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Abstract

The range of applications of mathematical modelling in biosciences has recentlyexpanded to en-
compass problems posed bybiomedicineandsport sciences. Topics of interest are for instance the
prediction of the response of an athlete to exercise, the pharmacokinetics of a chemical compound, or
the detection of illicit drugs.

In this work, we consider some of these problems, related to metabolism, circulation and mass
transport in tissues. First, we address the quantitative analysis of the biochemical reactions that are
responsible of energy production in muscle cells. These reactions are strictly dependent on chemical
exchanges between blood and tissues, by several physiological auto-regulation mechanisms. For this
reason, we consider coupled problems in which the reaction phenomena are influenced by transport in
blood. In particular, the problem of local blood perfusion and supply ofsubstrates to tissues is studied
in detail.

The processes underlying the interaction between metabolism and circulationfeature a multiscale
nature: for instance, although metabolism takes place in cells, it modifies the hemodynamics of pe-
ripheral (capillaries) and central (heart) circulation. Therefore, wewill set up a hierarchy of models,
corresponding to these different scales.

At first, we adopt an integrative approach, based on a compartmental model of the whole-body
response to exercise, or more generally to variations in skeletal muscle metabolism. This model is the
higher level of the hierarchy, describing the interactions between organs. Then, we increase the level
of detail and focus on isolated tissues and vessels, considering more accurate one-dimensional models
for blood flow and mass transport, as well as coupled 1D-3D models of tissue perfusion. In the latter
models, the microvascular matrix is represented as a three-dimensional homogeneous medium, where
larger vessels are described as 1D networks: circulation, transport and reaction of biochemical species
are modelled at both the scales.

The models considered in this work may provide a multi-scale analysis of metabolicprocesses,
such as those induced by exercise, that often begin at cellular level, progressively propagate up through
the hierarchy of scales, until adaptation of the whole body is reached.

Examples of simulations, dealing with exercise protocols or clinical study cases, are provided to
support the range of applications.

Keywords: mathematical models, metabolism, exercise, blood perfusion, multiscale models.
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Résumé

La modélisation mathématique a récemment élargi son domaine d’applications à lamédecineet aux
sciences du sport. Quelques sujets d’intérêt sont par exemple la prédiction de la réponse corporelle
d’un athlète lors de l’exercice, la pharmacocinétique et le métabolisme d’un médicament, la détection
de substances illégales.

Dans cette thèse, on considère quelques-uns de ces problèmes, concernant le métabolisme, la
circulation sanguine, et le transport de masse dans les tissus. Premièrement, on aborde l’analyse
quantitative des réactions bio-chimiques qui soutiennent la production d’énergie mécanique dans les
cellules musculaires. Ces réactions dépendent fortement des échangeschimiques entre le sang et
les tissus par le biais des plusieurs systèmes physiologiques d’autorégulation. Nous étudions donc
l’influence entre le métabolisme, l’hémodynamique et le transport de masse. Deuxièmement, nous
considérons en détail le problème de la perfusion sanguine et de la distribution des substrats dans les
tissus.

Le métabolisme et la circulation sanguine reposent sur des processus quiont lieu à différentes
échelles. D’une part, le métabolisme interagit au niveau cellulaire. D’autre part, il influence l’hémo-
dynamique de la circulation périphérique (capillaires) et centrale (coeur). Par conséquent, nous intro-
duisons une hiérarchie des modèles correspondants à ces différenteséchelles.

À un premier niveau, on considère une approche globale basée sur unsystème d’équations dif-
férentielles qui modélise la réponse corporelle à l’exercice. Ce modèle représente le sommet de la
hiérarchie, qui correspond aux interactions entres les organes. À undeuxième niveau, on améliore la
précision en considérant des modèles unidimensionnels de flux sanguin, ainsi que des modèles cou-
plés 1D-3D de perfusion de tissus. Dans ces derniers, le réseau des capillaires est décrit comme un
milieu poreux 3D, tandis que les vaisseaux majeurs sont représentés par des objets 1D.

Les modèles considérés dans ce travail peuvent contribuer à l’analysemulti-échelle des processus
métaboliques qui naissent au niveau cellulaire, se propagent le long de lahiérarchie d’échelles, jusqu’à
ce que l’ensemble du corps se soit adapté.

Finalement, on présente quelques exemples de simulations, concernant caspratiques en médecine
et physiologie du sport, afin de présenter un éventail des applications possibles.

Mots-clés: modèles mathématiques, métabolisme, exercice, perfusion des tissus, modèlesmulti-
échelle.
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Introduction

The increasing interest in biomathematics has recently led to new applications ofscientific computing
in domains that were previously exclusive of medicine: starting with metabolism and other phenom-
ena taking place at cellular level, up to the description of tissues and organsand their regulatory
mechanisms, mathematical modelling may help to understand the behavior of whole-body processes.

As an example, the body’s response to heavy exercise begins in skeletalmuscles, but rapidly
induces adaptations of peripheral and central circulation. In order to correctly describe this response,
one has to take into account at the same time blood flow, transport of chemicals (oxygen, carbon
dioxide, lactate, . . . ) in blood, and biochemical reactions in tissues [12], [91], [59]. Similar problems
are encountered in the pharmacokinetics of specific drugs. All these problems have an intrinsic interest
in medicine: in particular, the quantitative prediction of the distribution of a chemical compound in
living tissues may provide important contributions to the development of new treatments or products.

Mass transport in tissues is led by bloodperfusion, that is the blood volume flow exchange through
a given volume of tissue. Perfusion is a valuable indicator of the physiological condition of the tissue.
For example, it is known that changes in blood perfusion correlate with several pathological processes,
such as those found with the development of tumors. Detecting changes in local perfusion may help
finding, identifying, and determining the extent of tumors or lesions. In general, the evaluation of
the microcirculation in a variety of tissues (e.g. myocardial, renal, intestinal, cerebral, and spinal) is
a valuable information in a number of cases, from surgical intervention to thedesign of biomedical
devices. Of course, modelling and simulating tissue perfusion may provide a better understanding
of the inherent mechanisms and improve diagnosis. The benefits of using computer models are even
more pronounced when dealing with the transport of oxygen and other chemicals. Just to cite a
few examples, in [82, 87] accurate methods are employed to study the transfer of oxygen and other
chemicals to the arterial walls; in [63, 19], models of circulation and mass transport are used to predict
the effects of pathologies or devise different shapes of prostheses for the treatment of heart diseases;
computer simulation of biological transport phenomena has been applied in sport medicine as well
[106, 62], since the study of the physiological processes from oxygen uptake to local biochemical
pathways [69, 26, 41] has a remarkable interest.

From this picture, it is clear that mathematical models of blood perfusion and transport of chemi-
cals in tissues are important tools for diagnosis and research in medicine. However, the description of
blood flow from large vessels down to the network of hundreds of thousands of capillaries per square
centimeter supplying a tissue, is a very complex matter. The more precise the models, the more expen-
sive the corresponding computations: thus, a three-dimensional simulation of blood flow and transport
is unaffordable for the whole human cardiovascular system. Only local results are available in this
regard (see for example to [82]). If on one hand a need for global predictive models exists, on the other
hand the complex multiscale nature of circulation and metabolism makes their simulationa difficult
task. To our knowledge the only mathematical models allowing both the simulation of mass transport
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2 INTRODUCTION

at the macroscopic scale of the whole cardiovascular loop and the prediction of substrate delivery to
a specific organ or location, are purelylumpedmodels (obtained by compartmental analysis, see for
instance [15]), in which any geometrical information about flow or distribution of chemicals is lost:
works adopting this approach are for instance [12], [58]. Nevertheless, alternative approaches exist,
consisting in using reduced models preserving some geometrical informations. For instance, three-
dimensional models of blood flow can be reduced to one-dimensional [84, 86, 29, 104, 31]: thanks to
the computational saving, they allow simulating the behavior of complex vascularnetworks.

The purpose of this thesis is to develop numerical methods for the simulation of transport-reaction
phenomena in living tissues. We follow a multiscale approach, in which a hierarchy of models, having
different levels of detail, is employed. Models belonging to different scales interact to represent the
mutual influence of the corresponding “subsystems” of the body, with the aim of describing complex
processes such as exercise (see fig. 1). As instances of interacting scales we will consider: organs
and circulatory system; fast flow in large vessels and slow flow in the capillary bed; the transport of a
chemical in a vessel and the metabolism of the same chemical in the tissue suppliedby the vessel.

Figure 1: Macroscales and microscales interacting in the human body: localprocesses taking place
at cellular level affect the behavior of whole organs. For instance, if local metabolism is altered in
skeletal muscle because of exercise, this results in local changes in tissueconcentration of oxygen,
carbon dioxide, lactate and several other substrates. The peripheralcirculation responds by increasing
the cross-sectional area of the vessels supplying the tissue. This fall in peripheral resistance is partially
responsible of adaptation of heart beat. On the other hand, liver and other organs are involved in the
process as regulators of arterial concentrations of some substrates (i.e.glucose).

The outline of this dissertation is as follows (see also the thesis organization in fig 2).



INTRODUCTION 3

In chapter 1, we investigate the use of mathematical models for describing the response ofcircu-
lation and metabolism to extreme conditions at high power output by acompartmentalapproach. A
special attention is paid to the modelling of biochemical pathways at cellular level.We include in our
analysis the baroreflex and chemoreflex feed-back systems, which areresponsible of the mutual in-
fluence of circulation and metabolism (see [101], [59]). The results of simulations of typical exercise
protocols are discussed, emphasizing the changes in blood concentrations of relevant chemicals such
as oxygen, carbon dioxide, lactate, glucose.

There is a number of works dealing separately with cardiovascular or metabolic modelling; how-
ever, the interaction between these processes due to physiological feedback systems is often poorly
described, even if integrative models have been proposed as well (seefor instance [12]). In this chap-
ter we give a more detailed analysis of the interplay between circulation and biochemistry during
effort conditions, for instance considering the key role of the tissue vasomotor tone adaptations, and
the modified baroreflex regulatory effect during exercise.

Moreover, we treat in detail the problem of parameter identification, which isa central topic when
dealing with a large number of equations modelling biochemical reactions, sinceusually only partial
informations are availablein vivo. Several approaches (gradient algorithms, genetic algorithms, hybrid
algorithms) are compared and discussed.

In chapter 2, we introduce reduced models for the simulation of the mass transport in vessels.
We extend an already existing one-dimensional model of blood flow to treat for instance oxygen
transport and, in general, the transport of any chemical. By an asymptoticanalysis, we derive the 1D
mass transport equations in the vessel and give an accurate analysis ofthe special case offlat profiles
for both velocity and mass. In the latter case, we show the global existence of regular solutions
under suitable hypotheses, basing our arguments on [13]; in particular we treat the finite vessel case.
Moreover we perform an accurate characteristics analysis of the coupled system (blood flow and mass
transport) in order to assign suitable boundary conditions. We provide numerical results including an
example of coupling between the 1D model and a dynamical system representing a perfused tissue.

In chapters 3and4, we propose a mathematical framework that will be the basis of our multiscale
approach to tissue perfusion. Namely, we study the coupling between two diffusion-reaction prob-
lems, one defined on a 3D domain, the other on a 1D manifold embedded in the 3D domain. The
motivation is to apply such models to capture the influence of thegeometryof a vessel network on
the perfusion of the surrounding tissue. The coupled 3D-1D problems have a high dimensional gap:
the 3D solutions are singular near the 1D manifold, so that a special analysisis needed. We introduce
ad-hocfunctional spaces and prove the well-posedness in cases of interest.

To our knowledge, this is the first attempt to employ such kind of multiscale models for blood flow
and transport phenomena in living tissues. A similar approach is often adopted in geomechanics, for
example when modelling groundwater flows in fractured porous media. Nevertheless, the dimensional
gap of the 1D-3D coupling between fractures and porous matrix is not standard: its analysis is the main
contribution of this chapter.

In chapter 5finite element approximation schemes for the problems introduced in chapters 3and
4 are considered and discussed. We introduce several numerical techniques that allow for accurate
solutions despite the presence of the singularity. We consider the case in which the 1D mesh is built
as anedge pathin the 3D computational grid; a specific algorithm to extract such edge path from
medical data is presented in the next chapter.



4 INTRODUCTION

In chapter 6, we introduce specific models for tissue perfusion and mass transport in tissues. We
take advantage of the theory presented in chapters 3 and 4, and use amultiscale approach: the 3D
microvascular matrix is represented as an homogeneous medium, where larger vessels, described as
1D manifolds and possibly arranged in network structures, are supplyingblood to the lower vascular
hierarchies in the tissue. The major advantage of this approach is the reduced computational cost of
simulations, at least with respect to a full 3D model of the vessel network. The low cost is also due to
the fact that time scales split as well: typically blood flow isfast in the network of major vessels and
slow in the microvascular matrix. Consequently, we can consider different time resolutions (multirate
schemes) for the two scales, assigning a larger time step to the 3D part of the coupled model.

We discuss computational techniques, we propose algorithms to automatically extract the mesh of
the 1D vessel network from the 3D tissue mesh and available data provided by medical imaging, and
show applications in some cases of clinical interest dealing with blood perfusion and oxygen delivery
to tissues (for instance the brain).

Chapter 1

Interaction between
circulation and local

biochemical processes

Chapter 2

1D reduced models
for blood flow and mass transport

Chapter 3

Introducing 1D-3D
coupled problems

Chapter 4

Analysis of 1D-3D
coupled problems

Chapter 5

FEM schemes for
the approximation

of the solution of 1D-3D
coupled problems

Chapter 6

Multiscale modelling of blood flow
and mass transport in tissues

Figure 2: Thesis organization.



Chapter 1

Modelling the interaction between
cardiovascular system and skeletal
muscle metabolism

1.1 Introduction

The analysis of the physiological response of the human body to local variations in metabolism is
a very complex subject. Despite a certain number of biochemical data, only a few mathematical
models are available to provide quantitative descriptions of the coupling between hemodynamics and
metabolism. Beyond doubt, the following aspects have important roles in the physiological adapta-
tions:

a) the biochemical processes in skeletal muscle;

b) the substrate (oxygen, glucose, lactate, . . . ) transfer between blood and tissues;

c) the cardiovascular feedback with respect to arterial pressure andsubstrate concentrations (i.e.
baroreflex and chemoreflex effect).

In this chapter1 we consider the mathematical modelling of the interplay between blood flow
and local biochemical reactions, especially under effort conditions. Very often the existing studies
either focus on the cardiovascular part (as in [59]) or investigate the biochemical processes (see [52],
[49], [53]); an integrative approach is developed in [12], howeverthe topic of the autoregulation
of the cardiovascular system is neglected. In the next sections, we firstintroduce the physiological
framework of the problem and discuss the standard variables of interest,considering for instance an
individual running on a treadmill or riding a cycloergometer; then we present the model, and finally
we discuss the results of numerical simulations, comparing them with available data.

1.1.1 Cardiovascular parameters and auto-regulation

In a standard treadmill test, sport physicians usually measure some typical parameters related togas
exchange, like theoxygen uptakėVO2 and thecarbon dioxide productioṅVCO2 . BothV̇O2 andV̇CO2

are mass transfer rates (they are expressed for instance in[ l min−1]); their values are obtained by a

1Part of this chapter has been published in the proceedings of CEMRACS 2004 [21].
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6 INTERACTION BETWEEN CIRCULATION AND TISSUE METABOLISM

digital system that samples the expired air, and measures chemical concentrations by mass spectrom-
etry2.

Among the other variables measured in such a test, there isheart rateHR, whose units are beats
per minute[bpm] = [ min−1]. The heart rate is related to thecardiac outputQ and thestroke volume
Vstrokeby the simple relation

Q = HRVstroke,

whereQ (usually expressed in[ l min−1]) is the total volume of blood pumped by the heart through the
circulatory system per unit time, and Vstroke is the volume of blood ejected at each heart contraction.

A normal value for cardiac output at rest is close to 5-6 l min−1. This increases to approximately
15-25 l min−1 in healthy adults at maximal exercise. Stroke volume ranges from approximately
80 ml during upright rest up to130 ml during exercise. In elite endurance athletes however, stroke
volumes can be as high as 180-200 ml. During dynamic exercise heart rate increases with respect to
the workload and oxygen consumption [10]. Typically, heart rate ranges from 50-70 bmp at rest up to
180-200 bpm at maximal effort.

The measurement of substrate concentrations in blood is a more complex procedure: it is generally
performed via catheter sampling. We denote the chemical concentrations by[O2], [CO2], and so on:
an important role in exercise physiology is played by the blood concentration of O2 in arteries,[O2]a,
and in veins,[O2]v. The arterial-venousO2 difference

∆a
v[O2] = [O2]a − [O2]v

is an index of the oxygen consumption by tissues (especially skeletal muscle). Chemical concentra-
tions in blood are generally expressed in terms of molar values[ mmol/ l] or fractional values[ ml/ l].
The arterial-venous oxygen difference is related toV̇O2 andQ by the following relationship

V̇O2 = Q∆a
v[O2],

which expresses the balance between oxygen intake and consumption.
We point out that it is possible to measure chemical concentrationsin tissuesas well, after a local

biopsy; however, this is a rather complex procedure, so thatin vivodata for human metabolism under
effort conditions are difficult to obtain. Recently, MRI is becoming a powerful tool for non-invasive
measurement of local metabolic demand [90]. Often the units associated to the concentration in a
tissue are[ mmol/kgdw], where[kgdw] means kg of dry weight of tissue.

In dynamic exercise the whole body arteriovenous oxygen difference∆a
v[O2] increases with ex-

ercise intensity and oxygen consumption. Typically,∆a
v[O2] ranges from50 ml(O2)/ l(blood) at

rest to approximately150 ml/ l during maximal exercise. Arterial oxygen content of approximately
200 ml(O2)/ ml(blood) does not change substantially with increasing exercise intensity but venous
content falls considerably until approximately 85% of the oxygen is extracted at maximal effort.
Moreover, at rest only a small percentage of the total capillaries in a given tissue are open, while
during dynamic exercise the reduced oxygen concentration causes the arterioles and capillaries to di-
late, and the opening of closed capillaries. This effect, calledchemoreflex, provide more blood (and

2Generally one measures the fractional concentrationsFe of expired gases; this provides the pulmonary gas exchange
rates, sinces the fractional concentrations of inspired gasesFi are known. For example,

V̇O2
= V̇e

„

Fi,O2

1 − Fe,O2
− Fe,CO2

Fi,N2

− Fe,O2

«

,

whereV̇e is the ventilation.



1.1 – INTRODUCTION 7

then more oxygen) to the tissues. It is a biochemical effect that involves thecardiovascular system,
because it results in a dramatic fall inhydrodynamic resistance3 of the tissues fed by the circulatory
system.

This high variability in the peripheral resistance of the small vessels influences the cardiac activity
via thebaroreflexeffect, which is a physiological regulation system that maintains the arterial pressure
in the large arteries close to a reference mean value (typically90 − 100 mmHg). It consists of stretch
receptors in most of the large arteries of the thorax and neck (especially the aortic arch and carotid
sinus), which respond to changes and rate of change in pressure between60 and180 mmHg for the
carotid and90 and 210 mmHg in the aorta. The receptors act on the heart rate and on the heart
contractility: for example, if the arterial pressure decreases, thefiring rate (that is the nerve activity,
expressed in impulses/second) of the aortic arch and carotid sinus increases, and this causes a rise
in HR and in heart contractility (that is, as we will see, in Vstroke). The baroreflex effector controls
also the peripheral resistance of the arterioles and capillaries, but during exercise the main effect is on
the heart. The baroreflex is a very important feedback system becausethe arterial pressure is a vital
parameter (if the blood pressure does fall, the oxygen partial pressuredoes; conversely, high pressures
are related to cardiovascular diseases).

Typically, the oxygen fall in exercising tissues causes (via chemoreflex)a reduction in their hydro-
dynamic resistance and then in the overall systemic resistance; in turn, the baroreflex acts immediately
to compensate the arterial pressure decrease. Hence, the mean arterialpressure does not change sig-
nificantly (generally an increase up to125 − 130 mmHg is observed), while the cardiac output does
(see tab. 1.1). The functional structure of these interactions is represented in fig. 1.1.

Parameter Rest Exercise ∆%

Cardiac outputQ [ l min−1] 6 21 +250%

Arterial PressureP [ mmHg] 90 105 +16.7%

Systemic resistanceR [ mmHg min l−1] 15 5 −66.7%

Table 1.1: Differences inQ, P andR = P/Q between rest and strenuous dynamic exercise.

To sustain physical activity for more than a few seconds requires dramaticcirculatory adjustments
to ensure adequate perfusion of the exercising skeletal muscle as well asof vital organs such as
the heart and brain [35]: in fact, the demand of blood flow in a large volume of exercising muscle
can approximate the maximal cardiac output [92]. Thus, the cardiovascular system has to control
the delicate balance between pressure regulation and oxygen delivery,being theredistribution of
the blood flow to each tissue affected by the local state of vessel dilatation and number of open
capillaries (as reported in tab. 1.2). The exact mechanisms involved in this integrated process are not
entirely known. It is established that hemodynamic adaptations to exercise are mediated by a decrease
in parasympathetic and an increase in sympathetic activity controlled both by feed-forward stimuli
from increased central drive (due to the voluntary muscle contraction) and by feedback arising from
mechanically and metabolically sensitive afferent nerve endings in the largearteries and contracting
skeletal muscles.

3We recall the Poiseuille’s law for a cylindric tube. If a pressure jump∆P is applied between the inlet and the outlet,
the flow rate is given by

Q =
∆P

R
, R =

8ηl

πr4
,

wherel is the tube length,r the section radius, andη the blood viscosity.R is called haemodynamic resistance, as if the
tube were an electrical resistance (in whichQ is a current and∆P a voltage).
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Organi Qi ( ml min−1), rest Qi/Q % Qi ( ml min−1), exercise Qi/Q %

Brain 650 13 750 4
Heart 215 4 750 4

Skeletal Muscle 1030 20 12500 73
Skin 430 9 1900 11

Kidney 950 20 600 3
Splanchnic Organs 1200 24 600 3

Others 545 10 400 2

Total 5000 100 17500 100

Table 1.2: Flow rates at rest and at strenuous dynamic exercise [34] .

Chemoreflex Baroreflex

Circulation

Systemic resistances
Venous concentrations

Flow rates
Arterial concentrations

Pressures

Metabolism

Figure 1.1: Functional representation of the interaction between circulationand metabolism.

1.1.2 Gas exchange and ventilation

If V̇O2 = V̇O2(t) is measured during an exercise consisting of an increasing workload, thetime course
shows a maximal oxygen uptakeV̇O2max that cannot be exceeded. For young subjects, this plateau is
usually 10-20 times the basalV̇O2 uptake and it can be increased by appropriate training in high-fit up
to 20-22 times the basalV̇O2 .

This maximal oxygen uptake is an useful (even if somehow imperfect) predictor of the ability to
perform prolonged dynamic external work or, more specifically, of endurance athletic performance,
because in this case the energy currency of muscles is the aerobic one. In principle, as there are several
physiological mechanisms controlling the ventilation, we should consider a model of gas exchange;
nevertheless, for healthy people the limiting factor to aerobic performancesis determined not by lungs
(as the concentration gradient between the alveolar oxygen and the venous one is often high enough to
saturate the arterial blood, even at a very high cardiac output), but rather by the cardiovascular system.
In fact, as described in tab. 1.3, we can observe that the arterial partialpressures PO2 and PCO2 are
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Exercise intensity V̇e ( l min−1) PO2 ( mmHg) PCO2 ( mmHg) Blood pH

Rest 5 103 36 7.40
Walking 20 103 36 7.40
Jogging 45 106 44 7.40

Running fast 75 - 44 110 44 7.32

Table 1.3: Acute respiratory response to graded dynamic exercise in a 30-year-old untrained woman.

almost the same at rest and under effort conditions. Hence, in this chapter we do not consider a
ventilation model and we suppose that[O2]a and[CO2]a are constant.

In tab. 1.3 a decrease in blood pH (acidosis) with respect to exercise intensity is observed. From
the midway point betweeṅVO2rest andV̇O2max, lactic acid begins to accumulate in blood. This point,
which depends on the type of work involved and on the level of fitness of the subject, is calledlactate
threshold. Lactate concentration gradually rises with work intensity, as more and more muscle fibers
must rely on anaerobic metabolism: this causes metabolic acidosis, which is partially responsible for
muscle fatigue.

1.1.3 Metabolism

Several chemicals are involved in muscle contraction: a large number of reactions take place in each
fiber in order to transform the chemical energy of certain molecular boundsto mechanical work. In
particular, this is obtained fromATP (adenosine triphosphate) breakdown as follows:

ATP
MR−−→ ADP + Pi + mechanical energy(' 30KJ) + heat,

wherePi is an inorganic phosphate group, andADP is the molecule of adenosine diphosphate.
We denote by MR themetabolic rate, that is the rate at whichATP is converted toADP in the
skeletal muscle tissue (expressed in[ mmol/ s]). As muscle contractions rely completely on the former
reaction, MR is related to the power output during exercise. Actually, the amount of the mechanical
energy available for muscular work obtained fromATP breakdown is not always equal to30KJ: it
depends on the exercise level [50], so that the relationship between MR and power output is generally
nonlinear.

Several reactions act to sustain the energy production in cells by restoring ATP (see [37]): fol-
lowing [11], we will assume the metabolic pathways described below.

1. Phosphocreatine breakdown:this is the most important pathway for short-termATP produc-
tion. The reaction is

PC + ADP
PCb−−−→ CR + ATP,

where creatine (CR) andATP are produced from phosphocreatine (PC) andADP . We denote
by PCb this reaction. As a source ofATP , the phosphagen system can only supply a cell for
8 to 10 seconds during the most strenuous exercise; then thePC concentration becomes too
small for sustaining the reaction.

2. Phosphocreatine synthesis(PCs): this is the inverse pathway ofPCb, and allows to restore
thePC stores usingATP :

CR + ATP
PCs−−→ PC + ADP.
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3. Anaerobic glycolysis(GLb). The overall stoichiometry of glycolysis is the following one (we
denote it byGLb, or glucose breakdown):

GL + 2ADP + 2NAD
GLb−−→ 2PY + 2ATP + 2NADH.

Like most chemical reactions, glycolysis slows down as its products, pyruvic acidPY and the
reduced coenzymeNADH, build up.

4. Pyruvate reduction (PY r). In order to speed up the glycolysis, pyruvate can be reduced and
converted to lactate:

PY + NADH
PY r−−→ LA + NAD.

Lactic acid itself eventually builds up, slowing metabolism and contributing to musclefatigue.

5. Gluconeogenesis(GLs) In splanchnic organs (namely in the liver) pyruvate can be converted
back to glucose:

2PY + 2ATP + 2NADH
GLs−−→ GL + 2ADP + 2NAD.

This pathway is not observed in skeletal muscle.

6. Pyruvate oxidation (PY o). This pathway allows to metabolize the pyruvic acid aerobically.
Pyruvic acid is converted to a molecule called acetyl group and put into theKrebs cycle, from
which high energy electrons are released toNAD:

PY + 5NAD
PY o−−−→ 5NADH + 3CO2.

7. Oxidative phosphorylation. The high energy electrons obtained by the oxidation ofPY are
sent to a process within the mitochondria known as theelectron transport chainwhich produces
ATP , the waste products beingCO2 andH2O:

3ADP + NADH +
1

2
O2

OP−→ 3ATP + NAD + H2O.

This reaction will be denoted by OP (oxidative phosphorylation). In this process,O2 is one of
the reactants: this reaction is responsible for the high oxygen demand of tissues during exercise.

8. Glycogen synthesis and breakdown(GY s,GY b): skeletal muscle and liver contain a certain
store of glycogen (GY ), a big molecule that is a sort of gathering of several glucose molecules.
Glycogen can provide glucose by the following reaction:

GY + ADP
GY b−−−→ mGL + ATP,

wherem is the number ofGL molecules in oneGY molecule. However,GY can be restored
from GL via the following pathway

mGL + ATP
GY s−−−→ GY + ADP.

9. Lactate oxidation (LAo): this is the inverse reaction ofPY r. Pyruvate can be produced starting
from lactate:

LA + NAD
LAo−−→ PY + NADH.
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10. Free Fatty Acid oxidation (FAo): cells can oxidize free fatty acids (FA) to provideNADH
to the electron transport chain. The stoichiometry of this reaction is the following one:

FA + 43NAD
FAo−−−→ 16CO2 + 43NADH.

The main biochemical pathways we consider are depicted in fig. 1.2. We remark that there are some

Acetyl CoA

Krebs

Cycle

Phosphorylation

Oxidative

NAD

NADH NAD

NADHNAD
NAD

NADH

NADH

NAD

H2O

Triglycerides

ADP+Pi

ATP

ATP
ADP+Pi

LA PY

GL

GY

O2CO2

FA

Figure 1.2: Sketch of the main metabolic pathways.

chemicals that aretransportedby the blood, and other chemicals that are not. We assume thatPC,
CR, ADP , ATP , NAD, NADH andGY are not transported; they are produced and consumed
within the tissue.

1.2 Cardiovascular Model (CVM)

A cardiovascular model (CVM) is needed to compute the blood flow and the substrate flux delivered
to the different organs/tissues. In this chapter, we adopt acompartmentaldescription of the processes
of interest: our CVM will be a simple system of ordinary differential equations. We will take into
account the systemic circulation, but not the pulmonary one. The model scheme is depicted in fig. 1.3:
the block RH/L/LH represents the right heart, the pulmonary circulation with thelungs, and the left
heart. The left ventricle pumps the blood in the main arteries with a flow rateQa (corresponding to
the cardiac outputQ). The main arteries are represented by a complianceCa

4 and a resistanceRa,
that is the arterial pressurePa obeys the equation

Ca
dPa

dt
= Qa −

Pa − Ps

Ra
, (1.1)

beingPs the mean blood pressure between the main arteries and the capillary bed of tissues (systemic
pressure). The tissues include a global systemic complianceCs and a resistance. In the sequel we will
consider three compartments with different metabolic activities:

4We refer to [46] for the description of vessel compliance: basically, welinearize the mechanical behaviour of the vessels
and introduce a constantC such that the volume variations of blood in the considered compartment are proportional to the
pressure, that isV = Vu + CP , whereVu is the unstressed volume (constant).
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Qa

P aP v

P s

Q s

Qv

R sm

R sp

R o

RH / L / LH

R a

.

.

.

Figure 1.3: Scheme of a reduced circulatory system.

1. theskeletal musclecompartment, with resistanceRsm and blood flow rateQsm;

2. thesplanchniccompartment, with resistanceRsp and blood flow rateQsp;

3. a compartment representingother organs, with resistanceRo and blood flow rateQo.

Introducing the venous pressurePv and the venous complianceCv, we are able to express the flow
rate in each compartment as

Qi =
Ps − Pv

Ri
, i ∈ {sm, sp, o}. (1.2)

Moreover, we have the following equation for the systemic pressure:

Cs
dPs

dt
=

Pa − Ps

Ra
− Ps − Pv

Rs
, (1.3)

beingRs the total systemic resistance:

Rs =

(

1

Rsm
+

1

Rsp
+

1

Ro

)−1

. (1.4)

By the conservation of the total mass of blood, the venous pressurePv is linearly dependent onPa

andPs: if V0 andVu is the total and unstressed volume of blood, we have

CvPv = V0 − Vu − CaPa − CsPs. (1.5)

Equations (1.1,. . . ,1.5) can be recast in a set of two first-order linear ordinary differential equa-
tions, once the cardiac outputQa(t) is given. As we know from the previous section,Qa is related to
heart rate and stroke volume by

Qa = HRVstroke, (1.6)

and bothHR and Vstroke are under the control of the sympathetic and parasympathetic activities. We
assume

Vstroke= Ve,dia(Pv) − Vu,vent −
Pa

E
, (1.7)
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whereVe,dia is the end-diastolic ventricular volume (which is a known function of the venous pressure,
[107]), Vu,vent is the unstressed ventricular volume, andE is the ventricularelastance. Defining the
heart periodT = 1/HR, we follow [101] and assume

τT
dT

dt
= T0 − T − σT,s(fes) + σT,v(fev), (1.8)

τE
dE

dt
= E0 − E − σE(fes), (1.9)

fes = fes,∞ + (fes,0 − fes,∞)e−kesfcs , (1.10)

fev =
fev,0 + fev,∞ exp((fcs − fcs,0)/kev)

1 + exp((fcs − fcs,0)/kev)
, (1.11)

fcs =
fmin + fmax exp((P̃a − Pn)/ka)

1 + exp((P̃a − Pn)/ka)
, (1.12)

whereσT,s, σT,v andσE are monotonically increasing functions,Pn is thereference pressurevalue
(for example100 mmHg),P̃a is a zero-pole filtering of the arterial pressure,

τp
dP̃a

dt
= Pa − P̃a + τz

dPa

dt
, (1.13)

and fes , fev, fcs are respectively theefferent sympatheticactivity, efferent vagalactivity and the
carotid sinus firing rate. In this way the baroreflex control on the heart rate and elastance is taken into
account: if we consider a low-frequency regime, we haveP̃a ' Pa, andfcs increases with respect
to the arterial pressure. Thus, equations (1.8,1.9) represent a feedback system that acts on the arterial
pressurePa to get it close to the reference valuePn. For example, ifPa is small, thendT/dt < 0 and
dE/dt < 0, and the cardiac output increases; this in turn causes the rise ofPa toward the equilibrium
pointPn.

If the hydrodynamic resistances of tissues were known, equations (1.1,.. . ,1.13) would form a
closed linear dynamical system with 5 state variablesPa, Ps, T, E, P̃a. However, the vagal activity
and chemoreflex effect do influence the tissue resistances, so that we have to consider more state
variables. We model the chemoreflex as in [101], that is we define fori ∈ {sm, sp, o}:

τR̃i

dR̃i

dt
= R̃i,0 − R̃i + σR̃i

(fes), (1.14)

and then we follow an approach similar to [102], considering

Rsm =
R̃sm

1 + xsm
,

Rsp = R̃sp(1 + xsp), (1.15)

Ro =
R̃o

1 + xo
,

wherexi, i ∈ {sm, sp, o}, are new variables, that are supposed to be affected by the chemoreflex
activity fcm:

τxi

dxi

dt
= xi,0 − xi + Gxifcm, i ∈ {sm, sp, o}, (1.16)

whereGxi are positive constants. The chemoreflex effectorfcm = fcm([O2]sm) is a non-increasing
function of the oxygen concentration in the skeletal muscle tissue; by (1.16)and (1.15), the lower the
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Compliances and unstressed blood volumes:
Ca = 0.3 ml/ mmHg Cs = 3 ml/ mmHg Cv = 61.11 ml/ mmHg
V0 = 5300 ml Vu = 4700 ml Vu,vent = 16.77 ml

Vagal and sympathetic activity parameters in eq. (1.9-1.12): as in [101], where for θ ∈ {Ts, E, R̃sm, R̃sp, R̃o}:

σθ(fes) =



Gθ ln(fes − fes,min + 1) if fes > fes,min

0 otherwise
, and:

σT,v(fev) = GT,vfev.

T0 = 0.02 s τT = 2 s GT,s = 0.52 s2

GT,v = 0.26 s2

E0 = 1.69 mmHg/ ml τE = 2 s GE = 0.2 s · mmHg/ ml

R̃sm,0 = 0.6 mmHg · s/ ml τR̃sm
= 10 s GR̃sm

= 5.5 mmHg · s2/ ml
R̃sp,0 = 1 mmHg · s/ ml τR̃sp

= 10 s GR̃sp
= 3.5 mmHg · s2/ ml

R̃o,0 = 0.6 mmHg · s/ ml τR̃o
= 10 s GR̃o

= 1.5 mmHg · s2/ ml
xsm,0 = 1 τxsm = 1 s Gxsm = 6 s
xsp,0 = 1 τxsp = 1 s Gxsp = 0.04 s
xo,0 = 1 τxo = 1 s Gxo = 1 s

Chemoreflex activity and Pn shifting:
kcm = 0.25 kgdw2/ mmol2/ s [O2]

0
sm = 6 mmol/kgdw

Pn,0 = 92 mmHg τPn = 10 s GPn = 10 s · mmHg

Table 1.4: Cardiovascular model parameters.

oxygen concentration in exercising tissues, the lower their resistance andthe higher the splanchnic
resistance. In particular, we found a good agreement with standard data(i.e. those of tab. 1.2) with a
quadratic dependence offcm on the oxygen concentration (which is a compromise between the linear
[102] and the exponential [58] case):

fcm =

{

0 if [O2]sm > [O2]
0
sm,

kcm([O2]
0
sm − [O2]sm)2 otherwise

, (1.17)

where[O2]
0
sm is a fixed threshold value for the oxygen concentration.

As pointed out in [71], [72], the response of baroreflex effector to the increased metabolic rate
can be described by ashiftingof the reference valuePn of the sigmoid curvefcs = fcs(P̃a) defined
by (1.12). We included this effect in our model consideringPn as a state variable affected by the
chemoreflex:

τPn

dPn

dt
= Pn,0 − Pn + GPnfcm. (1.18)

Equations (1.1,. . . ,1.18) form our final global cardiovascular model. Wepoint out that in these
equations[O2]sm is an input variable; in other words we need atissue metabolism model(TMM)
in order to provide this variable to the cardiovascular model (CVM). The CVM and TMM shall be
coupled via the oxygen concentrations (TMM→ CVM) and the flow rates (CVM→ TMM). In
tab. 1.2 the parameters for “standard” healthy individuals (rest heart rate60 bpm, rest cardiac output
5 l min−1, . . . ) are reported (being the undefined values as in [101]); however, they have to be
slightly adjusted when simulations are carried out for different subjects (we will present an example
in the section devoted to the numerical results).
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1.3 Tissue Metabolism Model (TMM)

We will deal with two kinds of metabolism models. The former is very simple as the only chemical
considered is oxygen. The second one is more detailed and describes several chemical pathways (see
section 1.1.3) that allows to account for the dynamic of a number of metabolites,such asPC, GL,
LA and so on.

1.3.1 Arterial and venous concentrations

The concentration of any chemical in the venous blood is strongly related to the concentration of that
chemical in the upstream tissue. As in [11], [12], we will assume a linear relation between venous
and tissue concentration, that is, for each metaboliteC we assume

[C]v,i = σC
i [C]i, (1.19)

being[C]v,i the venous concentration downstream thei-th tissue,[C]i the concentration in the tissue,
andσC

i thepartition coefficientof the chemicalC. The mean venous concentration[C]v in blood is
obtained imposing the mass conservation, that is:

[C]v =
∑

i∈{sm,sp,o}

Qi

Qa
[C]v,i. (1.20)

As previously discussed, we assume that the only chemical species affected by the pulmonary cir-
culation areO2 andCO2; according to tab. 1.3, their arterial concentrations are constant. For the
remaining chemicals, we assume no mass exchange in the pulmonary circulation.In short:

[C]a = [C]v, C /∈ {O2, CO2};
[C]a = [C]0a, otherwise.

(1.21)

1.3.2 One-chemical model

A simple metabolism model is the one in which only oxygen is taken into account. If the rate of
oxygen consumption in a certain tissue is known, we can assume the following balance equation for
the oxygen concentration:

Vi
d[O2]i

dt
= −OPi(t) + Qi(t)([O2]a,i − σO2

i [O2]i), (1.22)

whereVi is the “volume5” or mass of the tissue (depending on the units used for concentrations),
[O2]i is theO2 concentration in compartmenti, OPi is the oxygen consumption rate (the oxygen
consumed by the oxidative phosphorylation per unit time),Qi is the blood flow rate,[O2]a,i is the
arterial concentration ofO2, andσO2

i is the oxygen partition coefficient. The resting metabolic rate
OP0

i is usually known, as well as the resting arterial and tissue concentrations[O2]
0
a,i and[O2]

0
i , and

the mean resting flow rateQ0
i . Thus,σO2

i can be estimated by the following balance equation at rest:

σO2
i =

[O2]
0
a,i − OP0

i /Q0
i

[O2]0i
.

5Very often, being the available physiological data for[O2]i expressed in mmol kg−1 or mmol kgdw−1 (where kgdw
means “kg of dry tissue”)Vi is not a volume; it is rather a weight (or a dry weight).
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Another way to estimate the partition coefficient is to set directly

σO2
i = [O2]

0
v,i/[O2]

0
i ,

where[O2]
0
v,i is the resting venous oxygen concentration: the two approaches have to give about the

same results.

1.3.3 General multi-chemical model

In order to take into account the interaction between several chemicals andsubstrates in tissues, and
to obtain a more detailed description of the skeletal muscle bioenergetics, we have to consider more
complex multi-chemical metabolism models based on the main pathways described in section 1.1.3.
In metabolic control analysis (see [39],[89]), pathways are represented by associating areaction rate
ψR to each reactionR. A reaction rate is a function of the chemical concentrations (and of time)
which represents the molar consumption of a reference substrate inR per unit time ( mmolsec−1). To
each reactionR presented in sec. 1.1.3, we associate a reference reactant (tab. 1.5),and we defineψR

as the molar consumption rate of that chemical by that reaction.

Reaction Reactant Reaction Reactant Reaction Reactant

PCb PC PCs CR GLb GL

PY r PY GLs PY PY o PY

OP O2 GY s GL GLs GY

LAo LA FAo FA

Table 1.5: Reactions and associated reactant.

For each compartmenti, we define astate vectorci consisting of the chemical concentrations of
metabolites we are interested in, and areaction rate vectorψi whose components are the reaction
rates of all the reactions.

The explicit expression ofψi may be given in a different way for each compartmenti, and state
vectors referring to distinct compartments may include distinct metabolites.

The stoichiometry of the chemical reactions is taken into account by means of astoichiometric
matrixAi (an example is shown in tab. 1.7 fori = sm) such that the element(Ai)hk is the (signed)
number of produced molecules of thehth metabolite when one molecule of the reactant associated to
thekth reaction is consumed. For example, ifψPY o is the rate at whichPY is consumed by pyruvate
oxidation, we have that−1 and5 are the corresponding stoichiometric coefficients for respectively
PY andNADH (because for each consumed molecule of the associate reactantPY , −1 molecules
of PY and5 molecules ofNADH areproduced).

In this manner, the conservation of the mass of each chemical reads as the following system of
(nonlinear) differential equations:

Vi
dci

dt
= Aiψi(ci, t) + bi(ci, ca, Qi, t), (1.23)

whereVi is the tissue mass of thei-th compartment,ca is the vector of thearterial concentrationsof
chemicals transported by blood flow, andbi(ci, ca, Qi, t) is thetransport term. This term is given by
Qi(ca − cv), wherecv is the vector ofvenous concentrations, expressed as a function ofca andci.
This is a quite general paradigm for a metabolism model, where thestate variablesare the chemical
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concentrations in the tissue, and the arterial concentrations and the flow rate play the role ofinput
variables. For instance, it is possible [11] to definecv = σi.ci, where the dot means componentwise
vector product, andσi = (σPC

i , . . . , σC02
i )T is the vector of the partition coefficients. Therefore, the

transport term reads
bi(ci, ca, Qi, t) = Qi(ca − σi.ci), (1.24)

Depending on each compartmenti, the concentration of metabolites which are transported by blood
might not appear as a state variable inci. In that case, the metabolite venous concentration down-
stream the tissue has to be defineda priori.

The most general form of system (1.23) is presented in tab. 1.6, where all the metabolites are
considered, andbPC , . . . , bCO2 denote the components ofbi. Being particularly interested in skeletal
muscle bioenergetics, for thesm compartment we will adopt the full set of equations of tab. 1.6,
while for other compartments a reduced set of chemicals (and, correspondingly, of equations) will be
considered.

V d[PC]/dt = PCs− PCb + bPC ,

V d[GL]/dt = GLs− GLb− GY s+ mGY b + bGL,

V d[PY ]/dt = 2GLb− 2GLs− PY r − PY o + LAo + bPY ,

V d[GY ]/dt =
1

m
GY s− GY b + bGY ,

V d[LA]/dt = PY r − LAo + bLA,

V d[FA]/dt = −FAo + bFA,

V d[ADP ]/dt = PCs− PCb− 2GLb + 2GLs− 6OP+
1

m
GY s− GY b + MR + bADP ,

V d[NADH]/dt = 2GLb− 2GLs− PY r + 5PY o + LAo− 2OP+ 43FAo + bNADH ,

V d[O2]/dt = −OP+ bO2
,

V d[CO2]/dt = 3PY o + 16FAo + bCO2
,

and

[CR](t) = [CR](0) + [PC](0) − [PC](t),

[ATP ](t) = [ATP ](0) + [ADP ](0) − [ADP ](t),

[NAD](t) = [NAD](0) + [NADH](0) − [NADH](t).

