parallel
(L modes) or orthogonal (T modes) to the direction of propagation of the
electromagnetic wave.

The Green’s function (2.7) allows to express Eq. (2.6) in terms of a Dyson
equation as follows

Ek (z) = E0
k (z) (2.8)

+4π
k2

0

ε∞

∑
k′

∫
dz′dz′′Ĝk (z − z′) · χ̂k,k′ (z

′, z′′) · Ek′ (z
′′) ,

where E0
k is a solution of the free propagating field in the dielectric back-

ground, namely in the absence of the resonant non-local susceptibility, and
represents here an input electric field. As already pointed out, we consider
cylindrical QDs whose thickness in the z-direction is very small compared
to their size in the (x, y)-plane. In this case we can approximate the z-
dependence of the electron-hole pairs wave functions Ψα(re, rh) calculated in
Sec. 1.2 with a Dirac-delta function. This allows us to rewrite Eq. (2.8) in
the simpler form

Ek = E0
k + 4π

k2
0

ε∞

µ2
cv

~
∑
k′,α

ψα,kψ
∗
α,k′

ωα − ω − i0+
Ĝk · Ek′ , (2.9)

where all the quantities are defined at the (x, y)-plane position z = 0. Here,
ψα,k is the two-dimensional Fourier transform of the in-plane projection of
the electron-hole pair wave function in the α-th QD, ψα(ρ). As we explained
in Sec. 1.2, if Rα is the position of the QD in the chosen coordinate frame,
then

ψα(ρ) = ϕα(ρ−Rα) , (2.10)

where ϕα(ρ) is the α-th QD wave function centered at the origin of the
coordinate frame. The Fourier transform in k-space then reads

ψα,k = ϕα,k exp [ik ·Rα] , (2.11)

where ϕα,k is given in Eq. (1.27). By projecting Eq. (2.9) onto the set of
Fourier-transformed electron-hole pair wave functions ψα,k, we obtain

Eα = E0
α −

∑
β

Ĝαβ

ωβ − ω − i0+
Eβ , (2.12)
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where Eα =
∑

k ψα,kEk and

Ĝαβ = −2ηk2
0

∑
k

ψα,kĜkψ
∗
β,k . (2.13)

is the coupling tensor, being η = 2πµ2
cv/ε∞~. Here, as above, the ω-dependence

enters these expressions through the definitions of k0, kz, and Ĝk. The set of
functions ψα,k is in general a non-complete set and therefore, by making this
projection, we lose information on the value assumed by the electric field
Ek in all k-space. Formally, once the quantities Eα have been computed,
the electric field in all k-space could in principle be reconstructed by solving
again Maxwell equations, using the values Eα at each QD as source terms.
As it will become clear later, however, the projected values of the electric
field are sufficient for the purpose of the present analysis, which is to compute
the polariton resonances of the system. It clearly emerges from the structure
of Eq. (2.12) that, in the absence of coupling, the input field is scattered by
each QD individually. Radiative coupling is responsible for the reabsorption
of the scattered photons by other QDs, through the terms Ĝαβ with α 6= β.
In Sec.2.3 we solve the coupled Dyson Eqs. (2.12) in three different cases: a
single anisotropic QD, two-QD and many-QD systems. Before showing this
result, we now discuss the main characteristics of the coupling tensor.

2.2 The coupling tensor

Turning the sum into an integral, the QD coupling matrix in Eq. (2.13) can
be written as

Ĝαβ = −iη
∫
dk
ϕα,kϕ

∗
β,k

kz

(
k2

0 − k2
x −kxky

−kxky k2
0 − k2

y

)
(2.14)

× exp [−ikRαβ cos(φ− θαβ)] ,

where Rαβ = Rα − Rβ is the distance vector between QDs α and β, φ
and θαβ are the angles that the vectors k and Rαβ respectively form with
the x-axis of the chosen coordinate frame. In particular, in Eq. (2.14) the
in-plane momentum k is integrated over the whole range, including both
radiative modes with k < k0 and surface modes with k > k0. These latter
modes, which are evanescent in the z direction, span the largest part of the
exchanged photon phase space and are thus ultimately responsible for the
transfer mechanism we are describing. Eq. (2.14) accounts also for the LT
splitting in anisotropic dots, as we show in the next section. For each pair
of isotropic QDs, it is possible to set the x-axis along Rαβ by rotating the 2
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by 2 matrix in Eq. (2.14) by an angle θαβ. The rotation results in a diagonal
coupling matrix is

Ĝ′
αβ = R̂θαβ

ĜαβR̂
−1
θαβ

=

(
gL

αβ 0
0 gT

αβ

)
, (2.15)

in which the two field polarizations are decoupled. In Eq. (2.15) R̂θαβ
is

the rotation matrix. In the rotated basis, is now possible to analytically
integrate the angular dependence of tensor (2.15), finally resulting in the
coupling tensor

Ĝ′
αβ = −i

∫
kdk

kz

ϕα,kϕ
∗
β,k (2.16)

×
[
η1

(
k2

z 0
0 k2

0

)
J0(kRαβ) + η2

(
k 0
0 −k

)
J1(kRαβ)

Rαβ

]
,

where Jn(x) is the n–th order Bessel function of the first kind, η1 = 2πη and
η2 = 4

√
πΓ(3/2)η, being Γ(x) the Euler gamma function. The integral over

k is performed numerically. The result is then rotated back by an angle −θαβ

to obtain the complete coupling matrix in the original coordinate frame, that
reads

Ĝαβ =

(
gL

αβ cos2 θαβ + gT
αβ sin2 θαβ (gL

αβ − gT
αβ) sin θαβ cos θαβ

(gL
αβ − gT

αβ) sin θαβ cos θαβ gL
αβ sin2 θαβ + gT

αβ cos2 θαβ

)
. (2.17)

In Eq. (2.16), it is immediate to identify the radiative and the Förster con-
tributions of the coupling tensor as the first and the second term in square
brakets respectively. In fact, all the Bessel functions of the first kind Jn(x)
display an oscillatory behaviour with an amplitude that decays as 1/

√
x for

x→∞, so that the square modulus of these two terms decay as Rαβ
−1 and

Rαβ
−3 respectively. Moreover, only the first contribution depends on the

speed of light c via the terms k2
0 and k2

z and goes to zero in the instantaneous
limit. In Fig. 2.2 we show a logarithmic scale plot of the transverse compo-
nent of the coupling matrix versus the interdot distance Rαβ, in the case of
two energetically degenerate QDs, together with the two separate contribu-
tions, as dashed and dotted lines, according to Eq. (2.16). The energy scale is
relative to the physical parameters of Stranski-Krastanov grown InAs/GaAs
QDs, reported in Tab. 2.1 together with those of CdSe QDs that we use in
section 2.3.3. The figure shows that the R−3 contribution is dominant for
closely spaced QDs, while the radiative contribution decaying as R−1 takes
over with increasing the dot-dot distance. Although the overall coupling rate
is small, corresponding to a transfer time of above 1 ns, at long distance the
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radiative mechanism nevertheless dominates over FRET and must therefore
be accounted for when considering QD coupling in future applications where
long transfer times are important.
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Figure 2.2: The square modulus of the transverse component [Ĝ′
αβ ]y,y of the

coupling tensor is plotted versus interdot distance (solid line). The Förster (dashed
line) and the radiative (dotted line) contributions dominate in the short- and in the
long-range respectively. The energy scale is relative to InAs QDs whose physical
parameters are given in Tab. 2.1.

InAs CdSe

ε∞ 12.5 8.35
EG (meV) 1200 2200
me(m) 0.067 0.13
mh(m) 0.14 0.45

µcv (meV · nm3) 480 780
% (nm) 10 2.5

density(QDs/µm2) 300 1000

Table 2.1: Physical parameters for InAs and CdSe QDs. EG is the energy gap
between the valence band and the conduction band. me and mh are the electron
and hole in-plane effective masses in free electron mass units m. The spatial
densities of QDs in the column line are used for the numerical simulations discussed
in section 2.3.3.
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2.3 Numerical results

In this section, we solve the coupled Dyson Eqs. (2.12) for different QDs
systems. In order to have a quantitative estimate of the effect of the coupling,
we show results relative to the realistic case of self-assembled InAs/GaAs
QDs. As we have seen in Sec. 1.1.4, these structures attract great interest
because of the high quality of their crystalline structure, that is intrinsic
to the Stranski-Krastanov growth process, and that reflects in high level
electro-optical performances. For comparison, in Sec. 2.3.3 we discuss a result
relative to CdSe QDs, grown by molecular beam epitaxy (MBE) [Litv 02].

The polariton resonances of the multiple-QD system are the poles of the
homogeneous set of equations obtained by setting E0

α = 0 in Eq. (2.12).
We compute these poles numerically within the exciton-pole approxima-
tion [Tass 90, Citr 93b, Jord 93, Jord 94], which consists in replacing the
ω-dependence of Ĝαβ tensor by an average electron-hole energy ~ω0. This
approximation is generally valid when the dielectric medium does not present
sharp resonances, as is the case in the present model where the QDs are em-
bedded in a constant dielectric background. In order to check the validity
of this assumption, we evaluated the ω-dependence of the coupling tensor
Ĝαβ for a pair of QDs and checked that all its components are essentially
constant over the energy interval corresponding to a typical inhomogeneous
QD distribution. Some of these components are plotted in Fig. 2.3 as a
check. Complex eigenenergies Ωn = ∆n− iΓn are obtained, corresponding to
collective radiative modes of the QD ensemble. The number of these poles
is twice the number of QDs, corresponding to the two independent states of
the interband polarization vector. The real part of the n-th eigenvalue ∆n

induces a radiative shift with respect to the energies of the non-interacting
dots, while the imaginary part Γn represents the radiative recombination rate
of the n-th collective mode of the system. We first address the case of a single
dot, showing how the fine-structure splitting rises from the asymmetry. Then
we consider a two-QD system, in order to establish how the radiative cou-
pling mechanism depends on the detuning and on the mutual QD distance.
Finally, we discuss the results obtained for an ensemble of several dots.

2.3.1 LT spitting for one anisotropic QD

The formalism developed in Sec. 2.1, allows to compute the polariton res-
onances of any two-dimensional system that is coupled to a radiative field.
Here we address the problem of calculating the LT energy splitting of the
two polariton modes in a single anisotropic QD. In this case, the coupling
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Figure 2.3: QD transition energy distribution (solid line, arbitrary units). The
asymmetry with a more pronounced high-energy tail is due to R−2-dependence
of the α-th QD confinement energy on the QD radius Rα, the radii being Gauss-
distributed. The (x, x)-component of the coupling energy tensors Re(Gα) (dashed
line, see section 2.3.1 for the definition of Gα), Re(Gxx

αβ) (dotted line), and Im(Gα)
(dot-dashed line), for two QDs labelled α and β, is plotted as a function of ~ω.

tensor in Eq. (2.14) simplifies to

Ĝαα = −iη
∫
dk
|ϕα,k|2

kz

(
k2

0 − k2
x −kxky

−kxky k2
0 − k2

y

)
. (2.18)

It is straightforward to verify that if the electron-hole pair wave function of
the dot has cylindrical symmetry in the (x, y)-plane, then the non-diagonal
terms of Eq. (2.18) integrate to zero. Moreover, the diagonal terms are
identical and the coupling tensor reads Ĝαα = ÎGα with

Gα = −iπη
∫ ∞

0

dk|ϕα,k|2
k(2k2

0 − k2)

kz

. (2.19)

The quantity Gα is the radiative self energy of the α-th QD, with its real and
imaginary parts describing the radiative energy shift and radiative linewidth
(inverse lifetime) respectively. Then, there is no energy splitting between
the longitudinal and the transverse exciton in a cylindrical dot. On the
other hand, if the dot is anisotropic, as it is always the case in real QDs,
the x − y symmetry of the integrals in Eq. (2.18) is lost, and a finite fine
structure splitting is recovered. The simplest way to introduce a geometrical
anisotropy in our equations, is to consider a dot whose projection in the
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Figure 2.4: L-T splitting of the two polariton modes of a single elliptical InAs
QD versus eccentricity.

(x, y)-plane is an ellipse. This choice also allows to quantify the anisotropy
by means of a parameter, that is the eccentricity of the ellipse. In Fig. 2.4
the calculated L-T splitting of the two polariton modes is plotted versus the
eccentricity, for an InAs QD. It is evident that the fine structure splitting
increases dramatically by increasing the eccentricity of the dot, that is, its
anisotropy.

2.3.2 Two QDs: dependence on distance and detuning

In this paragraph we address a two-QD system, in order to establish how the
radiative coupling mechanism depends on the detuning and to show how its
dependence on the mutual QD distance Rαβ reflects on the polariton modes
of the ensemble. Here, the detuning is defined as the difference between
the optical transition energies of the two QDs. In particular, we assume
cylindrical InAs QDs. The detuning is changed by varying the size of one of
the QDs. In Fig. 2.5 the imaginary (a) and the real (b) part of the poles of
Eq. (2.12) (that is, Γn and ∆n respectively) are plotted versus the detuning
~δω = ~(ω1 − ω2) of the two QDs, at a fixed distance Rαβ = 50 nm. The
numerical simulations show that, as expected, no appreciable coupling effect
is observed for large detuning. On the other hand, for small detuning the
energies of the four poles are well distinct. In particular, if we look at Γn in
Fig. 2.5.(a), we can see that two sub-radiant and two super-radiant states are
present. The two states with small Γn, thus, decay in a time much longer than
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Figure 2.5: Imaginary (a) and real (b) part of the energy poles as a function of
the detuning between two InAs QDs, at fixed distance Rαβ = 50 nm. Note that
for small detuning the four poles are well separated in energy, so that in (a) two
sub-radiant and two super-radiant states are distinguishable.

the two others. The computed energy shift with respect to non-interacting
dots is of the same order of Γn, that is of the order of 1 µeV. Such an energy
shift is negligible if compared to the typical inhomogeneous broadening of a
QD ensemble. The main consequence of radiative coupling is thus the effect
on the lifetimes of the collective modes of the system.

Fig. 2.6 displays the dependence of the interaction on the distance be-
tween the QDs. The imaginary (a) and the real (b) part of the poles oscillate
as a function of the distance between the two dots. The oscillations origi-
nate from interference effects. At distances which are multiple of the half
wavelength, anti-Bragg conditions are satisfied and the oscillations display
a maximum or a node, respectively. Fig. 2.6 also illustrates the long-range
character of this radiative coupling mechanism already described in the pre-
vious section. Using the analytical expression of the coupling tensor in Eq.
(2.16) we have already shown that the magnitude of the coupling decreases
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Figure 2.6: Imaginary (a) and real (b) part of the energy poles as a function of
the distance between two InAs QDs, at zero detuning. The oscillatory nature of
the interaction as a function of distance, according to the anti-Bragg condition,
clearly appears.

as R−1
αβ (see Fig. 2.2). The same polynomial decay is obtained for the en-

velope of the curves in Fig. 2.6.(a) and (b). As already pointed out, this
dependence is much slower than the characteristic R−3

αβ dependence of the
Förster coupling [Fors 65, Govo 03].

