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Abstract

Hot cracking is a spontaneous failure of an alloy during solidification. It is a severe
problem for casting industry as it reduces the productivity of cast houses and limits the
range of alloys compositions that can be industrially produced.

Hot tears occurs at the end of solidification, when solid grains are separated by thin
liquid films. At this stage of solidification, fluid flow between the grains is difficult
and the solid network is not continuous enough to transmit stresses. The material is
extremely brittle. Moreover, the deformation induced by the thermal shrinkage of the
material tends to localize in hot spots, i.e., in zones which solidify at last. These zones
become in tension and the concomitant effect of the tensile stress with the intrinsic
brittleness of the material result in a hot crack. Even though the general mechanisms
of hot tearing are understood, the importance of each physical parameter remains ill
defined.

The present work is mainly focused on the derivation of a granular model of mushy
zone (the zone where solid and liquid coexist) for aluminium alloys, i.e., a model which
explicitly considers the behaviour of each grain while being sufficiently simple to al-
low the computation of large mushy zones. First, a solidification model based on the
Voronoi diagram of a random set of nuclei is derived. This model computes the so-
lidification in each polyhedron considering back-diffusion and coalescence. Second, a
pressure drop calculation is performed in the network of connected liquid channels as-
suming the centre of solid grains to be fixed. This model considers a Poiseuille flow in
each channel, Kirchhoff’s conservation of flow at nodal points and flow Losses compen-
sating solidification (KPL model). Finally, the displacement of the solid grain centres
is considered and the mechanical behaviour of the mushy zone is computed assuming
perfectly rigid solid grains.

This model shows the progressive formation of grain clusters and the localization
of fluid flow at high solid fraction. Therefore, it allows to define transitions in the be-
haviour of the mushy zone. These transitions are essential for hot cracking models, but
should be introduced as parameters in continuum approaches. Finally, the mechanical
model shows a strong localization of deformation in liquid channels normal to the stress
direction. Such channels create ideal sites for the nucleation and the propagation of hot
cracks.

Keywords :
Hot cracking, Permeability, Solidification, Percolation, Granular model
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Résumé

La fissuration à chaud est une rupture spontanée d’un alliage métallique lors de sa so-
lidification. C’est un problème grave pour l’industrie car il réduit la productivité des
fonderies et limite la gamme de composition des alliages qui peuvent être produits in-
dustriellement.

La fissuration à chaud se produit à la fin de la solidification lorsque les grains de
solides sont séparés par de fins films de liquide. A ce point, l’écoulement du liquide
est difficile et le réseau de solide n’est pas suffisamment continu pour transmettre des
contraintes. Le matériau est extrêmement fragile. De plus, les déformations induites
par le retrait thermique tendent à se localiser dans des points chauds, i.e., les zones
se solidifiant en dernier. Ces zones sont donc soumises à de fortes contraintes en ten-
sion qui, étant donnée la fragilité intrinsèque du matériau, engendrent une fissuration à
chaud. Bien que le mécanisme général de la fissuration à chaud soit bien compris, le
rôle respectif de chaque phénomène physique reste mal défini.

Ce travail de thèse s’est principalement concentré sur le développement d’un mod-
èle granulaire de la zone pâteuse (la zone où le liquide et le solide coexistent), i.e., un
modèle qui prend en compte le comportement de chaque grain tout en restant suffisam-
ment simple pour permettre le calcul de grandes zones pâteuses. Tout d’abord, nous
dérivons un modèle de solidification basé sur le diagramme de Voronoi d’un ensem-
ble de germes répartis aléatoirement. Ce modèle calcule la solidification dans chaque
polygone en considérant la rétro-diffusion ainsi que la coalescence des grains. Ensuite,
un calcul de la chute de pression dans le réseau des canaux de liquide est effectué en
considérant que les centres des grains de solide sont fixes. Ce modèle considère un
écoulement de Poiseuille dans chaque canal, la loi de Kirchhoff pour la conservation
des flux à chaque noeud du réseau et des Pertes de flux induites par le retrait de so-
lidification (modèle KPP). Finalement, nous considérons le déplacement des grains de
solide tout en supposant que ces grains restent parfaitement rigides.

Ce modèle montre la formation progressive d’amas de grains et la localisation du
flux de liquide à forte fraction de solide. Ces phénomènes permettent de définir des
transitions dans le comportement de la zone pâteuse. Ces transitions sont essentielles
pour les modèles de fissuration à chaud mais sont introduites en tant que paramètres
dans les approches continues. De plus, le modèle mécanique montre une forte locali-
sation de la déformation dans des canaux de liquide orientés perpendiculairement à la
direction des contraintes. De tels canaux créent des sites idéaux pour la germination et
la propagation des fissures à chaud.

Mots clés :
Fissuration à chaud, Perméabilité, Solidification, Percolation, Modèle granulaire
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Chapter 1

Introduction

1.1 Aluminium

1.1.1 Aluminium history
Aluminium represents 8% of the Earth crust mass, that is the third most abounding
element after oxygen (47%) and silicon (28%). It is found in nature in various oxidized
form, e.g., aluminium silicates which are the basic constituent of clay. The industrial
production of aluminium starts from bauxite, the main constituent being aluminium
hydroxides Al(OH)3, AlO(OH).

The name of aluminium comes from alum, which denominates the family of alu-
minium bi-sulphates, e.g., KAl(SO4)212(H2O). These compounds were used since the
very early antiquity for the fixation of colour in dyeing processes and as an astringent in
medicine [1]. These properties were already mentioned in ancient Assyrian and Egyp-
tian texts [2]. Today colours produced by petrochemistry are much cheaper than natural
colours and alum has lost its strategical position in textile industry. Yet, this product is
still used as a flocculation agent in water purification processes.

Figure 1.1: Various representations of alum in hieroglyph script [2].

The first reference to a metal “ very light, and almost as bright as silver ” is found
in Historia Naturalis of Pliny the Elder: A goldsmith presented to the Emperor Tiberius
a plate made of this metal. He told the emperor that he made this metal out of clay and
that only he and the gods knew how to do it. Tiberus, as a financial expert, became
afraid that the production of this new metal decreased the value of the gold and silver
he had accumulated. He therefore ordered the goldsmith to be beheaded [3].

Because of its very high electro-positivity, aluminium is difficult to reduce and the
presence of metal in alum remained an open question during all the Middle Age. It is
only in 1808 that Sir Humphry Davy identified the existence of this metal. He named
it alumium and later aluminum. The first synthesis of aluminium was probably done
in 1821 by the Danish Oersted via the reaction of aluminium chloride with potassium,
but the results of his work were contested. In 1827, based on Oersted works, Friedrich
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1xxx : Almost pure aluminium (at least 99 % of aluminium in mass)
2xxx : Al-Cu alloys
3xxx : Al-Mn alloys
4xxx : Al-Si alloys
5xxx : Al-Mg alloys
6xxx : Al-Mg-Si alloys
7xxx : Al-Zn-Mg alloys
8xxx : Miscellaneous series that contains in particular the Al-Li alloys

Table 1.1: Standard nomenclature of wrought aluminium alloys

Wöhler produced globules of aluminium. In parallel, Pierre Berthier, discovered that
the mineral present near the village Les Baux de Provence in the south of France was
mainly an aluminium hydroxide. Sainte-Claire Deville improved the reduction process
of Wöhler and created in 1858 a process to produce alumina (aluminium oxide Al2O3)
out of bauxite. With funding from the emperor Napoleon III he created an aluminium
manufacture in Salindres, a village near les Baux de Provence. With this chemical
process, the industry of aluminium developed in France, Germany and Great Britain.

In 1886, Paul Héroult (France) and Charles Hall (USA) simultaneously deposited
a patent for the reduction of aluminium with an electrolytic process. In this process,
alumina is dissolved in a bath of molten cryolite. An electric current is passed through
the bath and molten aluminium deposits at the cathode while the consumable graphite
anode reacts with dioxygen, thus producing CO2. The two first companies exploiting
this technology are funded in 1888, in the USA (The Pittsburgh Reduction Company)
and in Switzerland (Société Anonyme pour l’Industrie de l’Aluminium). The last key-
stone for the production of aluminium was done by Bayer in 1890 who developed a
simple and efficient process for the extraction of alumina out of bauxite. Nowadays,
the Bayer process and the Hall-Héroult process are still the base of primary aluminium
production.

1.1.2 Aluminium alloys
Aluminium has many interesting intrinsic properties. It is a light metal, with a low
melting point. It has good thermal and electrical conductivity. Despite its high electro-
positivity, its oxidation forms an impermeable layer of alumina that protects from fur-
ther corrosion. Moreover, aluminium exhibits a pleasant surface finish, that can be im-
proved by various surface treatments. As a pure substance, aluminium is an extremely
malleable and ductile metal. Addition of allowing elements can considerably increases
its strength but necessarily modify the other properties of the metal. Therefore, a large
range of aluminium alloys have been developed.

Cast alloys are distinguished from wrought alloys. Cast alloys are directly cast
to their definitive form (sand casting, high pressure die casting, investment casting).
Wrought alloys are cast into simple shapes and are transformed by subsequent mechan-
ical treatments (rolling, extrusion, forging). Wrought alloys are identified with a four
digit number where the first digit indicates the major alloying element (Table 1.1).