Table 1.6: Metabolism kinetics (we omitted the subscripts). Concentrations[CR], [ATP ] and[NAD]
do not belong to the vector state because each of the sums[CR] + [PC], [ATP ] + [ADP ] and
[NAD] + [NADH] is constant.

Skeletal muscle compartment

As in [11] we assume that in skeletal muscle (i = sm) Michaelis-Menten laws hold for the reaction
rates. These reaction rates are controlled by thephosphorylation statePS and theredox stateRS,
where

PS =
[ADP ]sm
[ATP ]sm

, RS =
[NADH]sm
[NAD]sm

.

It is known [11] that the higherPS, the higher the reaction rate of theATP producing pathways;
analogously, the higherRS, the higher the reaction rate of theNAD producing pathways. We con-
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sider in the state equation the full set of metabolites: tab. 1.7 shows the related state vector, reaction
rate vector, stoichiometric matrix and transport vector. We remark that a fewchemicals are not trans-
ported (namelyPC, GY, ADP, NADH) and, accordingly, their arterial concentration and partition
coefficient are both zero. The complete set of reaction rates is presented in tab. 1.8: moreover we
assumeGLssm = 0 as discussed in section 1.1.3.

In the Michaelis-Menten laws there are parameters which are not providedby experiments. In fact,
in each reactionR we have amaximal ratecoefficientφR and one or more characteristic constantskR:
these coefficients are not knowna priori, except in a few cases. Therefore,parameter identification
is mandatory in order to find the coefficients that reproduce the dynamic of the metabolic pathways
fitting the available physiological data, and this will be the subject of the last part of this chapter.

csm = [ [PC]sm, [GL]sm, [PY ]sm, [LA]sm, [GY ]sm, [FA]sm, [ADP ]sm, [NADH]sm, [O2]sm, [CO2]sm ]T ,

ψsm = [ PCbsm, PCssm, GLbsm, GLssm, GY ssm, GY bsm, PY rsm, LAosm, PY osm, OPsm, FAosm, MRsm ]T ,

Asm =

2
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0

[GL]a − σGL
sm [GL]sm

[PY ]a − σPY
sm [PY ]sm

[LA]a − σLA
sm [LA]sm

0

[FA]a − σFA
sm [FA]sm

0

0

[O2]a − σO2
sm[O2]sm

[CO2]a − σCO2
sm [CO2]sm
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5

Table 1.7: State vectorcsm, reaction rate vectorψsm, stoichiometric matrixAsm and transport vector
bsm in eq. (1.23) fori = sm. Notice the zero terms inbsm corresponding to chemicals for which we
neglect the transport by blood.

Splanchnic compartment

Splanchnic organs, as liver, provide glucose and free fatty acids when the body needs them. They
may also convert pyruvate in glucose (GLssp 6= 0). As splanchnic organs metabolism is not strongly
affected byPC, ADP andNADH as the skeletal muscle metabolism is, we consider as state vari-
ables only the concentrations ofGL, GY , PY , LA, FA, O2 andCO2. Moreover, we don’t have to
specify their venous concentrations, since we assume thatPC, ADP andNADH are not transported
by blood.

Finally, we assumelinear reaction rates: the corresponding expressions are listed in tab. 1.9.
As for the skeletal muscle tissue, the coefficients of these expressions have to be (at least partially)
estimated by means of parameter identification techniques.
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Reaction Stoichiometry Rate

PCs CR + ATP −→ PC + ADP φPCs
1

PS/kPCs + 1
[CR]

PCb PC + ADP −→ CR + ATP φPCb
PS

PS + kPCb
[PC]

GLb GL + 2ADP + 2NAD −→ 2PY + 2ATP + 2NADH φGLb
PS

PS + kPS
GLb

1

RS/kRS
GLb + 1

[GL]

GY s mGL + ATP −→ GY + ADP φGY s
1

PS/kGY s + 1
[GL]

GY b GY + ADP −→ mGL + ATP φGY b
PS

PS + kGY b
[GY ]

PY r PY + NADH −→ LA + NAD φPY r
RS

RS/kPY r + 1
[PY ]

LAo LA + NAD −→ PY + NADH φLAo
1

RS/kLAo + 1
[LA]

PY o PY + 5NAD −→ 5NADH + 3CO2 φPY o
1

RS/kPY o + 1
[PY ]

OP 3ADP + NADH + 1
2
O2 −→ 3ATP + NAD + H2O V max

O2

RS

RS + kOP

1

1 +
“

KADP

[ADP ]

”n [O2]

FAo FA + 43NAD −→ 16CO2 + 43NADH φFAo
1

RS/kFAo + 1
[FA]

MR ATP −→ ADP + energy MR(t)

Phosphorylation state:PS = [ADP ]/[ATP ]
Redox state:RS = [NADH]/[NAD]

Table 1.8: Reaction rates for the skeletal muscles (the subscripti = sm is omitted).

Other organs

In the third compartmenti = o, that represents the remaining tissues, we assume that metabolite con-
centrations are known. Consequently, the venous content downstreamthe compartment is assigned:
for the sake of simplicity, the venous concentration of each transported chemical is set to the corre-
sponding constant basal value.

1.4 Coupling between CVM and TMM: parameter estimation

The models introduced in the previous sections can be coupled to describe the mutual interaction
between hemodynamics and bioenergetics (see fig. 1.4).

The coupling is due to the dependence (1.15,1.16,1.17) of hydraulic resistanceRi, i ∈ {sm, sp, o},
on the oxygen concentration[O2]sm in the sm tissue compartment, which is the simplest case of
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Reaction Stoichiometry Rate

GLb GL −→ 2PY φGLb[GL]

GLs 2PY −→ GL φGLb[PY ]

GY s mGL −→ GY φGY s[GL]

GY b GY −→ mGL φGY b[GY ]

PY r PY −→ LA φPY r[PY ]

LAo LA −→ PY φLAo[LA]

PY o PY −→ 3CO2 φPY o[PY ]

FAo FA −→ 16CO2 φFAo[FA]

Table 1.9: Reaction rates for the splanchnic organs (the subscripti = sp is omitted).

chemoreflex effect. More generally, we could assume a dependence onother chemicals. The global
model is intended to give a prediction of the cardiovascular and metabolic behaviour under effort con-
ditions; the maininput variableis theskeletal muscle metabolic rateMR(t), that is the rate ofATP
breakdown, which is related to exercise workload. Asoutput variables, we obtain the cardiac output,
heart rates, local blood flow and concentration of several substratesin the blood.

However, as we pointed out previously, we have to estimate the unknown Michaelis-Menten pa-
rameters in the reaction rate expressions. Parameter identification is a major issue in mathematical
biology (for instance see [16]): we will introduce some tools to fit a set of known data, and discuss the
applications to our specific case. Let us denote byp the vector of the unknown parameters: the idea is
to minimize a cost functionalJ = J(p) which measures the “distance” between a set of knownobjec-
tive variablesyob = yob(t) (for instance, the tissue concentrations) and the corresponding quantities
y predicted by the model. Formally, we can set

J(p) =
∑

j

ωj
‖yj(p, t) − yob,j(t)‖2

‖yob,j(t)‖2
, (1.25)

where ‖ · ‖ is a suitable norm, as the 2-norm‖f‖2 =
√

∫

t f2(t) dt or the ∞-norm ‖f‖∞ =

maxt |f(t)|, the weightsωj are positive quantities such that
∑

j ωj = 1, andyi(t) is thei-th com-
ponent of the vectory(p, t) of the predicted quantities corresponding to the parametersp. As a
consequence, the numberE = 100

√
J is a mean relative error in percentage. Each evaluation of

the cost functionJ requires to solve the model, that is to find the solution of a system of differential
equations. The goal is to obtain (a suitable approximation of) theoptimalvectorp∗ in the setPad of
admissible parameters:

find p∗ : J(p∗) = min
p∈Pad

J(p). (1.26)

The setPad has to represent all the constraints on the parameters; for instance, every component of
p ∈ Pad has to be greater than zero.

Problem (1.26) is aninverse problem, expressed in the form of anoptimal control problem.
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Figure 1.4: Coupling between cardiovascular system and metabolism.

1.4.1 Identification methods

In order to solve the identification problem (1.26), one could use standardline-search methods, based
on the computation of the gradient of the cost function, or stochastic methods (in particulargenetic
algorithms[22], GA). There are two main differences between these algorithms. First, genetic algo-
rithms areglobal optimization methods, while the line-search algorithms only findlocal minima (as a
consequence, the starting guess for the parameters is critical). Second,usually line-search algorithms
are computationally cheaper than stochastic algorithms.

Let us recall the abstract structure of a GA (the termindividualmeans a parameterp):

1. Supply a populationP0 of N “individuals”, together with their cost function; leti = 1;

2. P̃i = selection(Pi−1);

3. Pi = reproduction(P̃i);

4. i ← i + 1;

5. If an exit condition onPi is satisfied, then end; otherwise,i ← i + 1 and go to step 2.

At step 3, the genetic operatorsmutationandcrossoveract on the populatioñPi (which is selected
on the basis of the cost function associated with each individual) in order tocreate the next generation
Pi+1. If the mutation operator includes a few iterations of a line-search algorithm (such as a gradient
method), the method belongs to the class ofhybrid genetic algorithms(HGA); the introduction of the
fast local optimization procedure greatly speeds up the convergence compared with standard GA.

We can apply gradient-based methods, GA and HGA to problems of type (1.26) to identify the set
of unknown parameters of each compartment; for eachi = sm, sp, this can be done by excluding the
cardiovascular part of the model, assigning ana priori flow rateQi corresponding to the physiological
conditions to which the available datayob refer to, and then carrying out the optimization for this
reduced state system, where the observed variablesy are the concentrationsci.

Due to the non-linearities in the Michaelis-Menten equations, thesm compartment is the only
one for which the identification may be troublesome: when considering as objective variables the
measurements obtained from a certain class of exercise protocols, the parameters which best fit the
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data may not be as good for other protocols. For this reason, in the sequel the optimization results are
discussed only for the skeletal muscle compartment, and the following vector ofunknown parameters
(see tab. 1.8):

p = (φPCs, φPCb, φGLb, φGY s, φGY b, φPY r, φLAo, φPY o, V max
O2

, φFAo). (1.27)

As in [11], for each reactionR, thekR constants of the Michaelis-Menten laws are assigned in such a
way that the basal flux is small compared with the maximal oneφR.

Fitting objective variables at rest

In principle, one may choose the vector of rest concentrations as observed variables, which are known
(even though the measurement is not a straightforward procedure, anddata strongly depend on the
subject). This approach has been adopted in [11]. In order to comparethe performances of different
optimization algorithms, we fixed the rest flow rateQsm(t) = Q0

sm and rest skeletal muscle metabolic
rateMR(t) = MR0: then, we applied both gradient method (Matlab functionfminsearch) and
HGA (modifying thegaot Matlab library [42]) to minimize the cost functionJ defined by (1.25)
with equal weights, being the objective variables the known rest concentrationsc0

sm. In tab. 1.10
the identified parameters together with the minimum of the cost function obtained withstandard
gradient methods (mean relative errorE ' 10%) and with hybrid genetic algorithms (E ' 6%)
are shown. Standard values ofQ0

sm andMR0 have been used in the state equation: in particular,
Q0

sm = 1 l/ sec, and on the basis of the assumption that 6 molecules ofATP are formed from one
oxygen molecule,MR0 = 6Q0

sm([O2]a − [O2]v,sm). If [O2]a = 8.75 mmol/ l (see [55, 11]), and
[O2]v,sm = 6.75 mmol/ l (see [55] or apply the Fick’s principle assumingV̇O2 = 250 ml min−1 at
rest), then we getMR0 ' 12 mmol(ATP ) min−1.

Parameter Value

φPCb 41.09
φPCs 84.24
φGY s 0.29
φGY b 0.001
φPY r 2.69
φGLb 0.23
φLAo 0.15
φPY o 0.26

V Omax
2 3.33

φFAo 0.02

J(p) 0.014
E 11.8%

Parameter Value

φPCb 28.60
φPCs 57.55
φGY s 30.15
φGY b 0.11
φPY r 5.98
φGLb 0.24
φLAo 0.49
φPY o 0.23

V Omax
2 3.15

φFAo 0.06

J(p) 0.0042
E 6.4%

a) b)

Table 1.10: Parameter identification by fitting the rest metabolic state by a) the gradient method, and
b) an HGA.

The fitting is satisfactory for both the algorithms, but the HGA allows a better minimization of the
error (fig. 1.5), due to the fact that it is a global optimization method.
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Figure 1.5: State variables corresponding to the parameters in tab. 1.10a) (continuous line) and objec-
tive values (dashed line) at rest. Concentrations are expressed in mmol/ l, time in s.

As the fitting of basal concentrations is easily achieved, we wonder if it is possible to use param-
eters which have been identified by this procedure to simulate an effort condition. Unfortunately, this
approach fails for heavy workloads: actually, if an exercise is simulated using parameters obtained
by fitting the concentrations at restc0

sm, the results are often not physiological. For example, let us
consider a rest/exercise transition at timet, from the basal skeletal muscle metabolic rateMR0 and
blood flow rateQ0

sm to the respective increased valuesMR1 andQ1
sm. We assume submaximal work-

load, for exampleQ1
sm = 7Q0

sm (the maximalQ1
sm/Q0

sm is nearly 12, see tab. 1.2). Then, under the
hypothesis that for submaximal effort theATP breakdown is proportional to the oxygen extraction
rate, by the Fick’s equation we have

MR1

MR0
=

Q1
sm

Q0
sm

∆a
v[O2]

1
sm

∆a
v[O2]0sm

.

Actually, the former assumption does not consider an augmented anaerobicATP production; how-
ever, we will accept it, even though theMR1/MR0 ratio obtained by the proposed formula could be
underestimated. At rest,∆a

v[O2]
0
sm = [O2]a − [O2]v,sm = 0.22[O2]a, that is the skeletal muscle oxy-

gen extraction is 22%; assuming that during submaximal exercise the extraction raises up to 60% (the

maximal value is about 85%, up to 90% for elite athletes), we getMR1 = Q1
sm

Q0
sm

60%
22% ' 20. Therefore,
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we consider as input variables for oursm model the following functions:

MR(t) =

{

MR0 if 0 ≤ t ≤ t,
20MR0 if t < t ≤ T,

Qsm(t) =

{

Q0
sm if 0 ≤ t ≤ t,

7Q0
sm if t < t ≤ T.

(1.28)

As we pointed out previously, we expect that 60% of arterial oxygen willbe extracted by thesm
compartment fort > t: this means that the venous oxygen content should decrease from6.75 to
0.4[O2]

0
a = 3.5 mmol/ l, that is about 50% of the rest value; being the tissueO2 concentration

proportional to the venous one, we have that a reduction of[O2]sm down to an half of its rest value is
expected.

Parameters identified by fitting the rest concentrations have been used to run the simulation of
the rest to exercise transition: the results are shown in fig. 1.6, where oneclearly sees that theO2

concentration in the tissue does not decrease during exercise (actually itslightly increases), andCO2

does not increase. Therefore, despite the good accuracy in fitting the rest concentrations, the identified
parameters do not provide acceptable simulations of exercise. This issue isnot addressed in [11], so
in the next section we will detail how it is possible to improve the identification considering a rest-
exercise transition and using HGA.

Fitting objective variables for a rest-exercise transition

If the parameters of thesm compartment are identified by solely observing a steady basal state; they
will not include any information about the dynamics of the system. Consequently, as we have shown,
it may happen that the model does not conform to physiological observations.

The simplest attempt to overcome this problem is to consider arest/exercise transition, and to
identify the unknown parameters by fitting some available data for this protocol.In this way, the
observations are not merely static: they contain information about the characteristic time constants
and concentration jumps associated with the transition.

However, due to the great amount of information we are trying to put into the objective variables,
the optimization can converge toward a solution affected by a big error, even if global algorithms are
used. This means that a compromise has to be found, for instance considering only a few relevant
metabolite concentrations as observed variables. Let us show how this is possible by means of an
example.

We consider protocol (1.28), witht = 1500 s andT = 4000 s. We suppose that a description of
oxygen and carbon dioxide expected dynamic in skeletal muscle tissue is available, at least in terms
of concentration jumps and characteristic times. In particular, we assume an exponential transient:

yob,O2(t) =

{

[O2]
0
sm if 0 ≤ t ≤ t,

[O2]
1
sm + e−(t−t)/τO2 ([O2]

0
sm − [O2]

1
sm) if t < t ≤ T,

yob,CO2(t) =

{

[CO2]
0
sm if 0 ≤ t ≤ t,

[CO2]
1
sm + e−(t−t)/τCO2 ([CO2]

0
sm − [CO2]

1
sm) if t < t ≤ T,

(1.29)

where[O2]
0
sm and [CO2]

0
sm are the basal concentrations values,[O2]

1
sm and [CO2]

1
sm are the new

concentrations after the transition to the effort condition, andτO2 andτCO2 are the respective time
constants. An example of such functionsyob,O2 andyob,CO2 are the dashed lines in fig. 1.6.

With regard to the other observed chemical concentrations, we suppose tohave only the basal
state data:

∀C /∈ {O2, CO2} : yob,C(t) = [C]0sm, 0 ≤ t ≤ t. (1.30)



1.4 – COUPLING BETWEENCVM AND TMM: PARAMETER ESTIMATION 25

0 1000 2000 3000 4000
0

100

t

P
C

sm

0 1000 2000 3000 4000
0

5

t

G
Ls

m

0 1000 2000 3000 4000
0

0.5

1

t

P
Y

sm

0 1000 2000 3000 4000
0

10

t

LA
sm

0 1000 2000 3000 4000
0

500

t

G
Y

sm

0 1000 2000 3000 4000
0

0.1

0.2

t
F

A
sm

0 1000 2000 3000 4000
0

50

t

A
T

P
sm

0 1000 2000 3000 4000
0

0.005

0.01

t

N
A

D
H

sm

0 1000 2000 3000 4000
0

5

10

t

O
2s

m

0 1000 2000 3000 4000
0

20

40

t

C
02

sm

Figure 1.6: Rest/exercise transition: state variables (continuous line) corresponding to the parame-
ters of tab. 1.10a) obtained by fitting the basal concentrations (dashed line). For O2 andCO2, the
dashed line during exercise represents expected values: in this case, simulations do not agree with
observations. Concentrations are expressed in mmol/ l, time in s.

Eq. (1.29) and (1.30) define our objectives. As the datayob,O2 andyob,CO2 are defined on a wider
temporal frame, the expression of the cost functional to be minimized is the following one, where
norms are taken on different intervals depending on the data:

J(p) = ωO2

‖yO2(p) − yob,O2‖[0,T ]

‖yob,O2(t)‖[0,T ]
+ ωCO2

‖yCO2(p) − yob,CO2‖[0,T ]

‖yob,CO2‖[0,T ]

+
∑

C /∈{O2,CO2}
ωC

‖yC(p) − yob,C‖[0,t]

‖yob,C‖[0,t]

,

(1.31)

As usual we denote byyC(p) = yC(p)(t) = [C]sm(t) the time-dependent concentration of the
substanceC given by the solution of the state equation with the parametersp.

In tab. 1.11 and fig. 1.8-1.9 the results of two different parameter identifications are shown. The
first optimization was carried out assuming the cost functional defined by eq. (1.31), that is taking
both [O2]sm and[CO2]sm as observed variables fort > t, while for the second optimization only the
[O2]sm variable was observed fort > t.
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Parameter Value

φPCb 38.27
φPCs 61.25
φGY s 17.87
φGY b 15.24e-2
φPY r 23.57e-1
φGLb 11.85e-1
φLAo 86.50e-3
φPY o 87.78e-2

V Omax
2 16.20

φFAo 37.60e-3

J(p) 0.047
E 21.6%

Parameter Value

φPCb 40.14
φPCs 70.60
φGY s 43.82
φGY b 30.18e-2
φPY r 26.33e-1
φGLb 19.67e-1
φLAo 43.30e-3
φPY o 12.76e-1

V Omax
2 16.69

φFAo 31.90e-3

J(p) 0.057
E 24.0%

Weights:
ωO2 = ωCO2 = 0.30;

ωC = 0.05 if C /∈ {O2, CO2}.

Weights:
ωO2 = 0.55;

ωC = 0.05 if C 6= O2.

a) b)

Table 1.11: Parameter identification by fitting via weighted-HGA the rest metabolicstate and a) both
theO2 andCO2 concentrations during exercise, b) only theO2 concentration during exercise.
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Figure 1.7: Convergence history of HGA. The observed variables are: a) bothO2 andCO2, and b)
only O2.

These results shows that the errorE with respect to available data can be non negligible (20-25%,
fig. 1.7, instead of 6% obtained with a basal state fitting) when fitting non-steady data. Nevertheless,
the major expected features of the rest-to-exercise transition are obtained: the oxygen concentration
in the skeletal muscle drops off (the reduction being 25%, the expected one50%), and the carbon
dioxide content increases (actual increment 8%, 33% expected). The discrepancy between the actual
and the expected jumps of theO2 andCO2 concentrations can be reduced if a higherMR1 is assumed
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Figure 1.8: State variables corresponding respectively to the parametersin tab. 1.11a),b) (continuous
line), and basal values (dashed line) for a rest-exercise transition. For O2 andCO2, the dashed line
during exercise represents the objective values. Concentrations are expressed in mmol/ l, time in s.

in eq. (1.28), considering that we neglected any augmented anaerobic pathway in the estimation of
the metabolic rate. Finally, it is remarkable that the time courses of muscle metabolitesobtained first
observing only the oxygen concentration, and than observing both the oxygen and carbon dioxide
concentrations, do not differ substantially (see fig. 1.8), with the exception of glucose.

1.5 Simulations of coupled CVM and TMM

In this last section simulation results for the coupled models are discussed. Tosustain the application
of this kind of mathematical models in sport medicine and physiology, we considerrealistic protocols,
data and problems, and analyze the behaviour of relevant quantities related to cardiovascular system
and biochemistry.

1.5.1 One-chemical model

We first present some results obtained with the simple one-chemical kinetic (1.22): therefore, in this
preliminary investigationO2 is the only chemical we account for. To test our results, we consider
the measurements obtained in [81]; in this study the authors address an augmented sympathetic nerve
activity as a possible mechanism contributing to the observed impaired leg vasodilatation during dy-
namic exercise in healthy older women. In the sequel, we will verify this hypothesis by our model.

The simulated protocol is the following one: starting from a rest condition, thesubject is ped-
aling for 6 min at 20 W, then the power output is linearly increased by10 W every3 min up to
60 W. According to [81], several measurements have been made for this protocol (mean arterial pres-
sure, leg blood flow,. . . ) for thirteen younger (20-27 yr) and older (60-71 yr) women: a reduced leg
vasodilatation and blood flow response has been observed in the latter group.

The cardiovascular model coupled with the one-chemical TMM for the oxygen is solved over a
time interval consisting of three subintervals:[0, T0] (rest), [T0, T20] (pedaling at20 W), [T20, T60]
(linear increasing in power output up to60 W), whereT0 = 12 min, T20 = 18 min, T60 = 30 min.
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Figure 1.9: Trace of the best parameters obtained at each generation number (abscissa). The observed
variables are: a) bothO2 andCO2, and b) onlyO2.

The oxygen consumption rate OPsm(t) in the skeletal muscle compartment, that represents the exer-
cising legs, is expressed as follows:

OPsm(t) =







OP0
sm 0 ≤ t ≤ T0,

OP0
sm + OP20

sm T0 ≤ t ≤ T20,

OP0
sm + OP20

sm + α t−T20
T60−T20

40W T20 ≤ t ≤ T60,

where OP0sm is the basal oxygen consumption rate (2.4 mmol min−1), OP20
sm is the oxygen con-

sumption rate at20 W (calculated as in [12],5 mmol min−1) and α is a conversion factor: as-
suming that30 KJ of mechanical energy are produced by the breakdown of aATP molecule, and
that 6 mol of ATP are formed for each mol ofO2, thenα = 5.6 · 10−3 mmol O2/ s/W. In
fig. 1.10 exercise simulation for the younger women is presented. Some parameters among those
in tab. 1.2 were adjusted to match the cardiac output, mean arterial pressure and blood flow dis-
tribution at rest and at20 W, referring to data reported in [81]. We usedPn,0 = 75 mmHg,
GPn = 20 s · mmHg, kcm = 0.7 kgdw2/ mmol2/ s, [O2]

0
sm = 5.8 mmol/kgdw; we also in-

creased the gain of the sympathetic control on the heart rate withGT,s = 0.9 s2, and we changed the
constants̃Ri,0 for i = sm, sp, o respectively to 2, 1 and0.6 mmHg· s/ ml.

Simulations for the older women are shown in fig. 1.11: in this case, modificationsof the pa-
rameters were made to take into account the higher pressure and the lower cardiac output of older
women in regard of the younger subjects. Particularly, in this case we consideredPn,0 = 90 mmHg,
GPn = 35 s · mmHg,GT,s = 0.52 s2, GT,v = 0.3 s2; the constants̃Ri,0 for i = sm, sp, o were
changed to 2, 1 and0.6 mmHg · s/ ml; and finally, a global increase of the efferent sympathetic
activity was imposed by increasing the values offes,∞ andfes,0 in (1.10). Results with the same
parameters but without the augmented sympathetic vasoconstriction are shown with dashed lines: we
obtained a reduction in both arterial pressure and leg vascular resistance, and a more accurate fitting
was provided by the previous simulation. This shows that our investigation is consistent with the
hypothesis of an increased sympathetic nerve activity during exercise in older women.
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Figure 1.10: Younger women exercise: experimental measurements [81] (triangles) and simulation
(continuous line) of cardiac outputQa, mean arterial pressurePa, leg blood flowQsm, and leg vascular
resistanceRsm.

1.5.2 Multi-chemical model

The simple one-chemical model of the metabolism does not take into account thedynamic of several
important metabolites such as lactate, glucose, pyruvate. Here we presentnumerical results obtained
by coupling the extended metabolism model described in section 1.3.3 and the cardiovascular model
(section 1.2).

We considered a10 min incremental exercise, with a linear increasing workload: the metabolic
rateMRsm(t) of the skeletal muscle compartment was increased starting from the basal valueMR0

sm

at t = 0 up to 30MR0
sm at t = 10 min and then again set equal toMR0

sm. Being the energy
expenditure of the whole body basal metabolism approximately equal to75 W, and the skeletal muscle
rest blood flowQ0

sm ' Q0
a/5, we can estimate the rest skeletal muscle power to be15 W. Therefore,

if the power output was proportional toMR, the peak power of the exercise simulation would be
about450 W; however, as it has been discussed,ATP breakdown becomes less and less efficient as
the workload increases, so that the power output/MR ratio is not a constant, but rather a decreasing
function ofMR. If we assume that under high effort conditions the metabolic efficiency is reduced
by 35% [50, 12], then we can estimate a300 W peak power output.

The evolution in time of the main hemodynamical variables is shown in fig. 1.12. Thetime
course of the vascular resistances, for instance, shows that during exercise the skeletal muscle becomes
the most blood-demanding compartment; this perturbs the overall systemic resistance, which in turn
causes the increase of heart rates (and stroke volume, not shown here) due to the baroreflex effector.
Moreover, the shifting of the reference value for the pressure in the carotid sinus sigmoid curve causes
an increase of the mean arterial pressure.

In fig. 1.13 a few relevant venous chemical concentrations are shown (O2, CO2, LA andPY ).
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Figure 1.11: Older women exercise: experimental measurements [81] (triangles) and model simula-
tions with enhanced (continuous line) sympathetic nerve activity.The dashed line shows the simulation
results when no enhancement in sympathetic activity is considered.

As expected, a reduction in the venousO2 content is observed; moreover the high level of skeletal
muscle metabolic rate causes an increase in carbon dioxide (6.5%), and a significant accumulation of
lactate (900%) and pyruvate (1000%). Increments in lactate level of the same order are found in the
ramp tests described in [33].

1.6 Conclusions

In this chapter we have seen how it is possible model the complex interactions between cardiovas-
cular system and local biochemical processes, such as those taking place in muscle cells. We have
considered models fora) metabolism of relevant substrates in the tissues involved in exercise, andb)
circulatory systems. Baroreflex and chemoreflex regulation effects have been taken into account in
the coupling in order to describe the interplay between these subsystems. This approach allows to
simulate the response of the body to exercise; it may also provide a tool to investigate several other
aspects of interest in physiology, such as pharmacokinetics of a particular drug under effort conditions
or hemodynamics and tissue perfusion during exercise.

We have adopted acompartmentalapproach: no geometrical descriptions of circulation and chem-
ical distribution in the tissues have been considered, due to the complexity of the whole-body pro-
cesses we were focusing on. In the following chapters, we will introduced more detailed models,
that are able to describe the spatial distribution of important physiological quantities such as blood
pressure or oxygen concentration. To provide finer tools allowing a moredetailed analysis of local
phenomena will be the aim of the next chapters. We will begin with one-dimensional models for
blood flow and mass transport (chapter 2) and then we will introduce 1D-3Dmodels of tissue perfu-
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Figure 1.12: Heart rates, mean arterial pressure, flow rates and vascular resistances in a 10 minutes
incremental exercise.

sion (from chapter 3). In case, the finer models can replace some of the “lumped” models we have
considered in this chapter, providing a more accurate analysis of the processes at hand.
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Figure 1.13: Venous concentrations of oxygen, carbon dioxide, lactateand pyruvate in a 10 minute
incremental exercise.



Chapter 2

Reduced one-dimensional models for
transport of chemicals in blood vessels

2.1 Introduction

We have seen in the previous chapter that the simulation of the exchanges ofvarious chemical species
(O2, CO2, lactate, . . . ) between blood vessels and tissues necessitates an accurate description of
both the haemodynamics (fluid properties of blood) and mass transport. We have considered a com-
partmental analysis in order to keep the computational costs in reasonable ranges: however, by this
approach any geometrical information about vessels and tissues is lost.

A compromise between the lumped models and the expensive three-dimensionalconvection-
diffusion-reaction (CDR) models is provided byreduced models. As regards haemodynamics, the
most important example is given by one-dimensional reduced models (we refer the reader to [84],
[64], [13], [14] and [97]). From the full 3D Navier-Stokes equationcoupled with the wall structure, a
simplified axi-symmetric coupled problem can be derived; under suitable hypotheses one can further
simplify these equations to obtain a reduced 2×2 hyperbolic system relating the local axial pressure
to the flow-rate (see [13, 14] for a rigorous derivation).

In this chapter1 we adapt the already existing analysis to treat the transport of a chemical ina
one-dimensional vessel: we derive reduced CDR equations assuming some simplifying hypotheses.
In this sense, we provide an extension of what has been achieved for haemodynamics [86, 29, 104,
31]. Namely, we study the solutions of the CDR equation in an axi-symmetric cylindrical vessel,
and suppose that the length of the vessel is considerably much larger thanits radius. Under these
hypotheses, we derive a 1D model that describes the evolution of the flowrate, pressure and cross
sectional averaged concentration transported by blood flow. We study the global existence of the
solutions of such a system in the case of a finite vessel, basing our argument on [13]. We also provide
numerical methods to solve these equations in the spirit of [23, 84] and references therein.

The subject of 1D CDR models will be extended in chapters 3 and 4, where 1D-3D coupled
models will be considered.

1Part of the chapter has been published as an internal report [20].

33
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2.2 A reduced model for chemical transport

2.2.1 The transport diffusion equation

Let us consider anaxisymmetricdomainΩ ⊂ R3 representing an arterial vessel. The equations which
govern the fluid motion and the mass transport in the vessel are:



















∂v

∂t
+ (v · ∇)v − ν∆v +

1

ρ
∇p = 0 in Ω,

∇ · v = 0 in Ω,
∂c

∂t
+ v · ∇c − µ∆c = 0 in Ω,

(2.1)

wherev is the blood velocity,ν andρ are the blood viscosity and its density (which we assume
constant), andp is the pressure;c is the concentration of the chemical under consideration (for example
oxygen), andµ is its diffusivity in blood. Standard boundary and initial condition should be provided
for these equations. A set of one-dimensional equations for the cross-sectional averaged pressure,
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Figure 2.1: Vessel geometry.

flow rate and mass concentration can be found using standard asymptotic techniques, as discussed in
[84] for the hydrodynamical part. In order to use similar arguments on the coupled system (2.1), we
shall assume the following hypotheses:

1. The domainΩ is described at each timet in cylindrical coordinates by

Ω(t) =
{

(r, θ, z) ∈ R3 | 0 ≤ z ≤ L0, 0 ≤ r ≤ R(t, z)
}

,

whereR(t, z) is the radius of the vessel at timet at the sectionz (see fig. 2.2.1).

2. Bothv andc are axisymmetric functions of the space variables. We set

v = vr(t, r, z)er + vz(t, r, z)ez, c = c(t, r, z),

whereer andez are the radial and the longitudinal vectors of the cylindrical coordinate system.
Moreover, we prescribea priori the longitudinal velocity and concentrationprofile: that is, we
assume

vz(t, r, z) = U(t, z)fv(r), c(t, r, z) = C(t, z)fc(r), (2.2)
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wherefv andfc are shape function, whileU andC are the mean longitudinal velocity and
concentration:

U(t, z) =
1

R(t, z)2

∫ R(t,z)

0
2vz(t, r, z)rdr,

C(t, z) =
1

R(t, z)2

∫ R(t,z)

0
2c(t, r, z)rdr.

(2.3)

Thus, 1
R2

∫ R
0 2fvrdr = 1, and the same equality holds forfc.

3. The “radial” scale is much smaller than the “longitudinal” one, that is

R0

L0
¿ 1,

Br

Bz
¿ 1,

whereR0, L0, Br andBz are typical values of respectively the vessel length, the vessel radius,
the mean radial velocity and the mean longitudinal velocity.

4. The streamline boundary condition holds:

vr(t, R, z) =
∂R(t, z)

∂z
vz(t, R, z) +

∂R(t, z)

∂t
. (2.4)

5. The blood pressure at the vessel wall and the wall displacement are related by a standard alge-
braic law, as follows:

p(t, z, R) = G0

(

(

A(t, z)

A0

)1/2

− 1

)

, (2.5)

whereA = πR2 is the section area, andA0 the constant reference section area at rest. The
reference pressure (forA = A0) is assumed to be zero, and the coefficientG0 is given by

G0 =

√
πh0E√
A0

,

whereE is the Young modulus andh0 the vessel thickness.

6. The concentration at the vessel wall satisfies a Robin boundary condition:

−µ
∂c(t, z, R)

∂r
= Dc(t, z, R), (2.6)

whereD is a permeability coefficient.

2.2.2 Axisymmetric transport diffusion equation (TDE) in cylindrical coordinates

Using standard expressions for the differential operators in cylindrical coordinates, and noting that
from assumption 2 we have that (∂c/∂θ = 0), we find:

v · ∇c = vr
∂c

∂r
+ vz

∂c

∂z
, ∆c =

1

r

∂

∂r
c +

∂2c

∂r2
+

∂2c

∂z2
,

which finally gives the transport-diffusion equation (TDE) for the concentration:

∂tc + vr
∂

∂r
c + vz

∂

∂z
c = µ

[

1

r

∂

∂r
c +

∂2c

∂r2
+

∂2c

∂z2

]

. (2.7)
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2.2.3 The reduced non-dimensional equation

Consider the characteristic quantities defined in assumption 3, and consideralso a reference concen-
trationC0; it is possible to introduce non-dimensional variables (we denote them by a tilde) by setting:

r = R0r̃, z = L0z̃, t = L0
Bz

t̃, c = C0c̃, vr = Brṽr, vz = Bz ṽz, p = ρB2
z p̃. (2.8)

Moreover, following the assumption 3 we suppose that the characteristic quantities are chosen in such
a way that

R0

L0
=

Br

Bz
= ε,

whereε is small. Equation (2.7) becomes

∂t̃(r̃c̃) + r̃ṽr∂r̃ c̃ + r̃ṽz∂z c̃ =
L0µr̃

BzR2
0

[

1

r̃
∂r̃ c̃ + ∂2

r̃ c̃ +
R2

0

L2
0

∂2
z̃ c̃

]

,

and neglecting terms of orderε2 inside the brackets, we get

∂t̃(r̃c̃) + r̃ṽr∂r̃ c̃ + r̃ṽz∂z c̃ =
L0µ

BzR2
0

[∂r̃(r̃∂r̃ c̃)] (2.9)

Using the same techniques for the incompressibility condition we get

∂r̃(r̃ṽr) + ∂z̃(r̃ṽz) = 0,

which transforms expression (2.9) in a conservative formulation that reads

∂t̃(r̃c̃) + ∂r̃ (r̃ṽr c̃) + ∂z̃ (r̃ṽz c̃) =
L0µ

BzR2
0

[∂r̃(r̃∂r̃ c̃)] . (2.10)

2.2.4 The averaged equations

Next we reformulate equation (2.10) averaging it across the section of thevessel. Consider the non-
dimensional mean concentration and the velocity-concentration correlation coefficient, defined as:

C̃ =
1

R̃2

∫ R̃

0
2c̃r̃dr̃, ω̃ =

1

R̃2Ũ C̃

∫ R̃

0
2ṽz c̃r̃dr̃.

We can integrate eq. (2.10) from̃r = 0 to r̃ = R̃ and obtain a reduced equation for the averaged
quantities. At this point we need to specify the boundary condition at the wallwherer̃ = R̃. By
assumption 4 and the rescaling (2.8), the streamline boundary condition (2.4)holds also for the non-
dimensional quantities:

[ṽr]r̃=R̃ =
∂R̃

∂z̃
[ṽz]r̃=R̃ +

∂R̃

∂t̃
,

so that from eq. (2.10) we get:

∂

∂t̃

∫ R̃

0
c̃r̃dr̃ − R̃ [c̃]r̃=R̃

∂R̃

∂t̃
+ R̃[ṽr c̃]r̃=R̃

+
∂

∂z

∫ R̃

0
ṽz c̃r̃dr̃ − [R̃c̃ṽz]r̃=R̃

∂R̃

∂z̃
=

µL0

BzR2
0

R̃

[

∂c̃

∂r̃

]

r̃=R̃

.
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In terms of the averaged quantitỹC, the latter equation reads:

∂

∂t̃

(

R̃2

2
C̃

)

+
∂

∂z̃

(

ω̃R̃2Ũ C̃

2

)

=
µL0

BzR2
0

R̃

[

∂c̃

∂r̃

]

r̃=R̃

.

Combining this result with those presented in [13] for the momentum equation, weobtain a com-
plete system of averaged Navier Stokes equations coupled with the concentration equation:



































∂

∂t̃
R̃2 +

∂

∂z̃
(R̃2Ũ) = 0

∂

∂t̃
(R̃2Ũ) +

∂

∂z
(α̃R̃2Ũ2) + R̃2 ∂p̃

∂x̃
= 2

νL0

BzR2
0

[

∂ṽz

∂r̃

]

r̃=R̃

∂

∂t̃

(

R̃2C̃
)

+
∂

∂z̃

(

ω̃R̃2Ũ C̃
)

=
2µL0

BzR2
0

R̃

[

∂c̃

∂r̃

]

r̃=R̃

,

where the Coriolis coefficient̃α is defined as [13]:

α̃ =
1

R̃2Ũ2

∫ R̃

0
2ṽ2

z r̃dr̃.

2.2.5 The reduced averaged equations in dimensional form

Consider the averaged cross-sectional velocityU , the concentrationC defined by eq. (2.3), and the
coefficientsα andω defined by

α =
1

R2

∫ R

0
2v2

zrdr, ω =
1

R2

∫ R

0
2vzcrdr.

FromU = BzŨ , C = C0C̃, we haveα = α̃, ω = ω̃, and we can transform the reduced system into
the following form:



































∂

∂t
R2 +

∂

∂z
(R2U) = 0

∂

∂t
(R2U) +

∂

∂z
(αR2U2) +

R2

ρ

∂p

∂z
= 2νR

[

∂vz

∂r

]

r=R

∂

∂t

(

R2C
)

+
∂

∂z

(

ωR2UC
)

= 2µR

[

∂c

∂r

]

r=R

. (2.11)

2.2.6 Closure of system (2.11)

System (2.11) involves 7 unknowns but has only 3 equations. We need therefore several closure
assumptions.

• The pressure.In a standard way [84, 13, 84], we close system (2.11) by using hypothesis 5 to
define the pressurep as an algebraic function of the section areaA = πR2.

• The viscous term for the hydrodynamic part.The coefficientsα andω as well as the viscous
terms in (2.11) are affected by the choice of the velocity and concentration radial shape func-
tions (fv andfc). Assuming hypothesis 2, it remains only to choose the functionfv. A typical
approximation for the velocity profile is

fv(r) =
γ + 2

γ

[

1 −
( r

R

)γ]

. (2.12)
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This profile gives the following expression for the Coriolis parameter:

α =
1

R2

∫ R

0
2f2

v (r)rdr =
γ + 2

γ + 1
,

and an explicit formulation of the right hand side of the second equation in (2.11):

2νR

[

∂vz

∂r

]

r=R

= −2ν

(

α

α − 1

)

Q

A
.

For blood flow, a suitable value forγ is 9, that givesα = 1.1.

• The viscous term of the TDE.Thanks to (2.6), we have

2µR

[

∂c

∂r

]

r=R

= −2DRfc(R)C.

We point out that, in order to have a concentration profile satisfying (2.6),fc has to satisfy the
compatibility condition

−µf ′
c(R) = Dfc(R). (2.13)

The normalized concentration profile can be for instance

fc(r) =
κ + 2

κ + 2(1 − δ)

[

1 − δ
( r

R

)κ]

, (2.14)

whereκ andδ are constants that we can choose such that (2.13) holds. An explicit formula for
ω is available in this case:

ω =
1

R2

∫ R

0
2fv(r)fc(r)rdr

= 2
(γ + 2)(κ + 2)

γ(κ + 2(1 − δ))

[

1 − δ

κ + 2
− 1

γ + 2
+

δ

κ + γ + 1

]

and the following expression of the viscous term:

2µR

[

∂c

∂r

]

r=R

= −2DR
(κ + 2)(1 − δ)

κ + 2(1 − δ)
C.

Thanks to the closure assumptions, we end up with a 3×3 system for the unknowns

A = πR2, Q = AU, Γ = AC,

that reads


























∂tA + ∂zQ = 0,

∂Q

∂t
+

∂

∂z

(

α
Q2

A

)

+ c2
1(A)

∂A

∂z
= − Ku

Q

A
,

∂tΓ + ∂z

(

ω
ΓQ

A

)

= −KC
Γ

A
,

(2.15)
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where

Ku = 2πν

(

α

α − 1

)

,

KC = 2πDR
(κ + 2)(1 − δ)

κ + 2(1 − δ)
,

c2
1(A) =

A

ρ

∂p(A)

∂z
=

G0

2ρA
1/2
0

A1/2.

Let u = Q/A be the mean blood velocity; in eq. (2.15), the linear concentrationΓ is transported by an
"effective velocity"ωu. We point out thatω could be different than one. For instance, whenΓ is the
(linear)hematocrit, the well-knownFahraeus-Lindqvist effect(see for instance [78]) can be described
by ω > 1.

2.3 Characteristics

The reduced model (2.15) is hyperbolic, and admits the following conservation form:

∂U

∂t
+

∂

∂z
F(U) = S(U), (2.16)

where

U =





A
Q
Γ



 , F(U) =













Q

α
Q2

A2
+

G0

2ρA
1/2
0

A3/2

ω
QΓ

A













, S(U) =





0
−KuQ/A
−KcΓ/A



 .

Introducing the flux matrix

H(U) =
∂F

∂U
=







0 1 0

c2
1(A) − αQ2

A2 2Q
A 0

−ω QΓ
A2 ω Γ

A ω Q
A






, (2.17)

we obtain a non-conservative formulation:

∂U

∂t
+ H(U)

∂U

∂z
= S(U). (2.18)

All the properties of this system hold also when several chemical linear concentrationsΓi, i =
1, . . . , N are considered instead of one: each concentrationΓi obeys to an equation like (2.15)3.

We point out that even if the third equation in (2.15) does not influence the first two equations of
(2.15), an analysis of the whole system is necessary, in order to set up the correct boundary conditions
(based on the characteristic variables).

In what follows, we will use the notation

u =
Q

A
, cα(A, Q) =

√

c2
1(A) + u2α(α − 1),

whereu is themean axial velocity. Using Jensen’s inequality, one can easily show thatα ≥ 1, thus
cα is well-defined.