2.3.3 N-QDs ensemble

Now that the features of the radiative coupling mechanism have been clari-
fied, we consider the case of a large number of interacting QDs. The same
emission-absorption mechanism that couples a pair of dots can now involve
several QDs and the transfer of excitation between them results in collective
modes analogous to the ones previously described, that is, sub-radiant or
super-radiant if compared to the excited states of the non-interacting dots.
As a first example, we consider InAs QDs (see Tab. 2.1) which are randomly
distributed on the (x, y)-plane. In a real situation, the dots have different
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Figure 2.7: (a) Histogram representing the energy distribution of the single QD
radiative rates, expressed as the imaginary part of the single QD radiative self-
energy Γα = Im (Gα). (b) Two-dimensional histogram of the distribution of the
real and imaginary parts of the single-QD radiative self-energy.

shape, size and composition causing the inhomogeneous energy broadening
of the QD luminescence spectrum. To simulate this broadening, we intro-
duce a Gauss distributed dot size centered at dot radius % = 10 nm, with a
standard deviation of δ% = 1 nm. This variance in size induces a variation
of the confinement energy ~δω which is proportional to δ%/%3 as implied by
the energy quantization of a particle in a box. This energy variation is what
finally produces the inhomogeneous energy distribution of the QDs. The
choice δ% = 1 nm, given our simple model for the QD wave functions, re-
sults in an inhomogeneous broadening of about 15 meV, as seen in Fig. 2.3.
The asymmetry of this distribution, with a more pronounced high-energy
tail, is simply related to the %−3-dependence of the confinement energy and
to the Gauss assumption for the distribution of QD sizes. The same size
fluctuation is also responsible for a variation of the QD optical matrix ele-
ment [Borr 02] and consequently of both its radiative shift and lifetime, via
the diagonal part (i.e. β = α) of Eq. (2.12) and the single-dot self-energy
(2.19). The numerically computed radiative energy shifts are of the order
of a few µeV, thus negligible if compared to the QD inhomogeneous energy
broadening. They are therefore irrelevant to the present discussion. The
imaginary part of the single-dot self-energy is on the contrary what gives the
inhomogeneous distribution of radiative linewidths Γα = Im (Gα). Their dis-
tribution is plotted in Fig. 2.7.(a). Finally, in Fig. 2.7.(b) a two-dimensional
histogram of Re (Gα) and Im (Gα) shows the correlation between radiative
shift and radiative broadening resulting from the present model. In a realistic
situation [Borr 02], a variation of the dipole moment is not only induced by
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Figure 2.8: Histogram expressing the number of collective modes as a function of
the real and imaginary part of the complex energy poles of an InAs QDs ensemble.
Logarithmic color scale over three orders of magnitude. Because of the radiative
coupling, a fraction of the QDs shows a large radiative shift compared to the case
of non-interacting QDs in Fig. 2.7.(b).

size fluctuations. Other factors such as QD shape, strain and piezoelectric
fields, and indium concentration within the QD body produce a variation
of dipole moment even for a fixed QD size [Lang 04a]. The 20% variance
of the dipole moments derived in [Borr 02] is significantly larger than the
one obtained here from size fluctuations (approx. 3% for the InAs case).
However we note that the inhomogeneous broadening of the sample by Borri
et al. is also larger than the one considered here, presumably due to an
even larger QD-size fluctuation. Introducing a larger size fluctuation in the
present model would partly account for the observed dipole-moment fluctu-
ation. Our final result for a radiatively-coupled QD ensemble however (see
discussion below and Figs. 2.8 and 2.9), predicts an even broader distribu-
tion of radiative linewidths which might be at least partly responsible for the
measured dipole moment distribution.

We compute the collective modes of an ensemble of 100 QDs by finding
the complex poles of Eq. (2.12). We repeat this procedure for many random
realizations of the system. Provided the system size is larger than the wave-
length, we expect this configuration average to give the same results as a sim-
ulation over a larger spatial domain. This is expected because of the fall-off
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Figure 2.9: The same histogram of Fig. 2.8, but for CdSe QDs. In this case
radiative shifts up to one order of magnitude larger than in the case of InAs QDs
are obtained as an effect of the coupling.

scale computed in Fig. 2.6. In particular, the occurrence of quasi-degenerate
QD pairs within a given realization has a finite though small probability. Re-
peating the simulation over many randomly generated configurations finally
allows to sample over a large-enough number of such quasi-degenerate cases
and produces a significant statistics. We plot in Fig. 2.8 an histogram, on
a logarithmic scale, of the real and imaginary parts of the computed energy
poles. Most of the collective modes lie on the curve determined by the dis-
tribution of non-interacting QDs displayed in Fig. 2.7.(b), due to the large
detunings that are induced by the inhomogeneity of the QD ensemble. Nev-
ertheless, for a small fraction of the states a large radiative shift is achieved,
as a result of the coupling. We also point out that the deviation from the
non-interacting QDs case is more pronounced at the center of the QD inho-
mogeneous line. The reason is that, as already stated, the radii of the QDs
are Gauss-distributed around a mean value. Most of the QDs fall in this
energy region and consequently small values of the detuning are more likely
to occur. For different materials, one can observe larger radiative coupling
effects. In Fig. 2.9 we show the histogram obtained for a CdSe QD sample
(see parameters in Tab. 2.1). Once again the histogram results from many
realization of the sample, with randomly distributed QDs, having ramdomly
Gauss-distributed size. In this case the deviation from the noninteracting
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case is more pronounced because of the higher QD density and of the larger
dipole matrix element µcv. A radiative shift of a few µeV is achieved, that
is one order of magnitude larger with respect to the case of InAs QDs. In
this case, some of the collective modes have vanishing radiative rates, show-
ing how the radiative coupling can profoundly change the dephasing rates of
many QD systems.

2.4 Conclusions

We have shown that, already in the simplified picture of the macroatom,
QDs do not behave as isolated objects. The radiative coupling between QDs
causes the emergence of collective modes that are sub-radiant and super-
radiant with respect to the excited state of an isolated QD. The effect on the
radiative decay-rate is expected to be of the order of 1 µeV and to strongly
depend on the dipole matrix element of the material that constitutes the
QDs and on their spatial density. Despite its small magnitude, radiative
coupling decays as 1/R and effectively couples QDs over a distance of a few
hundreds of nanometers. We have shown that the radiative coupling is a
long-range correction to the FRET mechanism, due to the retardation in
the electromagnetic field propagation [Para 05, Para 07]. In [Para 05] we
suggest that in a dense QD sample this effect should be observable as a non-
exponential decay of the photoluminescence (PL) signal. Recently [Sche 07]
Scheibner et al. have observed the increase of the PL emission rate in QD
mesas when passing from strictly non-resonant to quasi-resonant excitation,
suggesting radiative coupling between the QDs. Furthermore, by reducing
the QD density (i.e. QD are physically removed from the sample) they verify
that the range of the interaction in CdSe/ZnSe QDs is at least 150 nm.
This result seems to provide a first evidence of radiative coupling. However,
more accurate experiments, perhaps with spatial resolution [Lang 06], will
be required to fully characterize this phenomenon.
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Chapter 3

Phonon-induced exciton
dephasing in QD molecules

Semiconductor quantum dots (QDs) are often considered as candidate de-
vices for a solid-state implementation of quantum information processing
[Loss 98, Burk 99, Biol 00, Li 03]. This interest is justified by the alleged
long-lasting coherence of the interband polarization, which might be ex-
ploited for storing quantum information. Robustness against decoherence
in QDs is usually expected as a result of quantum confinement, imply-
ing discrete energy levels below the semiconductor bandgap with a very
restricted phase space available for various scattering mechanisms. This
simplified view was however recently questioned, after the observation of
a very efficient decoherence mechanism due to strong electron-phonon cou-
pling [Beso 01, Borr 01, Fave 03]. The strongly localized polarization in an
excited QD can induce virtual inelastic phonon emission and reabsorption
processes which act as a phase-destroying mechanism. Theoretically, this
stems from the exact solution of a two-level system coupled to a phonon
bath - the so called independent boson model (IBM) [Maha 90]. In practice,
the decoherence rate of the interband polarization is extremely fast in the first
few picoseconds following excitation and becomes very small afterwards. To
this corresponds a distinctive spectral feature with a sharp zero-phonon line
(ZPL) and phonon-assisted broad sidebands. Both time-resolved and spec-
tral signatures of this mechanism have been characterized by several groups
[Beso 01, Borr 01, Fave 03, Krum 02, Zimm 02, Lang 04b, Mulj 04].

According to the IBM, that takes into account only the linear coupling
to phonons, the ZPL relative to a single QD electron-hole level is not broad-
ened. The measured ZPL linewidth, and the consequent dephasing time in
the nanosecond range [Borr 01], are seemingly related to the radiative re-
combination process [Lang 04b]. Another source of dephasing, not included
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Figure 3.1: Absorption spectra for an InAs QD at different temperatures. The
ZPL transition energy is taken as zero of energy. Inset: Calculated broaden-
ing of the ZPL (solid line) compared with the experimental results by Borri et
al. [Borr 01] (circles) (from [Mulj 04]).

in the IBM, is the finite phonon decay rate γq > 0 [Goup 02, Zimm 02] .
Furthermore, a recent theoretical analysis [Mulj 04] has suggested that vir-
tual acoustic-phonon-assisted transitions to excited levels might provide a
dephasing of the ZPL, with a rate comparable to the radiative one. The
QD spectra and the broadening of the ZPL calculated by Muljarov et al.
are shown in Fig. 3.1, where are compared to the experimental results by
Borri et al. [Borr 01]. According to this analysis, based on exact numerical
solution of the quadratic coupling to phonons, they also demonstrate that
the spectrum produced by quadratic coupling to dispersionless longitudinal
optical (LO) phonons consists of discrete unbroadened lines, as long as a few
exciton levels are taken into account [Mulj 06a]. Nevertheless, the inclusion
of a very large number of exciton states results in spectral broadening and
in pronounced LO phonon-induced dephasing [Mulj 06b].

Recently, the system of two vertically stacked QDs, called QD molecules,
has been experimentally studied [Baye 01, Borr 03, Ortn 05b]. A QD molecule
might in principle provide the minimal system of two coupled qubits required
for the implementation of quantum gates [Burk 99, Biol 00]. The electron
and hole wave functions in QD molecules can tunnel through the thin barrier
separating the QDs, giving rise to exciton states [Best 04, Vill 04, Ortn 05b],
whose energies are split by the effect of tunneling through the barrier and by
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(a)

(b)

Figure 3.2: Dependence on the interdot distance of (a) the zero-temperature
extrapolated ZPL width and of (b) the ZPL width at T = 10 K. SL corresponds
to single layer data (from [Borr 03]).

Coulomb interaction. Nevertheless, as already for a single QD, the phonon
induced dephasing of the exciton polarization in the QD molecule is a ma-
jor obstacle to the realization of a semiconductor-based implementation of a
quantum gate. The suppression of the phonon dephasing in QD molecules
via external magnetic field has been hypothesized in [Bert 04] while accord-
ing to [Zana 98] it would result from the periodicity of the multidot quantum
states in a regular array of many QDs. However, in both cases a very precise
control of the QD structural and electronic properties is required. In a recent
experimental study using coherent ultrafast four-wave-mixing spectroscopy
[Borr 03], the decoherence time of the exciton interband polarization in QD
molecules has been measured. It turns out that the ZPL linewidths are gener-
ally larger than in the case of a single QD by almost one order of magnitude.
Furthermore, the linewidths decrease dramatically as the interdot distance
is increased. This result is shown in Fig. 3.2. Quantitatively, these larger
linewidths can only partially be explained in terms of the larger volume of
exciton states in a QD molecule, while the strong dependence on the interdot
distance is still unexplained.

In this chapter we present a model of exciton optical response in a QD
molecule, accounting for the strong exciton-acoustic-phonon interaction. In
Sec. 3.1, the electron-phonon coupling is treated within the second-order
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Born approximation in the non-Markov limit. In Sec. 3.2, we discuss our
numerical results. Linear optical spectra are computed at varying interdot
distance. ZPL widths in the order of tens of µeV are calculated that oscillate
versus the interdot distance, according to previous results [Mulj 05]. The
oscillations are attributed to a wave-matching effect between the phonon
wavelength and the interdot distance, which enhances the phonon-assisted
scattering from bright to dark states. These results could explain the strong
distance dependence measured [Borr 03]. Finally, in Sec. 3.3 we give some
concluding remark.

3.1 Exciton-phonon coupling in second order

Born approximation

In this section we develop a model for the exciton-acoustical-phonon linear
coupling in QD molecules. The QD molecule exciton states are described
within the effective mass scheme, according to Sec. (1.2). Starting from
the standard hamiltonian for localized excitons coupled to lattice vibration,
we develop a density matrix formalism for the linear interband polarization.
This is done in the framework of the second-order Born (2B) approximation
for the exciton-phonon interaction, without performing the Markov limit.
This approximation is known to reproduce qualitatively and, to a fairly good
accuracy, quantitatively the exact result in the single QD case [Krum 02].

3.1.1 QD molecule and interaction Hamiltonian

The QD system addressed in this chapter is a dot molecule composed of
two vertically stacked cylindrical QDs at mutual distance R, as sketched in
Fig. 1.3.(b). As already in Chapter 2, we refer to self assembled InAs QDs,
whose physical parameters are given in Tab. 3.1. Neglecting the Coulomb
interaction, the electron and hole wave functions Φc

i(r) and the correspond-
ing energies Ec

j (being c = e, h and i = 1, 2) are calculated in Sec. 1.2
within two-band effective-mass approximation. In particular, here we as-
sume σe = 6.5 nm (σh = 6.0 nm) as standard deviation of the electron (hole)
in-plane gaussian wave function, while the z-component is calculated for a
QD height h = 1 nm. Furthermore, a small asymmetry in the confining
potential (see Eq. 1.30) accounts for the fluctuations of components con-
centration from dot to dot, as well as for size and shape fluctuations. A
realistic description of a self-assembled QD ensemble must take into account
this kind of asymmetry that is intrinsic to the Stranski-Krastanow growth
mode [Stra 37], as explained in Sec. 1.1.4. Then, as in [Mulj 05], we suppose



3.1. Exciton-phonon coupling in second order Born approximation 47

ε∞ EG (meV) Ve (meV) Vh (meV) me(m) mh(m)
12.5 1200 671.7 287.9 0.027 0.265

mb
e(m) mb

h(m) s (m/s) ρm (g/cm3) Dc (eV) Dv (eV)
0.067 0.327 4.6 · 103 5.67 -13.6 -7.1

Table 3.1: Material parameters used for InAs/GaAs QDs. ε∞ is the background
dielectric constant. EG is the energy gap between the valence band and the con-
duction band. We assume finite band offsets Ve and Vh between the QD and the
barrier material. me and mh (mb

e and mb
h) are the electron and hole effective

mass along z in the QD (barrier) respectively, in free electron mass units m. The
parameters that enter the electon-phonon coupling (see Eq. (3.4)) are the sound
velocity s, the mass density ρm and the deformation potential constants Dc and
Dv for the conduction and valence bands.

that the confining potentials of the bottom QD are 2% deeper than those of
the top one. Given the large energy separation of higher levels, compared
to the Coulomb and deformation potential interactions, we can restrict our
calculations to the two lowest electron and hole levels. As we are going to
describe the electron-phonon interaction in a second quantization formal-
ism, it is useful to give the representation of these states in the Fock space.
Here, at the state Φe

i (r) (Φh
i (r)) corresponds the ket ĉ†i |0〉 (d̂†i |0〉), where ĉ†i

and ĉi (d̂†i and d̂i) are the time-dependent electron (hole) operators, obeying
Fermi commutation rules, and |0〉 is the vacuum state in the electron-hole
representation.