The alloys of the series 2xxx, 6xxx, 7xxx are precipitation hardening alloys and thus
exhibit high strength. The 2xxx and 7xxx alloys have the best mechanical properties
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and are used in applications where high specific properties are required (aeronautics,
aerospace, transport, military applications). Yet, the presence of copper in these alloys
increases their sensitivity to corrosion. The 6xxx have lower mechanical properties but
have very good forming abilities and a good resistance to corrosion. There are thus used
for profiled products. They can also be used as electrical conductors.

The other series are hardened by mechanical treatment. The 1xxx alloys are mainly
used for their ability to be cold formed. They are widely used for common goods (pack-
aging, cookware, heat exchangers, thin foils). High purity alloys (99.99 %) are used in
electronics and optics. The 3xxx series have the same applications as the 1xxx series but
with increased mechanical properties. The 5xxx series have relatively good mechanical
properties, a good welding ability and a good resistance to corrosion. Therefore, there
are used as structural elements. The Al-Si alloys (4xxx) are seldom used as wrought
alloys, but are intensively used as cast alloys [4, 5].

1.1.3 Aluminium production

Aluminium can thus develop a wide range of properties depending on the alloying ele-
ments and treatments (thermal and mechanical). This makes aluminium useful in var-
ious applications. They are distributed among (in mass percent of primary aluminium
production): 26 % transportation (aircraft, ship, rail road equipment, automotive), 20%
packaging (drink can, aluminium foil), 20% construction (bridge infrastructure, win-
dow and door frame, heating), 9% electricity (transmission line, transition tower) and
25 % other (furniture, sport equipment, machinery) [6].

World production of primary aluminium has almost tripled in the last 20 years.
During the year 2005, more than 30 millions tons of primary aluminium have been pro-
duced world wide. This production is distributed among: Africa 5%, North America
17%, Latin America 8%, Asia 10%(without China), West Europe 14 %, East/Central
Europe 13 % (including Russia Federation), Oceania 7%, China 24% [6]. Note that
today China is largely the world largest producer of aluminium. Its aluminium produc-
tion has almost doubled in three years. This phenomenon is certainly induced by the
fast industrial development of the country and thus its need for raw materials. Moreover
China has not signed the Kyoto’s agreements and therefore has not limitations for CO2

emissions.
Production of aluminium is extremely energy consuming, nowadays the electrolysis

of one ton of aluminium requires in average 15 MWh, which represents the annual
consumption of 4 average Swiss households. Recycling of aluminium scrap requires
only 5% of this energy. In 2005, recycled aluminium represents only around 1 % percent
of the total production [6]. With the increase of energy cost, recycling will become ever
more interesting from an economical point of view. In a way, each piece of aluminium
can be viewed as an energy storage.

1.2 Direct chill casting

Once aluminium has been separated from oxygen, the most frequent casting process for
producing wrought aluminium alloys is direct chill casting (DC casting, Fig. 1.2).
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Figure 1.2: The DC casting process [7].

1.2.1 The process

At the beginning of the process, an open mould is closed by a dummy block. Liquid
metal is poured from an oven to the mould via a feeder. A distribution bag ensures
an even and smooth flow of the liquid. Once a sufficient solid shell has formed, the
dummy block is pulled down. At this stage, the mould is closed by the solidified shell
itself. The metal is thus cooled in two steps: First, by contact with the mould (primary
cooling) and second by direct contact with the water jet (secondary cooling). While the
dummy block is pulled down, the level of liquid metal in the mould is kept constant by
a flux of liquid metal. Once the product has reached the maximum length, the process
is stopped. This process is used to cast billets of diameters up to almost 1 m and slabs
of section up tu 2000*600 mm2. The cast products are generally around 10 m long.

This process, inspired from steel continuous casting, was introduced for aluminium
alloys in 1936 [8]. It brings many advantages upon the traditional ingot casting. It
increases productivity as products are cast in a shape directly suitable for the subsequent
mechanical treatment , e.g., slabs can be directly hot rolled after scalping the rolling
faces. Moreover, it is possible to cast several products at the same time. It also increases
products quality. Surface aspect is enhanced and the very high cooling rate due to the
direct contact with water favours a fine grain structure.

1.2.2 Casting defects

DC casting is nonetheless a process that should be carefully controlled. Between pri-
mary and secondary cooling, the solid shell contracts and looses thermal contact (Fig.
1.2). Therefore the shell tends to partially remelt. Partial remelting (exudation Fig. 1.3
(1)) decreases the surface quality of the final product. Moreover, the start-up phase is a
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Figure 1.3: Phenomena controlling the quality of cast products (adapted from M.
Rappaz).

very sensitive phase during which many defects can be produced, or even worse, during
which water can flow in between the casting and the bottom block leading to a risk
of explosion. In order to control these problems, the DC casting process is nowadays
largely automatised [9].

Despite this control many phenomena are still limiting the DC casting process. As
temperature decreases, the material naturally shrinks and because of the very steep ther-
mal gradients this shrinkage is very inhomogeneous. This induces natural convection
in the liquid phase (besides forced convection), which, associated with microsegrega-
tion (composition variation of the alloy at the scale of the microstructure induced by
solidification), can result in macrosegregation (composition variation at the scale of the
product) (Fig. 1.3 (2)). This is clearly a problem as the final products will get non-
homogeneous properties. Similarly, the shrinkage inhomogeneity in the solid phase
induces deformation and residual stresses in the cast product (Fig. 1.3 (6)). These
stresses are dangerous for subsequent mechanical working (in particular sawing) and
have to be released with annealing treatment.

Microstucture forms during solidification, in the zone where both solid and liquid
coexist (Fig. 1.3 (3)). An art of metallurgist and casting engineer is to control this
microstucture formation. For example, the size of the grains can be decreased by the
presence of TiB2 (or TiC) particles which act as nucleation centres for the solid phase
(inoculation). Furthermore, during solidification two major casting defects can occur.
First porosity, i.e., formation of gaseous pockets, and second hot tearing which is the
main focus of this work.
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Figure 1.4: Hot cracking in a billet (From ALCAN CRV).

1.3 Hot tearing

Hot tearing is a spontaneous failure of an alloy during its solidification. It occurs near
the end of solidification and leaves an intergranular fracture profile. In the literature this
phenomenon can be called hot cracking, hot tearing or hot shortness. We are mainly
interested in hot cracks of aluminium alloys but this phenomenon is present in most
metallic system, e.g., steels, magnesium alloys, nickel based supper alloys, copper al-
loys.

1.4 Hot tearing in DC casting

Hot cracking is a severe defect for casting industry. Indeed, Fig. 1.4 shows an internal
hot crack which starts from the centre of the billet and spawns as a three branch star. It
is clear that a product with such a crack has to be remelted as scrap.

Precipitation hardening high strength alloys (2xxx, 6xxx, 7xxx series) are particu-
larly sensitive to hot tearing as explained in Sec. 3.1.5. Note that some work hardening
alloys, in particular in the 5xxx series, are also sensitive to hot cracking. Many com-
positions could give very good mechanical properties, but such alloys are so prone to
hot tearing that their industrialisation is not possible, i.e., poor castability. Thus, a high
strength commercial alloy is an equilibrium between final product properties and casta-
bility.

The occurrence of hot cracking presents a random nature. Therefore even under
very well controlled casting parameters, the casting of a sensitive commercial alloys
can create up to 10% scrap. Moreover small hot cracks can initiate dangerous cold
cracks (cracks driven by stress accumulation in the fully solid state).

1.4.1 Other processes

Hot cracking is a problem in welding processes. Not surprisingly, the aluminium alloys
sensitive to hot cracking in casting processes tend to crack during welding [4]. Welding
these alloys generally requires to add a soft filler material which considerably weakens
the welded joint.
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Figure 1.5: Hot crack at the final spot of a laser remelting experiment on an Al-Cu
alloy. Despite the very different scales, the similarity with hot cracking in a billet is
striking [10].

Figure 1.6: A raku pottery [12].

Welding experiments are generally difficult to interpret as they generate very com-
plex thermal and mechanical fields. Yet, because welding tests are easy and rapid, they
are a convenient way of testing the hot tearing sensitivity of a wide range of alloy com-
positions.

As the hot cracking phenomenon is common to all metallic systems, we might won-
der if non-metallic materials present similar phenomena during their solidification. One
poetic example is maybe the raku technique, i.e., a traditional Japanese glazing process.

In this process, the pottery it taken out of the oven when the glazing is liquid, and
is quickly put in a combustible substance such as sawdust or straw. The glazing is then
reduced by the smoke, which creates a wide range of colours and a metallic aspect.
Another consequence is the presence of multiple failures in the glazing, which creates
an aesthetic pattern. [11]

Hot cracking occurs in a 3D media, whereas raku cracking occurs in a 2D layer.
Moreover, it is an open question to know whether this failure occurs during solidifi-
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Figure 1.7: The various scales relevant for hot cracking formation. (a) Process (Fi-
nite Element simulation [14]) , (b) Microstructure (Pseudo Front Tracking simulation
[15]), (c) Coalescence of grains (Molecular Dynamics simulation [16]).

cation or once the glazing layer has solidified. A detailed observation of such glazing
shows that there are two networks of failures (Fig. 1.6), one of big failures and an
other one of smaller failures. It is possible that the first network is generated during
solidification whereas the second occurs afterwards.