40 REDUCED ONE-DIMENSIONAL MODELS FOR TRANSPORT OF CHEMICALS IN BLOOD VESSELS

Property 2.3.1. The matrixH admits three real eigenvalues:

λ1 = αu − cα, λ2 = αu + cα, λ3 = ωu, (2.19)

associated with the corresponding three left eigenvectors:

l1 = ζ1





−cα − αu
1
0



 , l2 = ζ2





cα − αu
1
0



 , l3 = ζ3







−ωC 1+u2(1−ω)(2−ω)
c21+(2ω−ω2−α)u2

ωuC 1−ω
c21+(2ω−ω2−α)u2

1






,

u = Q/A being the mean velocity,C = Γ/A the (volumetric) concentration, and(ζ1, ζ2, ζ3) arbitrary
functions of the state variables.

For physiological values of the parameters, thesound speedcα (at which a perturbation propagates
in the vessel) is two orders of magnitude greater than the typical mean axial velocity u; this means that
in practical computations, the eigenvalues are always distinct; moreoverλ1 is expected to be negative
andλ2 positive.

A fundamental step, from both the theoretical and numerical points of view,is the study of char-
acteristic variables of the system. This analysis is based on the solution of the following characteristic
differential equation:



















∂W

∂U
= L(U), L(U) =





lT1
lT2
lT3



 , W =





W1

W2

W3



 ,

W(U0) = W0

(2.20)

whereW1, W2 andW3 are the characteristic variables, andL is the matrix whose rows contain three
left eigenvectors ofH corresponding to each eigenvalue.

Suppose that a solution of the characteristic equations exists, at least locally. In this case,L being
non singular, the mappingW = W(U) between the state variablesU and the characteristic ones
W is one-to-one. Denote the inverse map byU = U(W); if we adopt the characteristic variables to
rewrite the system (2.16),we get

∂W

∂t
+ Λ(W)

∂W

∂z
= L(W)S(W), (2.21)

whereΛ is the diagonal matrix of eigenvaluesλi(U(W)), while L(W) = L(U(W)) andS(W) =
S(U(W)). System (2.21) is diagonal with respect to the derivatives ofW.

Remark 2.3.1. The sign of the eigenvaluesλi determines the number of boundary conditions to im-
pose at each end. While for the haemodynamic part there is always one positive (resp. one negative)
eigenvalue, for the transport equation the sign ofλ3 is not defineda priori. Thus, for the fluid equa-
tions, we will impose always one boundary condition at each end, while for the convection-reaction
equation the number of boundary conditions depends on the sign ofu at each boundary point.

In the next section, we will study in detail the case offlat profiles, in which it is possible to
explicitly solve (2.20) and compute the characteristic variables globally as functions of the physical
ones.
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2.4 Analysis of the system forflat profile

In theflat profilecase (that is,f ′
v = f ′

c = 0), the averaged quantitiesα andω are identically equal to
1, the source terms vanish, and equations (2.20) can be solved analytically.

The characteristic variablesW1 andW2, that will be denoted byr ands in this case, are indepen-
dent ofΓ (as the third component ofl1 andl2 is zero), so we follow the method outlined in [84] to
integrate the first two equations of (2.20). We adopt the integration factorsζ1 = −A−1 andζ2 = A−1,
and find

r = −u + 4c1, s = u + 4c1. (2.22)

The calculation of the third characteristic variable is easily done in the same manner (with l3 =
[−C, 0, 1]t andζ3 = A−1), and we get

C ≡ W3 = Γ/A. (2.23)

Actually, definingzc as a characteristic curve associated to the third equation







dzc

dt
= u(zc(t), t), t ≥ 0

zc(0) = ξ, ξ ∈ [0, L0]
,

we can see thatC is constant along this trajectory. In fact:

0 =
∂Γ

∂t
+

∂

∂z

(

Q

A
Γ

)

=
∂A

∂t
C + A

∂C

∂t
+

∂Q

∂z
C + Q

∂C

∂z

= A
∂C

∂t
+ Q

∂C

∂z
= A

(

∂C

∂t
+ u

∂C

∂z

)

= A
d

dt
C(zc(t), t),

where we used (2.15)1 and the definition of characteristic curve.
Let us write our system in terms of characteristic variables. Since we have no viscous terms,

equations (2.21) read






























∂r

∂t
+ λ1(r, s)

∂r

∂z
= 0,

∂s

∂t
+ λ2(r, s)

∂s

∂z
= 0,

∂C

∂t
+ λ3(r, s)

∂C

∂z
= 0,

(2.24)

where by eq. (2.19), (2.22) and (2.23) we have

λ1(r, s) = −5

8
r +

3

8
s, λ2(r, s) = −3

8
r +

5

8
s, λ3(r, s) = −1

2
r +

1

2
s. (2.25)

The existence of a global solution for the first two equations (in the semi-infinite domainz ≥
0, t ≥ 0) was proved in [56, 13] under certain assumptions on the boundary conditions. Here we
follow a similar approach, in the case of a finite vessel with “resistive” load at the right end: this
is often used in the multiscale modelling of the cardiovascular system to accountfor the remaining
circulation, and in particular the capillary bed. Oncer ands are found, the third transport equation
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is easily solved: moreover, this equation can be coupled with “external” dynamical systems (we will
present some numerical examples in the next section).

It has been shown in [13] that shocks can occur due to the non-linear nature of the fluid equations;
thus, only under additional assumptions on the initial and boundary data a classical global solution
exists. The initial data for problem (2.24) read







r(z, 0) = r0(z) for 0 ≤ z ≤ L0,
s(z, 0) = s0(z) for 0 ≤ z ≤ L0,
C(z, 0) = C0(z) for 0 ≤ z ≤ L0,

(2.26)

Moreover, we can assign a Dirichlet boundary data to eachincomingcharacteristic, eventually depen-
dent on timet and on theoutgoingcharacteristic variable. It we suppose thatλ1 < 0, λ2 > 0, and
λ3 > 0, we should consider the following boundary conditions:







s(z, t) = g(t, r(z, t)) on z = 0, t ≥ 0,
r(z, t) = f(t, s(z, t)) on z = L0, t ≥ 0,
C(z, t) = Cin(t) on z = 0, t ≥ 0.

(2.27)

The boundary and initial conditions satisfy the followingcompatibility conditions

g(0, r0(0)) = s0(0),
f(0, s0(L0)) = r0(L0),

Cin(0) = C0(0),
−λ1(r0(0), s0(0))r′0(0) = −∂sg(0, s0(0)) λ2(r0(0), s0(0)) s′0(0)

+∂tg(0, s0(0));
−λ2(r0(L0), s0(L0))s

′
0(L0) = −∂rf(0, r0(L0)) λ1(r0(L0), s0(L0)) r′0(L0)

+∂tf(0, r0(L0)),
−λ3(r0(0), s0(0))C ′

0(0) = C ′
in(0),

(2.28)

that is we require the continuity of the variables and their derivatives alongthe incoming characteris-
tics for t = 0 atz = 0 andz = L0.

Now we are able to state the global existence result:

Theorem 2.4.1.Suppose that:

a) r0, s0, C0 ∈ C1(0, L0), f, g ∈ C1, and equations (2.28) hold;

b) r′0 ≤ 0, s′0 ≥ 0;

c) (i) the functiong satisfies∂g/∂r ≥ 0, ∂g/∂t ≤ 0;
(ii) the functionf satisfies∂f/∂s ≥ 0 and∂f/∂t ≤ 0;

d) there existη ∈ (3
5 , 1), smin

0 > 0 andsmax
0 > 0 such that

ηs0(z) < r0(z) < s0(z), smin
0 < s0(z) < smax

0 ∀z ∈ [0, L0];

e) The functionsf andg satisfy the following estimates with respect to their arguments:

ηs < f(t, s) < s, ∀s ∈ (smin
0 , smax

0 ), smin
0 < g(t, r) < smax

0 , ∀r ∈ (ηsmin
0 , smax

0 );
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f) There isε > 0 such that

λ1(r(t, 0), s(t, 0)) < −ε, λ2(r(t, L0), s(t, L0)) > ε and λ3(r(t, 0), s(t, 0)) > ε, ∀t > 0;

g) the eigenvalues satisfy∂λ1/∂r ≤ 0 and ∂λ2/∂s ≥ 0.

Then, there exists a (unique) global classical solution(r, s, C) ∈ C1(R+ × [0, L0])
3 for the problem

(2.24, 2.25), satisfying (2.26) and (2.27).

Proof. If we prove that there is a classical solution of the(r, s) problem (2.24)1,2 such that
λ3(r(t, z), s(t, z)) > 0, ∀(t, z) ∈ R+ × [0, L0], then theorem 2.4.1 follows from standard results
applied to the linear scalar hyperbolic equation (2.24)3. Therefore, in the sequel we focus on the
problem (2.24)1,2 for r ands.

System (2.24)1,2 is strictly hyperbolic i.e.

λ2(r(t, z), s(t, z)) > λ1(r(t, z), s(t, z)), ∀(t, z) ∈ R+ × [0, L0]

provided thatλ2 − λ1 > 0 at t = 0 and on the boundary, as shown in [13] (and in [56] for the
analogous case of isentropic 1D gas flow) . By hypothesis d), att = 0 we haveλ2(r(0, z), s(0, z)) −
λ1(r(0, z), s(0, z)) = s0(z) − r0(z) > 0; by f) we haveλ2 − λ1 > 2ε > 0 on the boundary.
So the eigenvalues satisfyλ2 > λ1 everywhere. We denote byz = z0

s (t) the forward characteristic
emanating from(t, z) = (0, 0), and byz = zL0

r (t) the backward one emanating from(t, z) = (0, L0).
In what follows,T > 0 is the first time at whichz0

s crosseszL0
r , that isz0

s (T ) = zL0
r (T ). Moreover,

we defineD = [0, T ] × [0, L0], D1 = {(t, z) ∈ D : z0
s (t) ≤ z ≤ zL0

r (t)}, D2 = {(t, z) ∈ D : 0 ≤
z ≤ z0

s (t)}, andD3 = {(t, z) ∈ D : zL0
r (t) ≤ z ≤ L0}.

L0

z

t

T

D1

D2 D3

t = z0

s(t)

0

t = zL0

r (t)

Figure 2.2: The domainD =
⋃3

i=1 Di.

The smoothness of the initial data, together with hypothesis b) and the strict hyperbolicity of the
system, guarantees [56] that there is a classical solution(r, s) in D1, such that

∂r/∂z ≤ 0, ∂s/∂z ≥ 0. (2.29)

As in [13], due to the additional hypotheses b), c)(i), g), and to the compatibility conditions (2.28),
the solution is extended toD2 where it still satisfies (2.29); moreover, the solution isC1(D1 ∪ D2).
Using exactly the same technique with c)(ii) instead of c)(i), the solution is extended toD3, where
(2.29) holds, the extension being inC1(D) (see also the recent work [2]).

Now, to prove our assertion we have to consider the following steps.
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1. Sign ofλ3. Consider a generic forward characteristic curvezs. As ∂r/∂z ≤ 0 andλ2 − λ1 > 0
everywhere, we have

dλ3

dt
(r(t, zs(t)), s(t, zs(t))) =

1

2

d

dt
(s(t, zs(t)) − r(t, zs(t))) = −1

2

dr(t, zs(t))

dt

= −1

2
(λ2 − λ1)

∣

∣

(r(t,zs(t)),s(t,zs(t)))

∂r(t, zs(t))

∂z
≥ 0,

that isλ3 increases alongzs. Asλ3(r(0, z), s(0, z)) = (s(0, z)− r(0, z))/2) > 0, ∀z ∈ [0, L0]
by f) andλ3(r(t, 0), s(t, 0)) > ε > 0, ∀t > 0 by d), and asλ3 increases on every forward
characteristic, we obtainλ3 > ε in the wholeD, so that there exists a unique solutionC of
(2.24)3 with initial and boundary data given by (2.26)3, (2.27)3.

2. Global estimates.We need some global estimates in order to increase the time of existence of
our solution. Notice that along the backward characteristics(ds/dt)z=zr(t) = (λ1−λ2)∂s/∂z ≤
0. Sinceηs < r at t = 0 by d) and onz = 0 by e), and using the fact that along the backward
characteristicsr is constant ands is non-increasing, we have thatηs < r holds in the wholeD.
In the same way, assmin

0 < s < smax
0 at t = 0 and onz = 0, propagating this inequality along

the forward characteristics we obtains < smax
0 in the wholeD. Finally,r − s = 2λ3 > 0 in D,

and summarizing we have

ηs < r < s, smin
0 < s < smax

0 in D. (2.30)

Then, sinceη > 3/5, we get∀(t, z) ∈ D

λ1 <
−5η + 3

8
s <

−5η + 3

8
smin
0 < 0, λ2 >

s

4
>

smin
0

4
> 0.

These estimates are uniform in time, because they only depend on the constants η andsmin
0 .

Thus, we have a lower bound for the timeT that it takes for the characteristics to cross:

T >
L0/2

min{(5η − 3)smin
0 /8, smin

0 /4} =
4L0

(5η − 3)smin
0

= Tmin > 0.

3. Restart fromt = T . Now we can considert = T as a new initial time andr(T, z), s(T, z),
C(T, z) as new initial conditions. By (2.30), the new initial data satisfy the hypothesesb) and e);
moreover, the compatibility conditions (2.28) hold at(t, z) = (T, 0) and(T, L0) as the solution
is C1(D). It follows that we can extend the solution to a new domainD′ = [0, T ′] × [0, L0],
and so on recursively. At each prolongation we advance by a time greater thenTmin; this proves
that a global solution inR+ × [0, L0] exists.¥

To show that theorem 2.4.1 can be applied to our blood flow problem with mass transport, we
impose the blood velocityuin(t) (as in [13]) and the chemical concentrationCin(t) at the inletz = 0,
and a generic (algebraic) constitutive law for the load at the outletz = L0. A constitutive law for a
“resistive” load is a pressure vs. flow rate equation in the formp = R(Q). However, we will suppose
that the linearized equationQ = Au ' A0u holds at the vessel’s outlet, whereA0 is the reference
section area. Hence, we will assume the following law for the load:

p = H(u), (2.31)

whereH(u) = R(A0u).
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Property 2.4.1. Define

g(t, r) = 2uin(t) + r,

f(t, s) = φ(s),

whereφ is the solution ofF (φ, s) = 0, with

F (f, s) = p − H(u) =
ρ

32
(f + s)2 − G0 − H

(−f + s

2

)

. (2.32)

Suppose that:

H1) there existsumin
in > 0 such thatumin

in < uin(t) <
4

5
c1,0, wherec1,0 = c1(A0) =

√

G0/2ρ;

H2) the initial datar0, s0 satisfy hypotheses a), b), and d) of Theorem 2.4.1 with

smin
0 = 4c1,0 ≡

√

8G0/ρ, η = 1 − umin
in

2c1,0
;

H3) the load functionH satisfiesH(0) = 0 and

H ′(u) > m, ∀u ∈ R,

wherem = smax
0 ρ

2c1,0

umin
in

If u′
in(t) ≤ 0, then there exists a (unique) global classical solution(r, s, C) ∈ C1(R+ × [0, L0])

3 for
the problem (2.24), satisfying (2.26) and (2.27).

Proof. We have to show that hypotheses c)(i), c)(ii), e), f) and g) of Theorem 2.4.1 hold. Without
loss of generality we consider only the domainD defined in the previous proof: propagating the initial
data on the characteristics we have

ηsmin
0 < r(t, 0) < smax

0 , smin
0 < s(t, L0) < smax

0 ∀t ∈ [0, T ]. (2.33)

Being∂g/∂r = 1 and∂g/∂t = 2u′
in < 0, hypothesis c)(i) is satisfied. By H1 and H2,η ∈ (3

5 , 1) and
hypothesis d) is satisfied as well.

Using (2.33) and hypotheses H1 and H2 we have that

smin
0 =

umin
in

2c1,0
smin
0 + ηsmin

0 < 2umin
in (t) + r < g(t, r) < g(0, r) = s0(0) < smax

0 ,

thusg satisfies e).
Now, we claim that the solutionφ = φ(s) of F (φ, s) = 0 is in the interval(ηs, s) (note that if

such a solution exists, it is unique becauseH ′ > 0 together withs > 0 imply that∂F/∂φ > 0 for
φ ∈ (ηs, s)). To show this, it suffices to prove thatF (s, s) > 0 andF (ηs, s) < 0, or, equivalently,

ρ

8
s2 − G0 > 0 on z = L0, (2.34)

ρ

32
(η + 1)2s2 − G0 − H

(

η − 1

2
s

)

< 0 on z = L0. (2.35)



46 REDUCED ONE-DIMENSIONAL MODELS FOR TRANSPORT OF CHEMICALS IN BLOOD VESSELS

The inequality (2.34) is true by (2.33) and hypothesis H2. On the other hand, (2.35) is true if we show
that

ρ

32
(η + 1)2s2 − G0 − m

η − 1

2
s < 0,

which is satisfied if

0 < s <
(1 − η)m +

√

(1 − η)2m2 + ρ(η + 1)2G0/2

ρ(η + 1)2/2
.

The latter inequality is true because0 < s < smax
0 and

(1 − η)m +
√

(1 − η)2m2 + ρ(η + 1)2G0/2

ρ(η + 1)2/2
>

(1 − η)m

ρ
=

umin
in m

ρ2c1,0
= smax

0 .

Thus,f satisfies the hypothesis e) of Theorem 2.4.1.
Now we have to check thatφ′(s) ≥ 0. From (2.32) we get

ρ

16
(f(s) + s)(f ′(s) + 1) − H ′

(−f + s

2

) −f ′(s) + 1

2
= 0,

and then

f ′(s) = 1 − 2
ρ(f(s) + s)/16

H ′((−f(s) + s)/2))/2 + ρ(f(s) + s)/16

≥ 1 − 2
ρ(f(s) + s)

8m + ρ(f(s) + s)
≥ 1 − 2

ρsmax
0

4m + ρsmax
0

.

As m > 5
2ρsmax

0 by H3 and H1, we have thatf ′(s) > 0. So the functionf satisfies the hypothesis
c)(ii) of Theorem 2.4.1.

Finally, consider the eigenvalues at the boundary: we have

λ3(t, 0) = uin(t) > umin
in ,

λ1(t, 0) = −5

8
r(t, 0) +

3

8
g(t, r(t, 0)) < −5

8
r(t, 0) +

3

8
r(t, 0)/η <

−5 + 3/η

8
smin
0 ,

λ2(t, L0) = −3

8
f(t, s(t, L0)) +

5

8
s(t, L0) > −3

8
s(t, L0) +

5

8
s(t, L0) >

smin
0

4
.

So f) holds withε = min
{

umin
in , 5−3/η

8 smin
0 ,

smin
0
4

}

> 0. This completes the proof, g) having been

fulfilled. ¥

2.5 Taylor-Galerkin numerical approximation of the solution

We present the Taylor-Galerkin scheme for the system (2.18): this choiceseems to be suitable as
shock waves do not develop for the hydrodynamical variables in physiological conditions [13]. The
last variable being the solution of a linear transport equation, we don’t expect it to be discontinuous
if the boundary/initial data are not. The scheme we will adopt is based on finiteelement spatial
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discretization and a second-order Taylor expansion forU. We write the first and the second time
derivatives of the unknown using (2.15), as follows:

∂U

∂t
= S(U) − ∂

∂z
F(U),

∂2U

∂t2
=

∂S(U)

∂U

(

S(U) − H(U)
∂U

∂z

)

− ∂

∂z

[

H(U)

(

S(U) − H(U)
∂U

∂z

)]

,

and the following semi-discrete time advancing scheme is considered:

Un+1 =Un + ∆t

(

Sn − ∂

∂z
Fn

)

+
∆t2

2

{

Jn

(

Sn − Hn ∂Un

∂z

)

− ∂

∂z

[

Hn

(

Sn − Hn ∂Un

∂z

)]}

,

whereUn(z) is the approximate solution at timetn = t0 + n∆t, and we setSn = S(Un), Fn =

F(Un), Jn = ∂S(Un)
∂U

, Hn = H(Un).
Let Nh ∈ N, Nh > 0, and{zi = ih, i = 0, . . . , Nh}, beingh = L0

Nh
. Consider the associated

finite element spaceVh of piecewise linear polynomials and the subspaceV0,h = {v ∈ Vh | v(0) =
v(L0) = 0}. We adopt the following Galerkin spatial discretization:givenUn

h, findUn+1
h ∈ V 3

h such
that for all φh ∈ V 3

0,h

(Un+1
h , φh) =(Un

h, φh) − ∆t2

2
(JnHn ∂Un

∂z
, φh) − ∆t2

2
(HnHn ∂Un

∂z
,

∂φh

∂z
)

+ (∆tSn +
∆t2

2
JnSn, φh) + (∆tFn +

∆t2

2
HnSn,

∂φh

∂z
),

and
W(Un+1

h )|z=0 = Wn+1
1 , W(Un+1

h )|z=L0 = Wn+1
2 ,

where the componentsWn+1
ij of Wn+1

i , i = 1, 2, are the incoming characteristic boundary data or
the outgoing characteristic extrapolation data at timetn+1 (depending on the sign of the associated
eigenvalues, see [84]).

For instance, inz = 0 we extrapolate the outgoing variableW1 and assign the corresponding
boundary condition forW2 andW3. Therefore, we set

Wn+1
11 := W1(tn,−λ1(tn, 0)∆t) + ∆t(ln1 (0))TSn(0),

Wn+1
12 := g(tn+1, Wn+1

11 ),

Wn+1
13 := Cin(tn+1).

This numerical method requires an analytic expression for the characteristic variables; therefore,
we consider here the flat profile case. It is possible to use the same method but with a different
treatment of boundary conditions also if non-flat velocity and/or concentration profiles are adopted
[84]. Note that the extrapolation technique is based on a forward Euler step for the integration of
characteristic equations (2.20). If flat profiles are assumed, we haveS = 0 and the characteristic
variables are conserved along the characteristic curves. The numerical scheme entails a CFL stability
condition with a CFL number equal to1/

√
3 [83], more precisely:

∆t ≤ ∆z√
3 (max{|λi(zj)|, i ∈ {1, . . . , 3}, j ∈ {1, . . . , Nh}})

.
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Some numerical results with a pure resistive load and standard aorta parameters are reported in fig.
2.7, where the section areaA, the flow rateQ and the oxygen linear concentrationΓ are shown. The
vessel reference section area isA0 = 3.14 cm. We consider a pulsatile input blood velocityuin(t) at
heart rates corresponding to rest conditions (1 bpm) and mean flow rateQ0 = 4.98 lit min−1, as in fig.
2.3. The oxygen concentration in blood is assumed [77] to beC = Γ/A = 0.2 ml O2 ml−1 blood =
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Figure 2.3: Imposed inlet blood velocityuin (one period).

8.75 µmol ml−1, with a step-shaped initial condition in order to display the wavefront progress. In
one heart beat the wavefront moves on and covers28 cm; this result is consistent with the mean blood
velocity (that is

∫ 1
0 Q(t, 0)/A(t, 0)dt). In this simulation, the load is represented by a pure resistance

R = 0.3 mmHg sec cm−3, that is a standard∆p/∆Q ratio, where∆p and∆Q are the mean variations
of pressure and flow rate during an heart period in a large artery.

We choose a60 cm vessel length in order to show the wave propagation. In our model the ref-
erence pressure value is zero: we only deal withpressure variations. The “physiological” pressure,
is obtained by adding the pressure offset (90 mmHg), corresponding to rest condition, to the results.
The resistive load causes the formation of several non negligible reflected waves: we observed three
reflections, as it is shown by the pressure time course of fig. 2.4. Moreover, the smaller the peripheral
resistance, the larger the reflected pressure waves: this is shown in fig.2.5 where pressure profiles for
R = 0.08 mmHg sec cm−3 are reported at the vessel inlet and outlet.

More realistic results are obtained with acoupled system, in which a 0D model described by
ordinary differential equationsrepresents the vessel load [29]. We point out that in this way we can
take into account the substrate metabolism in tissues as well as the peripheralcapillary resistance and
compliance. The 0D model, depicted in fig. 2.5, has the following state equations:















C
dpC(t)

dt
= −pC(t)

R2
+ Q(t),

M
dCT (t)

dt
= Q(t)

(

Γ(t)

A(t)
− σCT (t)

)

− v(CT (t), t)

whereC andR2 are respectively the hydraulic compliance and resistance of the load,pC is the pres-
sure on the compliance,CT is the substrate concentration in the tissue,M is the tissue volume (or
mass, depending on theCT definition),σ is the a partition coefficient, andv is the metabolic rate of
consumption of the substrate. The pressurep appearing as boundary value in the 1D model is given
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Figure 2.4: Inlet/outlet pressure time course in a60 cm 1D model of a vessel with a pure resistive load
R = 0.3 mmHg sec cm−3.

by
p(t) = pC(t) + R1Q(t),

whereR1 is a further hydrodynamic resistance. As regards the blood-tissue exchanges, we proceed
as in chapter 1: we assume that the relation between the tissue concentrationCT and the venous
concentrationCv in the blood leaving the tissue islinear, Cv = σCT , beingσ the partition coefficient.

A possible choice for the metabolic ratev is the Michaelis-Menten law that reads

v = Vmax(t)
CT

C0.5 + CT
, (2.36)

whereVmax(t) is the maximum consumption rate andC0.5 is the characteristic concentration.
Here we detail the interface conditions used to couple both systems [29, 31]. Suppose that the

boundary valuesAn(L0), Qn(L0), Γn(L0) of the 1D model are known at timetn, and consider a
forward Euler step on the 0D model, that is

Cpn+1
C =Cpn

C + ∆t

(

−pn
C

R2
+ Qn(L0)

)

,

MCn+1
T =MCn

T + ∆t

(

Qn(L0)

(

Γn(L0)

An(L0)
− σCn

T

)

− v(Cn
T , tn)

)

,

pn+1 =pn+1
C + R1Q

n.

Then, the new value of the pressurepn+1 can be used to update the characteristic variables:

Wn+1
22 =W2(tn,−λ2(tn, L0)∆t) + ∆t(ln2 (0))TSn(0),

Wn+1
21 = − Wn+1

22 + 8

(

G0

2ρ

)1/2

A
1/2
0

√

pn+1/G0 + 1,

i.e. we extrapolate the outgoing characteristic variable and then we assign theincoming one using the
boundary value provided by the 0D model.
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Figure 2.5: Inlet/outlet pressure time course in a60 cm 1D model of a vessel with a pure resistive load
R = 0.08 mmHg sec cm−3.

1D model

inlet B.C.

0D model

Cp = p(A)
R1

R2 pC

dCT

dt
= f(CT , A,Q,Γ)

Q

Γ

Figure 2.6: Multiscale coupling.

In fig. 2.8 the input/output pressure profiles during four heart beats are reported. We observe that
the pressures are in the clinical range, and that the peripheral compliance acts like a damper with
respects to the reflections, that were more important in fig. 2.4 and 2.5).

In fig. 2.9 we show the evolution in time ofCT for the coupled 1D-0D system with oxygen trans-
port. For the sake of simplicity, the load is representative of all the tissues fed by the systemic circula-
tion. In this simulationC andR are respectively the total arterial compliance and resistance (we con-
sideredC = 0.1 cm3 mmHg−1 [99] andR1 = 0.02 mmHg sec cm−3, R2 = 0.08 mmHg sec cm−3,
in such a way that the total static resistance equals0.1 mmHg sec cm−3. The mean oxygen concen-
tration in arterial blood, as well as the constant boundary valueCin, is 8.75 µmol ml−1; at rest the
body consumesV0 = 0.18 mmol s−1 of oxygen and the mean oxygen concentration2 in tissues is
CT,0 = 6.5 mmol kgdw−1, so that we use (2.36) withVmax = 2V0 andC0.5 = 6.5 mmol kgdw−1.
Finally, we assume that the total tissue dry weight isM = 10 kgdw, and that the partition coefficient
σ is such that the balanceQ0(Cin − σCT,0) − V0 = 0 holds, that isσ = (Cin − V0/Q0)/CT,0 =

2 Tissue concentrations are often measured in terms of millimoles per kilogram of dry weight of tissue is
(mmol kgdw−1). The values are extracted from [11].
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Figure 2.7: Section area (cm2), flow rate (cm2sec−1) and linear concentration (mmol cm−1) waves in
a60 cm 1D model of a vessel with a loadR = 0.3 mmHg sec cm−3.

10−3 kgdw ml−1.
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Figure 2.8: Inlet and outlet pressure (dynamicRCR load).
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Figure 2.9: Oxygen concentration in the tissue compartment, dynamicRCR load.



Chapter 3

Introducing coupled 1D-3D
diffusion-reaction models

3.1 Introduction

In this chapter, we are going to study the coupling between two diffusion-reaction phenomena, one
taking place in a three-dimensional medium, the other on a one-dimensional subdomain, and both
depending on each other by some exchange terms.

Our analysis is motivated by the increasing use of multi-scale approaches in biomathematics. As
an example, let us consider variables like the partial pressure of oxygen(or its concentration), or
the blood temperature: usually they are found to satisfyfast diffusion-reaction-advection equations
(advection-dominated) in the net of “big to medium-scale” vessels (macroscale), while they feature
a slow dynamics in the matrix of “small” vessels (microscale). Typically, homogenized 3D models
can suitably represent the phenomena related to the microscale (for exampleDarcy flow) without
resolving its fine structure. But this is not the case for the macroscale, where the branching vessel
geometry has to be considered, and can still be too complex to afford the computational costs of a 3D
model. A possible cure, supported by the extremely small ratio between the typical vessel diameter
and the size of the tissue region, is to resort to 1D circulation models. The advantage of such an
approach is clearly its efficiency: it does not need a very refined computational grid near the vessels,
allowing for a large economy of memory and CPU utilization. The drawback is that the coupling
conditions between tissue and vessels are non-standard.

This and the next chapter are devoted to the mathematical justification and analysis of such cou-
pled problems, while the next one will focus on their applications. For the sake of simplicity, we first
consider model problems only; in chapter 6 we will focus on applications.

To sum up, the plan of chapters 3 - 5 is as follows.

• In this chapter, we introduce the vessel-tissue coupling for our model equations, and derive
an asymptotic 1D-3D problem. We will see that the asymptotic 3D problem has non-smooth
(measure) data, so that its solution is somehow singular.

• In chapter 4, we consider suitable functional spaces in which the well-posedness of our 3D
singular problem can be established. We use the results for the analysis ofthe coupled 1D-3D
problem.

• In chapter 5, we study the numerical approximation of the solution of the 1D-3D coupled prob-
lem.

53
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3.2 The problem and model equations

3.2.1 Geometry

In the sequel we shall consider a tissue domainΩ ⊂ R3, containing a 1D manifold, like a line or
a tree, that represents a blood vessel. We will introduce the actual 3D space occupied by the vessel
as well, and the actual bidimensional interface between the vessel and the tissue, but only to recover
physically meaningful coupling conditions. As shown in fig. 3.1, these objects can be mathematically
defined as follows.

• The 1D manifold, representing the vessel, will be denoted byΛ. For the sake of simplicity, let
us assume thatΛ is a single line:

Λ = {x ∈ Ω : x = xv(s), s ∈ (s1, s2)} , (3.1)

wheres is the curvilinear abscissa, andxv : (s1, s2) → R3 is the related smooth parametriza-
tion. This assumption can easily be extended to consider branching geometries too, however
this topic will be addressed only in the next chapter.

• We assume that the actual vessel radius is a positive constantR > 0. Then, we introduce the
actual volume occupied by the vessel as the set of point closer thanR > 0 to Λ:

ΩR
v := {x ∈ Rn : dist(x, Λ) < R}.

We will use this domain to study the coupling conditions between the tissue and the one-
dimensional vessel. Of course, we assume thatR is small enough so thatΩR

v ⊂ Ω.

We will equipΩR
v with an atlas consisting of three local maps. To this end, define

ΩR
v,0 = {x ∈ R3 : x = xv,0(s, r, θ), (s, r, θ) ∈ (s1, s2) × [0, R) × [0, 2π)},

ΩR
v,1 = {x ∈ R3 : x = xv,1(r, θ, φ), (r, θ, φ) ∈ [0, R) × [0, 2π) × [0, π)}, (3.2)

ΩR
v,2 = {x ∈ R3 : x = xv,2(r, θ, φ), (r, θ, φ) ∈ [0, R) × [0, 2π) × [0, π)},

being

xv,0(s, r, θ) = xv(s) + n(s)r cos θ + b(s)r sin θ,

xv,1(r, θ, φ) = xv(s1) + n(s1)r cos θ sinφ + b(s1)r sin θ sinφ + t(s1)r cos φ, (3.3)

xv,2(r, θ, φ) = xv(s2) + n(s2)r cos θ sinφ + b(s2)r sin θ sinφ + t(s2)r cos φ,

wheret(s), n(s) andb(s) are the tangent, normal and binormal versors onΛ. Roughly speak-
ing, ΩR

v can be parametrized as an overlapping union of one cylindrical coordinates local map
onΩR

v,0 and two spherical coordinates mappings onΩR
v,1, Ω

R
v,2.

• We will denote by
ΩR

t = Ω\ΩR
v

the actual “tissue” domain. A special role will be played by the interfaceΓR between vessel
and tissue:

ΓR = ∂ΩR
v .
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The “cylindrical” part ofΓR that belongs to the boundary ofΩR
v,0 will be denoted by

ΓR
0 = {x ∈ R3 : x = xv,0(s, R, θ), (s, θ) ∈ (s1, s2) × [0, 2π)}.

This is the “leading order” surface because its scales asR for R → 0, whereas the remaining
“spherical” boundaries scale asR2.

Finally, we denote by
Γt = ∂Ω

the surface of the tissue domain that is not shared with the vessel; beingΩR
t ⊂ Ω, we have that

∂ΩR
t = ΓR ∪ Γt.

Ω = ΩR
v ∪ ΩR

t

ΓR

ΩR
t

ΩR
v

Λ

Ωv,0

Ωv,1

Ωv,2

Γt

n
b

ts

Figure 3.1: Subdomains inΩ: the 1D vessel domainΛ, the actual 3D vessel domainΩR
v , and the 3D

tissue domainΩR
t . Shown is the covering ofΩv by overlapping subsetsΩv,0, Ωv,1 andΩv,2 where

local cylindrical/spherical coordinatesxv,0, xv,1, xv,2 are defined.

Our basic assumption on the vessel geometry is that the projection fromΩR
v to Λ is unique:

∀x ∈ ΩR
v : ∃!x0 ∈ Λ : dist(x, Λ) = ‖x − x0‖. (3.4)

Notice that the projectionx0 exists becauseΛ is compact. One can show that eq. (3.4) is satisfied if
Λ is smooth enough andR is small. A consequence of (3.4) is that

dist(xv,0(s, r, θ), Λ) = r ∀(r, s, θ) ∈ [s1, s2] × [0, R) × [0, π). (3.5)

Let {ϕv,i} be a partition of the unity such that, for i = 0,1,2,ϕv,i : ΩR
v → R is a non-negative

smooth function with supp(ϕv,i) ⊂ ΩR
v,i, and

∑

i ϕv,i = 1 on ΩR
v . For every measurable function
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g : ΩR
v → R, we have

∫

ΩR
v

gdx =

∫ s2

s1

∫ R

0

∫ 2π

0
g0(s, r, θ)rdsdrdθ +

∑

i=1,2

∫ R

0

∫ 2π

0

∫ π

0
gi(r, θ, φ)r2 sin φdrdθdφ,

(3.6)
where

gi = (gϕv,i) ◦ x−1
v,i , i = 0, 1, 2.

Moreover, we have the formula

∫

ΓR

gdσ =

∫ s2

s1

∫ 2π

0
g0(s, R, θ)Rdsdθ, +

∑

i=1,2

∫ 2π

0

∫ π

0
gi(R, θ, φ)R2 sinφdθdφ. (3.7)

From this equation, we have that ifg is continuous onΩR
v , then

lim
ε→0

1

ε

∫

ΓεR

gdσ = lim
ε→0

∫ s2

s1

∫ 2π

0
g0(s, εR, θ)Rdsdθ =

∫ s2

s1

2πg(s)Rds = 2πR

∫

Λ
gds, (3.8)

whereg(s) = g(xv,0(s, 0, 0)).

We will denote by a bar the following averaging operator on circles of radius R laying on the
cylindrical surfaceΓR

0 and normal to the lineΛ:

ḡ(s) =
1

2π

∫ 2π

0
g(xv,0(s, R, θ))dθ. (3.9)

The area of surfaceΓR
0 scales asR, so that, using local coordinatesxv,0, and defininggε(s, r, θ) =

g(s, r/ε, θ), we have

lim
ε→0

1

ε

∫

ΓεR
0

gεdσ = 2πR

∫ s2

s1

ḡ(s)ds. (3.10)

3.2.2 Diffusion-advection-reaction equations

Now we can focus on the interplay between the actual 3D tissue domainΩR
t and the 1D vessel domain

Λ, and study the behavior of the solutions when a suitable rescaling is applied and R → 0 so that
ΩR

t expands to the wholeΩ. We point out that in this investigation, the starting equation for the
vessel variable is already one-dimensional, while it would have been preferable to “obtain” this one-
dimensional equation starting from the actual 3D vessel domainΩR

v by “shrinking” it to its 1D axis.
We did not follow this (interesting) approach because we are mostly interested in the singularity of
the asymptotic 3D solution. Moreover, the same asymptotic analysis for the vessel region has been
considered in the previous chapter on one-dimensional models for mass transport in blood vessels1.

1Nevertheless, a coupled vessel-tissue asymptotic analysis, justifying the 1D-3D model starting from the 3D-3D one, is
still lacking and would represent an interesting complement to this work.
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Let us denote byut the unknown variable in the tissue and byuv the one in the vessel; the model
problem we will consider reads



















































−∇ · (kt∇ut) + mtut + rt = 0 in ΩR
t ,

ut = 0 onΓt,

−kt∂nut = −q onΓR,

− d

ds

(

kv
duv

ds

)

+ bv
duv

ds
+ f = 0 in Λ,

uv(s1) = uv,1,

−kv
duv
ds (s2) = 0,

(3.11)

wherekt, mt andrt are respectively a diffusion, reaction and source term in the tissue domain, while
kv andbv are the diffusion and convective term in the vessel domain.

The q term, defined on the actual interfaceΓR between vessel and tissue, represents the mass
transfer term (per unit surface) from the vessel to the tissue: for the moment it is assumed to be a
known function, such that supp(q) ⊂ ΓR

0 . By conservation of the global fluxΦ acrossΓR, a related
termf appears in the vessel equation, such that

∫ s2

s1

f(s)ds =

∫

ΓR

qdσ = Φ.

The boundary conditions for the tissue are of mixed Dirichlet/Neumann type:∂n denotes the outer
normal derivative (with respect toΩR

t ). For the vessel we have a Dirichlet condition ats = s1 and a
homogeneous Neumann condition ats = s2 (other combinations could be considered as well).

Onceq andf are given, under standard hypotheses system (3.11) consists of two decoupled elliptic
equations. However, we wonder if some “asymptotic” problem forut onΩ can be recovered by letting
R → 0 and by rescaling properlyq in order to keep the total flux acrossΓR unchanged. Therefore,
for ε ∈ (0, 1], we consider the problem corresponding to the scaled vessel radiusεR:











−∇ · (kt∇uε
t) + mtu

ε
t + rt = 0 in ΩεR

t ,

uε
t = 0 onΓεR

t ,

−kt∂nuε
t = −qε onΓεR,

(3.12)

for which we would like to find a limit solution whenε → 0. Using local variables, the fluxqε onΓεR
0

for the scaled problem must be equal to

qε(s, εR, θ) =
1

ε
q(s, R, θ),

if we want the total fluxΦ =
∫

ΓεR kt∂nuε
t dΓ to be independent ofε. In fact, by changing the integra-

tion variables we have

Φ =

∫

ΓεR
0

qεdσ =

∫

ΓR
0

qdσ =

∫ s2

s1

f(s)ds ∀ε ∈ (0, 1] (3.13)

Let C∞
0 (Ω) be the space of smooth functions with compact support inΩ. If we multiply the

equation in (3.12) by an arbitrary test function inC∞
0 (Ω) and integrate overΩεR

t , we get
∫

ΩεR
t

kt∇uε
t · ∇φdΩ +

∫

ΩεR
t

mtu
ε
tφdΩ +

∫

ΩεR
t

rtφdΩ =

∫

ΓεR
0

qεφdσ ∀φ ∈ C∞
0 (Ω). (3.14)
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Since
∫

ΓεR
0

qεφdσ =

∫ L

0

∫ 2π

0
q(xv,0(s, R, θ))φ(s, εR, θ)Rdsdθ

we have, similarly to eq. (3.10),

lim
ε→0

∫

ΓεR
0

qεφdσ = 2πR

∫

Λ
q̄φds, where q̄(s) =

1

2π

∫ 2π

0
q(s, R, θ)dθ.

In particular, thanks to (3.13), we see thatf can be given the following expression:

f(s) = 2πRq̄(s).

Suppose now thatuε
t → ut with respect to a suitable norm so that the limit of (3.14) forε → 0 is

∫

Ω
kt∇ut · ∇φdΩ +

∫

Ω
mtutφdΩ +

∫

Ω
rtφdΩ =

∫

Λ
f(s)ds ∀φ ∈ C∞

0 (Ω). (3.15)

Then, eq. (3.15) is the candidate for our asymptotic problem, whose strongform reads:
{

−∇ · (kt∇ut) + mtut + rt = f(s)δΛ in Ω,

ut = 0 on∂Ω,
(3.16)

beingδΛ the Dirac measure concentrated onΛ: in this work, we will adopt the following convention:
for f ∈ L2(Λ), we denote byfδΛ the linear operator onC(Ω), the space of continuous functions on
Ω, defined by

(fδΛ, φ) =

∫

Λ
fφds. (3.17)

In particular,fδΛ is a measure(for f = 1, it is exactly the Dirac measure onΛ). Notice thatf(s)
appears in turn as a sink term in the one-dimensional transport subproblem in (3.11):



















− d

ds

(

kv
duv

ds

)

+ bv
duv

ds
+ f(s) = 0 in Λ,

uv(0) = uv,D,

−kvu
′
v(L) = 0,

In practice,the mass exchange termf appears as a function in the 1D equation, and as a measure
in the 3D one. The first remark we can make is thatδΛ /∈ H−1(Ω), so that if a solutionut exists, it
will be not in H1(Ω). It is known that a 3D solution to a Poisson problem with a line source has a
logarithmic singularity near the line, whose gradient does not belong toL2(Ω).

In applications,q (and sof ) is not knowna priori. Usually a constitutive law forq has to be
chosen: this makes the derivation of the asymptotic problem more complicated. Even if more complex
non-linear models (like the Kedem-Katchalsky equations) could be adopted,let us consider as an
example the following linear filtration law in local coordinatesxv,0:

q(s, θ) = D(uv(s) − ut(xv,0(s, R, θ))), (3.18)

In this case system (3.11) is no longer decoupled. Moreover, it is not immediately clear how to choose
the scaling of the flux−kt∂nuε

t, asq depends on the solution itself, so that a simple formula preserving
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the total fluxΦ is not available. For certain scalings, the reduced problem still has the form







































−∇ · (kt∇ut) + mtut + rt = f(uv, ut, s)δΛ in Ω,

ut = 0 on∂Ω,

− d

ds

(

kv
duv

ds

)

+ bv
duv

ds
+ f(uv, ut, s) = 0 in Λ,

uv(0) = uv,D,

−kvu
′
v(L) = 0,

(3.19)

wheref is a suitable functional, representing alinear flux (i.e. rate of transfer per unitlength). In
general, it is not a simple function, but rather an integral operator. For example, if we adopt the
ε−1-scaling of the fluxq, we find

f(uv, ut, s) = 2πRD

(

uv(s) −
1

2π

∫ 2π

0
ut(xv,0(s, R, θ))dθ

)

(3.20)

= 2πRD (uv(s) − ūt(s)) .

We might wonder if thisε−1 scaling associated with form (3.20) of the exchange term does pre-
serve the total flux. Actually we will show by some examples that this is the case.We will provide
test cases with an available analytical solution, that allow the investigation of thetypical behavior of
the asymptotic solution.

Examples

For δ ∈ (0, 1) we define the following simple domain in cylindrical coordinates (see fig. 3.2):

Ωδ
t = {(z, r, θ) ∈ R3 : δ < r < 1, 0 < z < 1}.

r = 1r = εR

uε(r)ΩεR

ΓD

ΓεR
N ΓεR

Figure 3.2: Axisymmetric model problem.



60 INTRODUCING COUPLED1D-3D DIFFUSION-REACTION MODELS

We have∂Ω = Γδ ∪ ΓD ∪ Γδ
N , where

Γδ = {(z, r, θ) ∈ R3 : r = δ, 0 < z < 1},
ΓD = {(z, r, θ) ∈ R3 : r = 1, 0 < z < 1},
Γδ

N = {(z, r, θ) ∈ R3 : δ ≤ r ≤ 1, z ∈ {0, 1}}.
Moreover, we define the segment

Λ = {(z, r, θ) ∈ R3 : (z, r, θ) = (s, 0, 0), s ∈ [0, 1]}.
Let ε ∈ (0, 1) be the scaling coefficient, and denote by0 < R < 1 a reference radius, thought to be
¿ 1 (this could be the case of the actual vessel radius). We will focus on the scaling of two model
Laplace problems, respectively considering Neumann and Robin conditions.