The Hamiltonian that describes the QD molecule in interaction with the
acoustic-phonon bath is

Ĥ = ĤQD + Ĥph . (3.1)

Here, the QD molecule Hamiltonian can be written as the sum of two terms
ĤQD = Ĥ0 + Ĥc, that read

Ĥ0 =
∑
i,γ

(
Ee

i ĉ
†
i ĉi − Eh

i d̂
†
i d̂i

)
, (3.2a)

Ĥc = −
∑
ijlm

V eh
ijlmĉ

†
i ĉj d̂

†
l d̂m , (3.2b)

the first being the bare carrier contribution, the second the electron-hole
(e-h) Coulomb interaction. The latter is included in our model because the
phonon-mediated effects we are describing depend on the difference in binding
energies between distinct exciton levels. Note that in Eq. (3.2b) we consider
only e-h terms, thus neglecting electron-electron (e-e) and hole-hole (h-h)
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terms that give rise to terms proportional to the densities of particles, and
would therefore be important only beyond the limit of linear optical response.
The Coulomb matrix elements V eh

ijlm are calculated according to Eq. (1.33a).
Electron states are coupled to acoustic-phonons via the deformation potential
interaction. The electron-phonon interaction Hamiltonian can be written as
Ĥph = Ĥd

ph + Ĥnd
ph , where its diagonal and non-diagonal parts are

Ĥd
ph =

∑
q

~ωqâ
†
qâq +

∑
i,q

(
M ie,ie

q ĉ†i ĉi −M ih,ih
q d̂†i d̂i

) (
â†q + â−q

)
,(3.3a)

Ĥnd
ph =

∑
i6=j,q

(
M ie,je

q ĉ†i ĉj −M ih,jh
q d̂†i d̂j

) (
â†q + â−q

)
. (3.3b)

Here â†q and âq are the time-dependent phonon operators, obeying Bose com-
mutation rules, and the matrix element for deformation potential coupling
with acoustic phonons of dispersion ωq = |q|s is given by

M ic,jc
q = Dc

√
~ωq

2ρmV s2

∫
dr exp (iq · r) Φc

i
∗(r)Φc

j(r) , (3.4)

being s the sound velocity, ρm the mass density, V the normalization volume
and Dγ the deformation potential constants (see Tab. 3.1). The diagonal

term Ĥd
ph describes the coupling of each isolated electron or hole state with

the phonon modes [Krum 02, Zimm 02, Fave 03]. The off-diagonal term Ĥnd
ph

accounts for the phonon-assisted scattering between different electron or hole
states. The independent boson model can be diagonalized exactly in the
case of a single electron-hole pair state [Maha 90]. Here however, because
of the off-diagonal coupling Ĥnd

ph and of the Coulomb interaction, the full
diagonalization of the problem is a cumbersome task. The approach that we
develop in the next section, consists in diagonalizing the electron Hamiltonian
ĤQD to obtain exciton states that are superposition of electron-hole pair
states, and then consistently rewrite in the new basis the two terms of the
exciton-phonon Hamiltonian in Eq. (3.3). This is done in the framework of a
density matrix approach, so that the diagonalization is performed in a second
step, after writing the dynamical equations for the density matrix.

3.1.2 Density matrix formalism

Now that the Hamiltonian problem for the exciton-phonon coupling in QD
molecules has been stated, we proceed to develop our density matrix formal-
ism for the linear interband polarization. As already mentioned, we do this
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in the framework of the second-order Born approximation, without perform-
ing the Markov limit. The electron-hole pair creation operators, defined as
the two-operator products d̂†i ĉ

†
j, and phonon operators evolve according to

Heisenberg equations

i~
d

dt
d̂†i ĉ

†
j = (Eiv − Ejc) d̂

†
i ĉ
†
j +

∑
lmrs

V lm
rs

(
d̂†i ĉ

†
l d̂

†
rd̂sδmj − ĉ†l ĉmd̂

†
rĉ
†
jδsi

)
+
∑
k,q

(
M iv,kv

q d̂†kĉ
†
j −Mkc,jc

q d̂†i ĉ
†
k

) (
â†q + â−q

)
, (3.5a)

i~
d

dt
â−q = ~ωqâ−q −

∑
i,j

(
M ih,jh

−q d̂†i d̂j −M ie,je
−q ĉ†i ĉj

)
, (3.5b)

i~
d

dt
â†q = −~ωqâ

†
q +

∑
i,j

(
M ih,jh

−q d̂†i d̂j −M ie,je
−q ĉ†i ĉj

)
, (3.5c)

In Eq. (3.5b) we have used the fact that ω−q = ωq. From Eqs. (3.5), we
derive the evolution equations for the polarizations and the phonon-assisted
polarizations, that are defined by

Pij(t) = 〈d̂†i (t)ĉ
†
j(t)d̂

†
i (0)ĉ

†
j(0)〉 , (3.6a)

P
a−q

ij (t) = 〈d̂†i (t)ĉ
†
j(t)d̂

†
i (0)ĉ

†
j(0)a−q(t)〉 , (3.6b)

P
a†q
ij (t) = 〈d̂†i (t)ĉ

†
j(t)d̂

†
i (0)ĉ

†
j(0)a

†
q(t)〉 , (3.6c)

where the symbol 〈Â〉 indicates the expectation value of the operator Â on
the vacuum state. Note that we take into account only polarizations assisted
by one phonon operator [Eqs. (3.6b) and (3.6c)], thus neglecting higher order
phonon-assisted polarizations. These latter are factored into products of (3.6)
and phonon density nq = 〈â†qâq〉. Eq. (3.5a) shows that the Coulomb interac-
tion couples the two operator dynamics to four-operator terms. The evolution
equations for the latter should be included in the system of Eqs. (3.5) in or-
der to solve it consistently. Nevertheless, the dynamic of four-opertor terms
is coupled to that of six-operator terms and so on, resulting in an infinite
hierarchy of equations. We truncate this hierarchy at the lowest order, by
factoring the expectation value of four operator products into all possible
combinations leading to products of densities and polarizations. This yield
the Hartree-Fock limit of Eqs. (3.5) [Haug 90]. The factorization must be
performed on normal ordered product operators (i.e. all the creation opera-
tors must be on the left of annihilation operators), and the anticommutation
relations must be taken into account in order to get the proper signs between
the two-operator combinations [Haug 90]. In particular, the four-operators
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terms in Eq. (3.5a) are factored as

〈d̂†i ĉ
†
l d̂

†
rd̂s〉 = 〈d̂†i ĉ

†
l 〉〈d̂

†
rd̂s〉 − 〈d̂†i d̂†r〉〈ĉ

†
l d̂s〉+ 〈d̂†i d̂s〉〈ĉ†l d̂

†
r〉 (3.7a)

=
[
〈d̂†i ĉ

†
l 〉δrs − 〈d̂†rĉ

†
l 〉δis

]
nh

s

〈ĉ†l ĉmd̂
†
rĉ
†
j〉 = 〈ĉ†l d̂

†
rĉ
†
j ĉm〉 − 〈ĉ

†
l d̂

†
r〉δim (3.7b)

=
[
〈d̂†rĉ

†
j〉δlm − 〈d̂†rĉ

†
l 〉δjm

]
ne

m + 〈d̂†rĉ
†
l 〉δjm

where ne
i (nh

i ) is the time-dependent electron (hole) density for the i-th state.
Because of the Coulomb terms (3.7), the non-phononic part of the evolution
equations for the polarizations in Eqs. (3.6) is non-diagonal. It can be di-
agonalized by a linear transformation of the electron-hole pair basis into an
exciton basis. Then, the phononic part of the equations can be rewritten
consistently. However, a difficulty in changing the basis arises from the pres-
ence of the time-dependent carrier densities that multiply the polarizations
in the Coulomb terms. Here, we restrict to the linear optical response and
assume the low density limit ne

i = nh
i = 0, thus neglecting all the Coulomb

terms in Eqs. (3.7) except the last one on the right side of Eq. (3.7b), that is
〈d̂†rĉ

†
l 〉δjm. In the new basis, the exciton polarizations are linear combinations

of the electon-hole pair polarizations

Πρ(t) =
∑
ij

αij
ρ Pij(t) , (3.8)

and the same holds (with the same coefficients αij
ρ ) for the phonon-assisted

polarizations. The polarization Πρ(t) corresponds to the exciton state with
wave function Ψρ(re, rh) =

∑
ij α

ij
ρ Ψij(re, rh) and energy Eρ, with ρ = 1, . . . , 4.

These energies are plotted in Fig. 3.3.(a) as a function of the interdot dis-
tance R. The energy splitting at short R is mainly due to conduction electron
tunneling between the two QDs, and is scarcely affected by the asymmetry
between them and by Coulomb interaction. The Coulomb interaction pro-
duces a splitting of the exciton energies, that become important at large
values of R. Moreover, it is responsible for the anticrossing of the two high-
est levels between R = 8 nm and R = 9 nm. The oscillator strength of
the ρ-th exciton state is µρ = |

∫
drΨρ(r, r)| and the corresponding radia-

tive linewidth is γρ = ωLTk
3
0a

3
Bµ

2
ρ/6 [Gil 02], being ~ωLT the LT-splitting for

excitons in the bulk material, k0 = 2π/λ0 the wave vector of light at the ex-
citon resonance frequency and aB the Bohr radius of the exciton. Radiative
linewidths are plotted versus R in Fig. 3.3.(b). At short distances, where the
tunneling exceeds both the Coulomb energy and the asymmetry, the exciton
states are well described in terms of electron-hole product-states. Optical ac-
tive states are formed from symmetric and antisymmetric electron and hole
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Figure 3.3: Exciton energies (a) and radiative linewidths (b) for an InAs QD
molecule, accounting for Coulomb interaction and 2% asymmetry. (a) The
Coulomb interaction produce an energy shift and a splitting of the exciton en-
ergies. (b) At short distance all the exciton states can be optically active. As R
increase, spatially indirect excitons become dark.

(|11〉 and |22〉 respectively, according to Sec. 1.2) states, while the other two
(|12〉 and |21〉) remain dark. As R increases, the Coulomb interaction mixes
these symmetric combinations that become all optically active. In the limit
of large R the carriers are strictly localized in one of the two QDs, and direct
excitons (i.e., formed by electron and hole both localized on the top or on the
bottom QD) of low energy are bright, while indirect excitons are dark. Then,
while in single QDs the Coulomb interaction results in a small correction to
the polarization decay, in QD molecules it affects strongly the exciton wave
functions and consequently the exciton-phonon coupling. With the present
parameters, the exciton transition energies measured in [Borr 03] are well
reproduced. More detailed models of the electronic states [Best 04] show
that the actual energy level structure deviates from this simple description,
especially with respect to the valence states. The phonon-assisted effect we
are modeling, however, depends mainly on exciton-phonon coupling and, due
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to the lighter effective mass, almost entirely on the conduction-electron part
of this coupling. The hole wave function affects only minimally our results,
finally justifying our adoption of a simple effective mass scheme.

The evolution equations for the exciton polarizations and phonon-assisted
polarizations read

i~
d

dt
Πρ(t) = −EρΠρ(t) +

∑
σ

∑
q

Mρσ
q

[
Πa†q

σ (t) + Πa−q
σ (t)

]
, (3.9a)

i~
d

dt
Πa−q

ρ (t) = − (Eρ − ~ωq) Πa−q
ρ (t) +

∑
m

Mρσ
−qnqΠσ(t) , (3.9b)

i~
d

dt
Πa†q

ρ (t) = − (Eρ + ~ωq) Πa†q
ρ (t) +

∑
σ

Mρσ
−q (1 + nq) Πσ(t) , (3.9c)

where nq = 〈a†qaq〉 = [exp (β~ωq)− 1]−1 is the thermal phonon distribution
at the lattice temperature, and we have defined

Mρσ
q =

∑
ij

αij
ρ

[∑
k

M iv,kv
q βσ

kj −
∑

k

Mkc,jc
q βσ

ik

]
, (3.10)

being βij
ρ the coefficients of the inverse transformation with respect to αρ

ij.
Eqs. (3.9) can be solved by Fourier transforming to frequency domain. The
sum of phonon-assisted polarizations in the Fourier transformed version of
Eq. (3.9a) reads

Π̃a†q
ρ (ω) + Π̃a−q

ρ (ω) =
∑

σ

Mρσ
−qD

ρ
q (ω)Π̃σ(ω) , (3.11)

with the phonon propagator Dρ
q (ω) given by [Maha 90]

Dρ
q (ω) =

1 + nq

~ω − Eρ − ~ (ωq − iγq)
+

nq

~ω − Eρ + ~ (ωq + iγq)
, (3.12)

where we have added an imaginary part to the phonon energies ~ωq, whose
value is fixed to the phenomenological value ~γq = 1µeV, describing the
acoustic phonon damping [Goup 02, Zimm 02]. The final equation describing
the ω-dependent exciton polarizations reads

[Eρ − ~ (ω + iγρ)] Π̃ρ(ω)−
∑

σ

Σρσ(ω)Π̃σ(ω) = µσ , (3.13)

where γρ is the radiative linewidth of the ρ-th exciton state, µρ its oscillator
strength, and the exciton-phonon Born self energy is written in terms of the
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q

ρ η σ

Figure 3.4: Diagram representation of the second order Born (2B) self energy.
The arrow denote the exciton propagator, while the dashed line stands for the
phonon propagator. Since the interaction appear twice (circles), one speak of
2B-approximation.

exciton-phonon coupling matrix elements and of the exciton propagator as

Σρσ(ω) =
∑
η,q

Mρη
q Dη

q(ω)Mησ
−q . (3.14)

The self energy matrix is non-diagonal, resulting in cross correlation between
exciton states. In particular, it describes processes where an exciton scatters
from state ρ to state σ after having emitted and absorbed a phonon, being
η any accessible intermediate state, according to the diagram in Fig. 3.4.
The frequency dependence of the self energy in the diagrammatic approach is
fully equivalent to the inclusion of memory effects. Then, our non-Markovian
formalism is suitable for the description of quantum kinetic effects such as
phonon broadband, as we show in the next section.

