000103743 001__ 103743
000103743 005__ 20190509132124.0
000103743 0247_ $$2doi$$a10.5075/epfl-thesis-3804
000103743 02470 $$2urn$$aurn:nbn:ch:bel-epfl-thesis3804-1
000103743 02471 $$2nebis$$a5339409
000103743 037__ $$aTHESIS
000103743 041__ $$aeng
000103743 088__ $$a3804
000103743 245__ $$brealistic modeling of the imaging process and measurements of resonant plasmonic nanostructures$$aApertureless SNOM
000103743 269__ $$a2007
000103743 260__ $$bEPFL$$c2007$$aLausanne
000103743 300__ $$a145
000103743 336__ $$aTheses
000103743 502__ $$aChristian Hafner, Giovanni Dietler, Javier Aizpurua
000103743 520__ $$aThis thesis studies apertureless Scanning Near Field Optical Microscopy, a technique that uses the apex of a very sharp tip to obtain local optical information with lateral resolution much beyond the diffraction limit. Both theoretical and experimental results are discussed. The theoretical work is a significant advance towards the quantitative convergence of experiments and theoretical predictions, and should be useful in aiding the interpretation of measured images. Extended tips and substrates are used, and the detector is also carefully modeled. A static tip in vacuum serves to study the influence of the tip and illumination geometry on the far fields and on the near fields in the proximity of the tip apex, the volume used to probe the sample. Including a gold substrate and the commonly used demodulation scheme allows to study the discrimination of the components carrying the local information. A very good discrimination is verified for silicon tips and small oscillation amplitudes, as far as the tip interacts closely with the substrate and the oscillation remains highly sinusoidal. The imaging process is studied by including patterned substrates. The obtained signal is mostly sensitive to a few nanometers of depth into the sample, and the influence of the scanning conditions on the level of signal, background suppression and lateral resolution is characterized. Further, a closer look into the behavior of the extended physical detector reveals the influence of the spatial inhomogeneities of the scattered fields and, for interferometric measurements, the large significance of the optical phase. Experimentally, different techniques are first described that can facilitate images with clear local information. A cross polarization scheme is introduced which is very useful for non-perturbative measurements. It is applied to the mapping of the the field distribution surrounding plasmonic structures, for both the phase and the amplitude. Beyond dipolar resonances, I also study coupled dipoles and quadrupole field distributions. When imaging artifacts are avoided, the obtained images closely resemble theoretical expectations.
000103743 6531_ $$aApertureless
000103743 6531_ $$aSNOM
000103743 6531_ $$aRealistic simulations
000103743 6531_ $$amodeling
000103743 6531_ $$aMMP
000103743 6531_ $$aImaging
000103743 6531_ $$aPlasmonics
000103743 6531_ $$aNano-Optics
000103743 6531_ $$aNon-perturbative
000103743 6531_ $$aDemodulation
000103743 6531_ $$aQuantitative
000103743 6531_ $$aNearfield
000103743 6531_ $$aFarfield
000103743 6531_ $$aExperiments
000103743 6531_ $$aHigher harmonics
000103743 6531_ $$aOptical Phase
000103743 6531_ $$aExtended detector
000103743 6531_ $$aExtended tips
000103743 6531_ $$aStrong interaction
000103743 6531_ $$aScanning Probe Microscopy
000103743 6531_ $$aSonde sans ouverture
000103743 6531_ $$aSNOM
000103743 6531_ $$aSimulation réaliste
000103743 6531_ $$aModélisation
000103743 6531_ $$aMMP
000103743 6531_ $$aImages
000103743 6531_ $$aPlasmonique
000103743 6531_ $$aNano-optique
000103743 6531_ $$aNon perturbatrices
000103743 6531_ $$aDémodulation
000103743 6531_ $$aQuantitative
000103743 6531_ $$aChamp proche
000103743 6531_ $$aChamps lointains
000103743 6531_ $$aExpériences
000103743 6531_ $$aHarmoniques supérieurs
000103743 6531_ $$aPhase optique
000103743 6531_ $$aDétecteur étendu spatialement
000103743 6531_ $$aPointe étendue spatialement
000103743 6531_ $$aInteraction forte
000103743 6531_ $$aMicroscopie à Sonde à Balayage
000103743 700__ $$0(EPFLAUTH)162494$$g162494$$aEsteban Llorente, Rubén
000103743 720_2 $$aKern, Klaus$$edir.$$g105546$$0240038
000103743 8564_ $$uhttps://infoscience.epfl.ch/record/103743/files/EPFL_TH3804.pdf$$zTexte intégral / Full text$$s3427973$$yTexte intégral / Full text
000103743 909C0 $$xU10152$$0252366$$pLSEN
000103743 909CO $$pthesis-bn2018$$pDOI$$pSB$$ooai:infoscience.tind.io:103743$$qDOI2$$qGLOBAL_SET$$pthesis
000103743 918__ $$dEDPY$$cIPN$$aSB
000103743 919__ $$aLSEN
000103743 920__ $$b2007$$a2007-7-26
000103743 970__ $$a3804/THESES
000103743 973__ $$sPUBLISHED$$aEPFL
000103743 980__ $$aTHESIS