The Neumann case. Consider a constant Neumann datumq onΓR. The associatedε-scaled model
problem reads:























−∆uε = 0 in ΩεR
t ,

−∂nuε = 0 onΓεR
N ,

−∂nuε = −qε onΓεR

uε = 0 onΓD,

(3.21)

whereqε is the scaled flux. The scaling has to be such that the total flux across the surfaceΓεR

Φ(ε) =

∫

ΓεR

qεRdΓ =

∫ 1

0

∫ 2π

0
qεεRdzdθ = 2πεRqε

is constant with respect toε. This obviously implies

qε =
1

ε
q.

As the problem isθ,z-symmetric, we can look for radial solutions, in the formuε = uε(r). With this
choice, Neumann conditions onΓε

N are automatically satisfied; moreover,∆uε = 1
r

d
dr

(

r d
druε

)

, so
that the problem is reduced to











− d
dr

(

r d
druε(r)

)

= 0, εR < r < 1,
d
druε(εR) = −q/ε,

uε(1) = 0,

(3.22)

whose solution is
uε(r) = −Rq ln(r), r ∈ [εR, 1], ∀ε ∈ (0, 1].

Since this function is independent ofε, it is already the asymptotic solution forε → 0 that we are
looking for. This is given by

u(r) = −Rq ln(r),

and defined on the wholeΩ = (0, 1) × (0, 1) × (0, 2π). One can easily verify thatu is the weak
solution of the following Poisson problem with a measure as a right hand side:











−∆u = 2πRqδΛ in Ω,

−∂nu = 0 onΓN ,

u = 0 onΓD.

(3.23)
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Notice that the Dirac density2πRq on the one-dimensional vesselΛ is just the integral of the surface
flux q on each cross-section of the actual vessel.

The Robin case. Consider a linear Robin condition:

−∂nu = −q1(u) = −D(u − uv) onΓR,

beingD anduv constants. Whenε-scaling the problem, the total flux across the surfaceΓεR becomes
now dependent on the solution. Forε > 0, denote byDε the rescaled conductive coefficient, such that
D1 = D. In our axisymmetric problem, we have:

Φ(ε) =

∫

ΓεR

Dε(u
ε − uv)RdΓ = Dε

∫ 1

0

∫ 2π

0
(uε(εR) − uv)εRdzdθ = 2πDεεR(uε(εR) − uv).

In order to preserve the flux, one should imposeΦ(ε) = Φ(1) ∀ε ∈ (0, 1], which gives

Dε = D
1

ε

(

u1(R) − uv

uε(εR) − uv

)

.

In this equation, we have the sameε−1 term we met in the Neumann case, plus another term which
involves the actual and the rescaled solutions. The latter, in particular, it is not knowna priori. The
correspondent rescaled problem























− d
dr

(

r d
druε(r)

)

= 0, εR < r < 1,
d
druε(εR) = Dε(u

ε(εR) − uv)

= D 1
ε (u

1(R) − uv),

uε(1) = 0,

(3.24)

admits the following solution: forε = 1 we find

u1(r) = − DRuv

1 − DR lnR
ln(r), r ∈ [R, 1],

that is the actual solution in the non-rescaled domain. Solving (3.24) forε ∈ (0, 1] usingu1 as datum,
we obtain once again

uε(r) = − DRuv

1 − DR lnR
ln(r), r ∈ [εR, 1],

which is, as in the Neumann case, depending onε only via the domain, so that the asymptotic solution
for ε → 0 is the singular function

u(r) = − DRuv

1 − DR lnR
ln(r)

defined on the wholeΩ = (0, 1) × [0, 1) × (0, 2π). As in the Neumann case, one can verify thatu is
the weak solution of problem (3.23), if we take

q = 2π
Duv

1 − DR lnR
.
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We point out that this expression forq has been obtained by means of the actual solutionu1, and
it may change when different geometries and Dirichlet data are considered. However, we draw the
reader’s attention on the fact that this example is a particular case of problem (3.19), namely:











−∆u = 2πRqδΛ in Ω,

−∂nu = 0 onΓN ,

u = 0 onΓD,

(3.25)

where
q(s) = D(uv(s) − ū(s)),

ū(s) =
1

2π

∫ 2π

0
u(x(s, R, θ))dθ,

(3.26)

beingx(r, s, θ) the parametrization ofΩR
t appearing in (3.3). This means that fors ∈ [0, L], ū(s) is

the mean value of the unknownu on the circle of radiusR centered at the points on the lineΛ, and
laying on the plane normal toΛ. Notice that (3.25, 3.26) form anintegro-differentialproblem, and
one has to show that this problem makes sense in a suitable functional space. In our axisymmetric
example, we havēu = −DRuv ln R

1−DR ln R , so that we obtain once again the expressionDuv
1−DR ln R for q. We

point out that, in this case, the asymptotic problemis preserving the total flux.

The former examples show how the asymptotic singular solution can approximatethe actual one
at least forr > R (in the simple axisymmetric problem we considered, the actual and asymptotic
solution are the same function onΩR

t ). To summarize, by means of the asymptotic solution we can
avoid to resolve the 3D geometry of small vessels, but the elliptic problem we have to consider has
a right hand side which is ameasure, that has the formf(s)δΛ. Of course, forr < R the singular
solution ceases to have a physical meaning, since it is not bounded near the singularity.. However,
sinceR is a known parameter, this is not a drawback of the asymptotic solution approach: forr ≥ R,
u is expected to be a good approximation of the actual solutionu1.

A numerical experiment. Having presented through a couple of examples the typical behavior of
the asymptotic solution, let us investigate its numerical approximation by the finite element method.

We will consider the simple problem (3.23) onΩ, with Rq = 1: the exact solution isu(r) =
− ln r. Basis functions of standard FEM are continuous, so that the Galerkin approximationuh of u
is well defined: that is, we are allowed to consideruh ∈ Vh such that

a(uh, v) =

∫ 1

0
2πv(z, 0, 0)dz ∀v ∈ Vh, (3.27)

whereVh is a suitable finite element space (in this example, we useP1 elements with maximum
element sizeh), anda is the following bilinear form:

a(u, v) = (∇u,∇v)L2(Ω) =

∫

Ω
∇u · ∇v dx.

As we already pointed out, we cannot expect convergenceuh → u in H1 norm forh → 0. In fact, we
have:

‖u‖2
L2 = 2π

∫ 1

0
r ln2 rdr < ∞, ‖∇u‖2

L2 = 2π

∫ 1

0
r

1

r2
dr = ∞,

so thatu ∈ L2(Ω) but u /∈ H1(Ω). As we will see, even if we cannot rely on the standardH1

convergence, we still haveL2 convergence. Moreover, it is possible to introduce other spaces in which
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we can study the convergence of the FEM. To this end, we introduce the weighted spaceL2
α(Ω), (see

definition A.1.1) as the space of square integrable functions with respect tothe measureµα defined by

dµα(x) = dist(x, Λ)2αdx.

The space of functions inL2
α(Ω) whose first derivatives are inL2

α(Ω) is defined as the weighted
Sobolev spaceH1

α(Ω). It is a Hilbert space (see [51]), with

(u, v)H1
α(Ω) =

∫

Ω
u(x)v(x)dµα(x) +

∫

Ω
∇u(x) · ∇v(x)dµα(x).

In our axis-symmetric case, we havedist(x, Λ) = r, and the functionr−1 belongs toL2
α(Ω) for

anyα > 0. In particular, we have

‖∇u‖2
L2

α
= 2π

∫ 1

0
r1+2α 1

r2
dr =

π

α

andu ∈ H1
α(Ω) for α > 0. We will show thatH1

α(Ω) is a “good” space to study the both well-
posedness and FEM convergence for our singular problem.
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Figure 3.3: Relative approximation error in different norms, namely a:L2(Ω), b: H1(Ω), c: L2
α(Ω)

(α = 0.5), d: H1
α(Ω) (α = 0.5), as a function of the mesh sizeh.

In fig. (3.3) the convergence history of FEM with respect of differentnorms is shown. For the sake
of simplicity, we considered an axisymmetric case in which the independent variables are(r, z) ∈
[0, 1]2, the symmetry condition defining our 3D solution on the whole cylinderΩ. We can see that the
approximate solution does not converge inH1(Ω), but it does inL2(Ω), L2

1/2(Ω) andH1
1/2(Ω). The
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slope of the bilogarythmic plot gives the order of convergence with respect toh, which is in particular
more than linear for theL2

1/2(Ω) norm, andO(hη), with η ' 1/3, for theL2 andH1
1/2(Ω) norms.

The slow convergence rate is mainly due to the singularity nearΛ (i.e. for r = 0): as it is seen in
fig. 3.4, “large” errors are localized only on those elements having at least one node onΛ; on the
other elements, the approximate solution is very accurate, even if a relativelycoarse mesh (h = 1/10)
is used. This fact shows that a good accuracy in the solution far away from the 1D vesselΛ can be
achieved by a coarse grid, without resolving the actual 3D structure of the vessel.

Figure 3.4: Surfaces representing the numerical solutionuh(r, z) (mesh) and the exact solution
u(r, z) = − ln r (shaded with color), forh = 1/10.

In our simulation, we considered an assigned source termq on Λ; but in applications this term
is not knowna priori, and it depends on the solution itself via a constitutive law, as in (3.26). The
constitutive law usually depends on the solution values near the 1D source,typically at distances of
the order ofR. Hence, the following questions naturally arise:

• Does the FEM converge to the singular solution for Robin coupling conditions?

• In order to obtain an approximate solution with a reasonable tolerance on the error, is it manda-
tory to refine the mesh and takeh of the order of the vessel radius, at least in a neighborhood
of the corresponding 1D axisΛ? If the answer is yes, the major advantage of the asymptotic
solution approach will be lost.

• Can we eliminate the singularity? A typical procedure is to findw = u− ξ, where the function
ξ is chosen in such a way thatw satisfies a “standard” problem. Is this approach preferable to
the FEM one?

These issues will be adressed in the next chapter.



Chapter 4

Analysis of 1D-3D coupled problems

In the previous chapter we found that the modelling of small vessels by 1D manifolds embedded in
a 3D tissue gives rise to elliptic problems with measure data, namely Dirac measures concentrated
on lines. Further difficulties arise when considering the coupling between 3D and 1D problems: for
instance, a meaning has to be assigned to the “1D-projection”ū (see (3.26)) of the 3D solutionu, and
the solvability of the coupled problem has to be investigated.

Results already known on standard problems do not apply directly to our equations: for instance,
due to the singularity of solutions we cannot rely on usual Sobolev spacesfor studying well-posedness
or FEM convergence. Existence and uniqueness result for a Dirichletproblem with measure data was
proven by Stampacchia [98], whereas the semilinear case has been treated by Brezis (for instance in
[9]): in these papers the authors have proven the existence of a solutionin W 1,q(Ω), with 0 < q <
N/(N − 1), N being the dimension ofΩ (in the linear case uniqueness is obtained as well).

In view of the numerical approximation of the solution, we prefer to work with Hilbert spaces.
Moreover, the measures involved by the problems we will consider, like (3.16), or more generally
(3.19), are not arbitrary: we will always deal with Dirac measures on lines only. For these reasons
we introduce an “ad hoc” functional setting, specifically designed for our case, based on weighted
Sobolev spacesH1

α(Ω).
We point out that Babuška [5] and Scott [94] have already studied the numerical approximation

of Dirichlet problems with Diracδ-functions as data. Nevertheless, their approach in the case of
Laplace operator is essentially based on spacesHs(Ω) with s ∈ [0, 1

2), and it fails to extend to Robin
problems (where at least anL2-valued trace operator has to be defined). Moreover, the assumption of
the smoothness of the domain is crucial in the work of Scott, who is the only one that addresses the
3D problem. Our functional setting will encompass this case.

We consider the notations introduced in section 3.2, withΩ ⊂ R3 andΛ ⊂ Ω denoting our 3D
and 1D domains respectively; in particular, the assumptions of subsection 3.2.1 hold.

Forα ∈ (−1, 1), we define the following weighted Sobolev space

H1
α(Ω) =

{

f ∈ L2
α(Ω) : ∇f ∈ L2

α(Ω)3
}

,

whereL2
α(Ω) has been introduced in Definition A.1.1. The scalar product inH1

α(Ω) is defined by

(f, g)H1
α(Ω) = (f, g)L2

α(Ω) + (∇f,∇g)L2
α(Ω)3 ,

being

(f, g)L2
α(Ω) =

∫

Ω
f(x)g(x)dµα(x) = (dαf, dαg)L2 ,

65
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whereµα is the measure defined in Definition A.1.1, that isdµα(x) = d(x)2αdx. Hered is distance
from Λ, d(x) = dist(x, Λ). More generally, one could consider any “equivalent” function such that
C1dist(x, Λ)−1 ≤ d(x) ≤ C2dist(x, Λ), whereC1 andC2 are positive constants.

For the basic properties ofH1
α(Ω) that we shall need, the reader can refer to Appendix A.

We shall consider the following steps:

1. To provide a suitable functional setting and a finite element convergenceanalysis in the case of
Dirichlet problem for the Laplace operator with a Dirac datum on a line;

2. To extend the analysis of the previous point to the coupled 3D-1D problem.

4.1 Dirichlet problem with source term on a line

The model problem we will focus on in this section is:
{

−∇ · (k∇u) = fδΛ in Ω,

u = 0 on∂Ω,
(4.1)

wheref ∈ L2(Λ), andfδΛ is the measure defined by (3.17). This problem has to be considered in a
weak sense: to this end, we introduce the following bilinear form

a(u, v) :=

∫

Ω
k∇u · ∇vdx (4.2)

and the linear functional

F (v) =

∫

Λ
f(s)v(s)ds. (4.3)

Let
Vα = {u ∈ H1

α(Ω) : u|∂Ω = 0} (4.4)

be the subspace ofH1
α of functions vanishing on∂Ω (in the sense of traces). We say thatu ∈ Vα

solves problem (4.1) if it satisfies the variational problem

a(u, v) = F (v) ∀v ∈ C∞
0 (Ω). (4.5)

This is the basic paradigm of more complex problems, for instance featuring perfusion and reaction
terms as in (3.16), or nonlinearities. The extension of the theory to handle these modifications is
trivial: in this section we are interested above all in the handling the measure data.

First of all, we point out that certain singular problems in the form (4.1) canbe solved by “remov-
ing” the singular part. This is the case for instance ifk is a positive constant: we have a “representation
formula” for the solution in terms of a line potential and of a nonsingular elliptic problem, as it is stated
by the following result.

Lemma 4.1.1. Let f ∈ L2(Λ), and assume thatk > 0 is constant inΩ. Then, for everyα ∈ (0, 1)
there exists a unique solutionu ∈ Vα ∩ L2(Ω) of problem (4.5), and two positive constantsC andC ′

such that
‖u‖H1

α
≤ C‖f‖L2(Λ), ‖u‖L2 ≤ C ′‖f‖L2(Λ). (4.6)

Moreover, the following representation formula holds:

u = ũ + ξ, (4.7)
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whereũ ∈ V0 is defined by
{

−∆ũ = 0 in Ω,

ũ = −ξ on∂Ω,
(4.8)

andξ ∈ H1
α(Ω) ∩ L2(Ω) is the following line potential:

ξ(x) :=
1

4πk

∫

Λ

f(y)

|x − y| ds(y).

Proof. It is not difficult to verify that a constantc > 0 exists such that

|∇ξ(x)| ≤ c‖f‖L2(Λ)
1

dist(x)
. (4.9)

Therefore, thanks to lemma A.1.1, we have that|∇ξ| ∈ H1
α(Ω). An estimate similar to (4.9) is easily

found for|ξ(x)| too. Hence,ξ ∈ H1
α(Ω) and

‖ξ‖H1
α(Ω) ≤ C1‖f‖L2(Λ), ‖ξ‖L2(Ω) ≤ C ′

1‖f‖L2(Λ).

BeingfδΛ a measure with compact support inΩ, the potentialξ satisfies−k∆ξ = fδΛ in the sense
of distributions [108, th. 4.1]. Due to the density of smooth functions (theorem A.2.1) the Green’s
formula holds inH1

α(Ω), so thatF (v) = (ξ,−k∆v)L2 = (k∇ξ,∇v)L2 ∀v ∈ C∞
0 (Ω). Therefore,ξ

satisfies
a(ξ, v) = F (v) ∀v ∈ C∞

0 (Ω).

Moreover, by theorem A.3.2, we have thatξ|∂Ω ∈ H1/2(Ω). Beinga V0-elliptic, problem (4.8) has
a unique solutioñu ∈ H1(Ω) such that̃u|∂Ω = −ξ|∂Ω , and‖ũ‖H1 ≤ C2‖ξ‖H1

α
, C2 being a positive

constant. Henceu = ũ + ξ ∈ Vα, and

a(u, v) = a(ũ, v) + a(ξ, v) = F (v) ∀v ∈ C∞
0 (Ω).

On the other hand, any solutionu to problem (4.5) can be written in the form (4.7) sinceu− ξ solves
(4.8).

To complete the proof, we observe that

‖u‖Vα ≤ ‖ũ‖H1
α

+ ‖ξ‖H1
α
≤ C‖f‖L2(Λ),

whereC = diam(Ω)αC1C2 + C1. In the same way we can chooseC ′ = diam(Ω)αC1C2 + C ′
1. The

uniqueness ofu follows.

Lemma 4.1.1 provides a first method to numerically approximate the solution of problem (4.1).
Since it is possible to compute the singular partξ with an an “arbitrary” accuracy by numerical inte-
gration, one is left with the approximation ofũ, which is a “standard” problem.

However, we will not adopt this method, although it allows for very accurate numerical solutions.
A few drawbacks are:i) we can only use it for problem (4.1) wherek is constant, and more generally
only for those operators such that a fundamental solution is known: this is not the case in hemody-
namics, where the tissue diffusivity can vary and nonlinear perfusion terms have to be considered;ii )
every evaluation of the approximate solution requires a line integration onΛ. WhenΛ represents a
complex vessel geometry, this can be quite expensive in terms of computing.

In our opinion, a direct FEM discretization of the variational problem (4.5), which is possible
since basis functions are continuous, provides a more flexible approach. In the sequel we introduce
the special functional setting that is needed to use this approximation method. The idea underlying
our approach is to consider in (4.5) test functionsv belonging to the wider spaceV−α ⊃ C∞

0 (Ω).
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4.1.1 Analysis in weighted Sobolev spaces

First, let us state some preliminary lemmas; they are interestingper se, for our weighted Sobolev
spaces approach entirely relies on them. We consider the variational formulation (4.5), and we seek
a solution inVα considering test functions inV−α. In order to have existence and uniqueness for
this problem, we will make use of the generalized Lax-Milgram theorem A.4.1, due to Něcas. In
particular, we have to show that:

i) bilinear forma defined in (4.2) is continuous onVα × V−α and satisfies the inf-sup inequalities
(A.10), (A.11);

ii) functionalF defined in (4.3) is continuous onV−α.

Let us start with pointii) : we can show that if0 < α < 1, functions ofV−α admit a continuous
trace operator on the 1D manifoldΛ. This implies thatF ∈ V ′

−α. We will make use of the following
weighted Hardy’s inequality (see [70]):

Property 4.1.1 (Weighted Hardy’s inequality). Let 0 < p ≤ q < ∞, 0 < R ≤ ∞ and letu andv
be weight functions defined on(0,∞). Assume that, for everyr > 0,

∫ r

0
v(t)

1
1−p dt < ∞.

Then, the inequality

(∫ R

0

(∫ r

0
f(t)dt

)q

u(r)dr

)

1
q

dr ≤ C

(∫ R

0
f(r)pv(r)dr

)

1
p

(4.10)

holds for all positive functionsf on (0,∞) if and only if

D = sup
r∈(0,R)

(∫ R

r
u(t)dt

)

1
q
(∫ r

0
v(t)

1
1−p dt

)
p−1

p

< ∞.

Moreover, the best constant in(4.10)satisfies the estimate

D ≤ C ≤ k(p, q)D

where

k(p, q) =

(

p + qp − q

p

) 1
q
(

p + qp − q

(p − 1)q

)
p−1

p

.

Theorem 4.1.1 (Λ-trace operator). If 0 < α < 1, then there exists a unique linear continuous map

γΛ : H1
−α(Ω) → L2(Λ)

such thatγΛu = u|Λ for each smooth functionu ∈ C∞(Ω). In particular, we have

‖φ‖L2(Λ) ≤ CΛ(α)‖φ‖H1
−α(Ω).
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Proof. Let φ ∈ C∞(Ω). By using local cylindrical coordinatesxv,0 and integrating inΩR
v,0 along the

radial direction, we have for everyθ ∈ [0, 2π):

φ(s, 0, 0) = φ(s, r, θ) −
∫ r

0

∂φ

∂r
(s, t, θ)dt,

so that, using the inequality(a + b)2 ≤ 2a2 + 2b2, and integrating onΩR
v,0 we get

πR2

∫

Λ
φ(s)2ds ≤ 2

∫

ΩR
v,0

φ(s, r, θ)2rdsdrdθ + 2

∫

ΩR
v,0

(∫ r

0

∂φ

∂r
(s, t, θ)dt

)2

rdsdrdθ. (4.11)

Now we can use theorem 4.1.1 and inequality (4.10) withp = q = 2, the weight functions being

u(t) = t, v(t) = t1−2α,

andf(t) = |∂φ/∂r(s, t, θ)|. We have
∫ r

0
v(t)

1
1−p dt =

∫ r

0
t2α−1dt =

r2α

2α
< ∞ ∀r > 0,

and

D := sup
r∈(0,R)

(∫ R

r
tdt

)

1
2
(∫ r

0
t2α−1dt

) 1
2

≤ sup
r∈(0,R)

[

1

4α
(R2 − r2)r2α)

] 1
2

= Rα+1 α(−1+α)/2

2(α + 1)(1+α)/2
≤ R1+α

2
√

α
,

so that, sincer = dist(x, Λ) onΩR
v,0,

∫ R

0

(∫ r

0

∣

∣

∣

∣

∂φ

∂r
(s, t, θ)

∣

∣

∣

∣

dt

)2

rdr ≤ C(α)2
∫ R

0
dist(x, Λ)−2α

∣

∣

∣

∣

∂φ

∂r
(s, r, θ)

∣

∣

∣

∣

2

rdr, (4.12)

where

Rα+1 α(−1+α)/2

2(α + 1)(1+α)/2
≤ C(α) ≤ R1+α/

√
α. (4.13)

Using estimates (4.12) and1 ≤ d(x, Λ)−2αR2α ∀x ∈ ΩR
v,0 in (4.11), we obtain

πR2

∫

Λ
φ(s)2ds ≤ 2Rα

∫

ΩR
v,0

φ(s, r, θ)2d(x, Λ)−2αrdsdrdθ +

2C(α)2
∫

ΩR
v,0

(

∂φ

∂r
(s, r, θ)

)2

d(x, Λ)−2αrdsdrdθ

≤ 2 max{Rα, C(α)2}‖φ‖2
H1

−α(Ω), (4.14)

Hence the following continuity estimate holds:

‖φ‖L2(Λ) ≤ CΛ(α)‖φ‖H1
−α(Ω)

whereCΛ =
√

max{Rα, C(α)2}/(πR2), andφ is a smooth function. The extension toφ ∈ H1
−α(Ω)

follows by a density argument (see theorem A.2.1). Notice that the constantCΛ depends onα: actually
from (4.13) we have thatCΛ = O(α−1/2), andCΛ → ∞ for α → 0: this confirms that the result is
not true anymore ifα = 0 (non-weighted case).
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We are left withi). The continuity ofa is straightforward; the non-trivial point is rather the inf-sup
inequality (A.11). To show it, we need the following technical lemma, that we adapted to our case
from [105]. Recall that we are allowed to use local coordinates(s, r, θ) for the “cylinder” ΩR

v,0, and
local coordinates(r, θ, φ) for the “hemi-spheres”ΩR

v,1\ΩR
v,0 andΩR

v,2\ΩR
v,0, see equations (3.3).

x

xr

r

θ

θ

φ

s

ΩR
v,0

ΩR
v,1\ΩR

v,0

Λ

Figure 4.1: Local coordinates on subdomains ofΩR
v .

Lemma 4.1.2.Letδ ∈ (0, 1) andu ∈ H1
α(Ω) for some0 < α < δ. Consider theθ-Fourier expansions

in local coordinates given by

u(s, r, θ) =
∑

k∈Z

Ak,0(r, s)e
ikθ in ΩR

v,0, (4.15)

u(r, θ, φ) =
∑

k∈Z

Ak,1(r, φ)eikθ in ΩR
v,1\ΩR

v,0, (4.16)

u(r, θ, φ) =
∑

k∈Z

Ak,2(r, φ)eikθ in ΩR
v,2\ΩR

v,0. (4.17)

Consider the real function

A0(x) =











A0,0(r, s) in ΩR
v,0

A0,1(r, φ) in ΩR
v,1\ΩR

v,0

A0,2(r, φ) in ΩR
v,2\ΩR

v,0

defined on the wholeΩR
v . Furthermore, define

Ψ(x) =







Ψ(r, y) =

∫ R

r
t2α−1A0(t, y)dt in ΩR

v ,

0 elsewhere,
(4.18)
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wherey can be either thes or theφ local variable, depending on the subdomain ofΩR
v in whichx is

(in particular, Ψ is independent ofθ).
There are positive constantsC1, C2, C3 independent ofα ∈ (0, δ) andR, such that the following

estimates hold:

‖u − A0‖L2
α−1(ΩR

v ) ≤ C1‖∇u‖L2
α(Ω), (4.19)

‖Ψ‖L2
−α(Ω) ≤ C2‖u‖L2

α(Ω), (4.20)
∥

∥d2α−1u∇d + ∇Ψ
∥

∥

L2
−α(ΩR

v )
≤ C3‖∇u‖L2

α(ΩR
v ), (4.21)

whered(x) = dist(x, Λ).

Proof. Some preliminary remarks: the coefficients of Fourier expansions are given by standard for-
mulas, for example inΩR

v,0 we have

Ak,0(r, s) =
1

2π

∫ 2π

0
u(s, r, θ)e−ikθ dθ.

SinceA−k,0(r, s) = Ak,0(r, s), A0,0 is a real function. Actually,A0(x) is the average ofu on the
circle described byθ ∈ [0, 2π], keeping the other local variables constant and equal to those of point
x (notice that this circle varies continuously with respect tox). Incidentally, this gives a geometrical
interpretation forΨ too, as the integral of12πdist(x, Λ)2α−1u(x) on the shaded areas associated with
x in fig. 4.1. Even if we have two kinds of local variables (spherical and cylindrical), we will consider
only the cylindrical subdomainΩR

v,0, since calculations for the remaining hemispherical subdomains
are carried on in the same way.

From now, if we omit the integration intervals, it is understood that they arer ∈ (0, R), θ ∈
(0, 2π), s ∈ (s1, s2), andφ ∈ (0, π/2). Thanks to Parseval’s equality

∫ 2π

0
(u(s, r, θ) − A0,0(r, s))

2 dθ = 2π
∑

k∈Z\{0}
|Ak,0(r, s)|2 (4.22)

we can write

‖u − A0‖2
L2

α−1(ΩR
v,0)

=

∫

r2α−2[u(s, r, θ) − A0,0(r, s)]
2rdrdsdθ

= 2π
∑

k∈Z\{0}

∫

r2α−1|Ak,0(r, s)|2drds. (4.23)

On the other hand, being|∇u|2 ≥ 1
r2

(

∂u
∂θ

)2
, we have

‖∇u‖2
L2

α(Ω) ≥
∫

r2α 1

r2

(

∂u

∂θ

)2

rdsdrdθ = 2π
∑

k∈Z

∫

r2α−1k2|Ak,0(r, s)|2drds

= 2π
∑

k∈Z\{0}

∫

r2α−1k2|Ak,0(r, s)|2drds,

where Parseval’s formula for theθ-derivative has been used. Since in the last sumk2 ≥ 1, comparing
with (4.23) we have

‖u − A0‖L2
α−1(ΩR

v,0) ≤ ‖∇u‖L2
α(Ω).
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Analogous estimates onΩR
v,1\ΩR

v,0 andΩR
v,2\ΩR

v,0 follow in an similar way and (4.19) is proven.
TheL2

−α norm ofΨ onΩR
v,0 is given by

‖Ψ‖2
L2
−α(ΩR

v,0)
= 2π

∫

r−2α

(∫ R

r
t2α−1A0,0(t, s)dt

)2

rdsdr.

Now we use the following weighted Hardy’s inequality (see [105])

∫ R

0
r−β

(∫ R

r
tβ−1f(t)dt

)2

dr ≤
(

2

1 − β

)2 ∫ R

0
rβf(r)2dr, β < 1, (4.24)

with f(t) = tA0,0(t, s), β = 2α − 1 (which is< 1 sinceα ∈ (0, δ), δ < 1). We get

‖Ψ‖2
L2
−α(ΩR

v,0)
≤ 2π

(

1

1 − α

)2 ∫

A0,0(r, s)
2r2α+1drds

=

(

1

1 − α

)2

‖
√

2πA0,0‖2
L2

α(ΩR
v,0)

≤
(

1

1 − δ

)2

‖u‖2
L2

α(ΩR
v,0)

, (4.25)

where last inequality is due to Parseval’s formula. Analogous estimates are found onΩR
v,1\ΩR

v,0 and
ΩR

v,2\ΩR
v,0, where we make use of (4.24) withf(t) = A0,i(t, φ)t2 andβ = 2α − 2 due to the extra

r term coming from the integration formula in spherical coordinates; therefore, sinceΨ = 0 outside
ΩR

v , (4.20) is proven.
Now let us show (4.21). We recall the following formulas inΩR

v,0

∂u

∂s
(s, r, θ) =

∑

k∈Z

∂Ak,0

∂s
(r, s)eikθ, (4.26)

and

∇Ψ = −err
2α−1A0,0(r, s) + es

∫ R

r
t2α−1 ∂A0,0

∂s
(t, s)dt, d2α−1∇d = r2α−1er,

whereer andes are the versors associated to ther ands local coordinates. We have

‖d2α−1u∇d+∇Ψ‖2
L2
−α(ΩR

v,0)
≤ ‖u−A0‖2

L2
α−1(ΩR

v,0)
+2π

∫

r−2α

(∫ R

r
t2α−1 ∂A0,0

∂s
(t, s)dt

)2

rdsdr.

The first term can be estimated by means of (4.19), so that we are left with thesecond one. We can
proceed as for eq. (4.25), using (4.24) and Parseval’s equality for the Fourier expansion (4.26); we get

2π

∫

r−2α

(∫ R

r
t2α−1 ∂A0,0

∂s
(t, s)dt

)2

rdsdr ≤
(

1

1 − α

)2 ∥

∥

∥

∥

√
2π

∂A0,0

∂s

∥

∥

∥

∥

2

L2
α(ΩR

v,0)

≤
(

1

1 − δ

)2 ∥

∥

∥

∥

∂u

∂s

∥

∥

∥

∥

2

L2
α(ΩR

v,0)

≤
(

1

1 − δ

)2

‖∇u‖2
L2

α(Ω). (4.27)

Analogous estimates come from integration over the remaining subdomains ofΩR
v . The proof is

complete.

At this point we are able to state our well-posedness result.



4.1 – DIRICHLET PROBLEM WITH SOURCE TERM ON A LINE 73

Theorem 4.1.2.Let f ∈ L2(Λ), k ∈ L∞(Ω), and assume that there exists a constantk0 > 0 such
that k ≥ k0 in Ω. Then, there isδ ∈ (0, 1), δ = δ(k0, R) such that for eachα ∈ (0, δ) there exists a
uniqueu ∈ Vα such that

a(u, v) = F (v) ∀v ∈ V−α,

wherea andF are defined by (4.2), (4.3). Moreover, there exists a constantC = C(k0, R) > 0 such
that:

‖u‖Vα ≤ C‖f‖L2(Λ). (4.28)

Proof. The idea is to apply the Nečas’ theorem A.4.1, withH1 = Vα, H2 = V−α. We already
observed that sinceα > 0, and thanks to property 4.1.1,F is a bounded linear functional onV−α, and

‖F‖V ′

−α
≤ ‖γΛ‖‖f‖L2(Λ), (4.29)

where‖γΛ‖ = ‖γΛ‖L(V−α;L2(Λ)). Furthermore, the bilinear forma is continuous:

|a(u, v)| =

∣

∣

∣

∣

∫

Ω
kdα∇u · d−α∇vdx

∣

∣

∣

∣

≤ ‖k‖∞‖dα∇u‖L2(Ω)‖d−α∇v‖L2(Ω) ≤ ‖k‖∞‖u‖Vα‖v‖V−α .

(4.30)
Now, letv ∈ V−α, v 6= 0; sinceα > 0, we haveV−α ⊂ Vα. Choosingu = v yields

sup
u∈Vα

a(u, v) ≥ a(v, v) ≥ k0‖∇v‖2
L2(Ω) > 0.

In fact, if ‖∇v‖L2(Ω) = 0 thenv is a constant, which is necessarily zero, due to the Dirichlet boundary
conditions: this is in contrast with our assumptionv 6= 0. Hence,a is non-degenerate and hypothesis
(A.10) is satisfied.

To prove that (A.11) holds, it is sufficient to show that there are positiveconstantsm, M , such
that for everyu ∈ Vα there isv ∈ V−α satisfying

‖v‖V−α ≤ m‖u‖Vα , (4.31)

a(u, v) ≥ M‖u‖2
Vα

. (4.32)

Then, (A.11) holds withC2 = M/m. Set

v(x) = d̃(x)2αu(x) + 2αΨ(x), (4.33)

whered̃ is the following Lipschitz continuous function

d̃(x) = max{dist(x, Λ), R} =

{

dist(x, Λ) in ΩR
v ,

R elsewhere,
(4.34)

andΨ is the auxiliary function introduced in lemma 4.1.2. Notice thatd̃ is equivalent to the distance
functiond in the sense that

(

R

diam(Ω)

)

d ≤ d̃ ≤ d onΩ. (4.35)

Thanks to (4.35) and (4.20) we have

‖v‖L2
−α

≤ ‖u‖L2
α

+ 2‖Ψ‖L2
−α

≤ m1‖u‖Vα
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wherem1 is independent ofα. Moreover, since

∇v = d̃2α∇u + 2α(d̃2α−1u∇d̃ + ∇Φ)

observing that̃d = d onΩR
v , ∇d̃ = ∇Ψ = 0 onΩ\ΩR

v , and using estimate (4.21) of lemma 4.1.2, we
have

‖∇v‖L2
−α

≤ ‖∇u‖L2
α

+ 2‖d2α−1u∇d + ∇Φ‖L2
−α(ΩR

v ) ≤ m2‖u‖Vα ,

wherem2 is independent ofα. Hence (4.31) is satisfied withm2 = m2
1 + m2

2. Now, since

a(u, v) ≥ k0

∫

Ω
d̃2α|∇u|2dx + 2α

∫

ΩR
v

∇u · (d̃2α−1u∇d̃ + ∇Φ)dx,

we can use estimate (4.35), and once again (4.21) to obtain

a(u, v) ≥ k0‖∇u‖2
L̃2

α(Ω)
− 2α‖∇u‖L̃2

α(ΩR
v )‖d2α−1u∇d + ∇Φ‖L̃2

−α(ΩR
v ) ≥ ‖∇u‖2

L̃2
α(Ω)

(k0 − 2αC3),

whereC3 is the constant in estimate (4.21), and, forA ⊂ Ω, we define

‖f‖2
L̃2

α(A)
:=

∫

A
d̃2α|f |2dx.

Of course‖f‖2
L2

α(ΩR
v )

= ‖f‖2
L̃2

α(ΩR
v )

, and‖ · ‖2
L̃2

α(Ω)
, ‖ · ‖2

L2
α(Ω) are equivalent norms, since thanks to

(4.35) we have
Rα

diam(Ω)α
‖f‖L2

α(Ω) ≤ ‖f‖L̃2
α(Ω) ≤ ‖f‖L2

α(Ω).

Let 0 < δ < k0/(2C3): for 0 < α < δ we have0 < (k0 − 2δC3) < (k0 − 2αC3), so that

a(u, v) ≥ (k0 − 2δC3)‖∇u‖2
L̃2

α(Ω)
≥ R2α(k0 − 2δC3)

diam(Ω)2α
‖∇u‖2

L2
α(Ω). (4.36)

Therefore (4.32) holds withM = (k0−2δC3)R2α

(1+C2
P )diam(Ω)2α whereCP is the Poincaré’s constant forVα (see

property A.2.1).
Therefore we can apply theorem A.4.1, and the proof is complete. The constant C in (4.28) is

estimated by

C ≤
(

1 +
m

M

)

‖γΛ‖.

4.2 Neumann-Robin problem with exchange term on a line

The analytical tools we introduced in previous sections may be used to give the following Neumann-
Robin problem a proper mathematical setting:











−∇ · (k∇u) + β(ū − u0)δΛ = 0 in Ω,

−∂u

∂n
= 0 on∂Ω,

(4.37)

whereβ > 0 is a constant permeability coefficient (actually we haveβ = 2πRD, whereD is the
vessel surface permeability) andu0 ∈ L2(Λ) is a given function. Before applying those tools to
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(4.37), let us make a few remarks. First, we recall thatū is the average ofu on circles lying in the
normal plane toΛ, centered at points, and with radiusR, as in (3.9). With notations from lemma
4.1.2, we can writēu(s) = A00(R, s). Problem (4.37) has been named “Neumann-Robin” due to the
Neumann boundary condition on∂Ω and to the “Robin-like” exchange term on the lineΛ. We will see
that under suitable assumptions the Robin term can make the bilinear form “coercive enough” (in the
sense of theorem A.4.1) even without Dirichlet boundary conditions. Thisis rather important, because
problem (4.37) is our model problem for a wide range of typical applications (see the next section),
in which diffusion from a 1D vessel into the tissue is driven by a concentration gap. Furthermore,
extensions to fully coupled 1D-3D problems such as (3.19) are easily derived from the analysis of
problem (4.37). The assumptions to have a well-posed problem concern the radiusR: it has to be
small enough.

First we have to givēu a meaning and introduce a special inequality, in the sense of the following
lemmas.

Lemma 4.2.1. Letα ∈ (0, 1): the mappingu → ū is continuous fromH1
α(Ω) to L2(Λ), and

‖ū‖L2(Λ) ≤ C(R, α)‖u‖H1
α(Ω)

whereC is a positive constant.

Proof. We have

∫

Λ
ū(s)2ds =

∫

Λ

(

1

2π

∫ 2π

0
u(s, R, θ)dθ

)2

ds ≤
∫

Λ

1

2π

∫ 2π

0
u(s, R, θ)2dθds ≤ 1

2πR
‖u‖2

L2(ΓR),

whereΓR is the “actual” vessel surface (see sec. 3.2.1). Sincedist(ΓR, Λ) = R > 0, the trace
operator fromH1

α(Ω) to L2(ΓR) is continuous (see property A.3.2) and the lemma follows.

Lemma 4.2.2. Let a, b, c be positive constants. There are positive numbersξ1 = ξ1(a, b, c), λ0 =
λ0(b, c) such that if

0 < ξ < ξ1

then, for all(x1, x2) ∈ R2, we have the inequality

ax2
1 + bξx2

2 − 2cξx1x2 ≥ ξλ0(x
2
1 + x2

2).

In particular, the inequality is satisfied withξ1 = ab
2c2

andλ0 = b
2+b2/c2

.

Proof. SetA =
[

a −cξ
−cξ bξ

]

andx =
[

x1

x2

]

. We want to show that under the assumptions at hand,

x>Ax ≥ ξλ0‖x‖2 whereλ0 is positive and only depends onb, c. To this end, it is sufficient to prove
that the smallest eigenvalue ofA is greater thanξλ0. The smallest eigenvalue ofA is given by

λmin(A) =
1

2

[

(a + bξ) −
√

(a + bξ)2 + 4(c2ξ2 − abξ)
]

≥ abξ − c2ξ2

a + bξ

where inequality
√

t0 + t ≤ √
t0 + t

2
√

t0
has been used, witht0 = (a + bξ)2, t = 4(c2ξ2 − abξ).

If ξ1 = ab
2c2

and0 < ξ < ξ1 we have

λmin(A) ≥ ξ
ab/2

a + ab2

2c2

= ξ
b

2 + b2/c2
,

so that the inequality holds true withλ0(b, c) = b
2+b2/c2

.
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We state our well-posedness result as follows.

Theorem 4.2.1. Let k ∈ L∞(Ω), u0 ∈ L2(Λ), and assume thatk ≥ k0 in Ω, k0 being a strictly
positive constant. Letβ > 0, and

a(u, v) =

∫

Ω
k∇u · ∇vdx + β

∫

Λ
ū(s)v(s)ds,

F (v) = β

∫

Λ
u0(s)v(s)ds.

(4.38)

Then, there is a constantδ ∈ (0, 1) such that ifα ∈ (0, δ) and0 < R < R1(α, β, k0), problem

a(u, v) = F (v) ∀v ∈ H1
−α(Ω),

admits a unique solutionu ∈ H1
α(Ω).

Moreover, there is a constantC(α, β, R) > 0 such that:

‖u‖H1
α(Ω) ≤ C‖u0‖L2(Λ). (4.39)

Proof. We adopt the same technique we used for theorem 4.1.2: in particular, the first term ofa in
(4.38) is continuous onH1

α(Ω) × H1
−α(Ω). The second term is also continuous, since we have

β

∫

Λ
ū(s)v(s)ds ≤ β‖ū‖L2(Λ)‖v‖L2(Λ),

and we know that operatorsu 7→ ū andv 7→ γΛv are respectively continuous fromH1
α(Ω), H1

−α(Ω)
to L2(Λ) (lemma 4.2.1 and theorem 4.1.1).

Similarly, F is a continuous linear functional onH1
−α(Ω), and

‖F‖ ≤ ‖γΛ‖‖u0‖L2(Λ). (4.40)

Let v ∈ H1
−α(Ω), v 6= 0; to show that bilinear forma is non-degenerate, we takeu = v as in the

proof of theorem 4.1.2. We have

a(v, v) =

∫

Ω
k|∇v|2dx +

β

2π

∫ s2

s1

(∫ 2π

0
v(s, R, θ)dθ

)

v(s)ds.

Since

v(s, R, θ) = v(s) +

∫ R

0

∂v

∂r
(s, r, θ)dr,

integrating on(0, 2π) and substituting in the previous equation gives

a(v, v) =

∫

Ω
k|∇v|2dx + β

[

‖v‖2
L2(Λ) −

1

2π

∫ s2

s1

(∫ 2π

0

∫ R

0

∂v

∂r
(s, r, θ)drdθ

)

v(s)ds

]

. (4.41)

By Schwarz inequality

(∫ R

0

∂v

∂r
(s, r, θ)dr

)2

=

(∫ R

0
rα− 1

2 r
1
2
−α ∂v

∂r
(s, r, θ)dr

)2

≤
∫ R

0
r2α−1dr

∫ R

0
r−2α

(

∂v

∂r

)2

rdr =
R2α

2α

∫ R

0
r−2α

(

∂v

∂r

)2

rdr (4.42)
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so that

∫ s2

s1

(∫ 2π

0

∫ R

0

∂v

∂r
(s, r, θ)drdθ

)2

ds ≤ 2π

∫ s2

s1

∫ 2π

0

∫ R

0

(

∂v

∂r
(s, r, θ)dr

)2

dθds

≤ 2π
R2α

2α
‖∇v‖2

L2
−α(ΩR

v ). (4.43)

Using (4.43) in (4.41) together with Schwarz inequality gives

a(v, v) ≥ k0‖∇v‖2
L2(Ω) + β‖v‖2

L2(Λ) − β
R2α

2α
‖v‖L2(Λ)‖∇v‖L2(Ω).

Since‖v‖L2(Λ)‖∇v‖L2(Ω) ≤ 1
2‖v‖2

L2(Λ) + 1
2‖∇v‖2

L2(Ω), we have

a(v, v) ≥
(

k0 − β
R2α

4α

)

‖∇v‖2
L2(Ω) + β

(

1 − R2α

4α

)

‖v‖2
L2(Λ). (4.44)

The expression on the right hand side of the last equation is a squared norm onH1
−α(Ω) if

R2α < 4α min{k0/β, 1}. (4.45)

In this case, the bilinear forma is non-degenerate.
Now, letu ∈ H1

α(Ω), and set
v = d̃2αu + 2αΨ,

as in the proof of theorem 4.1.2. It has already been shown that‖v‖H1
−α

≤ m‖u‖H1
α
, and that a

constantδ > 0, independent ofα andR, exists such that
∫

Ω
∇u · ∇vdx ≥ k0(1 − α/δ)‖∇u‖2

L̃2
α(Ω)

.