Before concluding this section, we derive the Markov limit of Eqs. (3.13)
and (3.14). Eq. (3.9b) can be formally solved as

Πa−q
ρ (t) = − i

~

∫ t

−∞
dt′nq

∑
σ

Mρσ
−qΠσ(t′) (3.15)

× exp

[
− i

~
(Eρ − ~ωq) (t− t′)

]
,

and a similar expression holds for the formal solution of Eq. (3.9c). One can
assume that the polarization can be factored as Πρ(t) = Π̃ρ(t) exp(−iEρt/~),
where Π̃ρ(t) is slowly varying in time. Then, the Markov approximation con-
sists in taking the slow component out of the integral. This corresponds to
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neglecting memory effects. Consequently, the temporal dynamics of the prop-
agator reduces to an exponential decay with a constant damping. Eq. (3.15)
becomes

Πa−q
ρ (t) = −iπ

~
nq

∑
σ

Mρσ
−qΠσ(t)δ [~ωq − (Eρ − Eσ)] , (3.16)

where the Cauchy principal part of the integral (i.e. the polaron shift of the
ZPL) has been neglected. When Eq. (3.15) and the corresponding expression

for Π
a†q
ρ (t) are inserted in Eq. (3.9a), the Markovian self energy reads

ΣM
ρσ =

iπ

~s
∑
ηq

NqM
ρη
q Mησ

−qδ (q − qησ) . (3.17)

where qησ = Eη−Eσ/~s and we have defined Nq = nq (Nq = nq +1) for q < 0
(q > 0). The Markov approximation results in a self energy matrix where
the frequency dependence is completely dropped. Consequently, Eq. (3.13)
reduces to an algebraic set of equations. Nevertheless, the Markov self en-
ergy is non-diagonal, thus containing information on the correlation among
exciton levels. In the next section we show the results of the numerical so-
lution of Eq. (3.13), both considering memory effects and in the Markov
approximation, focusing on the analysis of the exciton dephasing rates.

3.2 Results

The formalism developed in the last section allows the description of the
phonon broadband and of the broadening of the ZPL that characterize the
spectra of exciton resonances in a QD system. In particular, the non-
Markovian treatment of the exciton-acoustic phonon coupling in QD molecules
describes both the temperature and the interdot distance dependence of
these spectral features. A similar analysis has recently been carried out
by Mannarini et al. [Mann 06] on the system of excitons localized by inter-
face roughness in a quantum well. There, the weaker exciton confinement
results in smaller phonon sidebands and mainly the temperature dependence
was studied. Here, we focus on the effect of the interdot distance on the
exciton-phonon coupling or, in other words, to the phonon-mediated interac-
tion between the two spatially separated quantum systems. All the numerical
results shown in the following, are relative at a temperature of T = 10 K.

We numerically solve Eq. (3.13) for the exciton polarizations Πρ(ω). The
optical spectrum is related to the imaginary parts of these quantities. Typi-
cal exciton spectra of the QD molecule under study are plotted in Fig. 3.5 for
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Figure 3.5: Comparison between the non-Markov (blue lines) and Markov (red
lines) spectra of an asymmetric QD molecule calculated at T = 10 K for different
interdot distances R. The scale is linear, but the ZPLs are truncated to magnify
the phonon sidebands. To get an estimate of the line intensity, one should refer to
the oscillator strengths as extracted from Fig. 3.3.
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different values of the interdot distance R. Each peak of the non-Markovian
spectra (blue line) is characterized by a narrow ZPL (the peaks of ZPLs
are truncated) and phonon sidebands corresponding to phonon absorption
(at the left of the ZPL) and emission (at the right). The phonon broadband
originate from the diagonal elements Σρρ(ω) of the exciton-phonon self-energy
in Eq. (3.14), as in the single QD case [Krum 02, Zimm 02]. All four exci-
ton states, however, are coupled to each other via the off-diagonal terms of
the exciton-phonon self-energy, resulting in the phonon broadening of the
ZPL [Mulj 04, Mulj 05]. The distance dependence of the spectral positions
and relative intensity of the ZPL peaks is explained as for Fig. 3.3. Remark-
ably, in correspondence with the Coulomb anticrossing around R = 8 nm, the
ZPL width of the two higher states drops and never restores. This is because
for R > 8 nm the two states are indirect excitons, and the exciton-phonon
matrix element between them vanishes by symmetry. Thus, real transitions
between these states are not allowed any more and their dephasing is due
to virtual transitions into the lower states [Mulj 05]. The spectra calculated
using the Markov self-energy (3.17) are plotted for comparison (red line),
and consist in the simple superposition of Lorentzian lines. Note that the
non-Markovian peaks are shifted with respect to the Lorentzian resonances
(polaron shift).

The phonon linewidths of the ZPL can be calculated from the imaginary
part of the frequency dependent Born self energy in Eq. (3.14), once it is
expanded around the exciton pole Eρ. This can be done at different levels
of approximation. In the so-called semi-Markov approximation [Mann 06]
one neglects the off-diagonal elements of the self energy matrix, while keep-
ing the frequency dependence, i.e., Σρσ(ω) = δρσΣSM

ρρ (ω). This approach is
correct as long as the off-diagonal elements are small with respect to the
differences between diagonal elements, resulting in linewidths that are in ex-
cellent agreement with the full non-Markov calculation in a large range of
temperatures [Mann 06]. The approximation is expected to fail in spectral
regions with a high density of overlapping states. Nevertheless, this condition
is more likely to occur in spatially extended nanostuctures, e.g., for exciton
states localized in disordered quantum wells. In the Markov approximation
the phonon linewidths of the ZPL are calculated at the first order of the self
energy expansion, i.e., from the Markov self energy (3.17). Neglecting the
non-diagonal terms corresponds to the first order of the semi-Markov approx-
imation, and reproduces Fermi’s Golden Rule (FGR) for the phonon-assisted
transitions

ΓFGR
ρ = −Im

[
Σρρ

(
ω =

Eρ

~

)]
= π

∑
σq

Nq

∣∣Mρσ
q

∣∣2δ (q − qρσ) . (3.18)
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Figure 3.6: Exciton dephasing rates for the QD molecule calculated at T = 10 K.
(a) Fermi golden rule. (b) Markov approximation.

The FGR linewidths are broader than those calculated in the semi-Markov
approximation and their ratio is ΓFGR

ρ /ΓSM
ρ = 1 + Sρ [Mann 06], where Sρ

is the temperature dependent Huang-Rhys factor [Duke 65, Zimm 02]. In
Fig. 3.6.(a) we show the dependence on the interdot distance R, of the FGR
exciton linewidths calculated at T = 10 K, where Sρ is very small. Strong
oscillations versus R are observed and very large values are obtained for
the different levels, up to 45 µeV compared to approximately 1 µeV for a
single QD. Both oscillations and large dephasing rates result also from a
full non-Markov approach using cumulant expansion of the linear polariza-
tion [Mulj 05]. Muljarov et al. showed that while the phonon broadband is
purely a quantum kinetic effect, the deviation of the ZPL from a Lorentzian
profile depends strongly on interdot distance (via tunneling), electron-hole
Coulomb interaction and asymmetry of the double dot potential. These fea-
tures are contained in the FGR approximation that is then confirmed to give
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R
z

Figure 3.7: The phonon wavelength must be such to restore the parity of the
superposition integral in the exciton-phonon coupling matrix.

a suitable description of the ZPL linewidths. Nevertheless, an improvement
is expected to come from taking into account the non-diagonal elements of
the self-energy matrix, i.e. in the Markov approximation. In this case, the
phonon linewidths are calculated as ΓM

ρ = −Im[Σ̃ρ(ω = Eρ/~)], where Σ̃ρ(ω)
are the eigenvalues of the matrix Σρσ(ω)− Eρδρσ. The resulting exciton de-
phasing rates are plotted in Fig. 3.6.(b). The main difference with respect
to Fig. 3.6.(a) is a further oscillation of the linewidth of the third exciton
state (dashed line) at about R = 10 nm. At this distance the distinction
in direct and indirect excitons does not hold yet, as Figs. 3.3.(b) and 3.5
show. The four states are still optically active and therefore this difference is
significant for the measurements. The oscillatory dependence from R could
explain the strong dependence measured in [Borr 03] and shown in Fig. 3.2.
The measurements of the dephasing time have been performed on double lay-
ers of vertically stacked InAs/GaAs QDs with an areal dot density of about
1010 cm−2. Here, the exciton ground-state transition (0-X) shows a Gaus-
sian inhomogeneous broadening of the transition energy of tens of meV full
width at half maximum (FWHM) attributed to fluctuations in dot size and
indium concentration. We suggest that the result of the measurement can be
interpreted in terms of our single-QD-molecule result, convoluted with the
inhomogeneous distribution of QD energies.

The oscillations as a function of the distance can be explained as follows.
According to Eqs. (3.4) and (3.10), the matrix elements of the exciton-phonon
coupling potential are proportional to the superposition integral between
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tances that satisfy the matching condition in Eq. (3.19).

exciton states and the phonon wave function along z. At short distance,
the two wave functions have definite parity with respect to z = 0 and the
coupling is maximum if the photon wavelength λq = 2π/q is such that the
function in the integral (3.4) has even parity. To fix the idea, if the exciton
states have opposite parity as in Fig. 3.7, then the phonon wavelength must
satisfy the condition R = nλq/2. However, the phonon wavelength must also
correspond to the phonon energy that matches the transition between the
two levels, i.e., q = qρσ. Putting these two conditions together results in the
matching condition

∆Eρσ = nπ
~s
R
, (3.19)

that is satisfied only for some values of the distance. This is shown in the
upper part of Fig. 3.8, where we plot the energy distance between the two
upper exciton levels (solid line) together with the right side of Eq. (3.19) for
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Figure 3.9: Exciton energies for the three-InAs-QD array under study, accounting
for Coulomb interaction and asymmetry.

two values of n (dashed lines). The matching condition (3.19) is fulfilled at
the crossing points (circles) that correspond to the peaks in the calculated
linewidths. On the other hand, the polarization dephasing is suppressed
in correspondence of the minima. Nevertheless, as the oscillations are very
broad, the suppression is realized for well defined values of R that, further-
more, are very unlikely to be the same for the different exciton transitions of
the many-QD system.

To conclude our analysis, we have studied the case of an array of three
vertically stacked and equally spaced QDs. As usual, we account for the
fluctuations of size, shape and components concentration from dot do dot,
that are typical of self assembled QDs, by assuming that the confining po-
tentials for the carriers in the bottom QD are 2% (4%) deeper than in the
middle (top) QD. The energy levels of the three-QD system are plotted in
Fig. 3.9 as a function of the interdot distance R. In Fig. 3.10 we show the
calculated phonon linewidths ΓM

ρ for the nine exciton states of this system.
In this case, the exciton dephasing rates are even larger than in the case of
a two-QD molecule, with values up to 125 µeV (the corresponding oscilla-
tion maxima are truncated, for a better comparison with Fig. 3.6). In fact,
because of the larger number of energetically close exciton states available,
the probability for exciton-phonon scattering processes is increased and the
phonon coupling is more effective. On the other hand, the exciton levels
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Figure 3.10: Exciton dephasing rates for a three-QD-array calculated in the
Markov approximation, at T = 10 K. The energy scale is the same of Fig. 3.6,
in order to appreciate the difference between the two- and three-QDs case. The
truncated oscillations of the black and green curve reach the maxima at 55 µeV
and 125 µeV, respectively.

are spaced unevenly in energy and the simultaneous matching of the phonon
wavelength and frequency (3.19), previously described, is consequently made
easier for most values of the interdot distance R. Then, the dephasing of
the quantum state is faster than in the two-QDs case, while the oscillations
of the dephasing rates versus interdot distance are less dramatic, with the
minima occurring at larger values of the rate.

On the basis of our results, the idea of exploiting the dephasing suppres-
sion mechanisms proposed in [Zana 98, Bert 04] in order to realize semiconductor-
based quantum gates turns out to be oversimplified. In particular, in [Zana 98]
the geometrical and chemical inhomogeneities of arrays of many QDs have
been completely neglected. While an ideal periodicity would strongly sup-
press the exciton-phonon scattering, these asymmetries are expected to result
in an increased rate of the polarization dephasing.
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3.3 Conclusions

We have modeled the optical response of excitons in QDs, including the cou-
pling to acoustic phonons in the second order Born approximation, beyond
the Markov limit. Two effects, absent in the single QD case, dominate here
the ZPL broadening. The first is the off-diagonal phonon-assisted coupling
which produces a spectral broadening of the ZPLs significantly larger than
the radiative linewidth. In terms of this mechanism we interprete the broad
linewidths experimentally measured [Borr 03] in QD molecules. The second
is the phonon scattering to dark states which is enhanced when the phonon
wavelength matches the interdot distance. This matching condition results
in an oscillatory behavior of the exciton dephasing rates in terms of which
we explain the strong distance dependence of the ZPL widths measured in
QD molecules by Borri et al. [Borr 03]. The polarization dephasing is sup-
pressed in correspondence of the minima of the oscillations but, as the oscil-
lations are very broad, the suppression is realized for well defined values of R
only. Furthermore, these values of R depend strongly on physical parameters
that determine the energy structure of the single QDs in the array, such as
shape, size and relative concentration of components, that can be controlled
in the growth process only to a limited extent. Then, this mechanism of
decoherence suppression is not sufficiently effective to be exploited in the
realization of quantum gates based on arrays of quantum dots as proposed
in [Zana 98, Bert 04] on the basis of the oversimplified picture of the QD as
a macroatom.



Chapter 4

Coherent coupling of localized
exciton transitions

Nonlinear optical spectroscopy is a powerful technique to investigate the
electronic structure in semiconductors. The Coulomb correlation between
quasiparticles dominate the nonlinear optical response, giving rise to multi-
exciton complexes. In particular, the exciton resonances dominate the optical
properties of direct-gap semiconductors near the fundamental gap at low tem-
perature [Haug 90, Chem 01]. The dynamical response of a semiconductor
following excitation by an ultrafast laser pulse can be conveniently divided
into coherent and incoherent regimes. The Coulomb interaction between ex-
citons is best investigated by studying the coherent response. The latter,
corresponding to the polarization of the medium, is probed in time-resolved
coherent wave-mixing experiments. In particular, four-wave-mixing (FWM)
experiments probe the third-order non-linear optical response given by the
susceptibility tensor χ̂(3). When intense fields are used, the same excitation
scheme can be also used to observe and drive optical Rabi oscillations (RO)
of the population inversion in both extended [Cund 94, Quoc 98, Schu 99]
and confined [Kama 01, Borr 02, Htoo 02, Zren 02, Li 03, Patt 05] systems.
RO are a well-understood phenomenon in two-level spin and atomic sys-
tems. Under a strong, resonant, coherent excitation field, the population of
the excited state goes through an oscillation as a function of pulse area
Θ(t), which is defined as Θ(t) = (µ · ε/~)

∫ t

−∞E(t′)dt′, where µ is the
electric dipole moment of the transition and E(t) is the amplitude of the
electric field, whose polarization vector is ε. RO have been observed and
characterized in the exciton ground-state transition of several QD ensem-
bles [Kama 01, Htoo 02, Borr 02]. The inversion of the two-level QD-system
can be induced via optical pumping of the sample [Zren 02, Patt 05]. The
time-resolved state polarization is coherently controlled in both amplitude
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and phase [Patt 05]. The coherent optical control of a transition is of spe-
cific interest for its application in quantum computation. As an example,
in Ref. [Li 03] a single GaAs QD, for which RO between the exciton and
biexciton state is demonstrated, is proposed as a two-quantum-bit system
involving the crystal ground state |00〉, two distinguishable exciton states
with orthogonal polarization |01〉 and |10〉, and the biexciton state |11〉. A
Θ = π pulse tuned to the transition |10〉 ↔ |11〉 serve as the operational
pulse of a CROT gate1, leaving unchanged the input of the gate if it is |00〉
(the operational pulse is off-resonant) or |01〉 (the operational pulse have
wrong polarization) while Rabi flipping the population of the biexciton level
between the states |10〉 and |11〉.