1.5 The overall picture of hot cracking: goal of this the-
sis

1.5.1 A multi-scale problem
Hot cracking is probably a problem since the very early metallurgy. Yet, in 2006 casting
industry still needs research on this topic. This is maybe due to the large range of scales
implied in this phenomenon.

Thermal and mechanical fields are generated by the process. Therefore a good
description of the material and of the transport phenomena at this scale (∼ 1m) is nec-
essary.

In the mushy zone, i.e., the zone where both solid and liquid coexist, nucleation and
growth of primary phase can form a wide variety of microstructures, including columnar
dendrites, equiaxed dendrites or globular grains. Moreover, other phases can form, e.g.,
in eutectic or peritectic solidification [13]. Thus solidification models require a good
description of transport phenomena at the scale of the microstructure (∼ 10−4m).

The solidification of the last liquid films between two grains implies the bonding of
two crystal lattices. In the present work we call coalescence this formation of a grain
boundary out of two solid-liquid interfaces. Models for coalescence have to consider
interactions at the nanometer scale (∼ 10−9m).

In the present problem these different scales are particularly interdependent. Mi-
crostructure formation is highly dependent on macroscopic fields, in particular thermal
history. In return, microstructure determines macroscopic transport properties, in par-
ticular mechanical properties. For example, microstructure influences the coherency
solid fraction, i.e., the point above which significant stresses can be transmitted through
the solid network (see Sec. 2.3.6). Similarly, coalescence determines the transition from
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a fragile fracture behaviour to a ductile fracture behaviour, and thus have spectacular
influence on the macroscopic properties of the material (see Sec. 8.1).

Moreover during solidification a progressive transition from a continuous liquid
phase to a continuous solid phase occurs. This transition consist in the progressive
coalescence of solid grains and thus the formation of grain clusters. Near the percola-
tion transition, i.e., the formation of the continuous solid phase [17], the size of grains
clusters is close to the process size (see Sec. 4.1). The heterogeneity due to microscale
becomes macroscopic. This transition occurs near the end of solidification precisely in
the region sensitive to hot cracks.

Nowadays the basic phenomena implied in hot cracking are identified (see Chaps.
2 and 3). Yet, their respective importance is still not clearly understood. Indeed, it is
difficult to find a point of view which brings together the various scales of hot tearing.

1.5.2 Approach developed in the present thesis
We have decided to model each grain while keeping this model simple enough to com-
pute the behaviour of a large mushy zone. This approach is called a granular model.
Therefore, we will look at the mushy zone at the mesoscale, i.e., in between microscale
and macroscale.

The goal of this thesis is thus to provide an insight into the role of microstructure
in hot cracking and in particular to study the progressive formation of a continuous
solid phase. A good understanding of the phenomena at that scale should allow to
provide reliable constitutive equations for continuum approaches such as developed by
V. Mathier during his PhD thesis [18, 14] and therefore to bring together the different
scales of hot tearing.

1.5.3 Outline
This thesis is organized in a classical fashion.

• First part presents the basic knowledge necessary to an original work on hot tear-
ing. This includes a review on the present hot tearing knowledge and the presen-
tation of theoretical tools. This represents the roots of this work.

• Second part, the trunk and the branches, is devoted to the model development and
the description of the experimental set up.

• Third part presents the various applications of the model and their consequences.
Comparison with experiments and known tendencies will be presented. This rep-
resents the leaves of the work and I hope some fruits can be found in it.





11

Part I

The roots
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Chapter 2

Experimental investigation of hot
cracking

2.1 Parameters sensitivity

2.1.1 Process parameters
Naturally, the first experiences of hot tearing come from the casting practice. Hot tears
occur in hot spots, i.e., zones where the alloy solidifies last. These zones are weak as
compared to the fully solidified surrounding metal and thus concentrate deformations.

In billet DC casting process, three types of cracks can be found (see Fig. 2.1) [19]:

• Internal cracks. The solidified shell at the edges of the billet prevent the global
contraction. Shrinkage localises at the centre of the billet which becomes in ten-
sion and is thus prone to crack.

• Lateral cracks. Around the air gap the solidified shell remelts, creating a local
hot spot. Mechanical simulations show that the material is locally in tension due
to the intense secondary cooling. These cracks are more frequent in slabs than in
billets.

• Butt cracks. These cracks which form during the transient start-up phase are
difficult to prevent.

FEEDING SYSTEM

INGOT

MOULD

LIQUID METAL
POOL 

CHILL 
WATER

BOTTOM 
BLOCK 

MUSHY ZONE

BUTT CRACK

INTERNAL CRACK

Figure 2.1: Hot cracks formation spots in DC casting [19].
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(a) (b)

Figure 2.2: Hot cracking susceptibility tests. (a) Cold finger [21]. (b) Tatur test-tube
[22].

More generally, the start-up phase is decisive for the formation of hot cracks. Internal
cracks are generally initiated during this phase. Hot crack formation is very sensitive to
start-up acceleration, which should be as low as possible. Yet, a too slow start-up phase
can make the whole casting abort [19].

Casting speed is also an important parameter for hot cracking, large casting speed
favouring hot cracking. Increasing the casting speed makes the liquid pool deeper and
the lateral faces pull-in larger [20]. As another result, it brings more tension in the
central zone of the casting.

2.1.2 Alloy parameters
Alloy composition is an other parameter that controls hot cracking, even though com-
position is mainly dictated by the desired final product properties. Figure 2.2 shows two
devices to assess hot cracking susceptibility (HCS) of alloys.

In the cold finger experiment [21] (Fig 2.2(a)), a conical copper chill is immersed
into liquid metal. Liquid metal solidifies but its contraction is restrained by the chill
itself. Deformation localises in a hot spot created by an insulated band along the chill,
and thus only one crack forms. The length of this crack characterises the HCS of the
alloy.

Another classical approach is to cast constrained bars of different length [22] (Fig
2.2(b)). The longer the bar, the more intense is the shrinkage which localises in the hot
spot at the centre of the bar. The longest bar that did not crack characterises the HCS of
the alloy.

Another family of hot tearing tests measures an indicator during constrained solid-
ification. Clyne and Davies cast metal in a dog bone shaped mold [23]. The electrical
resistance of the sample is measured, which allows to quantify damage (Fig. 2.3(b)).

Instone et al. used a load cell to record the load in the bar, the maximum stress
recorded appear to be proportional to the alloy HCS [24]. In their apparatus, two bars
are cast with the same feeder, one to record temperature evolution, the other to do the
mechanical measurements. Moreover, the central feeder is close to the hot spot and can
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(a) (b)

Figure 2.3: Constrained solidification tests . (a) Instone et al. test [24].(b) Clyne et
al. test [23].
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Figure 2.4: Hot cracking susceptibility as a function of composition. (a) Al-Cu
alloys [25]. (b) Al-Cu-Mg alloys, the length reported correspond to the average
length of cracks measured in a constrained solidification test [27].

provide liquid metal as under real DC casting conditions.

Composition sensitivity

Figure 2.4(a) shows the HCS as a function of composition for Al-Cu alloys as measured
by Spittle et al. [25]. For pure aluminium, the HCS is very low. It increases sharply for
lean alloys, reach a maximum for a composition around 1wt% Cu. The HCS decreases
for composition over 3wt% Cu. Because of its shape this curve is called the lambda-
curve [26].

If we consider a more complex alloy such as Al-Cu-Mg, the trend of HCS is very
similar [27]. In this case the maximum is reached for an Al-2wt%Cu-1.5wt%Mg. At
high solute content, the HCS is very low.

This lambda-curve will be explained by the presence of a brittle range in which the
mushy zone has very low ductility and permeability (see Sec. 2.3.4). This brittle range
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is particularly important for low solute content alloys (see Sec. 3.1.5).

Grain morphology

The role of the grain size and morphology is well known in casting practice. Fine
globular microstructures have the lowest HCS. For equiaxed dendritic grains, this HCS
increases with the grain size. Finally, columnar grains are very sensitive to hot cracking,
in particular when tensile stresses are normal to their growth direction [28, 29].

Intermetallic phases

Intermetallic phases might have an important role in hot cracking. Indeed, they can
be denser than the liquid and induce an important shrinkage during solidification [30].
This is particularly important for eutectics which can solidify on a limited range of
temperature. Intermetallic phases can also have a role on the formation of a continuous
solid network and thus on the increase of the mushy zone strength (see Secs. 3.1.5 and
8.1.1).

Hydrogen

An increased concentration of hydrogen increases porosity [31] and thus increases the
number of nucleation sites for hot cracks. Therefore hydrogen is generally assumed to
increase the HCS [30]. Yet, inspired by observation on industrial castings, Barnett et
al. have measured the HCS for various hydrogen concentration in Al-Si alloys. They
observed significant reduction of HCS with the increase of hydrogen concentration for
an Al-1.6wt%Si alloy. This is maybe because porosity formation accommodate some
deformation and thus increases the ductility of the mushy zone.