Hence we have

a(u, v) ≥ k0(1 − α/δ)‖∇u‖2
L̃2

α(Ω)
+ β

∫

Λ
ū(s)v(s)ds. (4.46)

Let us estimate the line integral. First of all, due to a density argument, we may assumeu is smooth.
Then,d̃2αu vanishes onΛ, so that

v(s) = 2αΨ(s) =
2α

2π

∫ 2π

0

∫ R

0
r2α−1u(s, r, θ)drdθ. (4.47)

Furthermore, we have

v(s) =
1

2π

∫ 2π

0

∫ R

0

∂

∂r

(

r2αu
)

drdθ − 1

2π

∫ 2π

0

∫ R

0
r2α ∂u

∂r
drdθ

= R2αū(s) − 1

2π

∫ 2π

0

∫ R

0
r2α ∂u

∂r
drdθ. (4.48)

Thanks to Schwarz inequality

(∫ R

0
r2α ∂u

∂r
dr

)2

≤
∫ R

0
r2α−1dr

∫ R

0
r1+2α

(

∂u

∂r

)2

dr =
R2α

2α

∫ R

0
r1+2α

(

∂u

∂r

)2

dr, (4.49)
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and using (4.48) and the last estimate, we can write

β

∫

Λ
ū(s)v(s)ds = βR2α‖ū‖2

L2(Λ) −
β

2π

∫

Λ
ū(s)

∫ 2π

0

∫ R

0
r2α ∂u

∂r
drdθds

≥ βR2α‖ū‖2
L2(Λ) − β

R2α

4πα
‖ū‖L2(Λ)‖∇u‖L̃2

α(ΩR
v ).

Therefore, we have

a(u, v) ≥ k0(1 − α/δ)‖∇u‖2
L̃2

α(Ω)
+ βR2α‖ū‖2

L2(Λ) − β
R2α

4πα
‖ū‖L2(Λ)‖∇u‖L̃2

α(ΩR
v ).

Now we can use lemma 4.2.2, withx1 = ‖∇u‖L̃2
α(Ω), x2 = ‖v‖L2(Λ), a = k0(1 − α/δ), b = β,

c = β/(8πα), andξ = R2α: for

R2α <
32π2α2k0(1 − α/δ)

β
, (4.50)

we have
a(u, v) ≥ R2αλ0

[

‖∇u‖2
L̃2

α(Ω)
+ ‖ū‖2

L2(Λ)

]

, (4.51)

whereλ0 = β
2+64π2α2 . Since theL2

α andL̃2
α norms are equivalent (see the proof of theorem 4.1.2),

‖ū‖L2(Λ) is a seminorm and‖ū‖L2(Λ) 6= 0 if u is a 0th-order polynomial,u 6= 0, we have that

(‖∇u‖2
L̃2

α
+ ‖ū‖2

L2(Λ))
1/2 is a norm equivalent to‖u‖H1

α
(see [61] pag. 27; however, the proof is the

same of Poincaré inequality A.3.2). Therefore, definingR2α
1 = R2α

1 (α, β, k0) as the smallest of the
right hand sides of eq. (4.50) and (4.45), forR < R1 Nečas’ theorem applies and the theorem follows;
in particular, (4.40) implies estimate (4.39).

4.3 1D-3D coupled problems with exchange term on a line

Our theory applies without substantial modifications to the coupled 3D-1D problem that has been
introduced in section 3.2.2. This is actually the more interesting case in which two problems having
a dimensional mismatch of order 2 are coupled via a “Robin-like” exchange term on a line: all mul-
tiscale models of physiological phenomena concerning blood flow and mass transport considered in
the next chapter (except the hyperbolic models), basically refer to this paradigm.

The strong form of our model problem is the following one:










−∇ · (kt∇ut) + β(ūt − uv)δΛ = 0 in Ω,

− d

ds
(kv

d

ds
uv) + β(uv − ūt) = 0 in Λ,

(4.52)

where we have a tissue variableut and a diffusivitykt, as well as a vessel variableuv and diffusivity
kv. The two variables interact by an exchange term. This problem is a simplified version of (3.19) in
which β = 2πRD, but this is not restrictive since the needed modifications for handling the reaction
and advection terms are trivial. On the boundary, we shall consider standard mixed conditions:

−∂ut

∂n
= 0 on∂Ω,

uv(s1) = uv,0,

− d

ds
uv(s2) = 0.

(4.53)
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The non-homogeneous Dirichlet boundary condition can be converted toa homogeneous one by
means of an extension of the Dirichlet data (in the 1D case, we have simply to considerũv = uv−uv,0

as the new unknown). For this reason we are going to consider a weak formulation of (4.52) in term
of the(ut, ũv) variables.

Theorem 4.3.1. Let kt, kv ∈ L∞(Ω), and assume thatkt, kv ≥ k0, in Ω, with k0 > 0, constant.
DefineVα = H1

α(Ω), andV̂ the subspace of functionsf ∈ H1(Λ) such thatf(s1) = 0. Letβ > 0.
Then, there is a positive constantδ ∈ (0, 1) such that ifα ∈ (0, δ) and0 < R < R1(α, β, k0),

there exists a unique solutionu ∈ Vα × V̂ of

a(u,v) = F (v) ∀v ∈ V−α × V̂ ,

whereu = (ut, ũv), v = (vt, vv),

a(u,v) =

∫

Ω
kt∇ut · ∇vtdx +

∫

Λ
kvu

′
vv

′
vds + β

∫

Λ
(ūt − uv)(vt − vv)ds,

F (v) = βuv,0

∫

Λ
[vt(s) − vv(s)]ds.

(4.54)

Moreover, there is a constantC = C(α, β, R, uv,0) > 0 such that:

‖u‖Vα×V̂ ≤ C|uv,0|. (4.55)

Proof. But for minor modifications, it is identical to the proof of theorem 4.2.1. Namely,we choose
u = v to show thata is non-degenerate, andv = (d̃2αut +2αΨ, uv) to prove the inf-sup condition of
Nečas’ theorem, using lemma 4.2.2 to get the necessary inequalities to hold forR small enough.
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Chapter 5

Finite element approximation of 1D-3D
coupled problems

The advantage of using Hilbert functional spaces is that we can state convergence results for the finite
element approximation. Together with theorem A.4.2, the main ingredients are regularity results for
the solution and finite element approximation properties in Sobolev spaces. For weighted functional
spaces, these subjects are not standard. A similar matter has been studied for axisymmetric Stokes
flow in [7]; however, the issue of whether their results could be adapted or not to our case, has not
been adressed in this work. For this reason, we do not treat the finite element convergence rates.
Nevertheless, concerning the Neumann-Robin problem (4.37) (the same considerations clearly hold
for the simpler Dirichlet problem with Dirac source), we will verify that finite element approximation
is convergent in theH1

α norm. Results from numerical experiments will be discussed in order to
suggest guidelines for further developments concerning the convergence rates.

The full 1D-3D coupled model requires the discretization of the lineΛ as well: this introduces
some more difficulties, so that we will discuss only the algorithmic aspects.

In what follows, we assume that domainΩ is a polyhedron; for the sake of simplicity, we only
considerP1 finite elements, an introduce a regular family of “triangulations”{Th} of Ω with the
following standard properties:

(i) The domainΩ is the union of the (tetrahedral) elements ofTh.

(ii) If Tk 6= Tj and their intersection is non empty, thenTk ∩ Tj is either a face, a side or a node.
We denote byxi, i = 1, . . . , Nh the mesh nodes.

(iii) There exists a constantσ independent ofh, such that for allT ∈ Th, diam(T ) < h andT
contains a sphere of radiusσhT .

Then, we define the family{Vh} of P1 finite element spaces

Vh =
{

f ∈ C(Ω) : f|Ti
∈ P1(Ti) ∀Ti ∈ Th

}

. (5.1)

As usual, we will equipVh with its Lagrangian finite element base{ψi}, i = 1, . . . , Nh, satisfying

ψi(xj) = δij .

Property 5.0.1. Let the assumption of theorem 4.2.1 be fulfilled. Then, for eachh > 0, there exists a
uniqueuh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh, (5.2)

81
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beinga andF defined by eq. (4.38). Moreover, ifu ∈ H1
α(Ω) is such that

a(u, v) = F (v) ∀v ∈ H1
−α(Ω),

then, there is a positive constantC such that

‖u − uh‖H1
α
≤ C inf

ũ∈Vh

‖u − ũ‖H1
α
. (5.3)

Proof. The idea is to use th. A.4.2, withM1 = M2 = Vh ⊂ H1
−α(Ω) ⊂ H1

α(Ω). Let us prove that the
hypotheses of the theorem are satisfied. For allv ∈ Vh, v 6= 0, we have:

sup
u∈Vh

a(u, v) ≥ a(v, v) ≥ c‖v‖2
H1

−α
> 0, (5.4)

since we proved in the proof of theorem 4.3.1, eq. (4.44), that last inequality is indeed true∀v ∈
H1

−α(Ω), v 6= 0, with c = c(α, β, k0, R).
In the sequel we denote by(·, ·)H1

−α
theH1

−α(Ω) scalar product; obviously, it is a scalar product

on the discrete spaceVh as well, and in the sequel we will always equipVh with the‖ · ‖H1
−α

norm.

All norms are equivalent on a finite dimensional space: hencea(·, ·) is continuous onVh × Vh, since
it is continuous on(Ṽh, ‖ · ‖H1

α
) × (Ṽh, ‖ · ‖H1

−α
). Therefore, thanks to the Riesz theorem, we can

introduce the linear operatorA : Vh → Vh defined by

(wh, Avh)H1
−α

= a(wh, vh) ∀wh, vh ∈ Vh. (5.5)

Thanks to inequality (5.4), we have

c‖vh‖2
H1

−α
≤ a(vh, vh) = (vh, Avh)H1

−α
≤ ‖vh‖H1

−α
‖Avh‖H1

−α
. (5.6)

This yields
‖Avh‖H1

−α
≥ c‖vh‖H1

−α
, (5.7)

so thatA is an isomorphism fromVh to Vh
1.

Consider a givenuh ∈ Vh, and the related functionΨ constucted as in lemma 4.1.2. As done in
theorem 4.2.1, we introduce the function

ṽ = d̃2αuh + 2αΨ,

whered̃ is the modified distance function (4.34). We recall that the following estimate holds true (see
the proof of eq. (4.31) in th. 4.1.2):

‖ṽ‖H1
−α

≤ m‖uh‖H1
α

(5.8)

Obviously, in general̃v /∈ Vh. However, there is a uniquevh ∈ Vh such that

(wh, vh)H1
−α

= a(wh, ṽ) ∀wh ∈ Vh. (5.9)

1 Since all scalar products on a finite-dimensional space are equivalent,the same result holds when(u, v) is given by the
Euclidean scalar product of the coordinates ofu, v with respect to a finite element basis. As a consequence, we have that
thefinite element matrix(which is the linear operatorA corresponding to this scalar product) is non-singular. We recall that
this is true only under the assumptions of theorem 4.3.1, namely the radiusR has to be small enough.
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Moreover, takingwh = vh, we have

c1‖vh‖H1
α
‖vh‖H1

−α
≤ ‖vh‖2

H1
−α

= (vh, vh)H1
−α

= a(vh, ṽ) ≤ c2‖vh‖H1
α
‖ṽ‖H1

−α
, (5.10)

beingc1 the norm of the continuous embeddingH1
−α ↪→ H1

α, c2 the continuity constant ofa. Hence,
the following estimation holds:

‖vh‖H1
−α

≤ c3‖ṽ‖H1
−α

, (5.11)

with c3 = c2/c1. SinceA is an isomorphism, using (5.5), (5.9), (5.7) and (5.11), we can write

sup
v∈Vh,

‖v‖
H1
−α

≤1

a(uh, v) ≥ 1

‖A−1vh‖H1
−α

a(uh, A−1vh) =
(uh, vh)H1

−α

‖A−1vh‖H1
−α

=
a(uh, ṽ)

‖A−1vh‖H1
−α

≥ c3c
a(uh, ṽ)

‖ṽ‖H1
−α

In the proof of th. 4.3.1, see eq. (4.51), we have proven that a constant c4 = c4(α, β, k0, R) > 0 exists
such that

a(uh, ṽ) ≥ c4‖uh‖2
H1

α
;

thanks to estimate (5.8) we have finally

sup
v∈Vh,

‖v‖
H1
−α

≤1

a(uh, v) ≥ cc4

c3m
‖uh‖H1

α
,

so that the hypotheses of th. A.4.2 are satisfied.
As a consequence, there exist a unique finite element solutionuh of (5.2), and

‖u − uh‖H1
α
≤ C inf

ũ∈Vh

‖u − ũ‖H1
α
, (5.12)

being

C = 1 +
c2c3m

cc4
.

We point out that as a corollary of property 5.0.1, we have theconvergenceof the finite element
scheme in theH1

α norm. In fact, it is known that under our assumptions (i)-(iii) onTh, for all u ∈
C∞(Ω) we have

lim
h→0

inf
ũ∈Vh

‖u − ũ‖H1(Ω) = 0;

since the embeddingH1(Ω) ↪→ H1
α(Ω) is continuous, we have

lim
h→0

inf
ũ∈Vh

‖u − ũ‖H1
α(Ω) = 0.

Due to the density of smooth functions, the result is extended to allu ∈ H1
α(Ω).

On the other hand, results about finite element convergence rates cannot be that easily extended to
encompass our problem. Although Bramble-Hilbert and Deny-Lions lemmas (see [85]) hold true in
weighted spaces, one needs regularity results to obtain an a priori errorestimate with respect toh. For
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example, if the results from [7] could be extended to our case, and a weighted Clément interpolation
operatorΠh : L2

α(Ω) → Vh could be constructed such that

‖u − Πhu‖L2
α(Ω) ≤ Chl|u|Hl

α(Ω)

for integersl = 0, 1, 2 (we are usingP1 elements), and, forl = 1, 2,

|u − Πhu|H1
α(Ω) ≤ Chl−1|u|Hl

α(Ω),

where| · | denotes the standard Sobolev seminorm, these estimations would apply in our case for
l = 0, 1 only: in fact, u /∈ H2

α(Ω) (the second radial derivative near the line isO(r−2), so that
u ∈ H2

1+α(Ω) * H2
α(Ω)). Therefore, we could justify the first orderL2

1/2 convergence in figure 3.3
for the simple example with Dirac source, but we could not use the former results to estimate the
convergence rate for theH1

α norm (which is actually< 1, as we found in the numerical experiment).

5.1 FEM discretization of the coupled 1D-3D problem

Although for the Neumann/Robin problem there is no need of discretizingΛ, this becomes necessary
when considering the coupled 1D-3D problem. Unless we consider spline FEM or similar techniques,
we loose our smoothness assumption onΛ, and we are not allowed to use the theory previously
exposed: this is the reason why we are not considering the finite element convergence for the fully
coupled problem. The case in whichΛ is only piecewise differentiable is remarkable also from a
practical standpoint: we are mostly interested to the special situation in which themesh of the 1D
problem isextractedfrom the 3D mesh, being actually built on itsedges. Indeed, in this case the
finite element implementation is much simpler. This suggests also a 1D segmentation technique: we
will show that in applications to tissue perfusion, it is possible to automatically buildthe 1D mesh
directly from a medical image and an already available “superposed” 3D mesh, owing to proper path
extraction algorithms. In the sequel we will discuss some algorithmic aspects ofFEM discretization
for the coupled problem, and we will present the convergence results for a test case in which an
analytical solution is available.

Assumption. We assume that a collectionIh of edgesIm of tetrahedra inTh is given, such thatΛ is
the union

Λ =
⋃

Im∈Ih

Im.

This assumptions (see fig. 5.1) allows to inherit the 1D finite element space from the 3D one (this
is true for polynomial degrees higher than 1 as well). Namely, we define the following space (notice
that we include the homogeneous Dirichlet condition in this definition):

V̂h =
{

f ∈ C(Λ) : f(s1) = 0, f|Im
∈ P1(Im) ∀Im ∈ Ih

}

. (5.13)

Then, we observe that we can choose a Lagrangian basis ofV̂h, denoted by{ψ̂i}, i = 1, . . . , N̂h, such
that elementŝψi are the restriction onΛ of the 3D basis functionsψi whose node is lying onΛ (with
the exception of the node where the Dirichlet condition is imposed). As for spaceV̂h, in the sequel
objects related to the 1D discretization will be denoted with a hat. So, we denote by x̂i, i = 1, . . . , N̂h



5.1 – FEMDISCRETIZATION OF THE COUPLED1D-3D PROBLEM 85

xi

x̂i

Im

Tk

Λ

Figure 5.1: The domainΛ is composed by edgesIm of elementsTk of the 3D mesh

the nodes of the 1D mesh. Being those nodes a subset of the 3D mesh nodes, there is a function, that
we callrΛ(·), that maps each 1D node index to the corresponding 3D one:

[1, . . . , N̂h] → [1, . . . , Nh], i 7→ rΛ(i),

and is such that

∀i ∈ [1, . . . , N̂h] : xrΛ(i) = x̂i, and ψ̂i = ψrΛ(i) onΛ.

We also introduce theextension matrixRΛ, defined as

(RΛ)ij =

{

1 if i = rΛ(j),

0 otherwise,
i = 1, . . . , Nh, j = 1, . . . , N̂h. (5.14)

Matrix RΛ has the following property: if̂u are the components (with respect to the basis{ψ̂i}) of a
function û ∈ V̂h, thenu = RΛû are the components (with respect to the basis{ψi}) of a function
u ∈ Vh such thatu = û onΛ, andu = 0 on elements that are not sharing an edge or a node withΛ.

The finite element approximation of problem (4.52) reads:find (uh, ûh) ∈ Vh × V̂h such that

a((uh, ûh), (ψ, ψ̂)) = F (ψ, ψ̂) ∀(ψ, ψ̂) ∈ Vh × V̂h, (5.15)

where bilinear forma and linear functionalF are defined in (4.54). Let us focus on the matrix

form of problem (5.15). Letu = (u1
h, . . . , uNh

h ) andû = (û1
h, . . . , ûN̂h

h ) be the components of the
approximate solutions with respect to the basis functionsψi and ψ̂i; eq. (5.15) is equivalent to the
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following conditions:

Nh
∑

j=1

uj
h

(∫

Ω
kt∇ψj · ∇ψi + β

∫

Λ
ψ̄jψi

)

−
N̂h
∑

j=1

ûj
hβ

∫

Λ
ψ̂jψi = βuv,0

∫

Λ
ψi, (5.16)

i = 1, ... , Nh,

−
Nh
∑

j=1

uj
hβ

∫

Λ
ψ̄jψ̂i +

N̂h
∑

j=1

ûj
h

(∫

Λ
kv

d

ds
ψ̂j

d

ds
ψ̂i + β

∫

Λ
ψ̂jψ̂i

)

= −βuv,0

∫

Λ
ψ̂i, (5.17)

i = 1, ... , N̂h,

where we recall that̄ψj is the averaging of functionψj according to eq. (3.9). Equations (5.16) and
(5.17) form a linear system, that in matrix form reads

(

A B

B̂ Â

) (

u

û

)

=

(

b

b̂

)

(5.18)

The components of the right hand side vectorsb = (b1, . . . , bNh) andb̂ = (b̂1, . . . , b̂N̂h) read

bi = βuv,0

∫

Λ
ψidx i = 1, ... , Nh,

b̂i = −βuv,0

∫

Λ
ψ̂idx i = 1, ... , N̂h.

(5.19)

Using the extension matrixRΛ defined in (5.14), we haveb = RΛb̂.
To study the blocks of the global matrix of the previous system, let us introduce the 3D and 1D

stiffness matricesK andK̂, whose elements are respectively

Kij =

∫

Ω
kt∇ψi · ∇ψj dx i, j = 1, ... , Nh,

K̂ij =

∫

Λ
kv

d

ds
ψ̂j

d

ds
ψ̂ids i, j = 1, ... , N̂h,

(5.20)

and matricesM̂ , M̄ , whose elements are

M̂ij = β

∫

Λ
ψ̂iψ̂j ds i, j = 1, ... , N̂h,

M̄ij = β

∫

Λ
ψ̂iψ̄j ds i = 1, ... , Nh; j = 1, ... , N̂h.

(5.21)

Observing that

β

∫

Λ
ψ̄jψids =

{

M̄kj if i = rΛ(k),

0 otherwise,
β

∫

Λ
ψ̂jψids =

{

M̂kj if i = rΛ(k),

0 otherwise,

and

β

∫

Λ
ψ̄jψids =

N̂h
∑

k=1

(RΛ)ikM̄kj , β

∫

Λ
ψ̂jψids =

N̂h
∑

k=1

(RΛ)ikM̂kj ,
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we obtain the following expressions for the blocks of our system:

(

A B

B̂ Â

)

=

(

K + RΛM̄ −RΛM̂

−M̄ K̂ + M̂

)

This means that the only matrices we need to build are stiffness and mass matriceson the 3D and
1D mesh, plus the matrix̄M , which contains the averaging operator. The elements of this matrix are
given by

M̄ij = β

∫

Λ
ψ̂iψ̄j ds = β

∑

Im∈Im

∫

Im

ψ̂i(s)

(

1

2π

∫ 2π

0
ψj(s, R, θ)dθ

)

ds, (5.22)

where the term inside the parentheses is a function ofs that we have to know in order to compute
M̄ij . Although this can be done by numerical integration, it will requireinterpolationsover the 3D
mesh: that is, we will need to compute the value of a basis function at a certain point x ∈ Ω, namely a
point lying on the circle described in local coordinates by(s, R, θ) for θ ∈ [0, 2π]. This is due to the
non-local nature of our problem. In general, interpolation is a computationally expensive procedure:
we will show how its use can be minimized or even avoided, but for the moment letus postpone this
issue.

To approximate the integral onIm in eq. (5.22), it will suffice to use a quadrature formula on the
reference interval[0, 1], with nodesξk and weightsωk, k = 1, . . . , N̄ . If sk is the curvilinear abscissa
corresponding to the image ofξk by the geometrical transformation that maps[0, 1] on the element
Im (see fig. 5.2), we can write

∫

Im

ψ̂i(s)

(

1

2π

∫ 2π

0
ψj(s, R, θ)dθ

)

ds '
N̄

∑

k=1

ψ̂i(sk)





N̄
∑

l=1

ψj(sk, R, 2πξl)ωl



 Jkωk (5.23)

whereJk is the (absolute value of the determinant of the) Jacobian of the transformation at ξk (for
linear elements,Jk = |Im| = const.). We remark that in eq. (5.23), the same quadrature formula has
been used for both the integrals overIm and over the circles with radiusR, normal toIm and centered
at pointssk (different formulae may be used as well). To apply any integration formula like (5.23), we
will have to known the values of functionψj at pointsx̄k,l = xv,0(sk, R, 2πξl) ∈ Ω, k, l = 1, . . . , N̄ ,
wherexv,0 are the local cylindrical coordinates aroundIm, see eq. (3.3). This is the interpolation step:
it requires finding the 3D element in which pointx̄k,l is, tracking it back to the reference element, and
then computing the corresponding values of the local basis functions. Of course, sinceR is expected
to be small, only a very few elements will contain at least one interpolation point; but as there arēN2

interpolations to perform for each 1D elementIm, this procedure can be very time consuming when
N̄ is large.

There are two techniques that have been tested and employed in this work in order to overcome
the problem. The first method simply consists in choosingN̄ small enough to keep the CPU time
spent for interpolation in a reasonable range. The second, completely removes the interpolation step
and leads to what we will call the

lumped approximation: if R is much smaller than the mesh sizeh, then we havēψj(s) ' ψj(s) in
eq. (5.23). If we takeψj(s) as an approximation of̄ψj(s), we have the following expression for matrix
M̄

M̄ ' M̂R>
Λ (5.24)
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sk

x̄k,l

Λ

0 1ξk

Figure 5.2: The 3D mesh and the 1D domainΛ, composed by edges of the 3D mesh. Shown are the
circles aroundΛ used to compute thēMij terms by integration.

and the matrix of system (5.18) becomes

(

A B

B̂ Â

)

=

(

K + RΛM̂R>
Λ −RΛM̂

−M̂R>
Λ K̂ + M̂

)

(5.25)

In particular, this matrix is always symmetric and positive definite.
The symmetry of the global matrix coming from the lumped approximation is trivial; to see that

it is positive definite as well, it suffices to observe that

(

u

û

)> (

RΛM̂R>
Λ −RΛM̂

−M̂R>
Λ M̂

) (

u

û

)

= (û − R>
Λu)>M̂(û − R>

Λu)

and write

(

u

û

)> (

K + RΛM̂R>
Λ −RΛM̂

−M̂R>
Λ K̂ + M̂

) (

u

û

)

= u>Ku + û>K̂û + (û − R>
Λu)>M̂(û − R>

Λu).

Now, M̂ is positive definite;K̂ is also positive definite due to the homogeneous Dirichlet condition
in the definition of the spacêVh; matrix K is positive semidefinite, with only one null eigenvalue,
corresponding to the eigenspace generated by vector(1, 1, . . . , 1)>. Therefore, the last expression is
equal to zero only if̂u = 0, all components ofu are equal, andR>

Λu = û = 0; but this impliesu = 0

sinceRΛ(1, 1, . . . , 1)> 6= 0.
We point out that we cannot expect the finite element scheme with lumped approximation to be

convergent: we are replacing theūt term in eq. (4.52) byut, and this does not make sense from the
analytical point of view, sinceut does not admit a trace onΛ. The goal of the lumped approximation
is to simplify the assembling of thēM block if the characteristic mesh sizeh that we are using is
sufficiently greater than the vessel radiusR. Since this is actually the case in which 1D models are
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introduced, we expect that at least for the typical applications we have inmind, the approximation
(5.24) does not introduce a significant error. It is interesting to observe that a 1D-3D approach similar
to the one we are proposing in this work, has been used (without any mathematical justification) for
instance in [1], in the context of geothermal heating systems modelling. In this paper, a heat transfer
problem is solved in a 3D soil domain, where the mesh size is in the range of 20 m,considering heat
exchange with a 1D pipe (16 cm radius); the authors implicitly use lumped approximation (besides,
the pipe radius is 125 times smaller than the mesh sizeh).

5.2 Convergence tests

We report hereafter some numerical results for a coupled 1D-3D problem with an available analytical
solution. We consider again the simple geometry of the examples of section 3.2.2 (see fig 3.2); namely,
using cylindrical coordinates, we set

Ω = {(z, r, θ) ∈ (0, 1) × [0, 1) × [0, 2π)}

and
Λ = {(z, r, θ) ∈ Ω : r = 0}.

Notice that the curvilinear abscissa ofΛ is s = z. Then, we consider problem (4.52), that we report
here for the reader’s convenience











−∇ · (kt∇ut) + β(ūt − uv)δΛ = 0 in Ω,

− d

dz
(kv

d

dz
uv) + β(uv − ūt) = 0 in Λ,

(5.26)

with

kt = 1, kv = kv(z) = 1 + z +
1

2
z2, β =

2π

2π + log R
,

and boundary conditions










ut = 0 onΓD,
∂ut
∂n

= − 1
2π log r on∂Ω ∩ {z = 1},

∂ut
∂n

= 1
2π log r on∂Ω ∩ {z = 0},

{

uv(0) = 1,
uv(1) = 2,

whereΓD = {(z, r, θ) ∈ {1} × [0, 1] × [0, 2π)} ⊂ ∂Ω is the lateral surface of the cylinderΩ. In this
case, it is easy to verify2 that the exact solution is given by

ut(z, r, θ) = −1 + z

2π
log r, uv(z) = 1 + z.

Let us consider the weak formulation of our problem: to deal with homogeneous Dirichlet conditions
only, we setuv = 1 + z + ũv, and we reformulate the problem using the “translated” unknownũv.
Introducing the spaces

Vα = {f ∈ H1
α(Ω) : f|ΓD

= 0}, V̂ = {f ∈ H1(Λ) : f(0) = f(1) = 0},
2 In fact, boundary conditions are satisfied; moreover, we haveūt = − 1+z

2π
log R, so thatβ(ūt − uv) = −(1 + z) =

f(z), wheref is such that−∆ut + fδΛ = 0 (in the sense of distributions) andd
dz

`

−kv
d
dz

uΛ

´

− f = 0. Hence,(ut, uv)
solves our problem.
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and using notations from theorem 4.3.1, the weak form of this problem reads: find u = (ut, ũv) ∈
Vα × V̂ such that

a(u,v) = F (v) ∀v = (vt, vv) ∈ V−α(Ω) × V̂ ,

where

a(u,v) =

∫

Ω
kt∇ut · ∇vtdx +

∫

Λ
kv(z)

dũv

dz

dvv

dz
dz + β

∫

Λ
(ūt − ũv)(vt − vv)dz,

F (v) = β

∫

Λ
(1 + z)(vt − vv)dz −

∫

Λ
kv(z)vvdz.

(5.27)

We want to study the finite element convergence of our numerical schemes tothe exact solution,
and the error introduced by the lumped approximation. To this end, we perform two numerical ex-
periments. First, a 2D-axisymmetric finite element discretisation ofΩ is considered: in this case the
interpolation is affordable even for a very smallh, and convergence results are easier to obtain. Then,
results for a 3D unstructured mesh are presented. We will see that, if the vessel radiusR is sufficiently
smaller thanh, the lumped approximation gives almost the same results than a proper finite element
discretisation with numerical quadrature of the non-local term.

5.2.1 2D-axisymmetric discretization.

If we take advantage of the cylindrical symmetry of our problem, assuming that all our variables
depend only on the cylindrical coordinates(r, z), we can rewrite equations (5.27) in the following
form:

a(u,v) = 2π

∫

[0,1]2
kt

(

∂ut

∂r

∂vt

∂r
+

∂ut

∂z

∂vt

∂z

)

rdrdz

+

∫ 1

0
kv(z)

dũv

dz

dvv

dz
dz + β

∫ 1

0
(ūt − ũv)(vt − vv)dz,

F (v) = β

∫ 1

0
(1 + z)(vt − vv)dz −

∫ 1

0
kv(z)

dvv

dz
dz,

(5.28)

where, thanks to theθ-symmetry, we have

ūt(z) = ut(R, z).

Therefore, we can introduce a 2D finite element spaceVh related to the triangulationTh of the square
[0, 1]2, and the corresponding 1D spaceV̂h induced onΛ, which is ther = 0 edge of the square, and
use the expressions in (5.28) to compute the finite element solutionuh = (ut,h, uv,h) ∈ Vh × V̂h of

a(uh,vh) = F (vh) ∀vh ∈ Vh × V̂h.

We used a composite trapezium rule with 10 subintervals to compute the integrals in(5.22).
In fig. 5.3 we report the computed approximation errorsEt,h(V ) = ‖ut,h − ut‖V andEv,h(V̂ ) =

‖uv,h − uv‖V̂ for several spacesV, V̂ (for weighted norms we considerα = 1/2), for R = 0.05 (that
is 20 times smaller than the radius ofΩ), corresponding toβ ' 1.911, and for different mesh sizes
h (from 0.0625 to 0.00097). The convergence of the numerical scheme is respectively of order 0.51
and 1.86 in theH1

1/2 andL2
1/2 norms for the 3D solutionut,h, and of order 2.1 in both theH1 andL2

norms for the 1D solutionuv,h.



5.2 – CONVERGENCE TESTS 91

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

h

E
rr

or

(a)
(b)
(c)
(d)

Figure 5.3: Computed errors for the 2D-axisymmetric FE approximation in different norms: the blue
dotted line corresponds to a convergence rate equal to 1. Solid lines:Et,h(V ) errors forV = L2

1/2(Ω),

(a), andV = H1
1/2(Ω), (b). Dashed lines:Ev,h(V̂ ) errors forV̂ = L2(Λ), (c), andV̂ = H1(Λ), (d).

The mean rates (from regression lines) are: 1.86 (a), 0.51 (b), 2.1 (c), 2.1 (d).

5.2.2 Full 3D-1D discretization : the error introduced by the lumped approximation.

In order to study the effectiveness of the 1D-3D approach in a more realistic situation, we have com-
puted finite element approximations using a full 3D unstructured mesh for the domain Ω, and an
extracted1D mesh built with the edges that are the closest to the actualr = 0 line (for the description
of the extraction algorithm, we refer to the next chapter). Moreover, the same experiments were done
first using interpolation and eq. (5.23) to compute theM̄ij elements (IN), then using the lumped ap-
proximation (LA), and for two values of the vessel radius,R = 0.1 andR = 0.01. Relative errors are
reported in table 5.1: the solution for the (IN) case with the finest mesh is shown in fig. 5.4. From
these results, the following observations can be made:

1. As expected, convergence forh → 0 is achieved by the (IN) approach only.

2. The relative error affecting the 3D numerical (LA)-solution is almost equal to the one of the
(IN)-solution whenh is at least a few times bigger thanR; in this case the (LA) best error is
about10% in theH1

1/2 andL2
1/2 norms.

3. The relative error affecting the 1D numerical solution with (LA), is about 1-3%, for both values
of R.
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R = 0.01, IN

h Er
t,h(L2

α) Er
t,h(H1

α) Er
v,h(L2) Er

v,h(H1)

0.200 0.2462 0.2659 0.0121 0.0342
0.100 0.1143 0.1171 0.0060 0.0169
0.050 0.0360 0.0379 0.0018 0.0053
0.025 0.0100 0.0124 0.0005 0.0014

R = 0.01, LA

h Er
t,h(L2

α) Er
t,h(H1

α) Er
v,h(L2) Er

v,h(H1)

0.200 0.21873 0.23964 0.01078 0.03036
0.100 0.07795 0.08225 0.00409 0.01146
0.050 0.00128 0.02505 0.02310 0.00360
0.025 0.09674 0.09470 0.00527 0.01475

R = 0.1, IN

h Er
t,h(L2

α) Er
t,h(H1

α) Er
v,h(L2) Er

v,h(H1)

0.200 0.03191 0.06352 0.00077 0.00219
0.100 0.00893 0.02107 0.00035 0.00100
0.050 0.00127 0.01172 0.000009 0.00002
0.025 0.00331 0.00817 0.000009 0.00002

R = 0.1, LA

h Er
t,h(L2

α) Er
t,h(H1

α) Er
v,h(L2) Er

v,h(H1)

0.200 0.14484 0.14694 0.00773 0.02194
0.100 0.21300 0.20915 0.01156 0.03244
0.050 0.26739 0.26196 0.01462 0.04092
0.025 0.30912 0.30281 0.01693 0.04737

Table 5.1: Relative errors (normalized to the norm of the exact solution; for weighted norms,α = 1/2)
for R = 0.01 (top) andR = 0.1 (bottom). For each value ofR, errors are reported for the interpolation
(IN) and the lumped approximation (LA) case.

4. Despite the larger values of the global errors affecting the 3D solutions, as we already observed
in fig. 3.4, the local error is always much smaller far away fromΛ, and is mostly concentrated
on elements sharing an edge or a node withΛ.

From these observations, we can conclude that (i) our 1D-3D finite element discretization allows for
the numerical approximation of problem (5.26), and (ii ) the lumped approximation may be adopted
at least when the mesh sizeh is several times greater than the typical vessel radiusR. This result
is comforting: the critical applications, in which the (IN) approach would be computationally too
expensive, are perfusion simulations with a consistent number of 1D vessels in a given 3D tissue,
and usually, if the vessels are many and small, the 3D spatial resolution needed in practice is always
sufficiently bigger thanR.
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Figure 5.4: Computed approximate solutions for the full 3D-1D FE approximation. Top: shown are
the surface mesh of the 3D domainΩ, the solutionut,h in a half ofΩ, and the solutionuv,h on Λ. In
the picture, the 1D domainΛ has been rendered as a “tube” only for visualization purposes. Bottom:
isosurfaces of the solutionut,h in a half ofΩ, and the solutionuv,h onΛ.
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Chapter 6

Modelling blood flow and mass transport
in vascularized tissues

6.1 Introduction

The simulation of biological transfer mechanisms between blood and tissues is of primary interest for
several reasons. Circulation is responsible for a number of exchangeprocesses between blood and
cells, most remarkably:

• oxygen delivery to the tissues (blood as a carrier of chemicals)

• thermal regulation (blood as a heat exchanger)

These two examples are sufficient to explain how circulation and related transport phenomena are
strongly affecting the body vital functions. In general, the study of the interaction between vessels and
tissues is a valuable tool in biomedical engineering and medicine: we cite for instance applications
in pharmacokinetics, design of biomedical devices such asdrug eluting stentsfor arterial diseases,
implanted insulin pumps or patches(possibly sensible to glucose concentration) for diabetes therapy,
andhyperthermia treatmentin some cancer therapies. In these cases, mathematical modelling might
provide new insights to the biomedical engineer. Moreover, pathological or extreme conditions may
be studied by means of simulations before starting anyin vivo investigation.

Most of the relevant transfer processes between blood and tissues are due to small vessels (ar-
terioles and capillaries) rather than large vessels. Among these processes, there is oxygen delivery,
carbon dioxide removal, transfer of other chemicals (e.g. glucose, lactatedrugs, see chapter 1), and
heat exchange. It is known that small vessels strongly respond to modifications of the metabolic and
hemodynamic state, by changing their resistance to blood flow. This makes the picture rather com-
plex, since both microcirculation hemodynamics and autoregulation have to be taken into account.
Now, any autoregulation model needs basically two input variables: local blood flow rate and local
chemical concentrations1: for this reason, this chapter will focus on modelling of perfusion and mass
transport in tissues.

Vasculature shows very different space scales. It is organized in a hierarchical way: a given vessel
may branch into several children vessels, and this splitting is repeated until the lowest level of the
hierarchy (the capillary bed) is reached. The very particular hierarchical structure is indispensable,
because of the small oxygen diffusion distance in theinterstitium, as shown by the next example.

1see for instance the works by Pries, Secomb and Gaehtgens: [79], [80].
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Example. The effective diffusion constant DO2
of oxygen by myoglobin in skeletal muscle is about

10−4 cm2 s−1 [77], and the (volume) concentration of oxygen when myoglobin is 100% saturated is
[O2] = 11.2 · 10−3 ml(O2) ml−1. Let A be the area through which oxygen is transferred from blood
to tissue, d the distance between the source of oxygen (blood) and the target (mitochondria), and
q the rate of oxygen consumption in tissues (q ' 1.3 · 10−3 ml(O2) ml−1 s−1 in exercising muscle,
[77]). Thanks to Fick’s law the mass balance reads

DO2
[O2]

A

d
= qV,

where V is the volume of the tissue; if V ' Ad, then we get

d '
s

DO2
[O2]

q
' 3 · 10−2 cm.

Actually, physiological measurements show that d is even smaller: for example in the hamster

cheek pouch retractor muscle the number of capillaries per unit area is N = 1.4 · 105 cm−2 [25],

from which d =
p

1/N = 2 · 10−3 cm (see fig. 6.1).

Figure 6.1: (From [96, 93]) Examples of vascular networks. On the left, top: tracing of arcade arterioles (AA)
and arcade venules (AV) in the rat spinotrapezius muscle. The arcade network spans the entire muscle, and
there are multiple connections of this network to the central arteries. The side branches to the capillary network
(bottom) are provided by the terminal (transverse) arterioles (TA), which form asymmetric trees and directly
connect to the capillary meshwork. Capillaries are predominantly aligned with the muscle fibers and give rise
to the collecting venules (CV), which return the blood to thearcade venules. On the right: retinal imaging. An
optical camera is used to see through the pupil of the eye to the rear inner surface of the eyeball. Shown are the
retinal layer and its vessels, with their complex branchingpatterns.

Due to this multiscale structure of a tissue, the most suitable mathematical models for studying
perfusion and mass transport should have multiscale nature too. Multiscale models of the cardiovas-
cular system have already been introduced by several authors (for example [31], [84], [76], only to
cite a few of them); the relatively large number of works on this topic has concerned most of the
times the use of highly accurate models (for example, Navier-Stokes equations for blood flow with
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a structure model for the vessel wall) forlarge vessels, coupled with reduced models (1D models or
lumped parameter models) representing the remaining part of the circulation. The intrinsic power of
such an approach is the capability to simulate in a very accurate manner the behaviour of a given blood
vessel or small arterial tree (the carotid bifurcation, for example) withoutneglecting the influence of
the whole circulatory system.

The idea of using a similar approach for tissue perfusion naturally comes up. More precisely, we
can distinguish between blood flow atmacroscale, that is in large and medium-size vessels, that one
wants to describe with their geometry, and blood flow atmicroscale(small vessels, capillary bed),
where reduced models involving average quantities are preferable. Thekey point from which this
work has been motivated is that, when dealing with tissue perfusion and metabolism, the two scales
have very specific properties:

• The macroscale is usually given bycomplex arterial trees(see fig. 6.1), rather than a few large
blood vessels. Here we havefastblood flow and mass transport.

• In general, transfer processes take place at the microscale; at this scale, blood flow is quiteslow.

These properties have to be taken into account when developing specificmathematical models for
tissue perfusion:

• The geometrical complexity of the macroscale asks for models apt to resolve the vessel geome-
try and capture the behavior of the main physiological variables (blood pressure, concentrations,
temperature, . . . ) without being too computationally expensive. In this regard, 1D models seem
to be the natural choice.

• Concerning the microscale, one would better resort toaveragedquantities to describe the pro-
cesses of interest: in fact, the geometrical data as well as other fine properties of microcircu-
lation are usually not known in detail, and, on the other hand, computations witha very fine
resolution are often beyond the needs. Actually, special 3D models from homogenization the-
ory (or mixture theory2) have been developed in order to describe the evolution of the (volume)
average of the physiological variables in a tissue.

• The 1D domain (the arterial tree) isa subsetof the 3D domain (the tissue), and the geometry of
the former influences the flow in the latter. Borrowing the terminology from geomechanics, the
1D domain can be seen as afracture in the 3D one.

Thus, in this chapter we will consider 1D-3D models of blood flow and mass transport in tissues.
In this regard, we will take advantage of the results of the chapters 3, 4 and 5 on the 1D-3D coupling.
As schematically depicted in fig. 6.2, the final goal is to employ a two-stages model, the first stage
being blood flow computation, the second mass transport simulation; at each stage, two coupled
problems, respectively for the tissue (3D) and the vessel tree (1D), interact (the interactions being
denoted byI1 andI2 in the figure); we will see that this situation falls in the class of problems we
considered in the aforementioned chapters. Fig. 6.2 is only meant to sketch the basic ideas: several
models of increasing complexity can be used in this scenario. We will study someof the possible
choices, discussing the role of the interactionsI1 andI2. When needed, numerical techniques will be
discussed as well.

2Mixture theory [24] provides an axiomatic framework for the dynamics of multiphase flow; it has been used for example
by [44] to model blood flow in tissues
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Transport Phenomena
in Tissues

Fast Transport
(macroscale)
1D models

Slow Transport
(microscale)
3D models

Momentum 1D
Compute theflow rateqv in thevessels

Momentum 3D
Compute theblood velocityvt in thetissue

Mass 1D
Compute theconcentrationuv in thevessels

Mass 3D
Compute theconcentrationut in thetissue

qv vt

Ip

Iu

Figure 6.2: Multiscale approach in modelling transport phenomena in tissues

6.2 Macroscale: 1D and1
2D models for blood flow and transport

One-dimensional models have been widely applied in hemodynamics to represent systems composed
by a large number of blood vessels. From the mathematical and numerical point of view, they have
been extensively studied for instance in [31], [84], [30], [75]; we refer to these articles for a thorough
introduction to the subject, or to chapter 2.

One-dimensional models were introduced to study large vessels, with inner radius greater than a
few millimeters. When considering small portion of tissue, the vessels at the macroscale are often
smaller than that, and some simplifications of the existing models are possible. Let us recall the 1D
model of blood flow in a single 1D vessel described by the spatial variables ∈ [0, L]. For the sake of
simplicity we shall consider the case of parabolic velocity profile, in which we have
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+
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8πν
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Q = 0,

(6.1)

wheret is the time,A = A(t, s) is the cross-sectional area,Q = Q(t, s) the blood flow rate,α is the
Coriolis coefficient,ρ is the blood density andν is the blood kinematic viscosity [84].

The equations are closed by a pressure-strain relation for the wall displacement. If we assume that
Hooke’s law holds, we have [84]:

P = P0 +
4

3

Eh

R0

(

R − R0

R0

)

, (6.2)
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beingh the wall thickness,E the Young’s modulus,R the vessel radius,R0 the reference radius cor-
responding toP = P0 (here the Poisson ratio has been set to0.5). Starting from these equations, it is
possible to introduce two simplified models, the linearized 1D model and its quasistatic approxima-
tion, that will be referred to as the12D model. Both of them allow the computation of blood flow rate,
that in turn can be used in a one-dimensional mass transport model, as in chapter 2.