Because of the strong similarities between coherent optical excitation of
a resonant system and nuclear magnetic resonance (NMR), the concepts of
multi-dimensional NMR spectroscopy have recently been adapted to the opti-
cal regime to study vibrational [Hybl 01] and electronic [Brix 05] excitations
in molecules. This technique enables to determine coherent coupling between
the resonances present in the system. Then, two-dimensional (2D) Fourier
transform spectroscopy have been used to study many-body interactions in
semiconductors [Borc 05, Li 06]. This enhanced FWM technique monitors
and correlates nonlinear polarization phase evolution during two independent
time periods, τ and t, separated by a mixing time T (T = 0 in a two-pulse
experiment). A 2D spectrum as a function of the absorption frequency (ω1)
and emission frequency (ω) is then obtained by Fourier transforming the
FWM signal with respect to the time variables τ and t. Such a 2D spec-
trum can identify couplings among resonances, separate quantum mechani-
cal pathways, and distinguish among microscopic mechanisms for the many-
body interaction by providing previously unaccessible phase informations in
semiconductors [Borc 05]. In particular, coherent coupling between differ-
ent resonances is identified by off-diagonal signals in the two-dimensional
spectrally-resolved FWM, as will be explained in the next section. Up to
now, wave-mixing experiments were limited to the study of large ensembles
of the quantum systems under investigation, due to reasons of both signal
strength and directional selectivity. Recently, a novel implementation of
transient nonlinear microscopy has been developed [Lang 06, Lang 07], that
is called heterodyne spectral interferometry (HSI). This technique opens the
possibility of investigating microscopic samples of subwavelength size, as is
the case for most individual quantum systems.

The Chapter is organized as follows. In Sec. 4.1, we give a brief schematic

1A CROT gate, similarly to the standard CNOT gate, can be used as the elementary
building block of quantum information devices [Macc 00, Bouw 00].
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overview of the FWM and HSI techniques, explaining how the coherent ex-
citon coupling manifests in the measured spectra. In Sec. 4.2 we develop a
density matrix formalism in order to model the light-matter interaction in
the HSI experimental configuration. A comparison between our results and
experimental observations is given in Sec. 4.3, and some concluding remarks
are presented in Sec. 4.4.

4.1 Four-wave-mixing and heterodyne spec-

tral interferometry

The generic experimental configuration for time-resolved nonlinear optical
experiments is shown in Fig. 4.1. A weak laser pulse E1(t) propagating
along the direction k1 excites the sample at t = 0. Alone, this pulse would
probe the linear properties of the sample, and hence it is called the probe
pulse. A second laser pulse (pump pulse) E2(t) propagating along k2, is
delayed and excites the sample at t = τd. Because of the nonlinearities in
semiconductors the response of the sample to the total field is not the sum
of the responses to each field. In general, two types of measurements can
be performed, namely pump-probe and coherent wave-mixing experiments.
Pump-probe experiments investigate both the polarization (coherent) and
the population (incoherent) dynamic. The small changes in sample trans-
mission, seen by the probe pulse and induced by the pump pulse (τd < 0),
are measured. In the weak signal regime, the differential transmission spec-
trum reproduces the changes in the absorption spectrum of the sample in-
duced by the second field. It can be measured for a series of time delays
τd. In wave-mixing experiments, the two fields coherently interfere in the
sample and generate polarization waves emitting photons in background-free
and momentum-conserving directions (the phase is conserved in a coherent
process).

The polarization response function R(τ, t) of the medium can be devel-
oped into different orders in the total excitation field. The n-th order compo-
nent Rn(τ, t) is a sum of contributions of different orders in the fields E1,2 pro-
portional to the product R(n) ∝ En1

1 Em1
1

∗En2
2 Em2

2
∗ with n = (n1,m1, n2,m2)

and n = n1 +m1 + n2 +m2, and is emitted in the direction l1k1 + l2k2 with
l1 = n1 − m1 and l2 = n2 − m2. In particular, at the third order in the
laser fields, photons are emitted in the direction k = 2k2 − k1. Because of
the minimum number of photons involved in this process, the experiment is
called four-wave-mixing (FWM). For subwavelength-sized media, the broken
translational invariance prohibits the use of wave vector selection. Neverthe-
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Figure 4.1: Schematic of a generic time-resolved nonlinear optical experiment
(from [Chem 01]).

less, with the introduction of the heterodyne spectral interferometry (HSI)
technique, is now possible to perform FWM measurements on individual,
localized excitons [Lang 06, Patt 06]. The HSI is a technique that joins
together FMW spectroscopy and heterodyne detection, giving access to the
amplitude and phase of the third-order nonlinear response. In particular, the
response function R(τ, t) is measured several times, for varying the phases
φ1,2 of the two input pulses E1,2 ∝ eiφ1,2 . The Fourier transform versus φ1,2

allows to select the n-th order response Rn(τ, t). More specifically, the quan-
tity Rl1,l2 =

∫
dφ1dφ2R (φ1, φ2) exp (−il1φ1 − il2φ2) is the sum of all R(n)

with equal l1, l2. By measuring the dependence of Rl1,l2 on the input fields
amplitudes, the different contributions R(n) can be finally extracted. In par-
ticular, the FWM signal has n = (0, 1, 2, 0), l1 = −1, l2 = 2 and depends
on |E1||E2|2. The evidence of coherent coupling between exciton states is
obtained by analyzing the two-dimensional Fourier transform R−1,2(ω1, ω) of
the FWM signal. Two coupled excitons, for example, can be cast into a
four-level system consisting of the ground state, the new exciton eigenstates
including the interaction, and the biexciton. In such a system, the resonances
of the two-dimensional response R−1,2(ω1, ω) in ω can be different from the
resonances in ω1. In general, in a multi-level system with transition frequen-
cies ωk and dipole moments µk, the third order response for positive delay
times can be written as [Lang 07]

R(0,−1,2,0)(τ, t) ∝
∑
k∈X

µk exp(−iωkτ)

(∑
l

µlAkl exp(iωlt)

)
, (4.1)
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Figure 4.2: |R−1,2(ω1, ω)|2 derived from 2D-FWM measurements of exciton reso-
nances localized in monolayer islands of GaAs/AlAs quantum wells. Logarithmic
color scale over 3.5 orders of magnitude. Co-circular excitation polarization σ+

were used for pump, probe and detection. The insets show magnifications of a
finestructure-split exciton (bottom) and the coupled unbound biexciton (top).
Off-diagonal signals (bottom) indicate coherent coupling of the exciton states
(from [Lang 07]).

where the sum runs over all exciton transitions that are active in first or-
der. Eq. (4.1) is obtained within a simplified model in which the levels have
spectral function A(ω) = δ(ω), that corresponds to neglect damping, and in-
finitely short excitation pulses are assumed E(t) = δ(t), which have spectrally
flat amplitude. Akl describes the amplitude of polarization transfer from the
transition k (first-order resonance) to the transition l (third-order resonance).
In general, the matrix Akl models all the coherent excitation transfer mech-
anisms, such as FRET and radiative transfer that have been described in
Chapter 2, and can depend on time and frequency. Two-dimensional Fourier
transform of Eq. (4.1) gives

R(0,−1,2,0)(ω1, ω) ∝
∑
k∈X

µkδ(ω1 + ωk)

(∑
l

µlAklδ(ω − ωl)

)
. (4.2)

For uncoupled two-level systems, Akl = δklµkµl, so that only peaks along
ω1 = ω are present. Coupled transitions k 6= l instead create diagonal
and off-diagonal peaks at (ω1, ω) = (ωk, ωl), whose amplitudes are still
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given by Akl = µkµl, provided that the coupling energy is larger than the
linewidth [Lang 07]). In Fig. 4.2 we report a 2D-spectrum measured in [Lang 07],
on excitons localized in monolayer islands of GaAs/AlAs quantum wells. The
FWM spectrum is dominated by diagonal resonances, but off-diagonal peaks
are also present, evidencing the coherent coupling between the involved exci-
ton states. In the third-order regime, the off-diagonal peaks of two first-order
resonances on both sides of the diagonal are expected to be equal in intensity,
while in the experimental data the intensities are different, being stronger for
ω1 < ω. The authors propose that this can be related to higher-order contri-
butions (e.g., all possible fifth order contributions with n = 5, l1 = −1 and
l2 = 2). Here, we wish to develop a simple multilevel model of excitons and
biexcitons in QDs, in order to study the non-linear response to all orders in
terms of 2-D spectroscopy. We will show how the basic physics of Eq. (4.2)
is recovered and what are the effects of higher-order non-linearities.

4.2 Formulation of the model

In this section we develop a density matrix formalism that describes the
physics underlying the experimental (HSI) outcomes, that have been pre-
sented in the last section. The physical quantity of interest is the nonlin-
ear polarization emitted from a quantum system in which individual, local-
ized resonances are coherently coupled. Some of the most common coupling
mechanisms have been addressed in the previous chapters of this thesis. In
Chapter 2 we have studied the coupling via the near-field of the optical po-
larization (Förster coupling) and the long-range radiative coupling related
to the retarded contribution to the electromagnetic field, while in Chap-
ter 3 we have addressed the coupling via vibrational modes of the crystal
(exciton-phonon coupling). We have seen that the study of these coupling
mechanisms is very demanding. Nevertheless, the focus of this chapter is
not the coupling mechanism itself, but the way in which it is evidenced via
light-matter interaction. Then, our model quantum system will consist of
electronic levels coherently coupled only via Coulomb and exchange inter-
action. Such a coupling mechanism includes the instantaneous limit of the
radiative coupling, namely the FRET, but not the radiative corrections at
long distance, as discussed in Chapter 2. Our model also doesn’t include the
phonon coupling. Nevertheless, as stated in the introduction to the present
Chapter, the nonlinear optical response of semiconductors is dominated by
the Coulomb correlation. Therefore, the inclusion of Coulomb correlation
in our theoretical model is needed to obtain a consistent interpretation of
the experimental observations, while adding other coupling mechanisms only
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serve to study their specific manifestation in this kind of spectroscopy.
Our density matrix formalism is applicable to a QD system of arbitrary

number of exciton and biexciton resonances. In Sec. 4.3 we will show re-
sults relative to two specific QD systems, namely a single-QD and to a two
vertically-stacked QD system. The geometry and the electronic structure
of these systems are described in Sec. 1.2. In our model, a single QD has
only two exciton levels, that are degenerate in energy if the dot has in-plane
circular symmetry. In this case no spectral signature of coupling would be
observed, as explained in the previous section. By considering an anisotropic
QD, we get two exciton levels that are LT-splitted via exchange interaction,
as we have shown in Sec. 2.3.1. On the other hand, in systems of two or more
QDs, exciton states of distinct energy and oscillator strength are realized also
in the cylindrical symmetry.

4.2.1 Hamiltonian and density matrix approach

The Hamiltonian that describes the QD system in interaction with the exci-
tation electric field is

Ĥ = ĤQD + Ĥe−m . (4.3)

where ĤQD describes the electronic structure of the QD system and He−m

accounts for the carrier-light interaction. We describe electrons and holes
by the Fermi operators ĉ†iσ and d̂†iσ (ĉiσ and d̂iσ) respectively, which create

(annihilate) a carrier with energy ~ωe/h
i and spin σ =↑ or σ =↓. We assume

as usual (see Sec. 1.2) that the topmost valence states are heavy hole states,
which is typical for GaAs-type materials. Then, the annihilator operator d̂i↑

(d̂i↓) corresponds to the heavy hole state with angular momentum component
mj = 3/2 (mj = −3/2). The dot Hamiltonian can be written as the sum of

two terms ĤQD = Ĥ0 + Ĥc, that read

Ĥ0 =
∑
iσ

(
~ωe

i ĉ
†
iσ ĉiσ − ~ωh

i d̂
†
iσd̂iσ

)
, (4.4a)

Ĥc =
1

2

∑
ijlm

∑
σσ′

(
V ee

ijlmĉ
†
iσ ĉjσ ĉ

†
lσ′ ĉmσ′ + V hh

ijlmd̂
†
iσd̂jσd̂

†
lσ′ d̂mσ′ (4.4b)

−2V eh
ijlmĉ

†
iσ ĉjσd̂

†
lσ′ d̂mσ′ + 2V ex

ijlm,σσ′ ĉ
†
iσd̂

†
jσd̂lσ′ ĉmσ′

)
.

Term (4.4.a) accounts for the single-particle band energies, while (4.4.b) is
the Coulomb interaction between the carriers in the QD system. The four
terms in Eq. (4.4.b) describe the repulsion between electrons and between
holes, the electron-hole attraction, and the exchange interaction, respectively.
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The explicit expression of the direct and exchange Coulomb matrix elements
is given in Eq. 1.33. In the rotating wave approximation, the dipole coupling
to the light field is

Ĥe−m = −E∗ · P̂ + h.c. , (4.5)

where the interband polarization of the QD system is given by

P̂ = −
∑
ij

µ∗ij

(
ĉi↓d̂j↓eσ+ + ĉi↑d̂j↑eσ−

)
. (4.6)

Here, µij is the dipole matrix element of the interband optical transition
and eσ± is the unit polarization vector with circular σ± polarization. Using
Eq. (4.6), the light-matter interaction Hamiltonian (4.5) finally reads

Ĥe−m = −~
∑
ij

[
Ω∗

ij,σ+ ĉi↓d̂j↓eσ+ + Ω∗
ij,σ− ĉi↑d̂j↑eσ− + h.c.