Surface tension

Solid liquid surface energy has an important role on the shape of last liquid films [32]
and on the coalescence of solid grains [33]. This can have practical applications as only
a few ppm of surfactant elements can drastically modify the surface tension. Yet, the
study of these effects is only at its beginning (see Sec. 2.3.5).

2.2 Observation of hot cracking

2.2.1 Local observation

A detailed observation of the fracture profiles already provides a valuable insight in
the mechanism of hot tearing. Figure 2.5 shows Scanning Electron Microscope (SEM)
micrographies of hot tears fracture surfaces and gives an overview of the various obser-
vations reported in the literature [23, 28, 34].

The hot cracking fracture reveals smooth dendrites arms (Fig. 2.5(a))[28, 7]. Frac-
ture is thus inter-granular and the solid does not seem to have encountered apprecia-
ble deformation during fracture. Locally, a gap between two grains can be observed
[37, 38]. This observation is completed by the fact that the two sides of a hot tear do not
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(a) (b)

Figure 2.5: SEM pictures of hot tears surfaces. (a) Hot crack in a commercial 5182
alloy. The fracture has occurs during a billet casting [28]. (b) Spikes observed on a
Al-3wt%Cu fractured during a rig mold test experiment [35, 36].

Figure 2.6: A healed hot tear [35].

match anymore after the fracture. Thus, fracture induces deformation in the material
which is localised between grains.

Secondary phases can be observed on the dendrite surface as in Fig. 2.5(a). In this
present case, Al-MnFeMg and Al-MnFeMgSi precipitates have been identified [28].

Another observation characteristic of hot cracking is the presence of spikes on the
grains (Fig. 2.5(b)). They have well defined dimensions (∼ 20µm) and present a surface
rich in solute elements [35, 34].

In situ observations of hot tearing in transparent organic alloys (succinonitrile ace-
tone) have been done by I. Farup et al. [35] and Grasso et al. [7]. This alloy is very
useful as it melts at a low temperature, is transparent, and has solidification character-
istics very close to metallic systems. In these experiments, the alloy is directionally
solidified under a microscope. A stick is put in the melt and is used to pull apart den-
drites at different solid fractions (Figs 2.6-2.8 A). The applied deformation is localized
at a grain boundary (Figs 2.6-2.8 B).

When the stick is pulled at low solid fraction (Fig 2.6), the permeability of the mush
is relatively high and liquid can flow to fill the gap between the grains. This liquid
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Figure 2.7: First mechanism of hot tearing [35].

Figure 2.8: Second mechanism of hot tearing [35].

flow is lean in solute and equiaxed grains nucleate and quickly grow within the opened
channel (Fig 2.6 D). This phenomenon has been called “healed hot tear”.

At a higher solid fraction (Fig. 2.7), the permeability of the mush is too low and
liquid cannot flow to compensate deformation. The thin liquid film remaining between
the grains breaks down into menisci. These menisci can solidify and their subsequent
deformation forms spikes (Fig. 2.7 C).

Thin liquid films can remain at grain boundaries during a significant range of tem-
peratures (see Sec. 2.3.5). In the experiment represented on Fig. 2.8 deformation is
localised at such a grain boundary. A hot tear appears as an elongated pore without the
formation of a meniscus. Spikes (Fig. 2.8 C) are formed on the tear surface from the
rupture of solidified bridges.

These observations give two interpretations of spikes: 1◦) spikes result from the
solidification and rupture of liquid menisci , 2◦) spikes result from the plastic rupture
of small solid bridges between grains. The presence of copper rich regions around the
spikes indicates that mechanism 1 should be the most frequent [35, 34].

2.2.2 Macroscopic observations
A very interesting experiment has been carried out by Commet et al. [28]. A billet of
5182 alloy is DC cast with an continuously increasing speed. Once the casting speed has
reached a prescribed maximum it is continuously decreased. The speeds at which failure
appears (Initiation Speed IS) and disappears (Healing Speed HS) have been measured
for various compositions. In most cases, IS > HS which shows that initiation of hot
tears requires more energy than propagation.

Figure 2.9 shows optical observations of the hot crack at various positions in the
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Figure 2.9: Optical observation of crack at various height in the billet. The esti-
mated equivalent casting speed ve f f is mentioned [7].

billet, i.e., at various casting speeds. The apparent casting speed at the centre of the billet
ve f f has been estimated taking into account the thermal inertia of the system [28, 7]. At
very low casting speed, the billet is sound. As the casting speed increases, porosity
appears in the billet (Fig 2.9 (a)). This porosity develops and smoothly organises into
an annular configuration of microcracks (Fig 2.9 (b)). Then, these microcracks coalesce
in a half annular crack (Fig 2.9 (c)) and finally take a three branches star configuration.
For even higher casting speed, four branches stars have been reported and in processes
with extreme cooling rates, such as laser remelting, five branches stars can be observed
(see Fig. 1.5)[10].

The annular shape, the three branches stars or the five branches stars are probably
induced by the cylindrical symmetry of the billet and can represent different breakdown
nodes of the symmetric tension field [39]. This illustrates the multiscale nature of hot
tearing that has been presented in the introduction. We have observed in section 2.2.1
the microscopic mechanism of hot tearing. Here, we observe that hot tearing might
reflect the macroscale symmetry of the problem.

Moreover, these observations confirm the very ramified nature of hot cracks. They
also point out that hot tears might start with a progressive accumulation of damage in
the form of porosity.

The recent work of Phillion et al. [40] further illustrates this progressive formation
of hot cracks. The authors have done a tensile test on a 5182 commercial alloy remelted
up to 0.98 solid fraction. Each sample has been deformed to a given strain and observed
with an X-ray micro-tomographic device. Strains are localised in the hot spot at the
centre of the sample.

Figure 2.10 shows the microtomography of damage for various strains. The void
region appears in black. The as-cast structure presents some voids, i.e., microporosity
(Figs 2.10 (a)). The samples accommodate low strains by diameter reduction, but for
higher strain damage starts to develop. At 0.02 strain, consequent damages can be
observed, the number of pores in the sample is almost the same as in the as-cast sample
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Figure 2.10: Micro-tomographic reconstruction of the damage in 5182 commercial
alloy specimens strained to values of : (a) as-cast, (b) 0.02, (c) 0.06, (d) 0.16, (e)
0.20 [40].

but the pore size is significantly larger. Thus, damage is created by the growth of as-
cast porosity (Figs 2.10 (b)). For larger strain (0.06), this void growth continues but is
accompanied by the formation of new voids. At 0.16 strain, large macrocracks/hot tears
are present in the sample and at 0.20 strain, the sample is totally cracked (Figs 2.10 (b)).
See also Ref. [41] for other in-situ observations of hot cracking propagation.

2.3 Mushy zone rheology

2.3.1 Pure phases rheology
Liquid metals can be modelled as incompressible Newtonian fluids, i.e., stress and strain
are related by the following relationship:

←→τ = 2µ
←→
ε̇ (2.1)

where ←→τ is the deviatoric part of the stress tensor, µ the viscosity of the fluid and
←→
ε̇

the strain rate tensor. Liquid aluminium alloys have a low viscosity, on the order of
10−3 Pas at liquidus temperature [42].

At high temperature, solid metal have a very small elastic regime at low strain and
then exhibit a viscoplastic behaviour. If we neglect this elastic regime, stress and strain
are related by:

←→σD = K(
√

3ε̇eq)m−1←→ε̇ (2.2)

where K is the viscoplastic coefficient, m the strain rate sensitivity coefficient and ε̇eq

is the equivalent viscoplastic shear rate given by the second invariant of the strain rate
tensor. Note that if m = 1, we get a Newtonian fluid law with K = 2µ. For solid
aluminium alloys at the solidus temperature, m ≈ 0.3 and thus the solid behaves as a
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(a) (b)

(c) (d)

Figure 2.11: Various shear tests for mushy aluminium alloys: (a),(b) Couette vis-
cometer [43, 44], (c) translation shear test [45], (d) direct shear cell [46, 47].

non-Newtonian fluid whose equivalent viscosity µeq = 0.5K(
√

3ε̇eq)m−1 decreases with
shear rate (a shear thinning fluid). At the solidus temperature for an Al-8wt%Cu with a
typical strain rate of 10−3s−1, µeq ∼ 1010 Pas [43].

There is therefore more than 12 orders of magnitude between the apparent viscos-
ity of the solid and the viscosity of the liquid at the solidus and liquidus temperature
respectively. Solid can thus sustain large stresses with small strain rates, whereas in the
fluid small stresses induce large strains. Moreover, in the solid the small elastic regime
propagates stresses at the speed of sound in the material, and mechanical equilibrium
is quickly reached. In the liquid, shear stresses are transmitted by viscosity and fluid
advection, which can induce inertial regimes (high Reynolds numbers) and transient
regimes.

Even though we know well the mechanical behaviour of each phase, the behaviour
of their mixture is not an easy question as we shall see in the following section. Note
also that damage can form in the mush (see section 2.2), thus influencing its apparent
mechanical behaviour.