6.2.1 The linearized 1D model for blood flow

Using the small displacements hypothesisA ' A0 = πR2
0, (6.2) gives

∂A

∂t
=

√
A

(

3
√

πR2
0

2Eh

)

∂P

∂t
' c

∂P

∂t
, where c =

3πR3
0

2Eh
.

Moreover, under the same assumption, and for small vessels, the convective terms can be neglected
(see the derivation of the 0D model from the 1D model in [84]), and we cansetA ' A0 in the second
equation of (6.1). In this case the following linearized model is obtained (seealso [64]):











c
∂P

∂t
+

∂Q

∂s
= 0,

∂Q

∂t
+

1

l

∂P

∂s
+ rQ = 0,

(6.3)

where the constants

r =
8πν

A0
, l =

ρ

A0
(6.4)

have the physical meaning of an hydraulicresistanceand inductance(whereasc is a compliance),
and are depending only on the vessel stiffness and geometry and blood mechanical properties. With
suitable initial and boundary conditions, this is a linear hyperbolic system of second order equations,
that has been studied for multiscale coupling with 0D models for example in [29].

The model can immediately be extended to treat

- a flow rate loss termφv along the vessel (measured in square length on time);

- a concentrated load (hydraulic conductanceG) at the end of the vessel (s = L).

To summarize, to introduce the symbols that we will use later on to distinguish between vessel (sub-
script “v”) and tissue (subscript “t”) variables, and to take into account the fluid loss, we restate the
1D linearized problem as follows:

Problem 6.2.1. Find the vessel pressurepv(t, s) and flow rateqv(t, s) such that:

∂

∂t

[

pv

qv

]

+ H
∂

∂s

[

pv

qv

]

+ r(pv, qv) = 0, t > 0, s ∈ (0, L), (6.5)

where

H =

[

0 c−1

l−1 0

]

, r(pv, qv) =

[

c−1φv

rqv

]

, (6.6)

given suitable boundary and initial conditions (BC and IC).
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The BC that we can consider for problem 6.2.1 are in number of one for each boundary point, cor-
responding to the fact that the eigenvalues of matrixH have opposite signs. For example we can
prescribe the input pressurepin(t) at s = 0, and the concentrated load ats = L, assuming a linear
relation between flow rate and pressure via the conductanceG. Concerning the IC, we have simply to
assign the functionspv(0, s) andqv(0, s), s ∈ (0, L). The BC/IC corresponding to this case are the
following:

{

pv(t, 0) = pin(t), qv(t, L) − Gpv(t, L) = 0, t > 0,

pv(0, s) = pv,0(s), qv(0, s) = qv,0(s), s ∈ (0, L).
(6.7)

6.2.2 Quasistatic approximation: the1
2
D model

The constantr in (6.4) has the units of a frequency[ s−1]. Let us assume to know the pressureP and
consider the second equation in (6.3) as an evolution equation forQ with dataf(t, s) = −1

l ∂P/∂s:

∂Q

∂t
= −rQ + f.

If r is much greater than the frequency spectrum off , the followingquasistatic approximationcan be
adopted:

Q =
1

r
f = − A2

0

8πρν

∂P

∂s
(6.8)

In other words, in this caseQ follows the input signalf with a negligible time lag.
Now, beingν ' 0.033 cm2 s−1, for “large” vessels, say withA0 > 0.1 cm2 (R0 > 1.8 mm), the

characteristic timeτr = 1/r = A0/(8πν) is about0.12 s or greater. If one is interested in capturing
the pressure pulse propagation in such vessels, that moves with velocity

cpulse =
1√
cl

=

√

2Eh

3πρR0
' 150 cm s−1,

quasistatic approximation should be avoided, sinceτr is greater than the pulse travelling timeτpulse =
L/cpulse (that is in the range of 0.03 for vessels of a few centimeters in length). But, when smaller
vessels are considered,τr drops likeR2

0; on the other hand, the ratioh/R0 and the Young modulus do
not change considerably, so thatcpulse remains in the same order of magnitude andτpulse is propor-
tional to the vessel length, which usually scales less than linearly with respect to R0. This means that
for “small to medium” size vessels,τr ¿ τpulse so that the quasistatic approximation can be applied.
For instance, considering arterioles withA0 = 2 · 10−5 cm2, we have1/r = 2.4 · 10−5 s: in this
case the quasistatic approximation is more than justified. As a matter of fact, this simplified model is
always the starting point for applications in microcirculation, see for example[54], part I, chapter 7.

We point out that one can look at the quasistatic approximation as the limit of the momentum
conservation equation to thePoiseuille’s law: in fact, sinceρν = µ whereµ is thedynamicblood
viscosity, eq. (6.8) reads

Q = −πR4
0

8µ

∂P

∂s
, (6.9)

which is nothing else than the well known Hagen-Poiseuille formula for laminar stationary flow of
incompressible uniform viscous liquid through a cylindrical tube with radiusR0.
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Under this assumption, the model for pressure propagation in the vessel becomesparabolic: using
(6.9) in the first equation (mass conservation) of (6.3), we have

c
∂P

∂t
− 1

lr

∂2P

∂s2
= 0, (6.10)

that we will call “12D” model since the flow rate variable is now related to the pressure by the
Poiseuille’s law (as if we had lost half of the independent variables).

As done for the linearized 1D model, we restate our problem, taking into account a fluid lossφv:

Problem 6.2.2. Find the vessel pressurepv(t, s) and flow rateqv(t, s) such that:

Cv
∂

∂t
pv −

∂

∂s
Kv

∂pv

∂s
+ φv = 0, t > 0, s ∈ (0, L) (6.11)

where

Cv =
3πR3

0

2Eh
, Kv =

1

lr
=

πR4
0

8µ
, qv = −Kv

∂

∂s
pv,

with suitable boundary and initial conditions (BC and IC).

If we consider problem 6.11 with prescribed input pressure and a concentrated load with conductance
G, we have the following BC/IC, obtained by (6.7):

{

pv(t, 0) = pin(t), qv(t, L) − Gpv(t, L) = 0, t > 0,

pv(0, s) = pv,0(s), s ∈ (0, L).
(6.12)

6.2.3 The 1D transport model

The one-dimensional model for mass transport we have derived in chapter 2, starting from the actual
3D advection-diffusion problem in the vessel lumen, falls in the category ofgeneral 1D advection-
reaction-diffusion problems. The variable transported in the vessel hadthe meaning of alinear con-
centration(for instance mol per unit length) of a chemical.

Here we consider a similar model for thevolumeconcentration of a chemical inside the vessel,
that we denote byuv. Of course, the linear concentration is given byAuv, A being the cross-sectional
area. The governing equations foruv we propose here are obtained from those of chapter 2, under the
following assumptions:

i) we neglect the variation of the cross-sectional area, and setA = A0, whereA0 is time indepen-
dent;

ii) we consider also a diffusive term, that may be important in small vessels. The diffusion coeffi-
cient will be denoted byDv;

iii) we consider a concentration loss termθv (measured in mol per unit time and unit length; we
will define it more specifically later on when the 1D-3D coupling will be considered).

From these assumptions, the following 1D model for mass transport in the vessel is obtained:
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Problem 6.2.3. Find the (volume) concentrationuv(t, s) that satisfies:

A0
∂

∂t
uv +

∂

∂s

(

qvuv − A0Dv
∂

∂s
uv

)

+ θv = 0, t > 0, s ∈ (0, L), (6.13)

with suitable BC/IC.

Concerning the BC/IC, we can prescribe for example the value of the concentration at the inlet, and
a homogeneous Neumann condition (that means to neglect the diffusive termswith respect to the
advective terms) at the other boundary point:

{

uv(t, 0) = uin(t), ∂uv(0, s)/∂s = 0 t > 0,

uv(0, s) = uv,0(s), s ∈ (0, L).
(6.14)

We also point out that, if the12D model is used for blood flow, then we can express the blood flow rate
in (6.13) using the Poiseuille’s formula and have:

A0
∂

∂t
uv −

∂

∂s

(

πR4
0

8µ

∂pv

∂s
uv + A0Dv

∂

∂s
uv

)

+ θv = 0. (6.15)

6.3 Microscale: 3D models for blood flow and transport

In this section, we consider homogenized mathematical models governing bloodflow and mass trans-
port at the microscale. The fundamental idea is that only averaged quantities are considered: the size
of vessels belonging to the microscale is so small that we consider them as the pores of aporous
medium, the microvascular matrix. Specific constitutive laws can be adopted for this medium: basi-
cally, they are extensions of Darcy’s law for multiporous media. Multiporositymodels are currently
used to simulate groundwater flows and other geological phenomena: their application to biological
flows is quite recent. In what follows, we introduce such models and discuss related numerical issues
that have not been discussed in the previous chapters.

6.3.1 Hierarchical perfusion model for blood flow in the tissue

The system of blood vessels in a tissue has ahierarchical structure: vessels can belong to several
branching orders, each order having its specific properties, depending first of all on the radius. There-
fore, rather then associate single values to the hydraulic tissue permeability,porosity, mean blood
velocity and other classical porous medium averaged quantities, we must consider adistribution of
values depending on the vessel level in the hierarchy.

To this end, ahierarchical parameterϑ ∈ [0, 1] is introduced: it is an auxiliary variable repre-
senting the level a given vessel belongs to, that has been considered first by Huyghe and Vancampen
[45].

In this work,ϑ spans the range from the smallest vessels (capillaries) forϑ = 0, to largest ones
for ϑ = 1. We will not include the venous system in the hierarchy (even if one could use “negative”
values ofϑ); rather, this system will be described by some reduced model.

In several papers by Huyghe and coworkers (see for instance [103], [45]), constitutive laws for
hierarchical blood flow have been theoretically developed starting from fundamental conservation
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principles3. Each unknown related to blood flow is expressed as a function of both spatial variables
and hierarchical coordinateϑ, as well as flow takes place both in the “spatial” direction (through
vessels of comparable porosity) and the “hierarchical” direction (usuallypassing from a hierarchical
level to a lower one).

In porous medium theory, the averaged variables are defined by means of a “reference elemen-
tary volume” (REV) whose sizehREV is negligible with respect to the characteristic length of the
macroscale, but still big enough to allow a meaningful averaging on the microscale (see [6]). In our
case, the REV has 4 dimensions (three in space, one for hierarchy).

Let Ω ⊂ R3 be the tissue domain, andΩb the subdomain occupied by blood vessels (that are the
poresof our medium); forx ∈ Ω andϑ ∈ [0, 1], we define a REV corresponding to(x, ϑ) by

U0(x, ϑ) = {(x′, ϑ′) ∈ Ωb × [0, 1] : ‖(x′, ϑ′) − (x, ϑ)‖ < hREV}.

Several microscopic physiological variables are defined onΩb:

◦ the pore pressurepb;

◦ the porespatialvelocityvb, defined byvb = Dx
Dt , whereD/Dt denotes a material derivative;

◦ the porehierarchicalblood velocityωb = Dϑ
Dt ; this quantity represents the rate at which blood

moves up in the hierarchy, through a given levelϑ, at a given pointx. Notice that if the highest
hierarchal level corresponds to the largest arterial blood vessels, innormal conditions blood will
move down in the hierarchy, thus producing a negative value ofωb.

Taking the average of the microscopic physiological quantities we can define the corresponding
macroscopic variables onΩ:

◦ p = p(t,x, ϑ) = 1
|U0|

∫

U0(x,ϑ) pb(t,x
′, ϑ′)dx′dϑ′: the mean blood pressure.

◦ v = v(t,x, ϑ) = 1
|U0|

∫

U0(x,ϑ) vb(t,x
′, ϑ′)dx′dϑ: the meanspatialblood velocity.

◦ ω = ω(t,x, ϑ) = 1
|U0|

∫

U0(x,ϑ) ωb(t,x
′, ϑ′)dx′dϑ: the meanhierarchicalblood velocity.

Starting from fundamental conservation laws and using mixture theory, in [103] the admissible models
for hierarchical flow have been completely described, including poroelastic effect. Neglecting the
solid matrix displacements, and introducing a compliance effect, we have that the following four-
dimensional Darcy equation in mixed form (here∇ operates onx only) is one of the admissible
models:























C
∂

∂t
p + ∇ · (nbv) +

∂

∂ϑ
(nbω) + φt = 0, t > 0, x ∈ Ω, ϑ ∈ (0, 1),

nbv = −Kt∇p, t > 0, x ∈ Ω, ϑ ∈ (0, 1),

nbω = −α
∂

∂ϑ
p, t > 0, x ∈ Ω, ϑ ∈ (0, 1).

(6.16)

In this model the following quantities are defined:

i) the porositynb = nb(x, ϑ), defined as the ratio between the blood volume|U0| and the total
volume (blood and tissue) in the REV (in other words,nb is thefluid fraction);

ii) the complianceC = C(x, ϑ);

3Actually a complete poroelastic theory is developed by the cited authors.
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iii) the four-dimensional hierarchical permeability tensor

K̃(x, ϑ) =

[

Kt(x, ϑ) 0
0 α(x, ϑ)

]

.

This tensor can be computed experimentally, but also theoretically, from the microscale geom-
etry [44, 43];

iv) the generic tissue fluid loss termφt.

Of course some boundary and initial conditions have to be assigned to (6.16). Restating problem
(6.16) in non-mixed form, introducing the subscript “t” to emphasize that the unknown lives in the
tissue region, and assigning suitable BC/IC, we have:

Problem 6.3.1. Find the tissue blood pressurept(t,x, ϑ) such that

Ct
∂

∂t
pt −∇ · Kt∇pt −

∂

∂ϑ
α

∂pt

∂ϑ
+ φt = 0, t > 0, s ∈ (0, L), (6.17)

satisfying























nbω(t,x, 0) = G0 (pt(t,x, 0) − pv(t,x)) , t > 0,x ∈ Ω,

nbω(t,x, 1) = G1 (pt(t,x, 1) − pa(t,x)) , t > 0,x ∈ Ω,

nbv(t,x, ϑ) · n = 0, t > 0,x ∈ ∂Ω, ϑ ∈ [0, 1];

pt(0,x, ϑ) = pt,0(x, ϑ), x ∈ Ω, ϑ ∈ [0, 1],

(6.18)

where

v = − 1

nb
Kt∇pt, ω = − 1

nb
α

∂pt

∂ϑ
,

are respectively the spatial and hierarchical blood velocities.

The BC we have considered in (6.18) correspond to the following situation:pv andpa are the
venousandarterial pressurein the tissue regionΩ, G0 andG1 are the hydraulic conductivities re-
spectively between the lowest hierarchy and draining veins, and between the highest hierarchy and
feeding arteries. Dirichlet boundary conditions atϑ = 0, 1, such aspt(t,x, 1) = pa(t,x) are also
admissible; they correspond to high values of conductancesG0, G1.

Remark. In physiology,tissue perfusionωt is defined as the volume of blood movingdownin the
hierarchy per unit volume of tissue and per unit time. For a given hierarchical levelϑ, this is exactly

ωt = −nbω, (6.19)

and is usually a positive value.

6.3.2 Multi-pressure models (hierarchical discretization)

Despite the fact that in mixture theory the hierarchy levelϑ is acontinuousvariable, in practice one
considers only a few discrete levels (see table 6.1). So, even if problem (6.16) is four-dimensional, the
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Arteries (ϑ = ϑ2)

Arterioles (ϑ = ϑ1)

Capillaries (ϑ = ϑ0)

Spatialflow

Spatialflow

Spatialflow

Hierarchicalflow

Hierarchicalflow

Figure 6.3: Spatial and hierarchical flows in biological tissues

numberNϑ of degrees of freedom for theϑ-variable is usually very small (for instance considering
arteries / arterioles / pre-capillaries / capillaries, we haveNϑ = 4).

Huyghe, Vankan and coworkers did not address this issue (for example their FEM calculations in
[103] are 2D in space, so that a standard 3D solver can be used for thesimulation of the hierarchical
model), but we think it is possible to take advantage of the smallness ofNϑ to simplify the model. We
will thus introduce a special semi-discretized model, in which the four-dimensional problem (6.16) is
split intoNϑ three-dimensional ones.

For the sake of simplicity, let us consider problem (6.17) in the steady case:then we have

−∇ · Kt∇p − ∂

∂ϑ
α

∂p

∂ϑ
+ φt = 0 in Ω × [0, 1]. (6.20)

Let n = Nθ − 1, hϑ = n−1, and fori = 0, . . . , n defineϑi = ihϑ. We will considerNϑ pressures
corresponding to each hierarchical levelϑi, that is we set

pi(x) := p(x, ϑi), i = 0, . . . , n. (6.21)

The hierarchical discretization of (6.20) leads to a (tridiagonal) system ofcoupled equations for the
pressurespi, which reads as follows:
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(6.22)

whereLij is a linear differential operator given by

Lij = −∇ · Kij(x)∇ + αij(x), (6.23)
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beingKij , αij andfi suitable functions of spatial coordinates that we will derive in the sequel. System
(6.22) is givenn homogeneous Neumann boundary conditions:

n · Kii(x)∇pi(x) = 0 on∂Ω, i = 0, . . . , n. (6.24)

K
[

mm2

s kPa

]

α
[

1
s kPa

]

C
[

1
kPa

]

Arterial 100 0.0025 0.001
Arteriolar 0.05 0.000325 0.001
Venous 100 0.0025 0.1

Table 6.1: Hierarchical vessel parameters used by Huyghe and coworkers forrat calf muscle(perme-
abilitiesK andα, and complianceC.)

To derive model (6.22), let us introduce theP1 finite element basis functions{ϕi}i=0,...,n on [0, 1],
corresponding to the nodes{ϑi}:

ϕi ∈ C([0, 1]) : ϕi ∈ P1([ϑj − 1, ϑj ])∀j = 1, . . . , n, ϕi(ϑj) = δij∀i, j = 0, . . . , n.

We assume that the elements of the permeability tensorK̃ and the pressurep are piecewiseP1 inter-
polations of their known hierarchical values:

Kt(x, ϑ) =
n

∑

k=0

Kt(x, ϑk)ϕk(ϑ), α(x, ϑ) =
n

∑

k=0

α(x, ϑk)ϕk(ϑ), p(x, ϑ) =
n

∑

k=0

p(x, ϑk)ϕk(ϑ).

(6.25)
Let q, ϕ be smooth functions respectively defined onΩ and[0, 1]; if we multiply the first equation in
(6.16) timesq(x)ϕ(ϑ) after substitutingv andω in terms ofp, and we integrate by parts overΩ×[0, 1]
taking into account the boundary conditions (6.17), we obtain a weak formulation that reads

∫ 1

0
ϕ(ϑ)

∫

Ω
(Kt(x, ϑ)∇p,∇q)dxdϑ +

∫

Ω
q(x)

∫ 1

0
α(x, θ)

∂p

∂ϑ

∂ϕ

∂ϑ
dϑdx+

ϕ(0)

∫

Ω
G0p(x, 0)q(x)dx + ϕ(1)

∫

Ω
G1p(x, 1)q(x)dx =

−
∫ 1

0

∫

Ω
φt(x, ϑ)q(x)ϕ(ϑ)dxdϑ + ϕ(0)

∫

Ω
G0pv(x)q(x)dx + ϕ(1)

∫

Ω
G1pa(x)q(x)dx. (6.26)

Now, we use expressions (6.25) in (6.26), where we chooseϕ = ϕi, i = 0, . . . , n: after elementary
computations, we get

n
∑

j=0

∫

Ω
(Kij(x)∇pj ,∇q)dx +

n
∑

j=0

∫

Ω
αij(x)pjqdx =

∫

Ω
fi(x)q(x)dx, (6.27)
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being

Kij(x) =
n

∑

k=0

K(x, ϑk)

∫ 1

0
ϕk(ϑ)ϕi(ϑ)ϕj(ϑ)dϑ, (6.28)

αij(x) =
n

∑

k=0

α(x, ϑk)

∫ 1

0
ϕk(ϑ)ϕ′

i(ϑ)ϕ′
j(ϑ)dϑ + δi0δijG0 + δinδijG1 (6.29)

fi(x) = δi0G0 + δinG1 −
∫ 1

0
φt(x, ϑ)ϕi(ϑ)dϑ, (6.30)

whereδij is the Kronecker delta. Now, (6.27) is exactly the weak formulation of system(6.22) with
boundary conditions (6.24). Moreover, equations (6.28-6.30) definethe coefficients of operatorsLij

in (6.23). Finally, if|i − j| > 1 thenKij = 0, αij = 0 due to the finite support of basis functions in
equations (6.28-6.29), so that system (6.22) is tridiagonal.

One easily finds that in the non-steady case the hierarchical discretizationleads to the following
problem:

Ci
∂pi

∂t
+

n
∑

i=0

Lijpj = fi, i = 0, . . . , n,

where

Ci(x) =

∫ 1

0
C(x, ϑ)ϕi(ϑ)dϑ, (6.31)

while the operatorsLij are always those of eq. (6.23).

6.3.3 The transport model in the tissue

In what follows, we model the dynamics of a chemical in a biological tissue using the porous medium
description of the microscale, introduced in section 6.3. Although we mainly consider oxygen transfer
in a skeletal muscle, the same methodology applies for all chemicals transportedby the blood (about
this subject, we refer the reader to chapter 1), and to temperature and heat transfer as well.

Blood acts as a carrier for chemicals, whereas the main reaction processes take place at a cellular
level and in the extravasal solid matrix, theinterstitium. Moreover, usually the blood-to-interstitium
transfer only concerns low vessel hierarchies, such as capillaries. For these reasons, a general frame-
work to study the mass transport and reaction in a biological tissue according to a macroscopic view-
point is a so-calleddouble porositymodel, where both the blood and the interstitial concentration
satisfy an advection-diffusion-reaction equation, in which the exchangeterm depends on the concen-
tration gap. In some special cases, a model reduction to a single equation for the blood concentration
can be considered as well.

Double porosity model

Let Ω ⊂ R3 be the tissue domain; forx ∈ Ω we denote byut,b(x) the blood volume concentration of
oxygen (in the considered hierarchical range, for example in capillaries) atx ∈ Ω, and byut,i(x) the
concentration in theinterstitium.

Making use of the mass conservation principle, we propose the following double-porosity model:
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Problem 6.3.2. Find the concentrationsut,b(t,x) andut,i(t,x) such that















































∂ut,b

∂t
+ ∇ · (−Dt,b∇ut,b + vut,b) + ωt(ut,b − ua) +

1

τ
(ut,b − ut,i) = 0, t > 0,x ∈ Ω,

∂ut,i

∂t
+ ∇ · (−Dt,i∇ut,i) +

1

τ
(ut,i − ut,b) + θt,i = 0, t > 0,x ∈ Ω,

ut,b(0,x) = ub,0(x), ut,i(0,x) = ui,0(x), x ∈ Ω,

Dt,b∂ut,b(t,x)/∂n = 0, t > 0,x ∈ ∂Ω,

Dt,i∂ut,i(t,x)/∂n = 0, t > 0,x ∈ ∂Ω.
(6.32)

Here,Dt,b is the (effective) oxygen diffusivity in blood,v the blood velocity,ωt the tissue perfu-
sion (although it can be extremely variable, a “reference” value is2.5 · 10−3 s−1 at rest),Dt,i =
1.7 · 10−5 cm2 s−1 the (effective) oxygen diffusivity ininterstitium, τ is the time constant for oxygen
diffusion from blood vessels tointerstitium(for capillaries,d ' 2 · 10−3 cm is the diffusion distance
andτ ' d2/D = 0.2 s), θt,i = θt,i(t, ut,i) is a reaction term (for example, the basal consumption
rate5 ·10−8 mol cm−3 s−1 at rest, or more generally a function accounting for the dynamics ofATP ,
CO2 and other chemicals), andua = 8.75 · 10−6 mol cm−3 the arterial oxygen concentration.

We point out that the effective diffusion coefficients depend on the microscale geometry of the
tissue via thetortuosityλ of the microvessel matrix (we refer the reader to the well known work of
Nicholson and Phillips for mass transport in the brain [68]; for heat transfer the same theory is applied,
see for instance [47]). In particular,Dt,b = Db/λ2 whereDb is the diffusivity in blood.

One porosity model

If reaction is dominating the diffusion processes in the interstitium, like for example in skeletal muscle
during exercise, then we can assume thatDt,i = 0, obtaining an integro-differential problem.

Problem 6.3.3. Find the tissue concentrationsut,b(t,x, ϑ) andut,i(t,x, ϑ) such that



































∂ut,b

∂t
+ ∇ · (−Dt,b∇ut,b + vut,b) + ωt(ut,b − ua) +

1

τ
(ut,b − ui) = 0, t > 0,x ∈ Ω,

dut,i

dt
+

1

τ
(ut,i − ut,b) + θt,i = 0, t > 0,x ∈ Ω,

ut,b(0,x) = ub,0(x), ut,i(0,x) = ui,0(x), x ∈ Ω,

Dt,b∂ut,b(t,x)/∂n = 0, t > 0,x ∈ ∂Ω.
(6.33)

Finally, if the characteristic time of the reaction in the interstitium is small enough, wecan assume
that dut,i/dt = 0, then after expressingut,i = ut,i(ut,b) as a function ofut,b in the second equation
in (6.33), we obtain a single equation forutissue = ut,b in the following form:

∂ut

∂t
+ ∇ · (−Dt∇ut + vut) + ωt(ut − ua) + θt = 0, (6.34)
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whereDt = Dt,b, andθt(t, ut) = θt(t, ut,i(ut)).
Eq. (6.34) is a very simplified model for mass transport in tissues; nevertheless, it encompasses

the Pennes bioheat equation [74] as a particular case, so thatu could represent also a temperature field
in the tissue.

Typically, mass transport models such as those presented so far, need aregional capillary perfusion
measure to provide values forv andω, allowing to solve for the concentration. Despite the fact that
several techniques are available to provide clinical data forω (MR perfusion imaging or Laser Doppler
perfusion imaging, for instance), a perfusion model such as (6.16) or (6.22) can provide an useful
alternative. There is a number of reasons supporting the argument that blood perfusion computations
are worth the effort. For example, by numerical simulations it is possible to investigate extreme
conditions such as hypoxia, circulation diseases, or make prognoses about the evolution of a tissue;
moreover, numerical techniques are already widely used for design purposes in artificial organs and
biodevices development.

6.4 Some examples of blood perfusion simulations

We have already presented some examples of application of the 1D mass transport model in chapter
2. Here we want to show some significant tissue perfusion simulations, usingdistributed microscale
models. For the first time we introduce 1D vessels asdata for our problems: we will consider 1D
arteries/veins, with given blood pressure, embedded in a 2D tissue domain,and study how they behave
as bloodsources/sinks. At this stage, this approach is easy to handle, since

i) the vessel pressure is given;

ii) a 1D source in a 2D domain does not induce a singular solution.

When the full coupled 3D-1D problem will be considered, both i) and ii) will not hold anymore; nev-
ertheless, we can take advantage of the special analysis carried out in chapter 4 and of the numerical
techniques introduced in chapter 5.

6.4.1 A three-hierarchies perfusion model for the tissue

We consider a three-level hierarchical model (n = 2), in which the capillary (ϑ0 = 0), the pre-
capillary (ϑ1 = 1/2), and the arteriolar (ϑ2 = 1) scales are taken into account. We suppose that the
hierarchical permeability tensor is space-independent and isotropic, sothat we have

K = K(ϑ)I,

beingK(θ) a scalar function andI the identity tensor. We will consider an simple case in which values
for K(θ) are obtained by standard data. Thanks to the Poiseuille’s law, we can relatethe velocityv
and the pressure dropδp in a vessel by

v =
r2

8µ

δp

δl
,

whereµ is the dynamic blood viscosity,r is the vessel radius andδl the vessel length; so one can
assume that

K(ϑ) ' nb(ϑ)
r(ϑ)2

8µ(ϑ)
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is an approximation forK. As we neglected the solid displacements, the porositynb is a constant for
each phase. Since the global blood volume fraction

∫ 1
0 nb(ϑ)dϑ is about 0.1 (5 liters blood for 50

liters tissue), let us consider thatnb = 0.1 = const.
Typical radii[mm] and apparent blood viscosities[kPa s] corresponding to capillary, pre-capillary,

and the arteriolar scales are

r(ϑ0) = 4.3 · 10−3, µ(ϑ0) = 15 · 10−6,
r(ϑ1) = 12.9 · 10−3, µ(ϑ1) = 4.9 · 10−6,
r(ϑ2) = 51 · 10−3, µ(ϑ2) = 2.8 · 10−6,

so that we get the following estimations forK(ϑi) = Ki in [mm2

s kPa]:

K0 = 0.016, K1 = 0.43, K2 = 12.05.

Coefficientα is the (hydrodynamic) conductance per unit volume between contiguous hierarchical
levels. Assuming to know typical mean valuesp̄i andω̄i for pressures and hierarchical velocities, we
can extrapolate standard conductance values in the following way:

nbω̄i = −αi

(

∂p

∂ϑ

)

ϑ=ϑi

' −αi
∆p̄i

∆ϑi
=⇒ αi ' −nbω̄i

∆ϑi

∆p̄i
.

Using standard mean values of pressures (p̄0 ' 3.7, p̄1 ' 4.2, p̄2 ' 8.6 kPa) and tissue perfusion
(−nbωi = ωt ' 2.5 · 10−3 s−1 mm3 of blood per mm3 of tissue), we obtain the following estimates
for α (units are[s−1kPa−1]):

α0 = ωt
hϑ

p̄1 − p̄0
= 2.5 · 10−3, α1 = ωt

2hϑ

p̄2 − p̄0
= 0.51 · 10−3, α2 = ωt

hϑ

p̄2 − p̄1
= 0.28 · 10−3.

In our case, using equations (6.28-6.30), system (6.22) reads:







−K00∆ + α00 −K01∆ + α01 0

−K10∆ + α10 −K11∆ + α11 −K12∆ + α12

0 −K21∆ + α21 −K22∆ + α22
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, (6.35)

where
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α00 α01 α02

α10 α11 α12

α20 α21 α22



 =







α0 + α1 + G0 −α0 − α1 0

−α0 − α1 α0 + 2α1 + α2 −α1 − α2

0 −α1 − α2 α1 + α2 + G1






,

and
f0 = G0pv, f1 = 0, f2 = G1pa,

with homogeneous Neumann boundary conditions for pressures:

∂pi

∂n
= 0 on∂Ω, i = 0, 1, 2.
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We point out that a finite element discretization of the system (6.35) of partialdifferential equations,
leads to a linear system with a block-structured matrix (blockwise tridiagonal).It easily found that
in this case the block Gauss-Seidel iterative method [88] can be employed successfully to solve the
global system by iterating the solution of three “standard” problems (one for each unknownpi).

In fig. 6.5 results of a FEM 2D simulation for this model are reported, when a 1D feeding artery
Λa and a 1D collecting veinΛv are embedded in a 15 mm× 15 mm square tissue; moreover, a
distributed microvenous bed is communicating with the capillary compartment. The presence of 1D
vessels in this case is modelled by concentrating onΛa andΛv the venous and arterial conductances,
that is by taking

G0 = αv,bed + αvδΛv , G1 = αaδΛa ,

in eq. (6.35), where we denoteδE the Dirac distribution concentrated on the setE. Constantsαv and
αa have been computed using

αv = ωt
|Ω|

|Λv|(p̄0 − p̄v)
, αa = ωt

|Ω|
|Λa|(p̄a − p̄2)

,

with reference mean values for arterial and venous pressures (p̄a ' 13, p̄v ' 2.9 kPa), that gives

αv = 9.3 · 10−5, αa = 7.5 · 10−3 s−1 kPa−1 mm.

We see that computed hierarchical pressures are of the formpi(x) = p̄i + δpi(x), wherep̄i are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Λa

Λv

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

p2(x)

p1(x)

p0(x)

pa

pv
pv,bed

αa

αvαv,bed

Figure 6.4: The mesh and three-level hierarchy of the tissue with externalhydraulic conductances.

mean values andδpi are pressure oscillations, that are responsible for the spatial blood flow. Using
these values for pressures, one can compute tissue perfusion by usingthe third equation in (6.16)
(actually we consider anL2 projection on the same pressure FEM space): mean values for perfusions
are respectively 0.0043, 0.0025, 0.0029 s−1 for the capillary, pre-capillary and arteriolar levels.

The blood flow entering the tissue by the incoming arteryΛa is computed as

qa =

∫

Λa

αa(pa − p2(s))ds = 0.68 mm3 s−1,
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while the outfluxes flowing from the capillary compartment respectively to the microvascular venous
bed and to the veinΛv are found to be

qv,bed =

∫

Ω
αv,bed(p0(x)−pv,bed)dx = 0.23 mm3 s−1, qv =

∫

Λv

αv(p0(s)−pv)ds = 0.45 mm3 s−1.
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Pressurepi Perfusionnbωi

Capillaries (i = 0)

Pre-capillaries (i = 1)

Arterioles (i = 2)

Figure 6.5: Perfusion simulation. Arteriolar, pre-capillary and capillary pressures (respect.p2, p1

andp0) are expressed in kPa; the corresponding tissue perfusion (respect. nbω2, nbω1 andnbω0)
in s−1 (that is cc of blood per second per cc of tissue). On pressure plots, thespatial velocity field
vi and some streamlines are reported to emphasize the spatial blood flow within each hierarchical
compartment.



114 MODELLING BLOOD FLOW AND MASS TRANSPORT IN VASCULARIZED TISSUES

6.4.2 From retinal imaging to retinal perfusion simulation

Let us apply the tools we used in example (6.35) in a “real case” of tissue perfusion. Since here we
deal with a 2D microscale, we will consider a “quasi-planar” tissue: theretina. It is an interesting
case due to the well knownretinal imagingtechnique, that consists in taking a picture of the rear
inner eye surface by an optical camera in order to visualize its blood vessels. The impaired retina
circulation is responsible of a number of sight diseases, this is why retinal imaging is so widely
practiced. Being a relatively easy-to-apply technique, several tools to make automatic the prognosis
by retinal imaging have been proposed (see for instance [40]): they rely on the automatic detection of
the vessels geometry by suitable algorithms.

We used such kind of algorithms to extract the 1D geometry of the largest retinal vessels from an
image, and then to simulate the perfusion using the microscale model, as we did in example (6.35).
In fig. 6.6 are shown the major steps that lead to the 1D geometry extraction. Wesummarize them as
follows.

1. Segmentation. A saturation threshold is used to convert the input image from the 256 gray
levels format to thebit image format, so that each pixel is either “on” (black) or “off” (white).
The goal is to have a first sketch of the vessels location, but of course the resulting segmented
image is very irregular.

2. Skeletonization. A linear transformation is iteratively applied to the pixel matrix to extract its
skeleton. We say that a bit image is a skeleton if each “on” pixel has at most 2 neighboring “on”
pixels: intuitively, if a bit image is a skeleton, it describes 1D filaments.

3. Tree topology identification. Once the image is reduced to a skeleton, one is left with the last
and most expensive step: the tree topology identification. This task consistsin describing the
skeleton as atree, identifying each branch with a label and building the “child-of” table, that is
to assign to each branch its father branch. To do that, first the skeletonjunctionsare identified,
then the disconnected components have to be ordered according to their “genealogy”. In spite
of the intuitiveness of this problem, its solution algorithm is computationally expensive: see for
instance [18]. The tree topology identification is not necessary when the blood pressure on the
tree is known, as in this example; but, if this is not the case, then 1D models usually will require
suitable interface conditions at the tree nodes: to impose this conditions the treetopology has
to be computed.

After the arterial tree is identified, its branches are geometrically defined asa set of points (the image
pixels), so that to build the 1D vessel mesh, one has two possible approaches:

1. Interpolate this set of points, for example by least-square polynomial approximation;

2. Build the 1D mesh as anedge pathin the 3D (or 2D) tissue mesh.

In this example, we used the first approach: we wrote a simple Matlab script inwhich first each branch
is interpolated by a polynomial line, and then a FreeFem++ meshing code is automatically created that
generates the arterial tree 1D grid. The same code solves the blood flow problem at the microscale
level. Some results are shown in fig. 6.7, 6.8.

6.4.3 Brain Angiography

As show in fig. 6.9, the same computation can be carried out in a completely different situation, start-
ing from a medical image obtained with a different technique. Here we consider abrain angiography,



6.4 – SOME EXAMPLES OF BLOOD PERFUSION SIMULATIONS 115

1[1]

1[2]23
4

56
7

8 9

1[3]2
3

4

5

6

7

1[4]

23

1[5]

2
3

4

5

1[6]

23
4

5

6
7

8
910

11
12

131415
16

17
18

19

20

2122

23

24

25
26

2728

29
30

1[7]

1[8]

1[9]

1[10]
2

3

4

5

6

7

1[11]
1[12]

1[13]

1[14]

1[15]

2

3

4
5

6

7

8

9

1[16]

1[17]

1[18]234
567
8

9
1[19]
23

4
5

6 7
8 9

10
11

1[20]
2

3

4
51[21]

1[22]
2
3

1[23]
2 3

1[24]2
34 5

1[25]
2 3

1[26]
2
3

1[27]

2
34

5
67

8
9

1011

12
13
14
15161718

19202122
2324252627

2829

30
313233

1[28]234
5

1[29]

1[30]23 45
6
7

1[31]2 3

1[32]
2
34
5

1[33]

1[34]2 3

1[35]23 45
6
789
10

1112
1314

15

16

1[36]2
3

1[38]
2 3

1[40]2
3

1[41]

1[43]

1[44]2

3

1[46]

2 34
5

6 7
891011

1[47]
23

4

1[48]2
34

5
6

7
8

9

1[49]
2
3

45

1[50]23

1[52]

1[53]2 3

1[54]

1[55]

1[57]

1[58]

2 3
4 5

1[59]

1[60]
2
3

4
5

6

1[61]23

1[62]23

1[63]
23

4 56 7 8
9

1011

12
13

1[64]

1[65]

1[66]2 34
5

6
789

1[67]2
34

1[68]2
3

1[69]

1[70]

1[71]

1[72]

2
3

1[73]
2
3

45
67

1[74]

2

3

Figure 6.6: Some tools used in extracting vessel geometries for our numerical simulations. Top-
left: retinal imaging bitmap. Top-right: segmentation of the image. Bottom-left: skeleton of the
segmented image. Bottom-right: reconstruction of vessel tree topology with branch pruning and
labelling (different colors correspond to different connected components).

Figure 6.7: On the left: blood velocity at the capillary level. On the right: mesh ofthe retina, with
least-square polynomial lines approximating the vessels (with branch labels).
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in which brain vessels are detected using a contrast agent. In the case offig. 6.9, the circle of Willis
is visualized. In this case, the vessel sizes are quite large, neverthelessthe skeletonization filtering
still allows to get the 1D representation of the arterial tree. Of course, if one has to decide which
1D model is the most appropriate, the quasistatic approximation should be discarded, due to the large
vessel radius. Nevertheless, models like (6.5) may accurately represent blood flow and blood pressure
propagation in the circle of Willis, as we will see further on in this chapter.
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Pressurepi Perfusionnbωi

Capillaries (i = 0)

Pre-capillaries (i = 1)

Arterioles (i = 2)

Figure 6.8: Pressures and perfusions for the 3-hierarchies model, in the retinal layer.
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Figure 6.9: On the left: brain angiography. On the right: computational grid,with least-square poly-
nomial approximation of the brain blood vessels. The vessel tree has beenextracted from the medical
image by means of an automatic algorithm.

Figure 6.10: From left to right: hierarchical pressuresp0, p1, p2 at the capillary, pre-capillary and
arteriolar levels.
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6.5 1D-3D coupling between blood vessels and surrounding tissue

The most interesting problem, among those we have outlined at the beginning ofthis chapter, has still
to be investigated: the coupling between the “fast” flow and transport in a net of 1D vessels, and the
same “slow” phenomena in the surrounding 3D tissue where suitable “homogenized” models, such as
those presented so far, are assumed. In this section we study the coupledmodels. To avoid irrelevant
complications, we make the following assumptions.

1. A simple one-level hierarchy is considered for the microscale: we will deal with only one tissue
permeability, the one referred to the microscale. This does not representa limitation of our
approach, since additional hierarchical levels can be accounted for easily, and will allow us to
make the exposition more clear.

2. Blood flow is described by the12D or the linearized1D model. When the12D model is consid-
ered, the two coupled problems are parabolic, so that the analytical and numerical techniques
to treat them are similar; moreover, for the steady (elliptic) case, they have been studied in
chapters 4, 5, respectively. If the linearized 1D model is used instead, then we have a coupling
between a 3D parabolic and a 1D hyperbolic problem: we will discuss the extensions of our
methods needed to treat this more complex case.

3. We consider the simple model (6.34) for mass transport in the tissue. Model (6.13) is assumed
to describe mass transport in the vessels.

4. The blood flow from the vessels to the tissue is positive, and linearly dependent on the pressure
gap. More precisely:

a) The volume of blood per unit time and surface exiting from the vessel wall,and entering
into the vessel matrix of the tissue, is positive and proportional to the difference between
blood pressure in the vessel and in the tissue, across the vessel wall. The proportionality
constant is the (effective) hydraulicconductivityLp. We sayeffectivesince it could not
have the same value of the actual wall conductivity. In fact, we are taking into account also
small branches, that provide blood to the surrounding regions, and thatare not resolved
by our 1D geometry: thishierarchicalflow can be accounted for precisely by coefficient
Lp.

b) Since blood exits from the vessels, the tissue concentration on the actualvessel surface is
equal to the vessel concentration: in other words, the actual interface between vessel and
tissue is theinlet of the tissue domain.

In particular, by assumption 4 the coupling conditions for tissue and vesselpressure on the surface of
the actual 3D vessel are of Robin type. We have already seen that, starting from a diffusion problem
in a domainΩ ∈ R3, with Robin boundary conditions assigned on the surface of a thin tube “drilled”
into Ω, a limit problem is obtained by a suitable “flux-preserving” rescaling in whichthe tube diam-
eters tends to zero. The limit problem has a measure datum and an integral term. Specific formulas
have been given for both these terms in section 3.2.2. The coupled 3D-1

2D model of tissue perfusion
is directly obtained using the latter results, in the limit case in which the 3D vessel tree is collapsed to
its 1D skeletonΛ ∈ Ω:
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Problem 6.5.1. (Blood Flow, 3D-12D)
Find the tissue and vessel blood pressures(pt, pv) satisfying











Ct
∂

∂t
pt + ∇ · (Kt∇pt) + αpt − φ(pt, pv)δΛ = fp t > 0, x ∈ Ω,

Cv
∂

∂t
pv −

∂

∂s
Kv

∂pv

∂s
+ φ(pt, pv) = 0, t > 0, s ∈ Λ,

(6.36)

with suitable BC/IC. The termφδΛ has to be understood as Dirac measure concentrated onΛ and
having line densityφ, where

φ(pt, pv) = 2πRLp(pv − p̄t), being p̄t(s) =
1

2π

∫ 2π

0
pt(s, R(s), θ)dθ, (6.37)

This model can be seen as the coupling between a one-hierarchy discretization of problem 6.3.1 (see
section 6.3.2) withφt = −φ(pt, pv)δΛ, and problem 6.2.2, withφv = φ(pt, pv). Notice that the
actual vessel radiusR = R(s) appears as a datum in the expression (6.37) of the coupling term. The
coupling termφ represents the blood flow leakage from the vessel to the tissue (per unit length).

The term

ωt = αpt − fp (6.38)

is the tissue perfusion (see sec. 6.3), more precisely it is the blood flow rateleaving the tissue (and
collected by the venous bed) per unit tissue volume. We assume it is positive,since in this work the
“source” termfp describes lower hierarchical compartments only, such as the venous microvascular
bed; in this case, ifpbed is the related (known) blood venous pressure, we have

fp = αpbed.

The blood velocity in the tissue is given by

v = − 1

nb
Kt∇pt. (6.39)

Admissible BC are (6.7) for the 1D problem, and homogeneous Neumann conditions (no blood
flow across the tissue boundaries) for the 3D one. For example, we can consider the following bound-
ary/initial conditions for problem (6.36):























n · Kt∂pt(t,x)/∂n = 0, t > 0,x ∈ ∂Ω,

pv(t, 0) = pin(t), qv(t, L) − Gpv(t, L) = 0, t > 0,

pt(0,x) = pt,0(s), x ∈ Ω,

pv(0, s) = pv,0(s), s ∈ Λ,

(6.40)

whereqv = −Kv∂pv/∂s. As usual,G is the hydraulic conductance seen from the end point of the
1D vessel.