]
, (4.7)

where Ωijσ± = µijEσ±/~ is the Rabi frequency of the dipole transition to

the single pair state ĉ†iσ± d̂
†
jσ±|0〉, being Eσ± the σ± component of the laser

field amplitude. Eq. (4.7) implements the usual selection rule that σ+ (σ−)
light couples the mj = −3/2 (mj = 3/2) valence band to the spin down
(up) conduction band state [Axt 05]. It is straightforward to verify that
the dark electron-hole pair states ĉ†i↓d̂

†
j↑|0〉 and ĉ†i↑d̂

†
j↓|0〉 are not coupled by

the Hamiltonian in Eq. (4.3) to other electronic states and thus will be not
considered any further. Then, the basis of our Hilbert space is made of
the ground state |0〉, electron-hole pair states ĉ†iσd̂

†
jσ|0〉 and two-pair states

ĉ†iσd̂
†
jσ ĉ

†
lσ′ d̂

†
mσ′|0〉. According to Pauli exclusion principle, two-pair states with

σ = σ′ exist only for i 6= l and j 6= m. It is advantageous to introduce the
eigenstates |ν〉 of ĤQD and use it as new electronic basis (in particular, ν = 1
corresponds to the ground state). In the following we will refer to these states
as exciton and biexciton states, also if, as explained in Sec. 1.2, the Coulomb
correlation that is responsible of the formation of these many-particle states
is correctly taken into account only by diagonalizing the Coulomb interaction
over a Hilbert space much larger than the one that we consider. In the new
basis our model Hamiltonian (4.3) reads

Ĥ =
∑

ν

~ων |ν〉〈ν| −
∑
νν′

~Θνν′|ν〉〈ν ′| (4.8)

where Θ̂ = ŜΩ̂Ŝ†, the Ŝ matrix providing the transformation between the
two basis sets. The density matrix operator ρ̂ of the system under study, is
defined by its components ρ̂νν′ = |ν〉〈ν ′|, and it evolves in time according to
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the equation i~∂tρ̂ = [Ĥ, ρ̂]. The expectation values ρνν′ = 〈Ψ(t)|ρ̂νν′|Ψ(t)〉
of the non-diagonal and diagonal components of the density matrix operator
on the state of the system are polarizations and densities, respectively. Using
Hamiltonian (4.8), the time evolution of these quantities is given by

ρ̇νν′ = −i (ων − ω′ν) ρνν′ − i
∑

µ

(
ρνµΘ∗

µν′ −Θ∗
νµρνν′

)
. (4.9)

Our model Hamiltonian (4.8) does not take into account the influence of
coupling to a reservoir. A more realistic description of the dynamic should
include damping terms and, for consistence, noise operators that produce
fluctuations, according to the Heisenberg-Langevin approach [Mand 95]. The
latter is particularly suitable for the calculation of two-time correlation func-
tions of the system operator as is, for example, required for the determination
of the natural linewidth of a laser. In the present case, we include phe-
nomenological damping terms for polarizations and densities in the dynam-
ical Eqs. (4.9). We assume that all the polarization have the same constant
decay rate γ2, while the exciton densities decay with γ1 = 2γ2, thus neglect-
ing pure dephasing mechanisms. The decay rate of the biexciton densities is
instead fixed to a value γ′1 slightly larger than γ1 [Lang 00]. By defining

ρ̃νν′ = ρνν′ exp [i (ων − ων′) t] , (4.10a)

Θ̃νν′ = Θ∗
νν′ exp [i (ων − ων′) t] , (4.10b)

as quantities slowly varying in time, Eqs. (4.9) take the form

˙̃ρνν′
∣∣
ν 6=ν′

= −γ2ρ̃ν,ν′ − i
[(
ρ̃ · Θ̃

)
−
(
Θ̃ · ρ̃

)]
νν′
, (4.11a)

˙̃ρνν

∣∣
ν∈BX

= −γ′1ρ̃νν − i
[(
ρ̃ · Θ̃

)
−
(
Θ̃ · ρ̃

)]
νν
, (4.11b)

˙̃ρνν

∣∣
ν∈X

= −γ1ρ̃νν +
γ′1
NX

∑
µ∈BX

ρ̃µµ − i
[(
ρ̃ · Θ̃

)
−
(
Θ̃ · ρ̃

)]
νν
,(4.11c)

˙̃ρ11 = γ1

∑
µ∈X

ρ̃µµ − i
[(
ρ̃ · Θ̃

)
−
(
Θ̃ · ρ̃

)]
11
, (4.11d)

where (A ·B)νν′ =
∑

µAνµBµν′ is the generic element of the matrix product
of matrices A and B, X and BX are the sets of exciton and biexciton states,
NX is the total number of exciton levels and we have neglected the decay
from biexciton- to ground-state. Moreover, in Eq. (4.11) we assume that a
biexciton has equal probability of decaying into all exciton levels, without



72 4. Coherent coupling of localized exciton transitions

implementing selection rules. Eqs. (4.11) can be formally integrated as

ρ̃νν′(t)|ν 6=ν′ = ρ̃0
ν,ν′e

−γ2t − ie−γ2t

∫ t

−∞
dt′Ξνν′(t

′)eγ2t′ , (4.12a)

ρ̃νν(t)|ν∈BX = ρ̃0
ν,νe

−γ′1t − ie−γ′1t

∫ t

−∞
dt′Ξνν(t

′)eγ′1t′ , (4.12b)

ρ̃νν(t)|ν∈X = ρ̃0
ν,νe

−γ1t +
γ′1
NX

e−γ1t
∑

µ∈BX

∫ t

−∞
dt′ρ̃µµ(t′)eγ1t′ (4.12c)

−ie−γ1t

∫ t

−∞
dt′Ξνν(t

′)eγ1t′ ,

ρ̃11(t) = ρ̃0
11 + γ1

∑
µ∈X

∫ t

−∞
dt′ρ̃µµ(t′)− i

∫ t

−∞
dt′Ξ11(t

′) ,(4.12d)

being ρ̃0
ν,ν′ the initial condition and Ξ = (ρ̃ · Θ̃)− (Θ̃ · ρ̃). In principle, these

equations can be solved for any shape of the excitation field. If the system is
assumed to be excited by a sequence of δ-pulses the solution is analytical. We
derive it in the next section for a two-pulse field that models the excitation
field in HSI experiments.

4.2.2 Simulation of HSI experiments - response to a
two-δ-pulses excitation field

In the last section, we have formally solved the dynamical equations for the
density matrix that describes a QD system interacting with a generic optical
field. If the latter consists of a sequence of n δ-pulses exciting the sample
at t = t1, ..., tn, the solution (4.11) of the problem is analytical. At each
time ti (i = 1, ..., n), Eqs. (4.11) reduce to an algebraic system of equations
that give the value ρ̃νν′(t

+
i ) of the density matrix after the arrival of the i-

th pulse, assuming the initial condition ρ̃0
ν,ν′ = ρ̃νν′(t

−
i ) (here t−i and t+i are

the right and left limit of t to ti, respectively). In particular we suppose
ρ̃νν′(t

−
1 ) = δνν′δν,1, i.e. the sample is in the ground state before the arrival

of the first pulse. Each pulse results in a steplike time evolution of each
polarization and density, whereas the evolution of the density matrix between
two pulses (ti < t < tj) is free, i.e. governed only by the damping.

In the limit of δ-pulses, we assume that the excitation field in HSI two-
beam experiments can be written as

E(t) = E1
σ1δ(t+ τ) exp (iΩ1t+ φ1) + E2

σ2δ(t) exp (iΩ2t+ φ2) , (4.13)

where the pulse of amplitude E1 (E2), polarization σ1 (σ2), frequency Ω1

(Ω2) and phase φ1 (φ2) excites the quantum system at t = −τ (t = 0), with



4.2. Formulation of the model 73

τ > 0. For fixed delay time τ between the two pulses, and fixed phases
φi (i = 1, 2), we analytically solve Eqs. (4.11) to get the time evolution of
density matrix ρ̃τφ(t) (φ = (φ1, φ2)). After the first pulse, i.e. at t = τ+, the
density matrix is the solution of the algebraic set of equations

ρ̃τφ
νν′(−τ

+) = δνν′δν,1 − i
[
ρ̃τφ(−τ+) · Θ̃(−τ)− Θ̃(−τ) · ρ̃τφ(−τ+)

]
νν′
, (4.14)

and evolves between t = −τ and t = 0 according to

ρ̃τφ
νν′(t)

∣∣∣
ν 6=ν′

= ρ̃τφ
νν′(−τ

+)e−γ2(t+τ) , (4.15a)

ρ̃τφ
νν(t)

∣∣
ν∈BX

= ρ̃τφ
ν,ν(−τ+)e−γ′1(t+τ) , (4.15b)

ρ̃τφ
νν(t)

∣∣
ν∈X

= ρ̃τφ
ν,ν(−τ+)e−γ1(t+τ) (4.15c)

+
γ′1

NX(γ1 − γ′1)

∑
µ∈BX

ρ̃τφ
µ,µ(−τ+)

[
e−γ′1(t+τ+) − e−γ1(t+τ)

]
,

ρ̃τφ
11 (t) = ρ̃τφ

11 (−τ+) +
∑
µ∈X

ρ̃τφ
µ,µ(−τ+)

[
1− e−γ1(t+τ)

]
(4.15d)

+
γ1γ

′
1

γ1 − γ′1

∑
µ∈BX

ρ̃τφ
µ,µ(−τ+)

[
1− e−γ′1(t+τ)

γ′1
− 1− e−γ1(t+τ)

γ1

]
.

Evaluating Eqs. (4.15) at t = 0, gives the initial condition ρ̃τφ
νν′(0

−) for the
solution of Eqs. (4.11) in correspondence to the arrival of the second pulse

ρ̃τφ
νν′(0

+) = ρ̃τφ
νν′(0

−)− i
[(
ρ̃τφ(0+) · Θ̃(0)

)
−
(
Θ̃(0) · ρ̃τφ(0+)

)]
νν′
. (4.16)

The free evolution of the density matrix for t > 0 is given by equations that
are identical to Eqs. (4.15), but with τ = 0. The inversion of Eq. (4.10a)
permits to retrieve the full time dependence of the density matrix, as well
as the dependence of its non-diagonal elements from the resonances of the
quantum system. The sum of these terms is the response of the quantum
system to the exciting field

P (τ, φ, t > 0) =
∑

ν,ν′>ν

ρ̃τφ
νν′(0

+) exp [−i (ων − ων′) t− γ2t] , (4.17)

We calculate the response function (4.17) in correspondence to different val-
ues of τ and φ1,2. As in HSI experiment, the different orders of the response
are selected by Fourier transforming versus φ1,2. As explained in Sec. 4.1,
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the measured signal is the sum of all P (n) with (l1, l2) = (−1, 2) that reads

P−1,2(τ, t) =

∫
dφ1dφ2P (τ, φ1, φ2, t) exp(iφ1 − i2φ2) (4.18)

=
∑

ν,ν′>ν

P̃−1,2
νν′ (0+, τ) exp [−i (ων − ων′) t− γ2t] ,

with P̃−1,2
νν′ (τ, 0+) =

∫
dφ1dφ2ρ̃

τφ
νν′(0

+) exp(iφ1 − i2φ2) and is dominated by
the FWM component that is the χ̂(3) nonlinearity. Contributions to (4.18)
coming from higher order nonlinearities become important in the strong ex-
citation regime, as will be shown in the next section. Considering δ-shaped
excitation pulses results in a separation of the two time dependencies of the
response function, as can be seen in the second line of Eq. (4.18). In partic-
ular, the exponential dependence from t results in simple Lorentz resonances
in the frequency domain. The Fourier transform of Eq. (4.18) with respect
to t and τ gives the two-dimensional spectra

P−1,2(ω1, ω) =

∫
dtdτP−1,2(τ, t) exp (−iω1τ − iωt) , (4.19)

that is directly comparable with those observed in HSI experiments, as that
reported in Fig 4.2. Results relative to many-level QD systems are presented
in the next section.

4.3 Results

The density matrix formalism developed in the last section allows to deter-
mine the coherent response of a multilevel system to an exciting optical field,
if the energy levels and the optical coupling matrix are known. The simplest
scheme that permits to explain the principal characteristics of 2D-spectra
observed in HSI experiments is that of a four levels system. Such a level
scheme is a realistic model for several quantum systems. In particular, it is
suitable to describe the electronic structure of a single QD whose optically
active states, in the spin basis |σ〉, are the ground state |0〉, the exciton states
|σ+〉 = ĉ†↓d̂

†
↓|0〉 and |σ−〉 = ĉ†↑d̂

†
↑|0〉, and the biexciton state |B〉 = ĉ†↓d̂

†
↓ĉ
†
↑d̂

†
↑|0〉.

Here, the pair states are labeled only with the spin quantum number because
their orbital components are all constructed with the same electron and hole
state (see Sec. 1.2). The energy levels of states |σ〉 are

ω0 = 0 , (4.20a)

ωσ+(σ−) = Ω0 +
1

2

(
V ee + V hh − 2V eh

)
+ V ex

↓↓(↑↑) , (4.20b)

ωB = 2
(
Ω0 + V ee + V hh − 2V eh

)
+ V ex

↓↓ + V ex
↑↑ . (4.20c)
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where Ω0 = ωe − ωh is the energy of the electron-hole pair and we have set
~ = 1. In the spin basis |σ〉, the optical coupling matrix reads

Ω̂ =


0 Ω∗

σ+ Ω∗
σ− 0

Ωσ+ 0 0 Ω∗
σ−

Ωσ− 0 0 Ω∗
σ+

0 Ωσ− Ωσ+ 0

 , (4.21)

where the Rabi energy of the optical field is Ωσ± = µ0Eσ± , and µ0 is the
dipole matrix element of the transition to both the |σ±〉 single-pair states.
By diagonalizing the QD hamiltonian (4.4) within the subspace of single-pair
states, we obtain the eigenbasis |ν〉 = |0〉, |+〉, |−〉, |B〉, with

ω± =
ωσ+ + ωσ−

2
±

√(
ωσ+ − ωσ−

2

)2

+ |V ex|2 , (4.22)

where V ex = V ex
↓↑ = V ex∗

↑↓ . The QD geometry is assumed to be anisotropic, in
order to have a non-zero fine structure energy splitting between states |+〉 and
|−〉 (see Sec. 2.3.1). The case of degenerate exciton levels is not interesting
because it is not possible to distinguish between diagonal and non-diagonal
features in the 2D-spectra. Within the described model of four level system,
the dynamical equations for the phonon assisted density matrix have already
been solved for an arbitrary sequence of ultrafast pulses [Axt 05]. There,
the scope of the work was determine the pulse area and temperature depen-
dences of the carrier-phonon and carrier-field coupling. As in Ref. [Axt 05]
we concentrate on a situation where the transition from the electronic ground
state |0〉 to the exciton eigenstates |±〉 (0-X transition) couples selectively
to orthogonally linear polarized light. This is achieved by setting V ex

↓↓ = V ex
↑↑

and V ex = |V ex| whereby the transformation matrix S between basis |σ〉 and
|ν〉 reads

Ŝ =


1 0 0 0

0 1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2 0
0 0 0 1

 . (4.23)

The energy scheme of the four level system |ν〉 is illustrated in Fig. 4.3.(a).
A qualitative description of the biexciton in terms of Coulomb correlation
has already been given is Sec. 1.2. A simplified picture of the biexciton is
that of a bound state of two Coulomb interacting excitons. In Fig. 4.3.(a)
the biexciton state |B〉, composed of states |+〉 and |−〉, is assumed to have
a positive binding energy EB = ω+ + ω− − ωB. The optical excitation of
the system to the biexciton state is a two-photon process, as long as the
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Figure 4.3: (a) Four-level scheme for the QD system under study. The biexciton
|B〉 can be depicted as a bound state of excitons |+〉 and |−〉, with positive binding
energy EB = ~(ω+ + ω− − ωB). (b) In the limit EB = 0, the same level scheme of
(a) is equivalent to scheme (c), describing two uncoupled two-level systems, as long
as optical transitions with the same energy have the same dipole matrix element.
(d) A three-level system in a V-scheme describes two coupled two-level systems.

initial state is the ground state. Then, in the low intensity regime, the
linear response of the system to an ultrafast pulse doesn’t contains biexciton
signatures. Once the system has been excited to the state |±〉, a second pulse
can induce the corresponding exciton-biexciton (X-BX) transition (i.e. the
one with energy ωB − ω±). This process should be observable in the third
order response, resulting in a peak at the frequency ωB − ω± in the FWM
spectrum.