2.3.2 Shear tests

Shear tests generate pure shear and thus create a well-defined mechanical state in solid
or liquid materials. Therefore, it is natural to also investigate the behaviour of a mushy
zone with such tests. Moreover, it is relatively easy to contain liquid metal in these
tests, and thus no particular problem arises for in-situ solidification.
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Figure 2.12: Stress strain curve for an Al-7wt%Si-1wt%Cu at various solid frac-
tions. The experimental device is represented on Fig. 2.11(d). The sample is
sheared with a speed of 1.7 mm s−1 [46].

Figure 2.13: Evolution of rigidity (a) and strength (b) as a function of solid fraction
for various compositions [46].

Figure 2.11 shows some of the experiments developed for the shear behaviour in-
vestigation of mushy aluminium alloys. Couette viscometers have been developed by
Braccini et al. Fig. 2.11(a) [43] or Dahle et al. Fig. 2.11(b) [44]. In these experiments,
liquid metal is poured in a cylindrical crucible and a central cylinder is introduced in
the melt. At a given temperature, a rotation speed is imposed to one of the cylinder
(outer for Braccini et al., inner for Dahle et al.). The torque exerted on the inner cylin-
der is recorded. Such a test can be done at fixed temperature (isothermal tests) or upon
cooling (non-isothermal). In the test developed by Ludwig et al. [45] (Fig. 2.11(c)),
liquid metal is also poured between two cylinders but the inner cylinder is pulled in
the axial direction, generating a pure linear shear. Another example of linear shear test
has been developed by Nabulsi et al. [46, 47], inspired by the old work of Metz and
Flemings [48](Fig. 2.11(d) ). In their test, a fixed force is imposed to the upper part
of the crucible which can slide with respect to the lower part. These two last tests are
always isothermal.

Figure 2.12 shows the displacement-stress curves recorded by Sumitomo et al. on
a Al-7wt%Si-1wt%Cu alloy with the test of Fig. 2.11(d). The stress increases linearly,
reaches a maximum and for the relatively high solid fraction decreases to a steady state
value. The authors have called rigidity the slope of the linear stress response, and shear
strength the maximum stress recorded.
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Figure 2.14: Schematic evolution of strength with solid fraction for two extreme
grain morphology. [46, 49]

These two quantities are reported as a function of the solid fraction in Fig. 2.13 for
various Al-Si-Cu alloys. The strength starts to be measurable at a given solid fraction
which depends on the alloy composition (around gs = 0.2) and then increases linearly.
Above another solid fraction (around gs = 0.4), the strength increases more rapidly. It
is interesting to note that the evolutions of strength and rigidity have the same shape and
that the solid fractions at which transitions occur are the same for these two quantities.

The first transition occurs when the dendrite arms start to impinge. The solid net-
work is then able to bypass shear stresses. Solid grains are in contact locally but they
are still able to rotate and to rearrange. We will call this point shear coherency solid
fraction (gsc

s ).
The second transition has been interpreted by Dahle et al. [49] as the point where

dendrites become interlocked. At this point the solid grains form a dense structure, they
can not rearrange to form a more compact structure. Therefore these authors have called
this point maximum packing solid fraction (gpk

s ). Above gpk
s , permeability of the mush

starts to be significantly reduced and Sumitomo et al. have systematically observed
microcracks for samples sheared above gpk

s , but never for samples sheared below gpk
s

[46].
The influence of the alloy composition on the two transitions, gsc

s and gpk
s (Fig.

2.13) is mainly due to the grain morphology. Indeed, the Al-4wt%Si alloys presented
a globulo-dendritic morphology whereas the Al-7wt%Si alloys presented a dendritic
morphology. For a regular arrangement of spherical grains, maximum packing solid
fraction occurs at gpk

s = 0.74 [49]. For a highly inoculated alloys with globular grains
gsc

s ∼ 0.3 and gpk
s ∼ 0.6. For large dendritic grains gsc

s ∼ 0.15 and gpk
s ∼ 0.35 (See Fig.

2.14).
Figure 2.15 shows the stress strain curve of a fully solid Al-4.5wt%Cu at 530 ◦C and

of a mushy Al-8wt%Cu with 0.8 solid fraction [43]. These curves have been measured
by Braccini et al. with the set up of Fig. 2.11(a) and with a strain rate of 10−2 s−1.
These two alloys have been refined and have a fine globulitic microstructure. Because
of microsegregation, solid in the mushy Al-8wt%Cu alloy has a composition of approx-
imately 4.5wt% Cu. Therefore these curves allow to directly compare the mechanical
behaviour of the mushy zone with the behaviour of the solid phase alone.

The fully solid shows an ideal elastic-viscoplastic behaviour, the viscoplastic plateau
is reached after 1 % strain and is nearly horizontal (slight strain softening visible). The
stress in the mushy zone increases much more gently and a plateau is reached for 50 %
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Figure 2.15: Comparison between the stress strain curve of a fully solid Al-
4.5wt%Cu at 530 ◦C and a mushy Al-8 wt%Cu with 0.8 solid fraction [43].

strain. As already observed in Fig. 2.12, the stress increases linearly with strain. This
linear increase is interpreted as the progressive formation of solid to solid contacts. The
stress plateau reached in the mushy zone (3 MPa) is substantially lower than in the fully
solid alloy (15 MPa). The author has measured the strain rate sensitivity coefficient of
the mush and found it close to the fully solid one. Thus, this plateau is mainly dictated
by solid-solid contacts. It is nonetheless interesting to note how the presence of 20 %
liquid drastically modifies the behaviour of the material.

If we compare the curves of Figs. 2.12 and 2.15, we observe that their shape is
different. This is because the test reported in Fig. 2.15 is performed on a fine globu-
lar microstructure. For more dendritic microstructures, the authors report stress-strain
curves similar to those of Fig. 2.12. For dendritic grains the peak stress reflects structure
breakdown, whereas the plateau stress in globular microstructure reflects equilibrium
between formation and destruction of solid-solid contacts [43].

2.3.3 Compression tests

Compression tests can be divided into two classes, uniaxial compression and drained
compression [50]. In drained compression, the fluid can be expelled form the mushy
zone through a filter. In uniaxial compression, the liquid is constrained to stay within
the mushy zone. Both tests are useful to characterise the rheological behaviour of the
mushy zone [37]. Here, we only report the drained compression test carried out by
Ludwig et al. [37, 45].

In this test the liquid metal in the container is cooled down to the test temperature of
555 ◦C . Then, a piston presses the metal with an imposed velocity and liquid metal can
flow out of the sample. Different copper contents are used, thus allowing to test different
solid fractions (Fig. 2.16(a)). In this test, the stress state in the system is not perfectly
known as the radial stresses are not measured. Nonetheless, an analytical solution of
this mechanical problem has been derived by Drezet et al. [51] using the constitutive
law derived by Ludwig et al. (see Sec. 3.2.4). This test models the part of a casting that
is under compression and from which liquid is squeezed out.
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Figure 2.16: (a) Drained compression test. (b) compression curve obtained with
this test for Al-Cu alloys at 550 ◦C and a strain rate of 10−3s−1.

Figure 2.16(b) shows the compression curve for an Al-15wt%Cu, Al-12wt%Cu and
Al-8wt%Cu, which correspond to solid fractions at the beginning of the test of 0.62,
0.72 and 0.84 (compression expels liquid from the solid network and solid fraction in-
creases). It is very interesting to note that the three curves converge for a solid fraction
of 0.9. For the Al-8wt%Cu, the compression curve is stiffer above 0.9 solid fraction.
This is maybe because grain clusters are already present at the beginning of the com-
pression. Note also that the stresses measured are significantly larger than in shear tests.

2.3.4 Traction tests
Hot tearing is a failure under tensile stresses mainly. The understanding of mushy zone
tensile behaviour is thus essential. Yet, tensile tests are difficult to carry out because the
liquid metal of the mush has to be contained during the load. Several experiments have
been designed with different approaches that are illustrated in Fig. 2.17.

Figure 2.17(a) shows the apparatus designed by Spittle et al. [52]. It is a commercial
tensile machine (Housfield H10K-C), where an electric current coming from a Gleeble
machine is passed through the sample. The Gleeble machine uses the electrical resis-
tance of the sample to control temperature. The sample is heated up, remelted to a given
solid fraction, and tested. The advantages of this method are that no container is needed
for high solid fractions as the sample is never complely melted, and that the tempera-
ture field in the sample is well controlled. The disadvantage is that the microstructure
evolves and coarsens during remelting and thus is not the same as the solidified one.

In the apparatus used by Suéry’s group [45, 53] (Fig. 2.17(b)) the center of the sam-
ple is completely melted by induction heating and then cooled down with a constant
cooling rate to the desired solid fraction. Traction is performed isothermally. This de-
sign allows to test a solidification microstructure with fairly well controlled conditions.

Another approach has been developed by Engler et al. [54]. A mold is fixed between
the jaws of a tensile machine. Liquid metal is poured in the mold via a gating system.
The metal is cooled down by a copper chill on the top of the mold. Once a solidified
shell has formed on the top of the mold, the chill is removed and heat is mainly extracted
via the jaws of the tensile machine. Once the temperature at the center of the sample
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(a) (b) (c)

Figure 2.17: Three approaches of mushy zone tensile test. (a) partial remelting
[52], (b) complete remelting and solidification [53], (c) casting [54].

has reached the desired value, traction starts. This test has the advantage of creating
a real as-cast microstructure. The copper chill represents primary DC casting cooling,
that is followed by the formation of an air gap. Yet, the thermal field in the sample
is complex and the test is necessarily non-isothermal. A similar apparatus (rig test)
has been developed in the Centre de Recheche de Voreppe (CRV) of ALCAN France
(formerly Pechiney). The present thesis has been started with an intensive measurement
campaign on this machine [38]. The details of this experiment are presented in Sec. 5.1.