When assuming a full1D model for blood flow in the vessels, we have:
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Problem 6.5.2. (Blood Flow, 3D-1D)
Find the tissue pressurept and vessel blood pressure and flow rate(pv, qv) satisfying















Ct
∂

∂t
pt + ∇ · (Kt∇pt) + αpt − φ(pt, pv)δΛ = fp t > 0, x ∈ Ω,

∂

∂t

[

pv

qv

]

+ H
∂

∂s

[

pv

qv

]

+ r(pv, qv) = 0, t > 0, s ∈ Λ,
(6.41)

with suitable BC/IC, and whereφ(pt, pv), H andr(pt, pv) are defined by(6.37), (6.6).

For this problem, (6.40) are still admissible BC/IC.
Similarly, we consider a coupled mass transfer problem obtained starting from the 3D problem

6.3.3 in its version (6.34), and the 1D problem 6.2.3. The interface condition obtained from assump-
tion 4.b isūt = uv onΛ: this can be enforced by penalization, as we will see. The model we propose
is the following one:

Problem 6.5.3. (Mass Transport)
Find the tissue and vessel concentrations(ut, uv) satisfying















∂

∂t
ut + ∇ · (−Dt∇ut + vut) + ωtut − θ(ut, uv)δΛ = fu, t > 0, x ∈ Ω,

A0
∂

∂t
uv +

∂

∂s

(

−A0Dv
∂uv

∂s
+ qvuv

)

+ φ(pt, pv)uv = 0, t > 0, s ∈ Λ,
(6.42)

with suitable BC/IC, whereωt andv are given by (6.38), (6.39), and

θ(ut, uv) = 2πRLu(uv − ūt). (6.43)

Let us make some comments about the proposed model. As regards the first equation in (6.42), the
reaction termfu may describe metabolic or biochemical processes (see chapter 1). The coupling term
θ represents a fictitious diffusion (corresponding to theLu constant, which is apermeability). This is
actually apenalizationterm to weakly enforce the condition̄ut = u: that is, the mean cross-sectional
concentration at the actual vessel surface equals the vessel concentration. Obviously this is the case
when the net blood flowφ leaving the vessel and entering into the tissue is positive, which is our
hypothesis. In the general case, a test has to be made in order to treatΛ as an inlet for the tissue do-
main only ifφ > 0: we do not consider this possibility, since in physiological conditionsφ is always
positive.

The second equation in (6.43) expresses the conservation of the mass oftransported chemical in
the vessel. We neglected the variations in cross-sectional area; neglecting the rate of variation, that
corresponds to a rigid walls assumption, by the conservation of blood flow rate we have thatφ is such
that

∂qv

∂s
+ φ ' 0,

so that in this cas an alternative formulation of the vessel transport equation is

A0
∂

∂t
uv +

∂

∂s

(

−A0Dv
∂uv

∂s

)

+ qv
∂uv

∂s
= 0. (6.44)
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As regards BC/IC, we can assume for instance a prescribed input concentration at the vessel inlet
and impose a zero diffusive flux elsewhere:























∂ut(t,x)/∂n = 0, t > 0,x ∈ ∂Ω,

uv(t, 0) = uin(t), ∂uv(t, L)/∂s = 0, t > 0,

ut(0,x) = ut,0(s), x ∈ Ω,

uv(0, s) = uv,0(s), s ∈ Λ.

(6.45)

6.6 Algorithmic and numerical aspects

6.6.1 1D diffusion-advection equations on trees

In chapters 3, 4, 5, we have always considered a one-dimensional vessel domain without branching.
However, 1D modelling is suited to represent complex branching geometries as well: in this section
we are going to explain how this can be accomplished in an efficient way. A wide literature exists
about the use of nonlinear hyperbolic 1D models for arterial trees, see for instance [84], [30] (and [8]
for similar fluid-dynamic models of traffic flows on road networks). In thesepapers, techniques are
described that allow to impose physiological meaningful interface conditionsat the nodes of a given
1D network, namely the conservation of blood flow, and the continuity of the (possibly total) pressure.
Basically, in a given internal branching point withn branches, these conditions are given in the form
of n equations for the set of2n characteristic variables, so that the ingoing variables are expressed as
functions of the outgoing ones (see also chap. 2). Although we could takeadvantage of these already
established techniques, we will adopt different strategies that are available in our simpler case, in
which the equation at hand is either parabolic or linear hyperbolic.

The case of the1
2D model

Let us consider the simple configuration of fig. 6.11 featuring three 1D vesselsΛi, i = 1, 2, 3, con-
nected by the branching pointB. We consider a stationary flow, without any fluid loss. We denote by

Λ1

Λ2

Λ3

p1

p2

p3

s

s
s

B1

B2

B3

B

Figure 6.11: 1D domain with a bifurcation.

pi(s), pi : [0, Li] → R, the pressure on the branchΛi, Li being the length ofΛi ands the curvilinear
abscissa. To fix the ideas, let us assume that thes positive directions on each branch are oriented
as indicated in the figure. We denote byqi(s) the flow rates in the positive direction onΛi. Our
assumptions concerning the conditions at the end points of the branches are the following:
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(i) in B1, the flow rate isqin;

(ii) in Bi, i = 2, 3, a lumped hydraulic conductanceGi is relating pressure and flow rate according
to qi = Gi(pi − pe,i), wherepe,i is an external reference pressure;

(iii) at the branching nodeB the pressurespi have the same value, and the flow rate is conserved
(the sum of the flow rates entering in the node is zero).

According to eq. (6.10), the flow rate is given byqi(s) = −Kip
′
i(s) whereKi is the hydraulic

conductivity per unit length of thei-th branch. Since we are in the steady case, the strong formulation
of our problem is

(

−Kip
′
i(s)

)′
= 0 0 < s < Li, i = 1, 2, 3, (6.46)

with “external” boundary conditions (i-ii) inBi:

−K1p
′
1(0) = qin, −K2p

′
2(L2) = G2(p2(L2)− pe,2), −K3p

′
3(L3) = G3(p3(L3)− pe,3) (6.47)

and “internal” boundary conditions (iii) inB:

p1(L1) = p2(0) = p3(0), −K1p
′
1(L1) + K2p

′
2(0) + K3p

′
3(0) = 0. (6.48)

Notice that we have 6 boundary conditions, namely 2 for each 1D subdomainΛi. Consider three
smooth test functionsψi : [0, Li] → R; multiplying thei-th equation in (6.46) timesψi, summing and
integrating by parts we get

3
∑

i=1

[∫ Li

0
Kip

′
i(s)ψ

′
i(s)ds + (Kip

′
i(0)ψi(0) − Kip

′
i(Li)ψi(Li))

]

= 0. (6.49)

We can define functions on the wholeΛ by using the local parametrizations[0, Li] → Λi of each
subdomainΛi in term of the respective curvilinear abscissas. In this way, we can also define the
derivatives with respect tos almost everywhere onΛ, since once again they are defined separately on
each subdomain. In the sequel we will denote the argument of such functions either bys or with the
corresponding point onΛ: this abuse of notation is only meant to simplify the exposition. In order
to obtain a weak formulation of our problem on the whole manifoldΛ =

⋃

i Λi, let us introduce the
space

V̂ = {p : Λ → R, p|Λi
∈ H1(Λi), p|Λi

(B) = p|Λj
(B), i, j = 1, 2, 3}, (6.50)

where the interface conditions inB make sense thanks to the trace operator. We observe thatV̂ is
endowed with a natural product norm, given by

‖p‖2
V̂

=
∑

i

‖p|Λi
‖2

H1(Λi)
. (6.51)

Due to the first condition in (6.48), we can look atpi as the restrictionsp|Λi
of a functionp ∈ V̂ .

Now, if we make the sameansatzfor the test functions, lettingψi = ψ|Λi
whereψ ∈ V̂ , thanks to the

continuity condition inB

ψ1(L1) = ψ2(0) = ψ3(0)
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and to (6.48), the sum of the boundary terms involving the pointB is zero. Therefore, expressing the
sum of integrals in (6.49) as an integral on the whole tree, and expressingthe boundary terms at points
Bi using eq. (6.47), we can restate our problem in the following weak form:findp ∈ V̂ such that
∫

Λ
Kp′ψ′ds+G2p(B2)ψ(B2)+G3p(B3)ψ(B3) = qinψ(B1)+G2pe,2ψ(B2)+G3pe,3ψ(B3) ∀ψ ∈ V̂ ,

(6.52)
whereK is the function such thatK|Λi

:= Ki.
The advantage of such a formulation is that the constraints at the internal branching pointB

are “automatically” imposed: the continuity of the pressure, by construction of the spaceV̂ , and
the conservation of the flow rate by natural conditions. This is yields a verysimple finite element
approximation of the problem. Assume thatΛ is a connected piecewise affine 1D domain, as in

x̂i

x̂j

ψj ψi

Ik

Figure 6.12: Representation of finite element basis functions on a 1D domain with a bifurcation.

fig. 6.12, that a family{Ih}, h > 0, of sets of segments is given such that|Ik| ≤ h ∀Ik ∈ Ih, and
Λ =

⋃

Ik∈Ih
Ik. We define the discreteP1 finite element space as usual, namely

V̂h = {p ∈ C(Λ) : p|Ik
∈ P1(Ik) ∀Ik ∈ Ih}. (6.53)

Since functions in̂Vh are continuous onΛ, we haveV̂h ⊂ V̂ . We denote bŷxi the nodes ofΛ, as in
chapter 5, and byψi the corresponding Lagrange basis function, defined byψi ∈ V̂h, ψi(x̂j) = δij .
We observe that even whenψi corresponds to a branching node, its support is given by the union
of all elements sharing that node: they may be more than two, as shown in figure 6.12. The finite
element approximation of problem (6.52) is thus simply reduced to solve the sameproblem in the
finite dimensional spacêVh: the corresponding bilinear form and linear functional will contain only
the boundary terms (6.47), while the “internal” boundary conditions (6.48)are naturally imposed by
the variational formulation. This is very convenient when dealing with complexbranching patterns.

Remark. If we include in eq. (6.46) a reaction term (representing fluid losses), stillthe use of the
spaceV̂ enforces automatically the conditions (6.48): in fact, the reaction term is not integrated by
parts.

Until now, we have considered the steady problem; to approximate the solutionof the non-steady
problem, we can first perform a semi-discretization in space by the approach described above, then
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employ any time advancing scheme, implicit or explicit (we refer for more details to[85]). This is a
rather standard technique; therefore, as a non-steady example, we willconsider directly the hyperbolic
case, and describe how it is again possible to impose “naturally” the internalboundary conditions at
branching nodes by a proper choice of the finite element spaces for the pressure and the flow rate.

The linearized 1D model

We consider again the branching geometry of fig. 6.11. Now we assume thatthe problem is time
dependent, and that the pressurepi(t, s) and flow rateqi(t, s) in the i-th branch satisfy the linear 1D
model (6.3), that is











c
∂pi

∂t
+

∂qi

∂s
= 0,

∂qi

∂t
+

1

l

∂pi

∂s
+ rqi = 0,

(t, s) ∈ R+ × (0, Li), i = 1, 2, 3. (6.54)

The boundary/interface conditions (i)-(iii) become

q1(t, 0) = qin(t), q2(t, L2) = G2(p2(t, L2) − pe,2), q3(t, L3) = G3(p3(t, L3) − pe,3), (6.55)

and
p1(t, L1) = p2(t, 0) = p3(t, 0), q1(t, L1) + q2(t, 0) + q3(t, 0) = 0. (6.56)

We assign initial conditions as well:

pi(0, s) = pi,0(s), qi(0, s) = qi,0(s), s ∈ [0, Li], i = 1, 2, 3, (6.57)

that of course have to satisfy the compatibility conditions

q1,0(0) = qin,1(0), qi,0(Li) = Gi(pi,0(Li) − pe,i), i = 2, 3.

Remark. We point out that the boundary conditions can be reformulated in terms of characteristic
variables. In our linear case, it it easy to see that the “forward” and “backward” characteristic variables
in thei-th branch are given by

w1,i =
1

2

(
√

c

l
pi + qi

)

, w2,i =
1

2

(

−
√

c

l
pi + qi

)

, (6.58)

associated to the eigenvaluesλ1 = 1/
√

cl, λ2 = −1/
√

cl of matrixH of problem 6.2.1. For example,
the boundary conditionq1(t, 0) = qin(t) reads

w1,1(t, 0) = qin(t) − w2,1(t, 0), (6.59)

that is the incoming characteristic variablew1,1 at B1 is expressed as a function of the outgoing
onew2,1. A similar form is obtained for the remaining conditions (this is a quite general class of
admissible boundary conditions for hyperbolic problems, see chapter 2 where the non-linear case has
been addressed). It is easily found that characteristic variables for problem (6.54) satisfy

d

dt
wk,i(t, s0 + λkt) +

r

2
[w1,i(t, s0 + λkt) + w2,i(t, s0 + λkt)] = 0, k = 1, 2; (6.60)
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these relations will be used later on to extrapolate boundary values for ournumerical scheme. We
point out that if a fluid loss termφi is considered in the left hand side of the first equation in (6.54),
then these relations have to be modified4.

Let us consider the finite element discretization of system (6.54). The idea isagain to multiply
each equation by a test function, and then integrate in space: this approach belongs to the class of
Galerkin methods for hyperbolic equations, for which we refer the reader to [85, sec. 14.3.1]. We
consider again the spacêV defined in (6.50) for the pressure, whereas for the flow rate we introduce
the space

Ŵ = {q : Λ → R, q|Λi
∈ H1(Λi), i, j = 1, 2, 3}, (6.61)

without any continuity condition inB, since of course the flow rate will be discontinuous at the
branching point.

If we multiply the first equation in (6.54) byψ ∈ V̂ , the second bylϕ, ϕ ∈ Ŵ , and then integrate
by parts the∂qi/∂s term in the first equation, we have:



























3
∑

i=1

d

dt

∫

Λi

cpiψds −
∫

Λi

qi
dψ

ds
ds +

[

qi(t, Li)ψ|Λi
(Li) − qi(t, 0)ψ|Λi

(0)
]

= 0,

3
∑

i=1

d

dt

∫

Λi

lqiϕds +

∫

Λi

∂pi

∂s
ϕds +

∫

Λi

rlqiϕds = 0.

(6.62)

The boundary terms can be treated as in the previous case: in particular, letting pi(t, ·) = p|Λi
(t, ·),

qi(t, ·) = q|Λi
(t, ·) wherep(t, ·) ∈ V̂ , q(t, ·) ∈ Ŵ , thanks to (6.56) we obtain the following problem:

for t ≥ 0, findp(t, ·) ∈ V̂ andq(t, ·) ∈ Ŵ satisfying (6.55), (6.57), and such that














d

dt

∫

Λ
cpψds −

∫

Λ
q

dψ

ds
ds − [q(t, B1)ψ(B1) − q(t, B1)ψ(B2) − q(t, B3)ψ(B3)] = 0 ∀ψ ∈ V̂ ,

d

dt

∫

Λ
lqϕds +

∫

Λ

∂p

∂s
ϕds +

∫

Λ
rlqϕds = 0 ∀ϕ ∈ Ŵ .

(6.63)
Formulation (6.63), similarly to (6.52), automatically enforces the internal interface conditions in

B: the only terms that have to be considered explicitly are those related to the endpointsBi of Λ,
appearing in the first equations between the brackets.

This advantage can be transferred to the finite element semi-discretization ofour problem: we
define the discrete space for the pressureV̂h as in (6.53), and the discrete space for the flow rate as

Ŵh = {q : Λ → R, q|Ik
∈ P0(Ik) ∀Ik ∈ Ih}. (6.64)

Notice that since no space derivative ofq appears in the weak formulation (6.63), we can useP0

elements for the flow rate: the finite element semidiscrete approximation is immediately obtained by
replacingV̂ , Ŵ by their discrete counterpartŝVh andŴh in (6.63).

4 They become

d

dt
w1,i(t, s0 + λ1t) +

r

2
[w1,i(t, s0 + λ1t) + w2,i(t, s0 + λ1t)] +

1

2

1√
cl

φi(t, s0 + λ1t) = 0,

d

dt
w2,i(t, s0 + λ2t) +

r

2
[w1,i(t, s0 + λ2t) + w2,i(t, s0 + λ2t)] −

1

2

1√
cl

φi(t, s0 + λ2t) = 0.
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Moreover, if we provide Dirichlet data for bothp andq at the end pointsBi, we can take the test
functionsψ andϕ respectively in the spaces

V̂0,h = {p ∈ V̂h : p(Bi) = 0, i = 1, 2, 3}, Ŵ0,h = {q ∈ Ŵh : q(Bi) = 0, i = 1, 2, 3};

in particular, all boundary terms in the first equation of (6.63) vanish.
We are allowed to provide 2 boundary values (p andq) instead of a single one as the continuous

problem would require, when applying a time advancing scheme to the semidiscrete approximation.
As we have seen in chapter 2 in the framework of a Taylor-Galerkin scheme, (see also [84], [73]),
the “missing” boundary condition is obtained byextrapolationof the outgoing characteristic variable.
Let ∆t > 0 the time step, andn ∈ N: denotep(n)

i (s) = pi(n∆t, s), q
(n)
i (s) = qi(n∆t, s), i = 1, 2, 3.

Consider for instance the nodeB1, in which q = qin(t) is prescribed. The outgoing characteristic
in B1 is the backward variablew2, we can extrapolate its value by using (6.60) withk = 2. Since
r
2(w1,i +w2,i) = rqi, using the backward Euler advancing scheme for eq. (6.60) withs0 = −∆tλ2 =

∆t/
√

cl, we have:

w2,1(t + ∆t, 0) ' w2,1

(

t,
∆t√
cl

)

− r∆tqin(t + ∆t).

Therefore, thanks to (6.58), we have

p1(t + ∆t, 0) ' p1

(

t,
∆t√
cl

)

+

√

l

c

[

(1 + 2r∆t)qin(t + ∆t) − q1

(

t,
∆t√
cl

)]

.

This yields the following boundary value extrapolation rule:

p
(n+1)
1 (0) = pex,1(p

(n)
1 , q

(n)
1 )

:= p
(n)
1

(

∆t√
cl

)

+

√

l

c

[

(1 + 2r∆t)qin(t + ∆t) − q1

(

t,
∆t√
cl

)]

. (6.65)

We see that the boundary value of pressure at timet + ∆t is expressed as a function of the flow rate
boundary value, and other terms that are evaluated at the previous time step: therefore, when using a
time advancing scheme, (6.65) can be used to prescribe the boundary value for the pressure inB1.

At the end pointsB2, B3, the boundary value for the flow rate is given by

q
(n+1)
i (Li) = Gi(p

(n+1)
i (Li) − pe,i), i = 2, 3, (6.66)

while the boundary value for the pressure is obtained by extrapolating the outgoing characteristic is
w1; by the same technique we used for (6.65), and substitutingq

(n+1)
i (Li) using eq. (6.66), we get

p
(n+1)
i (Li) = pex,i(p

(n)
i , q

(n)
i )

:=
1

1 +
√

l
cGi(1 + 2r∆t)

[

p
(n)
i

(

Li −
∆t√
cl

)

+

√

l

c

[

q
(n)
i

(

Li −
∆t√
cl

)

+ (1 + 2r∆t)Gipe,i)

]

]

,

(6.67)

for i = 2, 3.

Remark (Non-reflecting boundary conditions).We point out that, since we are using a hyperbolic
model, a concentrated load at the end of a vessel inducesreflected waves. If the load represents a
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physical discontinuity in the vessel, this is an expected behavior; otherwise, it is more convenient
to considernon-reflecting boundary conditions. In this case, the outgoing characteristic variable is
extrapolated, and the ingoing variable is set to its reference value. This boundary conditions allows
waves to exit from the 1D domain without being reflected. In our case, if non reflecting boundary con-
ditions are assumed at end pointsB2, B3, andw2,i = −

√

c
l pi,0 + qi,0, i = 2, 3, are the corresponding

reference values of the incoming variables, the extrapolation formulas become:

p
(n+1)
i (Li) = pex,i(p

(n)
i , q

(n)
i ) := 1

2(1+r∆t)

[

p
(n)
i

(

Li − ∆t√
cl

)

+ (1 + 2r∆t)pi,0

]

+√
l/c

2(1+r∆t)

[

q
(n)
i

(

Li − ∆t√
cl

)

− (1 + 2r∆t)qi,0

]

,

q
(n+1)
i (Li) = qex,i(p

(n)
i , q

(n)
i ) := 1

2(1+r∆t)

[

q
(n)
i

(

Li − ∆t√
cl

)

+ qi,0+
√

c
l

(

p
(n)
i

(

Li − ∆t√
cl

)

− pi,0

) ]

,

(6.68)

for i = 2, 3.

In the literature (see for example [30], [95] and references therein) boundary conditions have been
imposed explicitly for all end points of the vessel net, as well as branching points. However, in our
linear case we have that the boundary conditions at branching points arenaturally imposed by the
variational formulation. This means that we do not have to enforce that the test functions vanish at
those points, they are considered just as any other internal node of our1D mesh.

To sum up, the fully discrete implicit Euler scheme corresponding to our approach reads:
for n ∈ N, findp(n+1) ∈ V̂h andq(n+1) ∈ Ŵh such that



















∫

Λ
cp(n+1)ψds − ∆t

∫

Λ
q(n+1) dψ

ds
ds =

∫

Λ
cp(n)ψds ∀ψ ∈ V̂0,h,

∫

Λ
lq(n+1)ϕds + ∆t

(

∫

Λ

∂p

∂s

(n+1)

ϕds +

∫

Λ
rlq(n+1)ϕds

)

=

∫

Λ
lq(n)ϕds ∀ϕ ∈ Ŵ0,h,

(6.69)
satisfying

p(n+1)(B1) = pex,1(p
(n), q(n)), q(n+1)(B1) = qin((n + 1)∆t),

wherepex,1 is given by (6.65), and

p(n+1)(Bi) = pex,i(p
(n), q(n)), q(n+1)(Bi) = Gi(p

(n+1)(Bi) − pe,i), i = 2, 3,

wherepex,i are given by eq. (6.67). When non-reflecting boundary conditions areemployed, the latter
equations become

p(n+1)(Bi) = pex,i(p
(n), q(n)), q(n+1)(Bi) = qex,i(p

(n), q(n)), i = 2, 3,

where nowpex,1 andqex,1 are the extrapolation formulas in eq. (6.68).

Remark (Stability). We have proposed an implicit time advancing scheme; according to this choice,
the characteristic extrapolation was obtained using the implicit Euler scheme, to preserve the stability
of our method. In fact, we observed that when explicit Euler characteristic extrapolation is performed,
scheme (6.69) shows a very strict stability condition on∆t for high values of the conductancesGi.

In figures 6.13 and 6.14, results obtained by this scheme applied to a simple branching geometry
are shown. We consider three vesselsΛi (see the snapshots in the figures:Λ1 is the parent vessel on
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the bottom, whileΛ2 is the right child vessel, andΛ3 is the left child vessel), having the parameters
reported in table 6.2. The vessels are piecewise linear curves: actually they have been constructed
by creating an edge path in a 3D mesh (we will address this topic in section 6.6.2). The positive
direction of orientations of the parent vessel and right child vessel is “from father to child” (that is
“bottom to top” in the figures); on the contrary, the orientation of the left childvessel is opposite to
that of the right child vessel, to verify that the natural enforcement of internal boundary conditions of
our scheme is independent of the chosen parametrization (actually this is a desirable feature, since we
aim to apply the same scheme to complex networks in which the branches are automatically extracted
from data, thus having orientations that cannot be predicted before the simulation). We applied the

Radius [cm] Length [cm] c [ cm2 kPa−1] l [ cm−4 kPa s2] r [ s−1]

vessel 1 0.4248 3.3 0.24083 1.76·10−4 1.551
vessel 2 0.2832 10.4 0.07136 3.97·10−5 3.491
vessel 3 0.3540 10.4 0.13937 2.54·10−5 2.234

Table 6.2: Numerical values used for our testing simulation of 1D blood flow in the branching geom-
etry.

scheme (6.69) forqin(t) given by a half-sine wave with amplitude10.7 cm3 s−1 (mean flow rate 3.17).
The initial pressure and flow rate were respectively2 kPa and0 cm3 s−1. Both conductive loads and
non-reflecting conditions have been considered at the end points of the tree.

Figures 6.13, 6.14 show the computed pressure and flow rate, propagating in the branching geom-
etry, when non-reflecting boundary conditions are employed. We point out that the flow rate in the
third vessel is negative, as expected due to its “inverse”orientation. In figure 6.15 the corresponding
time courses at the middle points of each vessel are reported, comparing thetwo kinds of boundary
conditions: notice the presence of reflected waves when conductive loads are considered.

The mass transport equations

The mass transport equation (6.13) is a reaction-diffusion problem of thesame type than the12D
model of blood flow, plus an advection term. We consider a similar model equation on our branching
geometry, that reads as follows:

A0
∂

∂t
ui +

∂

∂s

(

qiui − A0D
∂

∂s
ui

)

= 0, (t, s) ∈ R+ × (0, Li), i = 1, 2, 3,

where we denote byui the volume concentration in thei-th branch, andA0, D respectively the vessel
(reference) cross-sectional area and the diffusion coefficient ofthe transported substance in blood.
As in the previous subsections, we need suitable conditions at the extremal points of the branches;
moreover, conditions at the branching pointB have to respect the mass conservation principles. Here
we assume that:

(i) at nodeB1, the concentration isuin;

(ii) at nodeBi, i = 2, 3, the diffusive mass flux is neglected;

(iii) at the branching nodeB the volume concentrationsui have the same value, and the total mass
flux entering in the node is zero.
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It follows that the “external” boundary conditions (i-ii) inBi are:

u1(t, 0) = uin, ∂u2(t, L2)/∂s = 0, ∂u3(t, L3)/∂s = 0, (6.70)

and “internal” boundary conditions (iii) inB are5:

u1(t, L1) = u2(t, 0) = u3(t, 0), (6.71)

and

−q1u1(t, L1) + A0D
∂u1

∂s
(t, L1) +

∑

i=2,3

qiui(t, 0) − A0D
∂ui

∂s
(t, 0) = 0. (6.72)

Observe that, sinceq1 = q2 +q3 (conservation of the flow rate), and thanks to (6.71), the conservation
of the advective fluxes holds; as a consequence, equation (6.72) is equivalent to the conservation of
the diffusive fluxes only:

−A0D
∂u1

∂s
(t, L1) +

∑

i=2,3

A0D
∂ui

∂s
(t, 0) = 0,

that we already know how to enforce by a proper variational formulation. In particular, thanks to
(6.71), we can look atui(t, ·) as the restrictionsu|Λi

(t, ·) of a functionu(t, ·) ∈ V̂ , and we can proceed
as we did for the the12D model. We denoteu(n) an approximation ofu(tn, ·), wheretn = n∆t, being
∆t > 0 the time step; we consider the finite element spaceV̂h defined by eq. (6.53), together with the
homogeneous subspace

V̂0,h =
{

u ∈ V̂h : u(B1) = 0
}

.

The finite element / implicit Euler time advancing scheme reads:for n ∈ N, find u(n+1) ∈ V̂h such
that

∫

Λ
A0u

(n+1)ψds − ∆t

(∫

Λ

d

ds

[

qu(n+1)
]

ψds +

∫

Λ
A0D

d

ds
u(n+1) d

ds
ψds

)

=

∫

Λ
A0u

(n)ψds ∀ψ ∈ V̂0,h, (6.73)

satisfying
u(n+1)(B1) = uin(tn).

Actually, this is often anadvection-dominatedproblem, since coefficientA0D/|Λ| is small compared
to q. Therefore, proper stabilization techniques are in order to prevent oscillations to appear in the
numerical solution: for instance, thestreamline upwind Petrov-Galerkinstabilization method (SUPG),
for which we refer the reader to [85].

An example of numerical simulation, with the same geometry of the previous 1D blood flow
simulation, SUPG stabilization, in which at each timetn the previously computed flow rateq = q(n)

has been used, is shown in fig. 6.16 and 6.17. The input concentration is set to uin(t) = 1, while
the initial concentration is zero:u(0) = 0; we considered a diffusion coefficient such thatA0D =
1.96·10−5 cm4 s−1 for all the vessels (this corresponds to the typical value ofD ' 2.5·10−5 cm2 s−1

of the diffusion constant for oxygen in blood). We see in fig. 6.16 how thechemical concentration is
transported in the vessels, even with a bifurcating geometry. The time courses ofu at the middle points
of each vessel are reported in fig. 6.17 (four heart beats are necessary for the complete propagation of
the input concentration).

5 We are imposing the conservation of both the volume concentration (assuming that the transported quantity splits
proportionally to the blood volume) and the total mass flux at the bifurcation.
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Figure 6.13: From left to right and from top to bottom: snapshots of the bloodpressure [kPa] on the
arterial tree at timestn = 0.05n sec, forn = 0, 1, 2, . . . , 11, showing the propagation of the pressure
wave.
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Figure 6.14: From left to right and from top to bottom: snapshots of the flow rate [ cm s−1] on
the arterial tree at timestn = 0.05n sec, forn = 0, 1, 2, . . . , 11. Notice that due to the “inverse”
orientation of the left branch, its flow rate has the opposite sign of the flow rate in the other branches.
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Figure 6.15: Time courses of pressure [kPa] and flow rate [ cm s−1] in the middle points of each
branch. For each variable, simulations results are reported for both conductive loads (top; notice the
presence of reflected waves) and non-reflecting boundary conditions (bottom) at end pointsB2, B3.
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Figure 6.16: From left to right and from top to bottom: snapshots of the concentration at times
t = 0.05 s,0.10 s,0.15 s, . . . ,0.55 s, and att = 4 s.
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Figure 6.17: Time course of the concentration in the middle points of each branch: the “steps” are
corresponding to the heart beats.
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6.6.2 3D-1D simulations of blood flow and mass transport

In this section we discuss the simulation of multiscale 3D-1D problems introduced insection 6.5: we
are thus considering a situation similar to that depicted in fig. 6.2. In particular,we will consider the
simple case of the 1D vessel bifurcation of the previous sections, as an arterial tree embedded in a 3D
cylindrical tissue region. We will describe how it is possible to build the 1D meshas anedge pathin
the 3D one, using available data on the vessel geometry; further, we will perform simulations for the
coupled problem and discuss the results.

Path extraction algorithms

The 3D tissue mesh is our starting point for medical applications of models presented in this chapter:
the tissue geometry is usually simple, whereas the mesh of a complex 1D vascularnetwork, even
though one-dimensional, needs an automatic acquisition method. The geometrical data concerning
this network are usually acquired byimaging, since it is relatively easy (see sec. 6.4.2, 6.4.3 for some
examples) to analyze an image and get alist of pointsrepresenting the skeleton of the vascular struc-
tures, with an arbitrary resolution (we have shown in the cited examples that inprinciple vessels may
be described bysplines). The question is whether this list of points can be employed toautomatically
build the 1D mesh approximating the skeleton of the vascular structures, as apath of edges of the
given 3D mesh: if this is possible, then we can take advantage of the methods for the finite element
approximation of coupled 3D-1D problems that we have described in chapter 5.

We have found that such a task can be done automatically. We are not aware of any standard
algorithm to do that, so we have developed an “in house” method. To describe the algorithm, let us
consider the case in which a single curve has to be fitted by a sequence of edges: the multi-vessel case
is easily treated by iterating the same procedure.

Let P = {p0,p1, . . .} be a set of pointspi ∈ R3 lying on the 1D curve we are considering, and
represented by the blue line in fig. 6.18. As we said, we consider a set of points rather than an analytic
parametrization because it is the simplest format of data that we can get fromsegmentation of images.

No assumption about the ordering ofP is made: we only require thatp0 is one of the two end
points, and that the direction fromp0 to the other end point is assumed to be the positive orientation
on the given curve. The goal is to find a sequenceX = {x0,x1, . . .xN} of neighboring nodes of
a given 3D mesh, such that the piecewise linear curve given by the edge path associated toX is “as
close as possible” to the set of pointsP. We denote byN the set of the nodes of the 3D mesh, byE
the set of edges (edges are denoted by[x,y], wherex,y ∈ N ), and byσ a fixed number in(0, 1).
Our algorithm reads as follows.

1. The first nodex0 ∈ N is chosen such that

‖x0 − p0‖ = min
x∈N

‖x − p0‖,

Setn = 0, P0 = P, U0 = ∅.

2. Find the following subsetUn+1 of the nodes that share an edge withxn:

Un+1 = {y ∈ N : [y,xn] ∈ E},

and define
hmax = max

y∈Un+1

‖y − xn‖, hmin = min
y∈Un+1

‖y − xn‖,

Dn+1 = {p ∈ Pn : σhmin < ‖p − xn‖ < hmax}.
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3. If Dn+1 = ∅, end. Otherwise, find the next nodexn+1 by solving

dist(xn+1,Dn+1) = min
x∈Un+1\Un

dist(x,Dn+1).

4. Define
Pn+1 = {p ∈ Pn : hmax < ‖p − xn‖},

then setn ← (n + 1) and go back to step 2.

x1

x0

x2

p0

D1

hmax

hmin

U1

Figure 6.18: The path extraction algorithm at work.

We will call this algorithm the “rubber’s algorithm”: when a new nodexn is extracted, the points
inside ahmax-neighborhood of that node are eliminated from the list (step n. 4). In practice, the set
of pointsPn is shortening whilen increases, as if a rubber (represented in fig. 6.18 by the dashed
circle) was erasing points starting from a neighborhood ofp0, moving toward the other end point of
the line every timen is incremented (then = 1 iteration is represented; the erased points are depicted
as the blue dashed part ofP). When all the points are erased, the algorithm ends. In this manner, the
sequence of nodes moves starting from the closest node top0, according to the positive orientation
of the line, keeping close to it (closer than the mesh size). We also point out that in step n. 3, we
minimize the distance forx ∈ Un+1, discarding the nodes inUn: with this choice, the edge path is
such that two consecutive edges belong to different elements of the 3D mesh, which makes the path
smoother.

We found that, ifP is a subset of the volume enclosed by the 3D mesh, then the proposed algorithm
is able to correctly build a sequenceX such that the associated edge path is a “good” approximation
of P, the distance between the path andP being less than the 3D mesh sizeh. The value of parameter
σ we used in our codes was always0.9. In fig. 6.19 the path extracted for a 3-vessels configuration
is shown: the 1D mesh is extracted from a 3D cylindrical mesh enclosing the data points. This mesh
is actually the one we used for the test cases of the previous sections. Further in this chapter we will
consider other examples in which more complex arterial networks are successfully extracted by the
same algorithm.
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Figure 6.19: An example of extracted path for a branching vessel. On the left, the data pointsP are
given on the smooth semi-transparent curves (end points of each vessel have been marked in red); the
edge paths are reported as well. On the right, the surface wireframe of thecylindrical 3D mesh used
for the extraction is shown.

Numerical approximation

The numerical approximations of the 3D-1
2D blood flow (BF) problem 6.5.1, 3D-1D BF problem

6.5.2, and 3D-1D mass transport (MT) problem 6.5.3, are achieved by applying a finite difference
discretization in time (for example implicit/explicit Euler schemes) and a finite element discretization
in space. To this end, we can take advantage of the previous studies on thefinite element discretization
of coupled 3D-1D problems (chapter 5); moreover, we will consider branching 1D geometries instead
of a single vessel, thanks to the treatment of the 1D equations on trees we have discussed in this
section.

In particular, we will assume all hypotheses of chapter 5, and consider the finite element space
Vh defined by (5.1) for the tissue domainΩ, and the inherited spacêVh defined by (5.13) for the
vessel domainΛ. We assumeΛ =

⋃

Ik∈Ih
Ik, whereIh is a collection of edges of tetrahedra of the

“triangulation”Th. They are bothP1 spaces.
In order to fix the ideas, we shall consider simple boundary conditions; ofcourse there are many

other possible choices, for instance non-reflecting conditions for the 1Dmodel; nevertheless this will
help to make more clear our exposition. In this regard, as in section 6.6.1, we will assume thatΛ is
a tree withM + 1 end points, denoted byB0, B1, . . . , BM . Branches ofΛ will be denoted byΛi,
and their length byLi. Functionsf : Λ → R are parametrized on thei-th branch by the curvilinear
abscissas ∈ [0, Li]. For the sake of simplicity, we also assume thata) for i = 0, . . . , M , the branch
Λi is the one that containsBi, andb) the positive direction on branchΛ0 is the onefromB0, while the
positive direction on branchΛi, i = 1, . . . , M , is toward Bi. As we have seen, there are “internal”
boundary conditions at the branching points as well, but we know how to naturally enforce them by
the variational formulation; hence, the only conditions we have to impose explicitly are those at the
end pointsBi. We will consider the conditions reported in tab. 6.3.
In particular, for the 3D problems we impose that the flux across the boundary of the tissue domain is
zero; for the 1D problems, we impose the value of flow rate/concentration atB0 while using standard
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BF MT

3D homogeneous Neumann homogeneous Neumann
qv = qin(t) atB0; uv = uin(t) atB0;

1D conductive loadsGi atBi, i > 0: homogeneous Neumann atBi, i > 0
qv(Bi) = Gi(pv(Bi) − pe,i)

Table 6.3: Boundary conditions considered for the configuration of a 1Darterial tree embedded in a
3D tissue.

Robin or Neumann conditions for the “outlets”Bi, i > 0. Depending on how many Dirichlet condi-
tions we will have, besides spacesV̂h andŴh defined respectively in (6.53) and (6.64), we will need
to consider space

V̂h,0 = {f ∈ V̂h : f(B0) = 0},

as well as the “fully homogeneous spaces”

V̂h,00 = {f ∈ V̂h : f(Bi) = 0, i = 1, . . . , M}, Ŵh,00 = {f ∈ Ŵh : f(Bi) = 0, i = 1, . . . , M}.

Let ∆t > 0 be the time step; forn ∈ N, settn = n∆t, and denote byp(n)
t , p

(n)
v , q

(n)
v respectively

the approximation of the tissue blood pressure, vessel blood pressure and vessel flow rate at timetn.
Similarly, letu(n)

t , u
(n)
v be respectively the approximation of the tissue and the vessel concentration at

timetn. Symbols(·, ·)Ω and(·, ·)Λ will denote respectively theL2 scalar product on the tissue domain
Ω and on the vessel domainΛ.
We will state the numerical approximation schemes distinguishing between three cases.

3D-12D BF problem. Consider problem 6.5.1, with boundary conditions as in tab. 6.3. The fully
discrete, backward Euler numerical approximation scheme reads:

Problem 6.6.1. Find p
(n)
t ∈ Vh andp

(n)
v ∈ V̂h, n ∈ N, such that

1

∆t
(Ctp

(n+1)
t , ψ)Ω + (Kt∇p

(n+1)
t ,∇ψ)Ω + (αp

(n+1)
t , ψ)Ω + (βpp̄

(n+1)
t , ψ)Λ − (βpp

(n+1)
v , ψ)Λ

=
1

∆t
(Ctp

(n)
t , ψ)Ω + (fp, ψ)Ω ∀ψ ∈ Vh,

1

∆t
(Cvp

(n+1)
v , ψ̂)Λ + (Kv

d

ds
p(n+1)
v ,

d

ds
ψ̂)Λ + (βpp

(n+1)
v , ψ̂)Λ − (βpp̄

(n+1)
t , ψ̂)Λ + bv(p

(n+1)
v , ψ̂)

=
1

∆t
(Cvp

(n)
v , ψ̂)Λ + qin(tn)ψ̂(B0) +

M
∑

i=1

Gipe,iψ̂(Bi) ∀ψ̂ ∈ V̂h,

whereβp = 2πRLp, bv is a bilinear form depending on boundary conditions at pointsBi:

bv(p
(n)
v , ψ̂) =

M
∑

i=1

Gip
(n)
v (Bi)ψ̂(Bi),

and wherep(0)
t , p

(0)
v , are given as initial conditions.
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The backward Euler scheme is unconditionally stable, so there are no restrictions in the form of
upper bounds on the choice of the time stepping. Notice that at each time step, problem 6.6.1 requires
to solve a linear system that has the same block structure considered in chap. 5.

A forward Euler scheme is also a possible choice, that has the advantage of decoupling the tissue
and the vessel subproblems. However, we point out that since the degrees of freedom of the 1D
problem are usually much less than those of the 3D one, there is usually no significant difference in
term of computational costs between solving the coupled problem or solving just the tissue one.

The drawback of the forward scheme is obviously the stability condition on thetime step. In this
regard, the fact that blood flow in the vessel matrix of the tissue is slow, hasa numerical counterpart:
the stability condition turns out to be not too restrictive. In practice, the use of the forward scheme is
a valid alternative to the backward one.

3D-1D BF problem. Consider problem 6.5.2. In this case, the 1D problem is hyperbolic and char-
acteristic extrapolation is used to provide the “missing” boundary conditions.When considering the
situation of tab. 6.3, we can use the pressure extrapolation formula (6.65) at B0

pex,0(p
(n), q(n)) = p

(n)
0

„

∆t√
cl

«

+

r

l

c

»

(1 + 2r∆t)qin(t + ∆t) − q0

„

t,
∆t√
cl

«–

.

where the subscripti means the restriction to thei-th branch (for example,p(n)
i = p

(n)
|Λi

), so that
the use of the curvilinear abscissa as argument is possible. Similarly, extrapolation formula (6.67) is
employed at end pointsBi, i = 1, . . . , M :

pex,i(p
(n)
i , q

(n)
i ) =
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We propose, for the 1D hyperbolic part, the scheme (6.69) introduced in section 6.6.1. Although this
scheme is fully implicit and unconditionally stable, we are interested in capturing the wave propaga-
tion in the 1D domain: this will require a small time step. On the other hand, we could avoid to use
such a fine time discretization for the tissue problem, that features slower dynamics. Therefore, we
propose amultirate numerical approximation scheme. Multirate schemes have been introduced for
dynamical systems in which a partitioning in “slow” and “fast” variables is possible, see for example
[4], [32]. They have been applied first for the simulation of MOS circuits and other complex electronic
systems; and similarmultiple time-steppingmethods have been used in molecular dynamics. In our
case, for each (slow) step of the 3D problem, we considerm (fast) substeps of the 1D problem, with
a steplength∆t′ = ∆t/m.

Problem 6.6.2. Letm ∈ N, m > 0, and∆t′ = 1
m∆t. Denote bybtc, t ∈ R, the greatest integer≤ t.

Find p
(n′)
v ∈ V̂h, q

(n′)
v ∈ Ŵh andp

(n)
t ∈ Vh, n′, n ∈ N, such that

1

∆t′
(cp(n′+1)

v , ψ̂)Λ − (q(n′+1)
v ,

d

ds
ψ̂)Λ + (βpp

(n′+1)
v , ψ̂)Λ =

1

∆t′
(cp(n′)

v , ψ̂)Λ + (βpp̄
(bn′/mc)
t , ψ̂)Λ ∀ψ̂ ∈ V̂h,00,

1

∆t′
(lq(n′+1)

v , ϕ̂)Λ + (
d

ds
p(n′+1)
v , ϕ̂)Λ + (rlq(n′+1)

v , ϕ̂)Λ =
1

∆t′
(lq(n′)

v , ϕ̂)Λ ∀ϕ̂ ∈ Ŵh,00,

1

∆t
(Ctp

(n+1)
t , ψ)Ω + (Kt∇p

(n+1)
t ,∇ψ)Ω + (αp

(n+1)
t , ψ)Ω + (βpp̄

(n+1)
t , ψ)Λ

=
1

∆t
(Ctp

(n)
t , ψ)Ω + (βpp

((n+1)m)
v , ψ)Λ + (fp, ψ)Ω ∀ψ ∈ Vh,
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satisfying

p(n′+1)
v (B0) = pex,0(p

(n′)
v , q(n′)

v ), q(n′+1)
v (B0) = qin(t(n′+1)/M ),

p(n′+1)
v (Bi) = pex,i(p

(n′)
v , q(n′)

v ), q(n′+1)
v (Bi) = Gi(p

(n′+1)
v (Bi) − pe,i) (i = 1, . . . , M),

and wherep(0)
t , p

(0)
v andq

(0)
v are given as initial conditions.

This algorithm is decoupled into two implicit sub-schemes: first we advance bym micro-steps
of the 1D problem, using the last computed 3D solution, then we advance by one macro-step of the
3D problem using the last computed 1D solution: in particular, a time splitting of the coupling term
is considered. Of course we could have considered the explicit versions of both the sub-schemes. In
this case∆t and∆t′ would have to fulfill stability conditions, the most restrictive one being on∆t′,
in the form of a CFL condition∆t′ . Ch, whereh is the mesh size, and0 < C ≤

√
cl (constantC

is typically small, or, in other words, the pulse velocity in the 1D vessel is large). Nevertheless, this
is not a critical point: since the 1D subproblem requires by far less computational resources than the
3D one, we can take advantage of a large ratiom between the two steplength to keep the CPU time
within reasonable ranges.