The calculation of the response of the four level system in Fig. 4.3.(a)
(i.e. with EB > 0), to the two-pulse excitation field of Eq. (4.13), results
in the spectrum |P−1,2(ω1, ω)|2 of Fig. 4.4.(a). The phase of P−1,2(ω1, ω)
is given in Fig. 4.5.(a), where the blue and red correspond to negative and
positive values respectively, and horizontal and vertical lines correspond to
steps of the phase. In our calculation both pulses have polarization σ+ and
Rabi energy Ωσ+ = 5µeV, that corresponds to a low intensity of the exciting
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fields. The frequency of the first pulse is Ω1 = (ω+ +ω−)/2 while the value of
Ω2 is unimportant, being the second δ-pulse centered at t = 0 [see Eq. (4.13)].
The linear and the FWM response can be read on the horizontal (ω1) and
on the vertical (ω) axis of Fig. 4.4.(a), respectively. Diagonal peaks at the
exciton energies (ω1, ω) = (ω±, ω±) correspond to the linear response of the
two independent two level systems |0〉, |+〉 and |0〉, |−〉. The off-diagonal
peaks at (ω1, ω) = (ω±, ω∓) correspond to a third order excitation path. At
t = −τ the first pulse excites the system and create a polarization grating
over 0-X transitions with energy ω±. If τ is smaller than the relaxation time of
the system, at t = 0 the grating is still present and the second pulse interacts
with it, then exciting the second 0-X transition with energy ω∓. Then, these
peaks are the spectral signature of the coherent coupling between the two 0-X
transitions. In a similar way one can explain the peaks at (ω1, ω) = (ω±, ωB−
ω±). The second pulse interacts with the polarization grating produced by
the first pulse over the 0-X transition with energy ω±, then exciting the X-BX
transition with energy ωB − ω±. Then, these peaks are the signature of the
coherent coupling between the 0-X and the corresponding X-BX transition.
Note that all the peaks in Figs. 4.4.(a) have the same intensity, because all
the optical transitions of the system under study have the same dipole matrix
element. When we reduce the value of EB, the peaks corresponding to the X-
BX transitions approach the off-diagonal peaks describing the X-X coupling,
until they superpose for EB = 0. In this limit, the level scheme of Fig. 4.3.(a)
becomes that of Fig. 4.3.(b) and the corresponding spectrum 4.4.(a) becomes
spectrum 4.4.(b), in which only the diagonal peaks at (ω1, ω) = (ω±, ω±) are
present. This behavior is explained by comparing the corresponding phases in
Figs. 4.5.(a) and (b): the X-BX transition contributions to spectrum 4.4.(a)
are exactly opposite in phase to the off-diagonal X-X contributions, thus
canceling each other for EB = 0, as Figs. 4.5.(b) shows. This result is
in perfect agreement with the level scheme of Fig 4.3.(b) where the X-BX
and the 0-X transitions have the same energies (i.e. ωB − ω± = ω∓), and
the transition between states |±〉 and |B〉 is not distinguishable from that
between states |0〉 and |∓〉. Fig 4.3.(b) is then a suitable representation of two
independent two level systems, for which only diagonal peaks are expected,
and is equivalent to the energy levels scheme in Fig 4.3.(c). In Fig. 4.4.(c)
a spectrum is calculated as for Fig. 4.4.(a), but setting to zero the matrix
elements of the optical coupling matrix Θ̂ = ŜΩ̂Ŝ−1 corresponding to the X-
BX transitions. The system reduces to three levels system in the V-scheme
of Fig. 4.3.(d) that correspond to two coupled two-levels system for which
the off-diagonal exciton peaks are observed, because the X-BX transitions
with opposite phase no longer contribute to the third order spectrum. This
picture is supported by the comparison of the corresponding phase structures
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Figure 4.4: Spectra |P−1,2(ω1, ω)|2 calculated for the four-level systems in Fig. 4.3
in different cases, for excitation by two-δ-pulses field of Eq. (4.13), with σ1 = σ2 =
σ+, Ω1 = (ω+ + ω−)/2. Linear color scale. In (a) to (i) we study the third order
response in the low intensity regime, by fixing Ωσ1 = Ωσ2 = 5µeV. (a), (b), (c) are
calculated for the level scheme in Fig. 4.3.(a), (b), (d) respectively by assuming
the same value µ0 for the dipole moment of all the allowed optical transitions. (d),
(e), (f) and (g), (h), (i) are calculated for scheme 4.3.(b) and (a) respectively, by
changing the ratio between the dipole moments of different transitions (see text).
(j), (k), (l) correspond to (a), (b), (c) respectively, but are calculated in the high
intensity regime, with Ωσ1 = Ωσ2 = 1 meV, in order to check spectral contributions
beyond the third order non-linearity.
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in Fig. 4.5.(a) and (c).
Coming back to the level scheme of Fig 4.3.(b), the two resonances can

be coupled if the dipole matrix elements of the transitions are assumed to
be different. Spectrum 4.4.(d) is obtained assuming a ratio 0.6 between the
dipole matrix element of the transitions with energy ω+ and that of the tran-
sitions with energy ω−. The straightforward result, is that the diagonal peaks
have different intensity. Here, as the same dipole matrix element have been
assigned to transitions with the same energy, the two two-level systems are
still uncoupled and off-diagonal signals are not observed. Assuming a dipole
matrix element µ0 for the 0-X transition with energy ω+ and for the X-BX
transition with energy ω− and 0.6µ0 for the other two transitions, results
in two coupled two-level systems, and in the appearance of two off-diagonal
signals in spectrum 4.4.(e). Spectrum 4.4.(f) is obtained by assuming four
different values for dipole matrix elements of the four optical transitions.
Spectra 4.4.(g), (h), (i) are calculated for EB > 0, and for the same values
of the dipole matrix elements of spectra 4.4.(d), (e), (f) respectively. The
comparison between spectra 4.4.(g) and (d) is qualitatively the same of that
between spectra 4.4.(a) and (b). When EB reduces to zero, the X-BX cou-
pling signals superpose to the X-X ones and cancel them, again recovering the
picture of two uncoupled two-level systems. The cancelation of the signals is
only partial in the transition from spectra 4.4.(h) and (i) to spectra 4.4.(e)
and (f) respectively, as, in both cases, the two resonances of the final system
are coupled.

Spectra 4.4.(a) to (i) give an accurate description of the way in which
the coupling between the resonances of a generic four level system manifests
itself in the coherent third-order response to excitation by optical field in a
two-pulses experiment. We complete our analysis studying the higher order
contributions. Three more spectra are shown in Fig. 4.4, that have been cal-
culated for excitation pulses with Rabi frequency Ωσ+ = 1 meV, while all the
other parameters remain unchanged with respect to the previous cases and,
in particular, all the transitions are assumed to have the same dipole matrix
element µ0. Spectra 4.4.(j), (k), (l) should be compared to spectra 4.4.(a),
(b), (c), respectively (i.e. correspond to EB > 0, EB = 0 and to turn off
the optical X-BX transitions). Spectrum 4.4.(j) contains spectrum 4.4.(a)
as low intensity limit, but in this case, FWM signal are visible also on the
ω1-axis. In fact, the peaks at (ω1, ω) = (ωB − ω±, ω±) correspond to optical
transition to the biexciton state stimulated by the first pulse via two-photon
absorption processes that take place in the high intensity regime. All the
other signals present in the spectrum are due to excitation processes at the
fifth and successive orders. We have verified that any further increase of the
excitation field only result in changing the intensities of the peaks, while the
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Figure 4.5: Phase of the third order response P−1,2(ω1, ω) corresponding to spec-
tra in Fig. 4.4. Linear color scale.
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occurrence of signal in new positions on the (ω1, ω)-plane is not observed.
The corresponding phase in Fig. 4.5.(j) has a complex structure that is char-
acterized by several steps in correspondence of the four resonances of the
system, on both the ω1 and ω axes. Nevertheless, for EB = 0 all the phases
compensate as already in the low intensity regime, resulting in the phase
structure in Fig. 4.5.(k) that is identical to that of Fig. 4.5.(b), and in the
intensity spectrum 4.4.(k) that is qualitatively identical to 4.4.(b), the only
difference being the peak intensities. An analogous analysis holds for spec-
trum 4.4.(l) that differs from spectrum 4.4.(c) only for the intensities of the
peaks and whose phase structure 4.5.(l) is identical to 4.5.(c). The structure
of the phase of third order coherent response can be very rich, depending
on the multilevel system considered and on the excitation regime, and of
difficult interpretation. Nevertheless, HSI technique allows for the first time
the direct detection of the phase of the FWM signal, so that diagrams like
those in Fig. 4.4 could be directly compared with experimentally measured
phases.

We continue our analysis of the coherent response of a multilevel system
to a two-pulse excitation field in the HSI experimental configuration show-
ing results for a two-QD system. Here, we address the same QD system
described in Sec. 3.1.1 consisting of two vertically stacked cylindrical QDs.
The exciton and biexciton energies are plotted versus interdot distance in
Fig. 4.6.(a) and (b), respectively. The exciton level structure is the same of
that in Fig. 3.3.(a). The material and geometrical parameters are those used
in Sec. 3.1.1, but in the present case repulsive and exchange contributions
to Coulomb interaction are taken into account as well as the electron-hole
attraction, resulting in a small quantitative correction to Fig. 3.3.(a). More-
over, considering spin variables results in eight exciton states, whose energy
are grouped in four pairs of quasi-degenerate levels split by the exchange in-
teraction, as the insets in Fig. 4.6.(a) show. As the splitting is of the order of
0.2 meV, while the energy scale of the system is of the order of tens of meV,
the fine structure spectra are not distinguishable in the simulated spectra
that we are going to show. Then, in the following analysis of the spectra we
will just refer to the exciton levels as if they were just four.

The spectrum in Fig. 4.7.(a) have been calculated for the two QDs at
distance R = 6 nm, in the same excitation conditions of spectrum 4.4.(a).
As usual, in the low excitation regime the linear and the third-order response
can be read on the ω1 and ω axis, respectively. As for a four-level system,
the spectrum contains diagonal peaks corresponding to the linear response
of the independent exciton transitions, and off-diagonal peaks correspond-
ing to the third order response of the coupled exciton resonances. If we set
equal to zero all the elements of the optical coupling matrix corresponding to
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Figure 4.6: Exciton (a) and biexciton (b) energies for InAs QD molecule, as for
Fig. 3.3.(a). The insets are magnifications that show the fine structure splitting
of quasi-degenerate exciton levels. The weak wiggling behavior of the curves is an
artifact of the numerical calculation.

the X-BX transitions, these are the only possible signals. In this condition
we have calculated spectrum 4.7.(b) that correspond to a generalization of
the V-level-scheme of Fig. 4.3.(d), in which coupled 0-X transition to four
different excited states are possible. In this spectrum, then, 16 signals of
the same intensity would be observed if all the dipole moments were equal.
Nevertheless, according to Fig. 3.3.(b), for R = 6 nm the highest and lowest
exciton levels are more optically active than the other two, and the corre-
sponding diagonal peaks are better visible. However, off diagonal signals
rising from the third-order coupling between each pair of 0-X transitions are
well visible. All the other signals present in spectrum 4.7.(a) are the signa-
ture of the third order coupling between 0-X and X-BX transitions as for the
four-level system. However, in the present case many signals are observed,
corresponding to both bound and unbound coupled biexcitons. When the
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Figure 4.7: Spectra |P−1,2(ω1, ω)|2 calculated with the same excitation field of
Figs. 4.4.(a) to (i) for a two-QD system, varying the interdot distance R. (a)
R = 6 nm. (b) R = 6 nm as in (a), but the elements of the optical coupling matrix
corresponding to the X-BX transitions are set equal to zero. (c) R = 11 nm. (d)
For R = 15 nm the two higher energy excitons are dark and the corresponding
diagonal peaks are not observed. In order to emphasize the features of the spectra,
the linear color scale has been set from zero to the 10% of the maximum value of
|P−1,2(ω1, ω)|2, in each spectra.

interdot distance is increased, the direct excitons (i.e. localized on one of the
QDs, see discussion in Sec. 3.1.1) with low energy are optically active, while
the indirect excitons become dark. Spectra 4.7.(c) and (d) are calculated for
R = 11 nm and R = 15 nm, respectively. The diagonal peaks corresponding
to the linear 0-X transitions are circled. As expected, the two low-energy
peaks are very intense. Nevertheless, for R = 11 nm the indirect excitons
are not yet completely dark and the corresponding peaks are still visible. For
R = 15 nm instead, the high energy peaks completely disappear. Neverthe-
less, their signature is still present in the third order response. These two
spectra show that the Förster coupling between the direct exciton states is
very efficient, resulting in intense off-diagonal peaks (arrows). Many signals
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Figure 4.8: Spectrum |P−1,2(ω1, ω)|2 of the two QD system, calculated as in
Figs. 4.7, with Ωσ+ = 1 meV and R = 6 nm. In order to emphasize the features
of the spectrum, the linear color scale has been set from zero to the 10% of the
maximum value of |P−1,2(ω1, ω)|2.

corresponding to the coupling between 0-X and X-BX transitions are present
in both spectra.

To conclude our analysis, we have calculated the response of a QD molecule,
with R = 6 nm, to an intense field, with Ωσ+ = 1 meV. The resulting spec-
trum in Fig. 4.8 shows the effect of the higher order non-linearities. The
increased number of energy levels with respect to the case of the simple four-
level system results in a very complex spectral pattern, where signals appear
in spectral positions that are linear combinations of the transition frequencies
of the multilevel system. Obviously, in this regime the HSI method is no more
effective for a precise characterization of the coherent coupling mechanism.

4.4 Conclusions

We have theoretically modeled for the first time the HSI experimental tech-
nique, developing a very general density matrix approach allowing to describe
the coherent coupling between the resonances of a multilevel system. Any
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set of coupled quantum systems can be described in our formalism, as long
as the energy levels of the local quantum states, their oscillator strengths
and the coupling matrix between the different systems, are known. We have
simulated a HSI experiment on two systems of Coulomb correlated exciton
and biexciton states, showing that the coherent coupling between two states
results in off-diagonal peaks of the two-dimensional FWM spectrum, thus
confirming the interpretation of Langbein et al. of the observed HSI spec-
tra. We have also shown that, in the low intensity regime, each spectral
signal can be associate univocally to a specific nonlinear third order excita-
tion path, even if this become a difficult task if the number of levels involved
is big. However, in the high intensity regime, nonlinearities of the fifth or
higher order give important contributions to the spectra, that become very
rich and of difficult precise interpretation. In summary, we give a solid theo-
retical support to a powerful experimental technique enabling to identify the
coherent coupling between strongly confined quantum systems.
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Conclusions

The theoretical investigation of several interaction mechanisms between sem-
iconductor quantum dots presented in this thesis shows that, despite its
atomic-like spectrum characterized by widely spaced energy levels, a quan-
tum dot is a complex system strongly coupled to its environment. We have
shown that quantum dots forming an ensemble are coupled with each other
via tunneling of the electron wave function, Coulomb interaction, mechanisms
of excitation transfer over short (Förster) and long (radiative) distances,
phonon-mediated coupling. All these coupling mechanisms are responsible
of the decoherence of the quantum state, that is the major obstacle for a
solid-state implementation of quantum information processing.