Figure 2.18(a) shows the maximal tensile stress as a function of solid fraction for
Al-2wt%Cu and Al-4wt%Cu both heavily inoculated (fine globular microstructure).
This curve has been measured with the apparatus of Fig. 2.17(b) by Ludwig et al. .
The strain rate is on the order of 10−3s−1. With this morphology maximal tensile stress
can be measured only for solid fraction above gs = 0.65 [37, 45], this transition is
called nil stress temperature (NST) [55] or more frequently traction coherency (gtc

s ).
Above this solid fraction the maximal tensile stress rises gently until gs = 0.95 and then
increases much more abruptly. This second transition is called coalescence transition
(gcoal

s ) [37, 45]. It is interesting to note that these two transitions occur at the same solid
fractions for the two alloys.

The deformation at fracture as a function of solid fraction is shown on Fig. 2.18(b).
In this experiment strains are localised on a zone of about 20 mm, this estimation has
been confirmed by numerical simulations [37]. Therefore at gs = 0.76 the ductility is
around 20% and drops to less than 1% at gs = 0.9. Above gs = 0.95 (coalescence
transition) ductility increases with solid fraction.

The tendency curve is reported in dotted line on Fig. 2.18(b) . This curve has been
measured with tensile tests by several authors [56, 22, 54, 57, 38]. It has also been
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Figure 2.18: Traction test on heavily inoculated Al-2wt%Cu and Al-4wt%Cu [45,
37]. (a) Maximum tensile stress as a function of solid fraction . (b) Displacement at
fracture as a function of solid fraction.

Figure 2.19: Strain at fracture, δ, as a function of temperature for dendritic Al-Cu
alloys [57, 56].

measured by Matsuda et al. by in-situ observation of crack opening during welding
[58]. Because of its shape this curve is called the U-curve. At low solid fraction the
permeability of the mush is high and fluid flow can compensate deformation. At high
solid fraction a continuous solid network can sustain stresses and present a viscoplastic
flow. In between, both fluid flow is difficult and solid phase is not continuous enough
to sustain stresses, the material is extremely brittle. This zone is called the Brittle
Temperature Range (BTR). The increase of ductility at gs = 0.95 is achieved by the
progressive formation of solid-solid bridges [37], which justifies the name “coalescence
transition”.

A transition from a brittle behaviour to a ductile behaviour is observed very close
to gs = 1 [56, 54, 38]. This transition is represented in the U curve by the very steep
increase of ductility near gs = 1. This transition is due to the formation of a fully
continuous solid network, and therefore will be called solid percolation transition (gsp

s ).
The theory of percolation will be presented in Sec. 4.1.

The Russian scientist Novikov has studied extensively the ductility of semi-solid
aluminium alloys. His work is published in Russian [57] but some of his results are
accessible thanks to the review article of Eskin et al. [56]. All his results presented
here were measured by the progressive loading of a remelted sample [56]. Figure 2.19
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(a) (b)

Figure 2.20: Strain at fracture δ as a function of temperature. (a) Al-4wt%Cu, (1)
large grains (880 C◦ melt overheating), (2) fine grains (750 ◦C melt overheating).
(b) Al-1.5wt%Cu, effect of cooling rate.

shows ductility versus temperature of non-inoculated aluminium copper alloys for var-
ious copper contents. The brittle range spans on various temperature ranges due to the
variation of the solidification interval of the alloy. In order to have a better interpreta-
tion of these measurements, the temperature scale can be converted into a solid fraction
scale using the back-diffusion model presented in Sec. 6.1. A characteristic diffusion
length of 100 µm was used as we do not have access to the secondary arm spacing
in those experiments. It appears that the increase in ductility (coalescence transition)
always occurs for gs ∼ 0.9. The only exception is the Al-8wt%Cu for which eutectic
solidification occurs before gs = 0.9. This confirms that transition solid fractions do not
directly depend on alloy composition [23].

The influence of grain size and grain morphology is illustrated on Fig. 2.20. In Fig.
2.20(a), two Al-4wt%Cu have been cast with different melt over-heatings. It appears
that the alloy with the smallest grain size (lowest melt over-heating) has a much higher
ductility than the coarse grain alloy. This fact can be explained if we consider that inter-
granular sliding is the principal deformation mechanism [56]. If we consider a given
deformation δ the average displacement between two grains ∆l will be on the order of
[57, 56]:

∆l ∼ Dδ (2.3)

where D is the average grain size. A larger grain size increases the localisation of
deformation at grain boundaries and thus decreases ductility.

Figure 2.20(b) shows the ductility of an Al-1.5wt%Cu for various cooling rates. The
solidification conditions have been chosen in such a way that the grain size remains the
same in each experiment. The temperature limits of the brittle range clearly depend on
the cooling rate. We have estimated that for Ṫ = −160 Kmin−1, gcoal

s ∼ 0.9 whereas
for Ṫ = 10 Kmin−1 gcoal

s ,∼ 0.95. For a high cooling rate, a fine dendritic structure is
produced which can entrap more liquid. Thus the contact between grains occurs at a
relatively low solid fraction. For a coarse structure, liquid remains between the grains
and solid contact occurs at high solid fraction. It is interesting to note that the ductility
in the brittle range is not affected by the cooling rate, and thus mainly depend on the
grain size (Fig. 2.20(a) ) and not on their morphology (Fig. 2.20(b) ).
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(a) (b)

Figure 2.21: (a) Equilibrium of forces at a triple junction between two grains and
the liquid. (b) Relative grain boundary energy (normalised by the maximum grain
boundary energy) as a function of disorientation angle for a pure tilt boundary in
aluminium [61] .

The work of Novikov shows that the ductility of low alloyed alloys in the brittle
range does not depend on the strain rate. This result will be confirmed by the results
presented in Sec. 8.1. For more alloyed alloys, e.g., Al-6.5wt%Cu, Novikov observed
that the ductility decreases with the strain rate at low solid fraction (gs < 0.8), but
remains unchanged at higher solid fraction (see [56] Fig. 27).

2.3.5 Effect of surface tension
Surface energy plays a critical role at the very end of solidification. Figure 2.21 shows
a triple junction between two grains and the liquid. Equilibrium of forces at this triple
junction imposes (Young-Laplace equation):

γgb = 2γsl cosΘ (2.4)

where γgb is the grain boundary energy, γsl is the solid-liquid interfacial energy, and Θ
is the dihedral angle.

Figure 2.21 shows the evolution of the grain boundary energy as a function of mis-
sorientation θ for a pure tilt boundary (the rotation axis is parallel to the grain boundary).
At low tilt angle, the interface is almost coherent and edge dislocations compensate
the misorientation. Surface energy follows the Read and Shockley formula [59]. For
θ > 15◦, the density of dislocations is too large and the interface is highly disordered.
The surface energy is maximum and does not depend on the orientation. Note that for
specific angles, the grain boundary energy can decrease due to special coincidences of
the crystal lattices. The grain boundary energy is difficult to measure, but in Al alloys,
a good order of magnitude is γmax

gb ∼ 0.3 Jm−2 and γsl ∼ 0.1 Jm−2 [60].
Figure 2.22 shows the shape of liquid inclusions as a function of liquid fraction and

dihedral angle as calculated by Wray [32]. The authors supposed a regular polygonal
arrangement of solid grains (tetrakaidecahedron) and a uniform dihedral angle. They
further assumed that the shape of liquid inclusions is only dictated by surface tension.
In our problem, thin liquid films do not exist long enough to reach such an equilibrium
and the liquid inclusion shape is also dictated by solidification. Yet, this diagram shows
the tendency induced by surface tension.
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Figure 2.22: Shape of liquid inclusions dictated by surface tension as a function of
liquid fraction and dihedral angle [32].

For Θ = 0, i.e., γgb > 2γsl (Fig. 2.22 V), the liquid films wet perfectly the grain
boundaries and a thin liquid film is always present everywhere between the grains. For
0 < Θ < 60◦, i.e., γsl < γgb < 2γsl (Fig. 2.22 IV , III), the edges between three grains
are wetted by the liquid, whereas for Θ > 60◦, i.e., γsl > γgb (Fig. 2.22 I , II, VI)
liquid tends to concentrate at grains corners. The transition between interconnected and
isolated pockets of liquid is interesting but, as already mentioned, is not necessarily
representative of solidification microstructures.

Another important aspect of surface tension has been outlined by Rappaz et al.
[33]. For Θ > 0, i.e., γgb < 2γsl, it is thermodynamically interesting to form one grain
boundary out of two solid-liquid interfaces. Once the two interfaces impinge, the grain
boundary is formed. This case is called attractive interfaces and occurs in particular
between two dendrite arms of the same grain (γgb = 0). If Θ = 0, i.e., γgb > 2γsl,
not only the grain boundaries are wetted by a thin liquid layer, but the formation of
“dry” grain boundaries needs an extra free energy. This extra free energy can be viewed
as an undercooling for the solidification of the last liquid films :

∆Tcoal =
γgb − 2γsl

∆S fδ
(2.5)

where ∆S f is the volumetric entropy of fusion and δ is the thickness of the diffuse solid-
liquid interface. In the case of highly disordered grain boundaries, this undercooling can
be on the order of 40◦C [60], which means that thin liquid films can remain well below
the solidus line of the alloy.