3D-1D MT problem. Consider problem 6.5.3, with the vessel transport equation in the form (6.44).
We are going to introduce a fully discrete, SUPG stabilized, backward Eulernumerical approximation
scheme. To this end, we define some parameters, obtained by solving the BF problem; first of all the
tissue blood velocity, the tissue perfusion and the vessel blood flow rate attime tn:

v(n) = − 1

nb
Kt∇p

(n)
t , ω

(n)
t = αp

(n)
t − fp, q(n) =

{

−Kv
d
dsp

(n)
v with the 1

2D BF model,

q
(nm)
v with the 1D BF model,

(6.74)
then the exchange coefficient

βu = 2πRLu, (6.75)

and finally the SUPG bilinear forms (see [85, sec. 14.3.2]), that, when using P1 finite elements for the
concentrations and test functions, andP0 elements for velocity and flow rate, read as follow:

astab,t(u, ψ;v) = δt

∑

T∈Th

(

1

∆t
u + v · ∇u + ωtu,

hT

|v|v · ∇ψ

)

T

,

bstab,t(u, ψ;v) = δt

∑

T∈Th

(

1

∆t
u + fu,

hT

|v|v · ∇ψ

)

T

,

astab,v(û, ψ̂; q) = δv

∑

I∈Ih

(

1

∆t
û + q

d

ds
û,

hI

|q|q
d

ds
ψ̂

)

I

, (6.76)

bstab,t(û, ψ̂; q) = δv

∑

I∈Ih

(

1

∆t
û + fu,

hI

|q|q
d

ds
ψ̂

)

I

,

whereδt andδv are positive stabilization parameters, andhT andhK are the diameter of the tetrahe-
dronT and the segmentI, respectively. The stabilization parameters can be constant, or dynamically
computed in an adaptive fashion [100].

The scheme we propose reads:
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Problem 6.6.3. Find u
(n)
t ∈ Vh andu

(n)
v ∈ V̂h, n ∈ N, such thatu(n)

v (B0) = uin(tn), and

1

∆t
(u

(n+1)
t , ψ)Ω + (Dt∇u

(n+1)
t ,∇ψ)Ω + (v(n+1) · ∇u

(n+1)
t , ψ)Ω + (ω

(n+1)
t u

(n+1)
t , ψ)Ω

+ (βuū
(n+1)
t , ψ)Λ − (βuu(n+1)

v , ψ)Λ + astab,t(u
(n+1)
t , ψ;v(n+1))

=
1

∆t
(u

(n)
t , ψ)Ω + (fu, ψ)Ω + bstab,t(u

(n)
t , ψ;v(n+1)) ∀ψ ∈ Vh,

1

∆t
(A0u

(n+1)
v , ψ̂)Λ + (Dv

d

ds
p(n+1)
v ,

d

ds
ψ̂)Λ + (q(n+1) d

ds
u

(n+1)
t , ψ)Λ + astab,v(u

(n+1)
v , ψ̂; q(n+1))

=
1

∆t
(A0u

(n)
v , ψ̂)Λ + bstab,v(u

(n)
v , ψ̂; q(n+1)) ∀ψ̂ ∈ V̂h,0,

whereu
(0)
t , u

(0)
v , are given as initial conditions.

This is a fully implicit scheme: again, at each time step we have to solve a linear system with a
block structure similar to (5.18).

6.6.3 An example of numerical simulation of BF and MT problems for a vessel tree -
tissue configuration

In this section, a numerical simulation of blood flow (BF) and mass transport (MT) in a simple case
of vessel-tissue system is presented. In particular, we address problem 6.6.2 for BF and problem 6.6.3
for MT.

We consider the geometry of fig. 6.19: here the tissue domain is a cylinder with aradius of10 cm
and a height of10 cm, while the vessel domain is an arterial tree with one bifurcation (the parameters
of the three branches are those of tab. 6.2). The volume of the tissue domainis V = 3141 ml.

We assume that the mean blood flow rate entering in the vessel is2Q, beingQ = 3.47 ml s−1

the flow rate provided to the tissue, while the other half of the blood leaves the system by the vessel
outlets: the mean tissue perfusion is thus1.2 · 10−3 ml of blood per ml of tissue. Concerning the
tissue domain, we consider a porositynb = 1/50 and a tissue permeabilityKt = 1 cm2 kPa−1 s−1,
corresponding to flow in a matrix of vessels with diameters of about0.3 mm (see the calculations in
section 6.4.1). The compliance of the tissue isCt = 0.01 kPa−1 (which in the range of values of
tab. 6.1). Assuming that the typical values for the vessel and the tissue blood pressure are respectively
p0,v = 1 kPa andpt,0 = 0.5 kPa, being the venous pressure set to the reference valuep0 = 0 kPa, we
can state as a first estimation of the hydraulic conductanceα ' Q/(V · pt,0) ' 2.2 · 10−3 kPa−1 s−1.
Moreover, we setfp = αp0 = 0 s−1; as a consequence, the tissue perfusion isωt = αpt.

As regards the vessel-tissue interaction, the conductivityLp can be estimated in the same manner:
for example ifL = 23 cm is the total length of the arterial tree andR = 0.5 cm is a reference radius,
assuming

2πRLp(p0,v − p0,t) · L ' Q

then we haveLp ' 96 · 10−3 cm kPa−1 s−1.
We consider oxygen transport by the blood in the vessel and in the tissue.The blood is en-

tering in the vessel with a oxygen concentration ofuv,0 = 8.75 µmol ml−1. The diffusion coeffi-
cient for oxygen is assumed to beDv = 5 · 10−5 cm2 s−1 in blood, andDt = 1.7 · 10−5 cm2 s−1

in the tissue [77] (tortuosity factorλ2 = 2.94). The consumption rate of oxygen in the tissue is
0.06 µmol cm−3 s−1; accordingly, we considered a Michealis-Menten law for the metabolic rate
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fu(ut) = −0.06 µmol cm−3 s−1 ut
u1/2+ut

, with u1/2 = 1
10ut,0, beingut,0 = 7.2 µmol ml−1 a ref-

erence value for the blood concentration of oxygen at the microscale (thetissue region). Correspond-
ingly, we setfu = fu(u

(n+1)
t ) in problem 6.6.3.

As we observed in section 6.5, the diffusive termLu is actually a penalization term to enforce the
conditionūt(s) = uv(s). In our simulation we consideredLu = 20 cm s−1, that made this condition
sufficiently satisfied.

As initial values for the unknowns, we takep0,v, p0,t for the pressures,u0,v, u0,t for the concen-
trations; and a zero initial value for blood flow rate in the vessel. Concerning boundary conditions,
we will consider those of tab. 6.3, the time average ofqin(t) being equal to2Q (we take the waveform
depicted as the dashed line with marks in fig. 6.21). We assume that the conductive loadsG2, G3 are
equal to10 cm3 s−1 kPa−1, and that the reference pressures arepe,2 = pe,3 = p0,v.

The simulation we present here spans a time interval of10 s: the time step is∆t = 0.05 s for
the 3D BF and 1D-3D MT problems, while for the hyperbolic 1D BF problem it is∆t′ = 0.001∆t,
corresponding to an oversampling factorm = 1000 in the multirate scheme 6.6.2. With this choice,
both the fast flow in the 1D domain and the slow one in the 3D domain are accurately resolved:
moreover, the CPU time of one 3D step andm 1D steps are in the same range. SUPG stabilization
terms in eq. (6.76) wereδt = 0.001, δv = 0.4 In fig. 6.20, the computed pressures from the BF

Figure 6.20: On the left: the pressure distribution in the vessel and on some slices of the tissue. On the
right: streamlines of blood velocity in the tissue. The fact that streamlines originate from the vessel is
due to thehierarchicalflow from the 1D to the 3D domain.

problem are shown (t = 5.3 s), as well as the streamlines of the blood velocity in the “capillary”
matrix. We see how the geometry of the main vessels determines the flow pattern in the surrounding
matrix of small vessels: the blood leakage from the vessel to the tissue causes in turn a pressure fall
in the 1D domain. This leakage is emphasized in fig. 6.21, where the time coursesof the flow rate
at the middle points of each branch are reported, together with mean values.Fig. 6.22 shows the
pressures at the same middle points, and the average ofp̄t, that as we know has the meaning of the
pressure of blood in the vessel matrix of the tissue “near” the vessel. The gap between the vessel
and the tissue pressure, which is about0.7 kPa on average, sustains the hierarchical flow from the 1D
domain to the 3D one. Regarding the MT problem, the advection of the blood oxygen concentration is
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Figure 6.21: Comparison of the (absolute values of) flow rateqv at the middle points of each branch;
the input flow rateqin(t) is represented by the dashed line with marks. We observe that the average
flow rate in the first branch is less than the average of the sum of the rates inthe remaining branches
(mean values are indicated by the dashed line). This gap is due to the transfer of blood from the vessel
to the tissue.

shown in fig. 6.23, where an isosurface ofut is tracked along its temporal evolution. In the figure the
vessel concentrationuv is reported as well. Due to the mass transfer to the tissue, the initial and input
values ofuv, that are both equal to8.75 µmol ml−1, drop to8.14 µmol ml−1: this is only partially
compensated by the contribution of incoming blood, saturated by oxygen, sothat a concentration
gradient along the vessel is established after 10 seconds. On the other hand, as concerns the blood
oxygen concentration in the tissue, the interplay between the metabolic consumption ratefu and the
supply by the blood coming from the vessel, results in a stationary value, slightly greater than the
initial 7.2 µmol ml−1 concentration, which is about7.43 µmol ml−1, as shown in fig. 6.24.
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Figure 6.22: Blood pressurespv at the middle points of each branch, and average value ofp̄t on the
vessel (solid line with marks; computed as1|Λ|

∫

Λ p̄t(s)ds). The time step used for the 1D problem
is one thousandth of the one used for the 3D problem, so that pulse waves are resolved in the vessel
(notice the high-frequency reflected waves).
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Figure 6.23: From left to right and from top to bottom: snapshots of the bloodoxygen concentration
in the 1D vessel, and of the7.3 µmol ml−1 isosurface of the blood oxygen concentration in the tissue,
at timest = 1 s,2 s, , . . . ,9 s. The concentration istransportedin the tissue along the streamlines in
fig. 6.20.
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Figure 6.24: From left to right and from top to bottom: snapshots of the bloodoxygen concentration
in the 1D vessel, and on a slice of the tissue, at timest = 1 s,2 s, , . . . ,9 s.
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6.6.4 An application to the study of brain perfusion: the Circle of Willis.

One of the most attractive features of a 3D-1D approach to model blood flow and mass transport in
tissues, is the easiness of treatingnetworksof vessels. The algorithm for “path extraction” described
in sec. 6.6.2 allows the automatic generation of the 1D mesh as an edge path in the 3D mesh, also
for networks of vessels. The needed geometrical data that have to be provided consist in a list of
points describing with a certain resolution the axis of each vessel: this kind ofdata are easily and
quickly acquired by medical images (since there is no need to extractsurfaces, nor to compute spline
parametrizations).

In this section, we describe an application to a “real” and physiologically interesting case of tissue
perfusion: we consider the brain perfusion and the role played by Circleof Willis.

Circle of Willis (CoW) is a relevant example of a vessel network supplying a tissue: it is a net
of blood vessels at the base of the brain, through which blood is distributedto the cerebral tissues.
Blood enters the CoW by four medium arteries, namely the two internal carotid (ICA) and the two
vertebral arteries (VA); they are connected by smaller communicating vessels in a ring structure, and
six arteries originating from this circle provide the blood to the brain (see fig. 6.25)

Brain is one of the most oxygen consuming organs (at rest), and a failurein blood supply can
rapidly lead to ischemia and eventual infarction. Thanks to its ring structure, the CoW provides
alternative flow paths for the blood, should a vessel be occluded: it is a sort of “safety device” of the
cerebral circulatory system.

Figure 6.25: The Circle of Willis.

We already encountered the CoW in sec. 6.4.3 (see fig. 6.10), where we have shown that (at
least in two dimensions) it is possible to extract the geometry of the major vesselsof the Circle from
medical images to perform simulations. Now we address the 3D case, and present a simulation of
brain perfusion, resolving both the fast blood flow in the CoW and the slow flow in the cerebral tissue,
using the techniques we introduced in this chapter. Oxygen transport in thebrain will be considered
as well.
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The computational domains that we consider here are respectively the network of vessels and the
“hemi-ellipsoid” in fig. 6.26. Although such an ellipsoid is only a rough approximation of the actual
geometry of the cerebral tissues, it will suffice for our purposes. The1D mesh has been extracted as
an edge path in the 3D grid, using the algorithm presented in sec. 6.6.2, starting from available data
on the geometry of the CoW. We will make use of the standard acronyms to denote the arteries of
the CoW (see fig. 6.26): we will consider directly the basilar artery (BA) skipping the two vertebral
artery.

Figure 6.26: On the left: the set of points used for extracting the 1D mesh as an edge path in a 3D mesh
is denoted by the blue line, while the extracted path is represented in white; the nodes of the network
are indicated in red. Notice that the extracted path approximates the data with anerror (distance)
smaller than the 3D mesh size. The acronyms stand for: basilar artery (BA),internal carotid artery
(ICA), anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA).
On the right: the 1D extracted mesh and the surface wireframe of the 3D mesh of the tissue domain,
in which the path has been created.

The blood enters the CoW by the BA and the two ICA (left and right); it leavesthe CoW by
the ACA, the MCA, and the PCA. Then it is distributed to the cerebral tissues by smaller arteries,
arterioles and capillaries originating from the former vessels.

A number of works has been devoted to the mathematical study of the hemodynamics of the
CoW6. Several techniques for the simulation of blood flow in the CoW have been used in the literature.
For instance, in [65] 1D and 3D models of the CoW are compared, and (mechanic) autoregulation7 is
taken into account; in [17], the authors suggest that “fractal” 1D arterial trees (automatically generated
by the computer) could provide more accurate boundary conditions for the3D models.

At our knowledge, none of the existing works has addressed the presence of a continuous hierar-
chical flow from the CoW to the surrounding tissues. As we see in fig. 6.27,the vessels forming the
CoW possess a large number of minor branches: these smaller arteries supply the tissues around the
circle, so that a flow rate loss is expected from the entrance to the exit of theCoW. In fact, the average
flow rates [ml s−1] from data collected by references [27], [60] and [28], are:4.6 for each ICA,1.3
for each of the two vertebral arteries supplying the BA; and1.1 for the ACA, 2.0 for the MCA, 0.8

6The motivation for such studies is that the CoW is one of the districts of the circulatory system of the brain with high
incidence of aneurysms.

7The issue of the metabolic autoregulation in the CoW, driven by the oxygen dynamics, is discussed for example in [66].
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Figure 6.27: Cast of carotid arteries and CoW of a goat (from [3]): thelarge number of small ar-
teries leaving the Circle indicates that a hierarchical flow takes place from the major vessels to the
surrounding tissues.

for the PCA. Therefore,11.8 ml s−1 is the total flow rate entering the circle, while onlyqout = 7.8
ml s−1 of blood is leaving the CoW by major vessels: this means that 34% of the blood provided to
the CoW goes into small branches that are usually not resolved by “standard” 3D geometries used in
FEM simulations (this would be too complex due to their fractal structure). This kind of hierarchical
flow can be modelled by our 3D-1D approach.

The volume of our tissue domain isV = 1.56 · 103 ml, the total length of our 1D mesh isL =
54.3 cm. As we said, the mean blood flow rate entering in the CoW and then distributed tothe brain
is Q = 11.8 ml s−1: the mean tissue perfusion is thus7.56 · 10−3 ml of blood per ml of tissue.
We consider a porositynb = 1/50, a tissue permeabilityKt = 0.1 cm2 kPa−1 s−1 and a tissue
complianceCt = 0.01 kPa−1. Assuming that the typical value of the tissue blood pressure ispt,0 = 8
kPa, we estimate the hydraulic conductanceα ' Q/(V · pt,0) ' 9.4 · 10−4 kPa−1 s−1; we are still
assuming that the perfusion termωt = αpt corresponds to the blood flow rate per unit volume that



6.6 – ALGORITHMIC AND NUMERICAL ASPECTS 151

leaves the tissue and is collected by the venous bed.
As regards the vessel-tissue interaction, the conductivityLp can be estimated as in the previous

example. The typical vessel pressure isp0,v = 10 kPa; assumingR = 0.1 cm as an average value for
the radius, by

2πRLp(p0,v − p0,t) · L ' (Q − qout)

we haveLp ' 0.114 cm kPa−1 s−1 (one could consider similar estimations for each vessel sepa-
rately).

Notice that the blood exiting the CoW is distributed to the cerebral tissues. Letq
(n)
out be the total

flow rate exiting the PCAs, MCAs and ACAs at timetn; in our scheme 6.6.2 we set

fp = q
(n)
out/V

to take into account this contribution to brain perfusion.
Concerning oxygen transport, we consider the same data used for the previous simulation, with

the exception of coefficientfu. In fact, we have an additional mass flux termf
(n)
out , given by the oxygen

transported by the blood exiting the CoW and perfusing the tissue; assuming that at the outletsBi of
the CoW (the end points of PCAs, MCAs, ACAs) the flow rateqv is always positive (in other words
blood is really exiting the CoW), this term reads

f
(n)
out =

1

V

∑

i

q(n)
v (Bi)u

(n)
v (Bi).

Therefore, assuming a Michaelis-Menten metabolic rate, thefu term we consider in problem 6.6.3 is

fu = f
(n)
out − fO2,max

u
(n)
t

u1/2 + u
(n)
t

,

where we takefO2,max = 0.08 µmol cm−3 s−1. We chooseu1/2 = 1
10ut,0, beingut,0 = 7.2 µmol ml−1

the reference value for the blood oxygen concentration in the tissue.
Again, we consider the parameterLu as a penalization term and setLu = 20 cm kPa−1 s−1. The

initial values arep0,v, p0,t for the pressures,u0,v, u0,t for the concentrations; the initial flow rate in
the vessel is zero. We prescribe the flow rate at the BA and ICAs, using pulsatile waveforms having
average values corresponding to the measurements we cited previously, and we assume conductive
loads at the end points of all other vessels, equal to2 cm3 s−1 kPa−1, with pe,2 = pe,3 = p0,v.

In fig. 6.28, the blood pressures in the vessels of the CoW and in the surrounding tissues att =
2.1 s are reported: again, the hierarchical flow from the vessels is responsible for the spatial pattern
of the the blood pressure in the tissue.

The distribution of flow rates at the outlets of the vessels of the CoW is reported in fig. 6.29 (when
a vessel is paired with a symmetric one, as for ICA, PCA etc., the values are referred to the left vessel).
In the picture we also show the time course of the total flow rateqout exiting the CoW: its mean value
is less than the average input flow rate (11.8 cm3 s−1), due to the presence of the hierarchical flow.

The blood pressures time courses at the same outlets are shown in fig. 6.30.Here we also empha-
size the difference between the time step for the 3D (slow) and 1D (fast) problems: in our multirate
scheme, the oversampling ratio between the two values wasm = 103, allowing for a accurate res-
olution of wave propagation in the 1D domain. This propagation is visualized bythe snapshots in
fig. 6.31 as well: the pressure distribution on the vessels network results from the interplay of the ge-
ometry/topology of the network and the interaction with the tissue in which the network is embedded.
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Figure 6.28: On the left: snapshot of the 1D blood pressure distribution in the Circle of Willis, and a
slice of the 3D blood pressure. On the right some isolines of the 3D pressure are reported on parallel
planes to show its spatial patterns.

Finally, we see in fig. 6.32 how a isosurface of the oxygen concentration (7.93 µmol ml−1) is
advected by the blood flow in the vessel matrix of the tissue: this result has been obtained using the
mass transport scheme 6.6.3, using the values of tissue blood velocity and perfusion computed from
the blood flow problem.
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Figure 6.29: Comparison of the flow ratesqv computed at several districts of the CoW; the total flow
rateqout leaving the CoW by the outlets is indicated by the dashed line with marks, the rest of the
input flow rate is transferred to the tissue due to hierarchical flow, depending on the parameterLp.



154 MODELLING BLOOD FLOW AND MASS TRANSPORT IN VASCULARIZED TISSUES

0 0.5 1 1.5 2 2.5 3 3.5 4

9

10

11

12

13

14

 

 

BA
ICA
PCA
MCA1
MCA2
ACA

t [ s ]

P
re

ss
ur

e
[k

P
a

]

avrg. p̄t

Figure 6.30: Blood pressurespv computed at several districts of the CoW, and average value ofp̄t on
the vessel (computed as1|Λ|

∫

Λ p̄t(s)ds). The marks emphasize the difference in time steps due to our
multirate advancing scheme (triangles correspond to a 3D time step, sincep̄t is computed from the
3D pressure; each circle corresponds to 50 one-dimensional steps).



6.6 – ALGORITHMIC AND NUMERICAL ASPECTS 155

Figure 6.31: From left to right and from top to bottom: snapshots of the bloodpressure at times
t = 1.000 s,1.025 s,1.050, . . . ,2.000 s.
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Figure 6.32: From left to right and from top to bottom: snapshots of a isosurface for the 3D oxygen
concentration at timest = 0.0 s,0.5 s,1.0, . . . ,5.5 s, showing the oxygen transport in the tissue.



Appendix A

Weighted Sobolev Spaces

In the sequel we denote byΩ a domain inR3, and byΛ ⊂ Ω a 1D smooth manifold, described by eq.
(3.1). We defineΩR

v as the set of points that are closer thanR to Λ, R > 0; under assumption (3.4),
this subset is parametrized according to (3.2) by local coordinates (3.3).

We will denote by↪→ any continuous embedding between normed spaces; sometimes we will
write d(x) for the functiondist(x, Λ).

A.1 SpacesL2
α(Ω)

Definition A.1.1. Let α ∈ R; we denote byL2
α(Ω), the space of square integrable functions with

respect to the measureµα defined by

dµα(x) = dist(x, Λ)2αdx.

This means thatf ∈ L2
α(Ω) if and only if dist(x, Λ)αf(x) is L2(Ω). We have thatL2

α(Ω) is a
Hilbert space equipped with the scalar product

(u, v)L2
α(Ω) =

∫

Ω
u(x)v(x)dµα(x).

Lemma A.1.1. We have:

a) L2
α(Ω) andL2(Ω) are isometric via the map

f ∈ L2
α(Ω) 7→ dαf ∈ L2(Ω).

b) L2
α(Ω) ↪→ L2

β(Ω) provided thatα < β.

c) If β > −1 − α, thendβ ∈ L2
α(Ω).

Proof. Pointa) follows directly from Definition A.1.1; pointb) is a straightforward consequence of
the boundedness ofΩ; point c) follows from point a) and from the fact thatdist(·, Λ)2β+2α ∈ L2(Ω)
iff 2β + 2α > −2.

157
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A.2 SpacesW 1,p(Ω, µ): fundamental properties

Most of the properties of standard Sobolev spaces are retained when considering weighted spaces,
provided that the weight function satisfies certain basic properties: we refer to [38] for an overview
of this topic and for the proofs of the results that we are going to introduce.In the general case of
Lp-based spaces, the weight function must bep-admissible1. A special class ofp-admissible weight
functions is theMuckenhoupt classAp:

Definition A.2.1. Let p > 1: the Muckenhoupt classAp is defined as the set of locally integrable
functionsw onRn such that

sup
B=B(x,r)
x∈R

n,r>0

(

1

|B|

∫

B
w(x)dx

) (

1

|B|

∫

B
w(x)−1/(p−1)dx

)p−1

< +∞

whereB(x, r) is the ball centered inx with radiusr, and|B| is its measure.

In the sequel,we always assume2 thatw ∈ Ap. In this case, the space defined by

W 1,p(Ω; µ) =
{

f ∈ Lp(Ω; µ) : ∇f ∈ Lp(Ω; µ)3
}

, (A.1)

wheredµ(x) = w(x)dx, has the following density property:

Lemma A.2.1 (Density of smooth functions).W 1,p(Ω; µ) is a reflexive Banach space; moreover it
is the completion ofC∞(Ω) with respect to the norm‖ · ‖W 1,p :

W 1,p(Ω; µ) = C∞(Ω).

Definition A.2.2 (SpaceW 1,p
0 ). We define the spaceW 1,p

0 (Ω; µ) ⊂ W 1,p(Ω; µ) as the completion of
C∞

0 (Ω) with respect to the norm‖ · ‖W 1,p .

In this space the following inequality holds:

Theorem A.2.1 (Poincaré inequality inW 1,p
0 (Ω; µ)). There exists a constantC = C(Ω, µ) > 0

such that:
∫

Ω
|u|pdµ ≤ C

∫

Ω
|∇u|pdµ ∀u ∈ W 1,p

0 (Ω; µ).

The next result gives a sufficient condition for continuous embeddings tohold between spaces
having different weights:

Lemma A.2.2. If µ2 ≤ Cµ1, C > 0, thenW 1,p(Ω; µ1) ↪→ W 1,p(Ω; µ2). In particular, if there are
positive constantsC1, C2 such that

C1µ
−1
1 ≤ µ2 ≤ C2µ1

thenW 1,p(Ω; µ1) andW 1,p(Ω; µ2) are isomorphic:

W 1,p(Ω; µ1) ' W 1,p(Ω; µ2).

1See for instance [38, ch. 1], where the spacesH1,p(Ω; µ) are introduced; here we always considerp = 2. We point out
that weight functions of the typedist(x, M)α are considered in [51], but only forM ⊂ ∂Ω with some special regularity
assumptions onM .

2 The main advantage of this assumption is that ifw ∈ Ap the space defined by (A.1) is the completion ofC∞(Ω). If
w /∈ Ap, one usually definesW 1,p(Ω; µ) = C∞(Ω), but this space does not coincide with (A.1) anymore.
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Finally, one can show that forp > 1, W 1,p(Ω; µ) is sequentially weakly compact. And forp = 2
a weighted Rellich-Kondrachov theorem holds (see [48], th. 8 withp = q = 2):

Theorem A.2.2. Suppose that{ui} is a bounded sequence inW 1,2(Ω; µ). Then there is a subse-
quence{uik} and a functionu ∈ W 1,2(Ω; µ) such thatuik → u strongly inL2(Ω; µ) and∇uik → ∇u
weakly inL2(Ω; µ)3. Moreover, if{ui} ⊂ W 1,2

0 (Ω; µ) thenu ∈ W 1,2
0 (Ω; µ).

A.3 SpacesH1
α(Ω)

In this work, spacesW 1,p(Ω; µ) with p = 2 and measureµ = µα defined bydµα = dist(x, Λ)2αdx
need a special attention. Below, we list some properties that are useful for our purposes. It is known
that the function|x|γ : R3 → R is anA2 weight if −3 < γ < 3. The distance from a line is “less
integrable” than the distance from a point, but one can easily show thatdist(x, Λ)2α is aA2 weight at
least for|α| < 1:

Property A.3.1. If −1 < α < 1, then the weight functiondist(x, Λ)2α is A2.

The corresponding weighted Sobolev space is a Hilbert space:

Definition A.3.1. Let |α| < 1; we define

H1
α(Ω) := W 1,2(Ω; µα).

H1
α(Ω) is an Hilbert space endowed by the scalar product

(u, v)H1
α(Ω) =

∫

Ω
u(x)v(x)dµα(x) +

∫

Ω
∇u(x) · ∇v(x)dµα(x).

Consider a subsetG ⊂ Ω and suppose thatdmin ≤ dist(x, Λ) ≤ dmax ∀x ∈ G, beingdmax,
dmin positive constants. Letu ∈ H1

α(Ω); sinceu|G ∈ W 1,2(G; µα) with ‖u‖W 1,2(G;µα) ≤ ‖u‖H1
α(Ω),

the restriction operator|G is continuous. Moreover, by property A.2.2 we have thatW 1,2(G; µα) '
H1(G): therefore,|G is a continuous operator fromH1

α(Ω) to H1(G). Let γ̃ be the standard trace op-
erator (see for instance [57]) fromH1(G) to H1/2(∂G): the map defined byγu = γ̃u|G is continuous
from H1

α(Ω) to H1/2(∂G), being the composition of the following continuous linear mappings:

H1
α(Ω)

|G−−→ W 1,2(G; µα)
'−→ H1(G)

γ̃−→ H1/2(∂G).

Moreover,γ satisfiesγu = u|∂G for eachu ∈ C∞(Ω), and it is unique due to the density ofC∞(Ω)
in H1

α(Ω).
If ε = dist(∂Ω, Λ) > 0, these considerations hold withG = {x ∈ Ω : dist(x, ∂Ω) < ε/2} (as

∂G is Lipschitz). Since∂Ω ⊂ ∂G, we have a well-defined trace operator:

Property A.3.2 (Trace operator). Let |α| < 1, anddist(∂Ω, Λ) > 0. Then there exists a unique
linear continuous map

γ : H1
α(Ω) → H1/2(∂Ω)

such thatγu = u|∂Ω for each smooth functionu ∈ C∞(Ω).

An interesting property of spacesH1
α(Ω) is that for every−1 < α < 0, a function inH1

α(Ω)
admits a “trace onΛ”, as stated by lemma 4.1.1. As a consequence, thanks to theorem A.2.2, we have
the following Poincaré inequality inH1

α(Ω), −1 < α < 0:
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Property A.3.3. Let−1 < α < 0; then there exists a positive constantC such that

∫

Ω
|u|2dµα ≤ C

(∫

Λ
|u|2dΛ +

∫

Ω
|∇u|2dµα

)

∀u ∈ H1
α(Ω).

Proof. If not, we could find a sequence{un} ⊂ H1
α(Ω), un 6= 0, such that

1

n

∫

Ω
|un|2dµα >

∫

Λ
|un|2dΛ +

∫

Ω
|∇un|2dµα ∀n ∈ N.

Let ũn := un/‖un‖L2
α(Ω); then

1

n
>

∫

Λ
|ũn|2dΛ +

∫

Ω
|∇ũn|2dµα ∀n ∈ N. (A.2)

The sequence{ũn} is bounded inL2
α(Ω), hence inH1

α(Ω) thanks to (A.2). Therefore, by theorem
A.2.2, there is a subsequence{unk

} and a functionu ∈ H1
α(Ω) such thatunk

→ u strongly in
L2

α(Ω) and∇unk
→ ∇u weakly inL2

α(Ω)3. In particular,unk
→ u weakly inH1

α(Ω); sinceγΛ is a
continuous linear operator, we have

γΛunk
→ γΛu weakly inL2(Λ). (A.3)

Thanks3 to (A.2), ∇u = 0 so thatu is a constant. Then, using (A.2, A.3) in the same way, we get
∫

Λ u2dΛ = 0 so thatu = 0. This is a contradiction, since‖u‖L2
α(Ω) = lim ‖unk

‖L2
α(Ω) = 1 (due to

theL2 convergence).

Finally, it is possible to prove the following imbedding theorem:

Lemma A.3.1. Let0 < α < 1; there exists a positive constantC, depending only onα, such that

‖u‖L2
α−1(Ω) ≤ C‖u‖H1

α(Ω) ∀u ∈ H1
α(Ω).

Moreover,C = O(α−1) for α → 0+.

Proof. We recall the following Hardy’s inequality (see [36]), holding for everymeasurable positive
functionf , andp > 1:

∫ ∞

0

(

1

r

∫ ∞

r
f(t)dt

)p

rβ dr ≤
(

p

β + 1 − p

)p ∫ ∞

0
f(r)prβ dr if β > p − 1. (A.4)

We consider the three subdomains (3.2) separately. Letϕ ∈ C∞(Ω), with supp(ϕ) ⊂ ΩR
v,0: using

local cylindrical coordinates inΩR
v,0 we have

rα−1ϕ(s, r, θ) = rα−1

(

ϕ(s, R, θ) −
∫ R

r

∂ϕ

∂r
(s, t, θ)dt

)

= rα−1

∫ R

r

∂ϕ

∂r
(s, t, θ)dt

3 The norm in a Hilbert space is weakly lower semicontinuous, so that

‖∇u‖2
L2

α(Ω) ≤ lim inf
k

‖∇unk
‖2

L2
α(Ω) ≤ lim inf

k

1

nk
= 0.
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sinceϕ(s, R, θ) = 0. Squaring and integrating onΩR
v,0 (wheredist(x, Λ) = r) we have

∫

ΩR
v,0

dist(x, Λ)2(α−1)ϕ(x)2rdsdr ≤
∫

ΩR
v,0

(∫ R

r

∂ϕ

∂r
(s, t, θ)dt

)2

r2α−1dsdrdθ. (A.5)

Choosing in (A.4)f(t) = |∂ϕ(s, t, θ)/∂r| for t ∈ (0, R], f(t) = 0 for t > R, p = 2 andβ = 2α + 1,
we get

∫

ΩR
v,0

(∫ R

r

∂ϕ

∂r
(s, t, θ)dt

)2

r2α−1dsdrdθ ≤ 1

α2

∫

ΩR
v,0

(

∂ϕ

∂r
(s, t, θ)

)2

r2αdsdrdθ. (A.6)

From (A.5) and (A.6) we have

‖ϕ‖L2
α−1(ΩR

v,0) ≤
1

α
‖∇ϕ‖L2

α(Ω). (A.7)

A similar proof gives, for smooth functionsϕ supported inΩR
v,i, i = 1,2.

Considerϕ ∈ C∞(Ω), with supp(ψ) ⊂ Ω
R/2
t = Ω\ΩR/2

v . Since

dist(x, Λ) ≥ R

2
> 0 ∀x ∈ Ω

R/2
t

we have

‖ϕ‖
L2

α−1(Ω
R/2
t )

≤
(

R

2

)α−1

‖ϕ‖L2
α(Ω). (A.8)

Now considerϕ ∈ C∞(Ω). Let{ψ0, . . . , ψ3} be a partition of the unity associated to the covering

Ωv,i, i = 0, 1, 2, andΩ
R/2
t . Using (A.7) and (A.8) forψjϕ, we can prove the estimate

‖ϕ‖L2
α−1(Ω) ≤ C‖ϕ‖H1

α(Ω).

Since smooth functions are dense inH1
α(Ω), this estimate extends tou ∈ H1

α(Ω). Finally, from A.7 it
follows thatC = (α−1) for α → 0+.

A.4 Něcas theorem

We recall the following theorems (see [67], [5], [85]):

Theorem A.4.1 (Něcas). Let H1 andH2 be two Hilbert spaces,F ∈ H ′
2 be a bounded linear func-

tional onH2 anda(·, ·) be a bilinear form onH1 × H2 such that

|a(u, v)| ≤ C1‖u‖H1‖v‖H2 ∀(u, v) ∈ H1 × H2, (A.9)

sup
u∈H1

a(u, v) > 0 ∀v ∈ H2, v 6= 0, (A.10)

sup
‖v‖H2

≤1
a(u, v) ≥ C2‖u‖H1 ∀u ∈ H1, (A.11)

whereC1 andC2 are positive constants. Then there exists exactly oneu ∈ H1 such that

a(u, v) = F (v) ∀v ∈ H2,

which depends linearly and continuously onF :

‖u‖H1 ≤ 1

C2
‖F‖H′

2
.
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Theorem A.4.2. Let the assumptions of theorem A.4.1 be fulfilled. Furthermore letM1 ⊂ H1, M2 ⊂
H2, both closed subspaces. Assume that

sup
u∈M1

a(u, v) > 0 ∀v ∈ M2,

sup
v∈M2

‖v‖H2
≤1

a(u, v) ≥ Ĉ2‖u‖H1 ∀u ∈ M1,

whereĈ2 = Ĉ2(M1, M2) is a positive constant. Consideru ∈ H1, û ∈ M1 such that

a(u, v) = F (v) ∀v ∈ H2

and
a(û, v) = F (v) ∀v ∈ M2.

Then

‖u − û‖ ≤
(

1 +
C1

Ĉ2

)

inf
ũ∈M1

‖u − ũ‖. (A.12)
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[19] T. Corno, V. Milišić, A. Quarteroni, and L.K. von Segesser. The non-circular shape of
FloWatch-PAB prevents the need for pulmonary artery reconstruction after banding. Computa-
tional fluid dynamics and clinical correlations.Eur. J. Cardiothorac. Surg., 29(1):93–99, 2006.

[20] C. D’Angelo and V. Milišíc. Reduced model for a coupling of axisymmetric Navier-Stokes
equations with a reaction diffusion model for concentration. Internal report 02.2006, EPFL
(École Polytechnique Fédérale de Lausanne), 2006.

[21] C. D’Angelo and Y. Papelier. Mathematical modelling of the cardiovascular system and skeletal
muscle interaction during exercise.ESAIM:Proceedings, 14:78–88, 2005.

[22] L. Davis. The Handbook of Genetic Algorithmms. Van Nostrand Reingold, New York, 1991.

[23] J. Donea, S. Giuliani, H. Laval, and L. Quartapelle. Time-accurate solutions of advection-
diffusion problems by finite elements.Comp. Meth. Appl. Mech. Engng., 45:123 145, 1984.

[24] Donald A. Drew and Stephen L. Passman.Theory of multicomponent fluids, volume 135 of
Applied Mathematical Sciences. Springer-Verlag, New York, 1999.

[25] M.L. Ellsworth, A.S. Popel, and R.N. Pittman. Assessment and impact of heterogeneties of
convective oxygen transport parameters in capillaries of striated muscle:Experimental and
theoretical.Microvasc. Res., 35(3):341–362, 1988.

[26] M. Engelen, J. Porszasz, M. Riley, K. Wasserman, K. Maehara,and T.J. Barstow. Effects of
hypoxic hypoxia onO2 uptake and heart rate kinetics during heavy exercise.J Appl Physiol.,
81:2500–2508, 1996.

[27] D.R. Enzmann, M.R. Ross, M.P. Marks, and N.J. Pelc. Blood flow in major cerebral arteries
measured by phase-contrast cine MR.AJNR Am. J. Neuroradiol., 15:123–129, 1994.

[28] R. Fahrig, H. Nikolov, A.J. Fox, and D.W. Holdsworth. A three-dimensional cerebrovascular
flow phantom.Biorheology, 26(8):1589–1599, 1999.

[29] M. Fernández, V. Milisíc, and A. Quarteroni. Analysis of a geometrical multiscale blood flow
model based on the coupling of ODE’s and hyperbolic PDE’s.SIAM J. on Multiscale Model.
Simul., 4(1):215–236, 2005.



BIBLIOGRAPHY 165

[30] L. Formaggia, D. Lamponi, and A. Quarteroni. One dimensional modelsfor blood flow in
arteries.Journal of Engineering Mathematics, 47(3):251–276, Dec 2003.

[31] L. Formaggia, F. Nobile, A. Quarteroni, and A. Veneziani. Multiscalemodeling of the cir-
culatory system: a preliminary analysis.Computing and Visualisation in Science, 2:75–83,
1999.

[32] C. W. Gear and D. R. Wells. Multirate linear multistep methods.BIT, 24(4):484–502, 1984.

[33] H.J. Green, R.L. Hughson, G.W. Orr, and D.A. Ranney. Anaerobic threshold, blood lactate,
and muscle metabolites in progressive exercise.J. Appl. Physiol., 54(5):1032–1038, 1983.

[34] A.C. Guyton.Textbook of Medical Physiology. W.B. Saunders Company, Philadelphia, 1981.

[35] J. Hansen, M. Sander, and G.D. Thomas. Metabolic modulation of sympathetic vasoconstric-
tion in exercising skeletal muscle.Acta Physiol. Scand., 168:489–503, 2000.

[36] G. Hardy, J.E. Littlewood, and G. Polya.Inequalities. Cambridge University Press, 1966.

[37] M. Hargreaves. Skeletal muscle metabolism during exercise in humans. Clinical and Experi-
mental Pharm. and Physiol., 27:225–228, 2000.

[38] J. Heinonen, T. Kilpeläinen, and O. Martio.Nonlinear potential theory of degenerate elliptic
equations. Oxford Science Publications, 1993.

[39] R. Heinrich and S. Schuster.The regulation of cellular systems. Chapman & Hall, New York,
1996.

[40] Goldbaum M. Hoover A, Kouznetsova V. Locating blood vessels in retinal images by piecewise
threshold probing of a matched filter response.IEEE Trans Med Imaging., 19(3), 2000.

[41] H. Hoppeler and E.R. Weibel. Structural and functional limits for oxygen supply to muscle.
Acta Physiol. Scand., 168:445–456, 2000.

[42] C. Houck and J. Joines. A Genetic Algorithm for Function Optimization: AMatlab Implemen-
tation. Technical paper NCSU-IE TR 95-09, NC State University, 1995.

[43] J.M. Huyghe, C.W. Oomens, and K.H Van Campen. Low Reynolds number steady state flow
through a branching network of rigid vessels: II. A finite element mixture model. Biorheology,
26(1):73–84, 1989.

[44] J.M. Huyghe, C.W. Oomens, K.H. Van Campen, and R.M. Heethaar. Low Reynolds number
steady state flow through a branching network of rigid vessels: I. A mixturetheory. Biorheol-
ogy, 26(1):55–71, 1989.

[45] J.M. Huyghe and D.H. Van Campen. Finite deformation theory of hierarchically arranged
porous solids. 2. Constitutive behavior.Int. J. Eng. Sci., 33:1873–1886, 1995.

[46] J. Keener and J. Sneyd.Mathematical Physiology. Springer, New York, 1998.

[47] A.-R.A. Khaled and R. Vafai. The role of porous media in modelling flow and heat transfer in
biological tissues.Int. J. of Mass and Heat Transfer, 46:4989–5003, 2003.



166 BIBLIOGRAPHY

[48] T. Kilpeläinen. Smooth approximation in weighted Sobolev spaces.Comment. Math. Univ.
Carolinae, 38(1):29–35, 1997.

[49] B. Korzeniewski and J.A. Zoladz. A model of oxidative phosphorylation in mammalian skeletal
muscle.Biochem. Chem., 92:17–34, 2001.

[50] P. Krustrup, R.A. Ferguson, M. Kjaer, and J. Bangsbo. ATP and heat production in human
skeletal muscle during dynamic exercise: higher efficiency of anaerobicthan aerobic ATP
resynthesis.J Physiol., 549(Pt. 1):1255–269, 2003.

[51] A. Kufner. Weighted Sobolev Spaces. Wiley, 1985.

[52] M.J. Kushmerick. Energy balance in muscle activity: Simulation of ATPase coupled to oxida-
tive phosphorylation and to creatine kinase.Comparative Biochem. and Physiol., 120:109–123,
1998.

[53] M.J. Lambeth and M.J. Kushmerick. A computational model for glycogenolysis in skeletal
muscle.Ann Biomed Eng., 30:808–827, 2002.

[54] J.S. Lee and T. Skalak, editors.Microvascular Mechanics. Springer-Verlag, 1990. Hemodi-
namics of systemic and pulmonary circulation.

[55] C. Lenter, editor.Geigy Scientific Tables, volume 3. Medical Education Division, Ciba-Geigy,
New Jersey, 1982.

[56] T.-T. Li. Global classical solution for quasilinear hyperbolic systems. Research in Applied
Mathematics. Wiley, New York, 1994.

[57] J.L. Lions and E. Magenes.Problèmes aux limites non homogènes et applications, 1. Dunod,
Paris, 1968.

[58] K. Lu, J.W. Clark, J.R., F.H. Ghorbel, D.L. Ware, J.B. Zwischenberg, and A. Bidani. Whole-
body gas exchange in human predicted by a cardiopulmonary model.Cardiov. Eng., 3:1–19,
2002.

[59] E. Magosso, A. Feliciani, and M. Ursino. A mathematical model of cardiovascular response to
dynamic exercise. InProceedings of the23rd Annual Conference of the IEEE Engineering in
Medicine and Biology Society, 2001.

[60] P.J. Martin, D.H. Evans, and A.R. Naylor. Measurement of blood flow in the basal cerebral
circulation: Advantages of transcranial color-coded sonography over conventional transcranial
Doppler.J. Clin. Ultrasound, 23:21–26, 1995.

[61] V.G. Maz’ja. Sobolev Spaces. Springer-Verlag, Heidelberg, 1986.

[62] B. J. McGuire and T. W. Secomb. A theoretical model for oxygen transport in skeletal muscle
under conditions of high oxygen demand.J Appl Physiol, 91(5):2255–2265, 2001.

[63] F. Migliavacca, G. Pennati, G. Dubini, R. Fumero, R. Pietrabissa, G.Urcelay, E.L. Bove, T.Y.
Hsia, and M.R. de Leval. Modeling of the norwood circulation: effects of shunt size, vascular
resistances, and heart rate.Am. J. Physiol. Heart Circ. Physiol., 280(5):H2076–H2086, May
2001.



BIBLIOGRAPHY 167
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