The mutual interaction between quantum dots is verified at different levels
of approximation in the description of the quantum dot system. The simplest
description of a quantum dot is that of a macroatom [Zana 98, Biol 00], i.e. a
two-level system that does not interact with the surrounding semiconductor
matrix. We have show that, even in this oversimplified picture, quantum
dots in an ensemble interact via radiative coupling. In Chapter 2, we have
shown that the radiative coupling in a quantum dot ensemble is responsible
of the emergence of collective modes that are sub-radiant and super-radiant
with respect to the excited state of an isolated dot. The effect of the cou-
pling on the radiative decay-rate is expected to be of the order of 1 µeV.
Despite its small magnitude, radiative coupling decays as the inverse of the
interdot distance effectively coupling dots over a distance of a few hundreds
of nanometers. We have shown that the radiative coupling is a long-range
correction to the electrostatic Förster mechanism, due to the retardation in
the electromagnetic field propagation [Para 05, Para 07]. In [Para 05] we
suggest that in a dense QD sample this effect should be observable as a non-
exponential decay of the photoluminescence (PL) signal. Recently [Sche 07]
Scheibner et al. have observed the increase of the PL emission rate in QD
mesas when passing from strictly non-resonant to quasi-resonant excitation,
suggesting radiative coupling between the quantum dots. Furthermore, by
reducing the QD density they verify that the range of the interaction in
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CdSe/ZnSe QDs is at least 150 nm providing a striking confirmation of our
theoretical prediction.

Beyond the picture of a macroatom, we have described quantum dot ar-
rays as multilevel systems, taking into account the effects of the tunneling
and of the Coulomb interaction. In Chapter 3, we have modeled the optical
response of excitons in such a quantum dot system, further including the cou-
pling to the vibrational modes of the crystal via an exciton-acoustic-phonon
coupling Hamiltonian. In the second order Born approximation, we have
shown that the off-diagonal phonon-assisted coupling in quantum dot arrays
produces a spectral broadening of the zero-phonon lines significantly larger
than the radiative linewidth, that could explain the broad linewidths ex-
perimentally measured [Borr 03] in QD molecules. Moreover, we have shown
that the phonon scattering to dark states is enhanced when the phonon wave-
length matches the interdot distance. This matching condition results in an
oscillatory behavior of the exciton dephasing rates in terms of which we have
explained the strong distance dependence of the ZPL widths measured in QD
molecules by Borri et al. [Borr 03]. We have shown that the polarization de-
phasing is suppressed in correspondence of the minima of the oscillations but,
as the oscillations are very broad, the suppression is realized for well defined
values of R that, furthermore, depend strongly on structural properties of the
single quantum in the array. Then, this mechanism of decoherence suppres-
sion is not sufficiently effective to be exploited in the realization of quantum
gates based on arrays of quantum dots as proposed in [Zana 98, Bert 04] on
the basis of the oversimplified picture of the macroatom.

The coherent coupling between the resonances of a multilevel system due
to many-body interactions can be determined, in extended semiconductors,
by two-dimensional Fourier transform spectroscopy [Borc 05, Li 06]. A novel
implementation of this technique, the heterodyne spectral interferometry
(HSI) [Lang 06, Lang 07], allowing the study of samples of subwavelength
size, as is the case for most individual quantum systems, have been theo-
retically modeled for the first time in Chapter 4 of this thesis. We have
shown that the coherent coupling between two states of a multilevel system
of Coulomb correlated exciton and biexciton states, results in off-diagonal
peaks of the two-dimensional spectrum, thus confirming the interpretation
of Langbein et al.[Lang 06, Lang 07] of the observed HSI spectra. We have
also shown that, in the low intensity regime, the HSI allows to associate
univocally each spectral signal to a specific nonlinear third order excitation
path, even if this become a difficult task if the number of levels involved
is big, giving a solid theoretical support to a powerful experimental tech-
nique enabling to identify the coherent coupling between strongly confined
quantum systems.
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Research in semiconductor quantum dots has rapidly progressed from
studying the fundamental properties of electronic states to a collective ef-
fort towards optoelectronic applications. The current research puts special
emphasis on the realization of single- and few-dot devices, for single photon
emission and quantum information processing. The present work suggests
that a few-dot system can display a behavior much more complex than what
was intuitively expected. Excitation transfer without tunneling, especially
when mediated by radiative processes, is expected to be at the same time an
obstacle and an possible advantage for technological applications. Quantum-
dot molecules and quantum dots embedded in strongly resonant photonic
structures (micropillars, nanocavities based on photonic crystal slabs) in par-
ticular, are rapidly emerging as the main targets of future research. The
present analysis should therefore serve as starting point and a stimulus for
future investigations.
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Appendix A

Microscopic derivation of
Coulomb interaction in crystals

The second quantization Coulomb Hamiltonian is

Ĥc =
1

2

∫
drdr′

∑
ss′

ψ̂†s(r)ψ̂
†
s′(r

′)
e2

ε∞ |r− r′|
ψ̂s′(r

′)ψ̂s(r) , (A.1)

where ψ̂s(r) and ψ̂†s(r) are the second quantization electron field operator,
and ε∞ is the static dielectric constant. ψ̂s(r) can be expanded into Wannier
functions of the conduction and valence bands as

ψ̂s(r) =
∑
Rcv

[
ĉcRwc (r−R, s) + d̂†vRwv (r−R, s)

]
, (A.2)

where ĉ†cR (d̂†vR) is the electron (hole) creation operator at the lattice vector
R, specific to one of the conduction (valence) bands under consideration.
From now on, we assume the two-band approximation. Even in this case,
we need to take spin degeneracy as a band label. The Wannier functions
wa (r, s) (a ∈ c, v) are assumed to be well localized within the elementary
cell. Then Ĥc takes the form

Ĥc =
1

2

∑
aa′bb′

∑
RR′

ê†aRê
†
a′R′W

aa′b′b (R−R′) êb′R′ êbR , (A.3)

with the shorthand notation êaR = ĉR if a = c, and êaR = d̂†R if a = v. The
coulomb matrix elements

W aa′b′b (R) =
e2

ε∞

∫
drdr′

∑
ss′

w∗
a (r, s)w∗

a′ (r
′, s′)wb′ (r

′, s′)wb (r, s)

|r− r′ + R|
, (A.4)
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have the symmetry
W aa′b′b (R) = W a′abb′ (−R) . (A.5)

We concentrate on nonlinear optical response up to the third order. Therefore
we treat the Hilbert space of single electron-hole pair (or exciton) and two-
pair (or biexciton) states. The former can be written as

|ν〉 =
∑
RR′

Ψν(R,R
′)ĉ†Rd̂

†
R|0〉 , (A.6)

where |0〉 is the vacuum state and Ψν(R,R
′) is exciton envelope wave function

normalized according to∑
RR′

Ψ∗
ν(R,R

′)Ψµ(R,R′) = δνµ . (A.7)

The biexciton states are the factored product of two exciton states. Using
the symmetry Eq. (A.5) we get

Ĥc =
1

2

∑
RR′

[
ĉ†Rĉ

†
R′W

ee
C (R−R′)ĉR′ ĉR + d̂†Rd̂

†
R′W

hh
C (R−R′)d̂R′ d̂R

−2ĉ†Rd̂
†
R′W

eh
C (R−R′)d̂R′ ĉR + 2ĉ†Rd̂

†
RWF (R−R′)d̂R′ ĉR′

]
,(A.8)

with

W ee
C (R) = W cccc(R) , (A.9a)

W hh
C (R) = W vvvv(R) , (A.9b)

W eh
C (R) = W cvvc(R) , (A.9c)

WF (R) = W cvcv(R) . (A.9d)

The four terms in Eq. (A.8) describe the repulsion between electrons and
between holes, the electron-hole attraction, and the exchange (Förster) in-
teraction, respectively1. To calculate the potentials in Eq. (A.9), we apply
the multipole expansion

1

|r− r′ + R|
=

1

R
− (r− r′) ·R

R3
+

3[(r− r′) ·R]2 − (r− r′)2R2

2R5
− ... (A.10)

1We have introduced the carrier indexes e, h in order to be consistent with the notation
adopted in the rest of the thesis. As we are using the electron-hole picture and assuming
the two-band approximation, there is a one-to-one correspondence between the two sets
of band (c, v) and carrier (e, h) indexes. When necessary, we will refer to corresponding
indexes with the same label (e.g., a = e and a = c on the two sides of the same equation)
without ambiguity.
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In the Coulomb potential, the leading term 1/R gives the standard expression

W 0
C (R) =

e2

ε∞R
(A.11)

As |wa(r, s)|2 are even function under inversion r → −r, only terms with
squared arguments in Eq. (A.10) give nonzero contributions, leading to a
correction of order 1/R3

∆W aa′

C (R) =
e2

2ε∞R5

[(
R2 − 3X2

)
x2

aa′ (A.12)

+
(
R2 − 3Y 2

)
y2

aa′ +
(
R2 − 3Z2

)
z2

aa′

]
,

with

x2
aa′ =

∫
drx2

∑
σ

(|wa(r, s)|2 + |wa′(r, s)|2) etc. (A.13)

In the Förster potential, due to orthogonality∫
dr
∑

s

w∗
c (r, s)wv(r, s) = 0 , (A.14)

there is no term of order 1/R, and only mixed terms in the third term of
Eq. (A.10) survive, giving

WF (R) =
R2 |µcv|2 − 3 |R · µcv|2

ε∞R5
, (A.15)

being the dipole vector defined as

µcv = e

∫
drw∗

c (r) rwv (r) . (A.16)

In the strong confinement regime, the heavy and light hole states of materials
with zincblende structure are completely separate. We concentrate on heavy
hole (hh) states, which form the lowest confinement level. The Wannier
functions factorize into spin and spatial part as

wcσ(r) = 〈r|S〉δs,σ (A.17a)

whhσ(r) =
1√
2
〈r|x+ iσy〉δs,σ (A.17b)

with σ = ±1 corresponding to Jz = ±1/2 (Jz = ±3/2) for electrons (heavy
holes). Here, |S〉 denotes a state of s symmetry, and |x〉 a p state directed
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along x. In the Förster term, only spin diagonal terms σc = σv = σ give a
contribution. However, these states are coupled, as we show now. The dipole
vector in Eq. (A.16) carries one spin label

µσ
cv = 〈s|r|x+ iσy〉/

√
2 = (ex + iσey)µ/

√
2 (A.18)

and contains the basic dipole moment µ = 〈s|x|x〉. While the scalar product

µσ
cv ·
(
µσ′

cv

)∗
=
µ2

2
(ex + iσey) · (ex − iσ′ey) =

µ2

2
(1 + σσ′) = µ2δσσ′ (A.19)

is spin diagonal, we have

R · µσ
cv = µ (X + iσY ) /

√
2 (A.20)

and the Förster potential (A.15) become

W σσ′

F (R) =
e2µ2

ε∞R5

[
R2δσσ′ −

3

2
(X + iσY ) (X − iσ′Y )

]
. (A.21)

The spin conserving term (σ = σ′) reads

W 11
F (R) = W−1−1

F (R) =
e2µ2

ε∞R5

[
Z2 −

(
X2 + Y 2

)
/2
]
, (A.22)

while the spin scattering term is

W 1−1
F (R) = W−11

F (R) =
e2µ2

ε∞R5

3

2
(X + iσY )2 . (A.23)

The Förster potential in Eq. (A.15) is derived in the limit of dipole-dipole
interaction. Its functional form is completely given by symmetry. The actual
shape of the Wannier functions determines only the prefactor µ. We now
show that the same holds for the Coulomb correction in Eq. (A.12). Let us
focus on the electron-hole term. For the x− y symmetry of Eqs. (A.17), one
has x2 = y2, and defining the anisotropy

ξ = x2 − z2 , (A.24)

we find the simple result

∆WC(R) =
ξ

µ2
WF (R) . (A.25)
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Note that only the hole state contribute to ξ. To be specific, if one approxi-
mate the Wannier functions by Gauss orbitals

wc(r) =
1

N
exp(−r2/4µ2) , (A.26a)

wv(r) =
x+ iy√

2µN
exp(−r2/4µ2) , (A.26b)

with normalization N2 = (2π)3/2µ3. By construction the length scale equals
the basic dipole µ. The anisotropy come out to be ξ = d2, ending up with

∆WC(R) = WF (R) . (A.27)

The Coulomb correction is just as important as the Förster correction. How-
ever, spin transfer due to anisotropy rests exclusively on the nondiagonal
Förster term.
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of the Università degli studi di Napoli Federico II, Italy. Degree in
Physics from the Università degli studi di Napoli Federico II (Laurea
in Fisica, 110/110 cum laude), under the supervision of Prof. Domenico
Ninno and Dr. Giovanni Cantele. Title of the dissertation: Effetti di
correlazione elettrone-elettrone in strutture di silicio poroso (Electron-
electron correlation effects in porous silicon nanostructures).

September 1990 - July 1996: High school studies, Napoli, Italy. Scien-
tific Bachelor.

Professional experience

Research in the frame of PhD studies. 200 hours of teaching activities
(assistent for undergraduate couses).

April 28th May 5th, 2001 : Guide for the scientific exposition Fram-
menti di imparagiocando , promoted by INFM (National Institute for
the Physics of Matter).

Teaching experience

From october 2003 to present assists in the following undergraduate
courses: introduction to numerical simulation, general physics, mathe-



matical analisys, statistical physics, advanced statistical physics.

Research interests

Theory of condensed matter physics. In particular, electronic states
and optical properties of semiconductor nanostructures.

Language skills

Italian: mother language.

English: fluent, spoken and written.

French: fluent, spoken and written.

German: basic knowledge.

Spanish: basic knowledge.

Other skills

Knowledge of Windows XP, Macintosh, Linux and Unix operating sys-
tems. Matlab programming, especially for computational physics and
numerical simulations. Basic knowledge of Fortran 77 and Fortran 90
progamming.

Publications

G. Parascandolo, G. Cantele, D. Ninno and G. Iadonisi, Interplay be-
tween quantum confinement and electron-electron interaction in de-
formed silicon quantum wires, Phys. Rev. B, 68, 245318 (2003).

G. Parascandolo and V. Savona, Long-range radiative interaction be-
tween semiconductor quantum dots, Phys. Rev. B, 71, 45335 (2005).

G. Parascandolo and V. Savona, Long-range radiative interaction be-
tween semiconductor quantum dots, Superlattices and Microstuctures,
doi: 10.1016/j.spmi.2007.03.007, 2007.

Conferences

G. Parascandolo and V. Savona, Long-range radiative interaction be-
tween semiconductor quantum dots, EQUONT-3, September 19-23,
2004. Cambridge, United Kingdom. (poster)



G. Parascandolo and V. Savona, Dephasing in quantum dot molecules
via exciton-acoustic phonon coupling, OECS-9, September 5-10, 2005.
Southampton, United Kingdom. (oral)

G. Parascandolo and V. Savona, Theory of transient four-wave mixing
in coupled quantum dot systems, ICPS-28, July 24-28, 2006. Vienna,
Austria. (poster)

G. Parascandolo and V. Savona, Long-range radiative interaction be-
tween semiconductor quantum dots, PLMCN6, September 25-29, 2006.
Magdeburg, Germany. (oral)