Fallet et al. have investigated the effect of barium on the tensile properties of
mushy Al-Cu alloys [62]. Barium has a very low solubility in solid aluminium and
thus strongly segregates in the liquid films. Moreover barium has been shown to have a
surfactant effect in these alloys [63]. This effect has been confirmed by Chichignoud et
al. who observed an increase of 40% in specific primary phase/eutectic interface with
the addition of 0.03 wt%Ba. Figure 2.23(a) shows the measured eutectic film thickness
as a function of the misorientation of its two surrounding grains. The authors did not
find any eutectic film for misorientation below 10◦ without barium, and below 4◦ with
barium. This denotes a reduction of 40% in solid liquid surface energy [62].

Figure 2.23(b) shows the maximum tensile stress as a function of solid fraction for
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(a) (b)

Figure 2.23: (a) Thickness of eutectic films as a function of grain boundary mis-
sorientation. (b) Maximum tensile stress as a function of solid fraction [62].

an Al-4.3wt%Cu, with and without barium. The presence of barium has no effect at low
solid fractions. At high solid fractions (gs = 0.98), when only thin liquid films remain
in the alloy, the presence of barium considerably decreases the strength of the alloy.
The authors interpreted this as a delay in the coalescence transition induced by barium.

Wang et al. used a laser to weld two super alloy single crystals with a controlled
tilt angle [64]. At low tilt angle no crack forms, whereas for tilt angles superior than
12◦ a hot crack was observed under otherwise identical conditions. These experiments
clearly outline the role of grain boundary energy on the formation of hot tearing.

Fredriksson and Lehtnien have done in-situ observation of hot cracking in a electron
microscope [65]. In the Sn-Al system liquid wets perfectly the grain boundaries and
participate to the deformation mechanism. The fracture is extremely brittle. In the Al-
Cd system, liquid is present in the form of droplets. These droplets do not participate to
the deformation mechanism. Fracture is intergranular but local plastic deformation of
the solid is observed.

2.3.6 Summary

Several transitions of the mushy zone mechanical behaviour are observed during solid-
ification. These transitions are particularly important for mushy zone models and for
hot cracking criteria (see next chapter). It is therefore useful to summarise them briefly.

At very low solid fraction, the melt is a suspension of small solid grains, i.e., a
slurry. Both solid and liquid are free to move and the resultant behaviour is very close
to a fluid. This feeding mechanism is called mass feeding [23, 30].

At shear coherency (gsc
s ), the dentrites arms touch each other locally, the solid net-

work is able to transmit stresses in shear. Yet, the arrangement is not dense and grains
can rearrange by rotating or sliding. Liquid can have a flow relative to dendrite network
and thus the feeding mechanism is called interdendritic feeding [23, 30].

At maximun packing (gpk
s ), the solid gains can not rearrange to form a denser struc-

ture. Their main displacement mechanism is grain boundaries sliding. The structure is
sufficiently interlocked to transmit stresses in tension and thus this point is also called
traction coherency (gtc

s ). The liquid is still able to flow though the solid network and
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Figure 2.24: Evolution of mushy zone during solidification. (a) Transition solid frac-
tions. (b) Schematic representation of the mushy zone (from P.D. Grasso thesis
[7]). (c) Dominant deformation mechanism for solid phase and for liquid phase.
Solid fraction scales are represented for a dentritic microstructure and for a globu-
litic microstructure.

keeps an important role in the deformation mechanism.
At coalescence transition (gcoal

s ), the solid grains start to coalesce to form clusters.
Permeability of the mush is very low and no significant liquid can flow through the
mush. The feeding mechanism is thus called interdendritic separation [23, 30]. The
mechanical behaviour of the mush reveals the viscoplasticity of the solid maybe through
creation / annihilation of intergranular bridges. At this point, ductility is minimum, the
material is prone to hot cracking.

At solid percolation (gsp
s ), coalesced solid grains form a continuous network and

can fully transmit stresses, fracture becomes ductile.
Note that both coalescence transition and solid percolation might depend on solid-

liquid surface energy. A decrease of solid-liquid surface energy should delay these two
transitions. In particular, solid percolation can occur below the solidus line.
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Chapter 3

Models for hot cracking

3.1 Hot cracking criteria

3.1.1 Criteria based on the solidification interval

The most simple hot tearing criterion is based on the solidification interval: the hot
cracking sensitivity (HCS) index is proportional to the solidification interval of the al-
loy [30]. At high Fourier numbers (thermodynamic equilibrium), the lever rule applies
and the maximum hot cracking sensitivity is found for the maximum solubility of the
solid (∼ 4.5 wt% for Al-Cu). Under realistic solidification conditions, however, back-
diffusion is partial and eutectic solidification occurs in alloys whose concentration is
lower than the maximum solubility of the solid. The maximum HCS is displaced to-
ward lower solute content.

This simple criterion allows having an estimation of the HCS as a function of con-
centration and predicts a maximum HCS for dilute alloys. Yet, the experimental peak
of HCS is much sharper than the tendency predicted with this criterion (see Fig. 3.5(a)).

Borland introduced the various feeding mechanisms in the mushy zone summarised
in Sec. 2.3.6 [66]. Based on this work, Clyne and Davis considered that interdendritic
separation zone, the region where thin liquid films remain, is vulnerable to hot tearing.
They derived an HCS criterion as the ratio of the time spent in the vulnerable zone tv to
the time spent in the interdendritic feeding zone tr (recovery)[23].

CSC =
tv

tr
(3.1)

The authors fixed the boundaries of the interdendritic separation as 0.9 < gs < 0.99 and
those of the interdendritic feeding as 0.6 < gs < 0.9. This approach allows to reproduce
well the λ-curve but do not take into account process parameters. Furthermore, applied
to some processes such as DC casting, this criterion gives the wrong tendency [56].

3.1.2 Criteria based on feeding ability

Feurer introduced a criterion that compares the solidification shrinkage to the feeding
ability of the mush derived with Darcy’s equation [26]: If the first one exceeds the
second one, a tear is susceptible to form. This approach also reproduces the shape of
the λ-curve (see Fig. 3.5(a)). This approach is close to Niyama’s porosity criterion [67],
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Figure 3.1: Pressure drop along the mushy zone induced by solidification shrink-
age and deformation [68].

but it only takes into account hydrostatic depression. Yet hot tears are mainly induced
by deviatoric stresses, e.g., unidirectional tensile stresses [30].

The first two-phase approach has been introduced by Rappaz et al. for a columnar
mushy zone (RDG model) see Fig. 3.1 [68]. We present here the main lines of this ap-
proach, the equations are not detailed as they are common to all two-phase approaches
and are therefore presented in Sec. 3.2.2. A mass balance is done on the mushy zone,
assuming that solidification shrinkage and deformation are compensated by fluid flow
(Eq. 3.14). Note that the imposed deformation rate ε̇ is only considered in the direction
normal to the dendrite trunks. Fluid flow induces a pressure drop (Eq. 3.23). Perme-
ability of the mush is evaluated using the Kozeny-Carman law [69] with the secondary
dentrite arm spacing as a characteristic length scale (see Sec. 3.2.3). In summary, two
integrations are done from the liquidus to the bottom of the mushy zone. The first is an
integration of the mass balance to compute the fluid flow. The second is an integration
of the Darcy equation to find the pressure drop. If the pressure becomes lower than a
prescribed value (cavitation pressure), a hot tear nucleates. The criterion is expressed
as a critical strain rate ε̇c above which hot cracks nucleate.

This criterion reproduces well the hot cracking tendency of most alloys. Moreover,
it can be implemented in a DC casting code to take into account process parameters
[70]. The most susceptible region is the centre of the billet which is in agreement with
casting practice.

This criterion has been extended by different authors. Braccini et al. have imple-
mented a law for the average mush behaviour around the hot crack and for the propa-
gation of the failure [22, 71]. Their model is derived for both columnar and equiaxed
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microstructures. Their criterion allows to define three zones as a function of imposed
strain rate: sound casting, porosity (nucleation without propagation) and hot cracking.

Grandfield et al. have also extended the RDG model to equiaxed and globular mi-
crostructures [72]. They have defined more accurately the cavitation pressure as a func-
tion of capillarity forces, and derived a model for surface cracks. In the case of the
globular microstructures, the grain size is used as a characteristic length scale in the
Kozeny-Carman law. Hot cracking susceptibility is shown to be reduced with globular
grains because of the higher mushy zone permeability.

It is important to note that the permeability of the mush becomes nil when gs = 1
which implies a divergence of pressure in the mush (which tends to −∞). The model
needs to stop the integration of Darcy’s law before gs = 1. Rappaz et al. used the value
of the solid percolation as the upper bound of the integration. They fixed it to gsp

s =

0.98. The predictions of the RDG criterion are highly dependent on this integration
bound. In particular, it influences the position of the maximum HCS as a function
of composition. Grandfield et al. computed the pressure drop at the experimentally
observed coalescence transition (gs = 0.95 for globulitic microstructures) and compared
it to the measured stress, they found a good agreement [73]. This approach is interesting
because the RDG model might be fully valid only up to the coalescence transition (fluid
dominated behaviour).

The models of the RDG family derive the HCS as a critical strain rate. Yet, ex-
periments have shown that failure during tensile test is largely independent of strain
rate (see Secs. 2.3 and 8.1)[56, 38]. It is one of the major problems of these mod-
els. Moreover, the metallostatic pressure at the tips of the dendrites shifts the whole
pressure profile in the mush and therefore has an important influence on the predicted
HCS. Yet, an important variation of HCS with the metallostatic pressure has never been
experimentally observed.

3.1.3 Criteria based on liquid films strength

Ohm et al. have modelled the fracture stress of hot tearing as the stress required to pull
apart a liquid meniscus [74]. They consider perfect wetting of liquid on the solid, and
consider that the grains are infinite in the y direction (see Fig. 3.2(a)). Laplace equation
gives:

σ =
2γlg

h
(3.2)

where γlg is the liquid-gas surface tension, and h the width of a liquid film. Note that
perfect wetting is relative to the triple junction solid-liquid-gas and not solid-liquid-
grain boundary as in Sec. 2.3.5. Note also that in this model, gas cavitation is not
considered, some porosity is supposed to be always present. Yet, the range of stresses
predicted is in agreement with experimental data [75].

Lahaie and Bouchard have extended this criterion using a regular hexagonal ar-
rangement of grains (Fig. 3.2(b)) [75]. This arrangement can be extended in 3D as
polyhedra to form an equiaxed microstructure or as columns to form a columnar mi-
crostructure. It is then possible to write a relation between solid fraction, grain radius
and liquid film thickness.

h
a
=
√

3
(
1 − gm

s

gm
s

)
(3.3)



36 Chapter 3. Models for hot cracking

(a) (b)

Figure 3.2: (a) A liquid meniscus between two grains. (b) Deformation of a regular
arrangement of hexagonal grains. [75]

where h and a are respectively the thickness and the length of a liquid film (see Fig.
3.2(a)). m is an exponent which is 1/3 for equiaxed grains and 1/2 for columnar grains.
At low strain, stress is dictated by the viscous flow from the lateral channels to the
horizontal channels as derived by Drucker [76]. When the grains start to be interlocked
(ε ∼ εmax), the dilatation of horizontal liquid films is considered. When the computed
stress is larger than the stress necessary for the breakdown of a liquid meniscus in a
horizontal channel (Eq. 3.2), a hot tear propagates.

Practically, stress remains weak and abruptly raises at εmax (see 3.2(b)) when solid
grains impinge. Thus, the ductility of the mush is mainly dictated by the geometry of the
grains and is largely independent of strain rate. This criterion is important because it is
the only criterion which outlines the influence of microstructure on ductility. Moreover,
its simplicity allows the authors to study its dependence on various parameters.

The shape of the ultimate tensile stress as a function of solid fraction is fairly close
to experimental data, but the U-curve of the ductility is not reproduced. In this model,
ductility continuously decreases with increasing solid fraction and becomes nil at gs=1
This is because the authors consider neither solid grains deformation, nor their pro-
gressive coalescence. This last point will be largely developed in the present work.
Moreover, this criterion is isothermal and the mush behaviour is only function of the
solid fraction. Thus, the HCS as a function of composition has not been derived.

3.1.4 Criteria based on accumulated strain

A semi-empirical criterion has been derived by Magnin et al. [54]. These authors
compute the viscoplastic strain accumulated by the mushy zone from the coherency to
the solidus. If the maximum principal strain accumulated in the mushy zone is larger
than the experimental ductility, the risk of hot cracks is high (see Fig. 3.3).

This criterion has been implemented in a DC casting simulation code which allows
to compute the strain field generated during the process. Figure 3.3 shows the computed
strain at the centre of the billet for two casting speeds: at low casting speed, strain
remains below the experimental ductility and no crack forms. At higher casting speed,
experimental ductility is overpassed and a hot crack forms. Novikov derived a similar
criterion [56]. Recently, a similar criterion has been implemented by M’Hamdi et al. in
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Figure 3.3: Computed strain at the centre of the billet for two casting speeds as
compared to experimental ductility [54].

a fully-coupled two-phase model of mushy zones (see Sec. 3.2)[77].
Along the same line, Commet and Larouche presented a criterion of cumulated

damage (CDI) [19]. Damage is defined as the infinitesimal viscoplastic strain dε(T )
divided by the experimental ductility εrupt(T ). Hot cracking susceptibility is defined as
the damage integral from traction coherency to solidus.

CDI =
∫ Tsol

Ttc

dε(T )
εrupt(T )

(3.4)

A single master curve relating ductility to solid fraction is used for different composi-
tions. This approach reproduces well the λ-curve.

This criteron is very useful for the casting practice, but does no bring information
on the hot tearing mechanisms.

3.1.5 Comparison between the criteria

Commet and Larouche have computed three hot cracking criteria for various industrial
alloys [19]. It appears that the predictions of the RDG criterion and of the cumulated
damage index CDI are fairly similar and in agreement with casting practice. The pre-
dictions of Clyne and Davies criterion are less reliable.

It is interesting to note how different approaches on hot tearing can give similar pre-
dictions, despite the fact that they are focused on different phenomena (permeability for
RDG, ductility for CDI). This becomes clear if we look precisely at the solidification
paths. Figure 3.5(b) shows the solid fraction as a function of time for Al-Cu alloys
cooled at a constant cooling rate of 1 Ks−1. If we consider a given point on the so-
lidification path, its temperature difference with the liquidus point of the alloy reflects
its depth in the mushy zone (considering a constant temperature gradient), whereas the
distance to the gs = 1 line reflects the average liquid channels width. All hot cracking
criteria that can reproduce the λ-curve correspond to an integration along the mushy
zone. The solidification interval criteria do not predict well the HCS because they give
the same weight everywhere in the mushy zone. Both RDG and CDI give a more impor-
tant weight to the high solid fraction zone, because respectively of its low permeability
and low ductility. A cut-off is introduced at very high solid fraction by the solid phase
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Figure 3.4: Hot cracking indexes computed for various industrials alloys [19].

percolation. The solidification path of the alloy at the end of solidification is a key factor
for hot tearing.

Therefore, the maximum HCS is found for alloys which present a long solidification
path at high solid fraction. They correspond to low alloyed alloys which produce a small
amount of eutectic, e.g., Al-1.5wt%Cu on Fig. 3.5(b) .

This also explains why, generally speaking, precipitation hardening alloys have high
hot tearing susceptibility. A good precipitation hardening alloy should have a large
amount of solute dissolved in the primary phase (to form hardening precipitates) but
few intermetallic phases which could embrittle grain boundaries. This is precisely the
conditions for high HCS.

The brittle range is clearly identified as the source of hot cracking. Yet the under-
standing of hot tearing physics remains partial. Each criterion brings a valuable point of
view on a hot tearing mechanism, but no criterion is able to explain all the experimental
tendencies.

Another important remark is that most criteria highly depend on the transition solid
fractions introduced in Sec. 2.3.6, especially traction coherency and solid percolation.
A more detailed study of these transitions is therefore important, which is one of the
goals of the present study.

3.2 Continuum modelling of mushy zone

Both micro and macro scales are relevant during solidification. A way to solve this
problem is to consider the two phase mixture as a continuum at the macroscale. Micro-
scopic quantities are averaged over a representative elementary volume (REV) which
should be large as compared to the microstructure scale in order to smooth local varia-
tions. This representative volume should also be small as compared to the process scale
(boundary conditions), in order to have a good resolution of averaged values variations
at the macroscale. Thus, this approach requires the existence of an intermediate scale,
the mesoscale, which clearly separates the microscale from the macroscale.

We will only briefly present this homogenisation method, a full development can be
found in references [78, 79]. The theory of porous media whose formalism is close to
the present method is reviewed in reference [80].
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(a) (b)

Figure 3.5: (a) Comparison between experimental measures and various HCS
criteria for Al-Cu alloys (mode 1=constant cooling rate, mode 2=constant enthalpy
extraction rate)[68]. (b) Solidification path for various Al-Cu alloys cooled at -1 Ks−1.

3.2.1 Balance equations
We note Ω the volume of the REV. We note α, β . . . the phases present in the material, x
a space variable at the macroscale, and ξ a space variable at the microscale. A function
χα(ξ) whose value is one in phase α and zero elsewhere is introduced. Therefore, any
quantity A of phase α can be averaged on the REV.

〈A(x)α〉 =
1
Ω

∫
Ω

A(x + ξ) χα(x + ξ)dξ (3.5)

The intrinsic average of A on phase α is defined as:

Aα = 〈A(x)〉α =
1
Ωα

∫
Ωα

A(x + ξ) χα(x + ξ)dξ (3.6)

where Ωα is the volume of phase α in the REV. As χα is nil outside phase α we have:

〈A(x)α〉 =
Ωα

Ω
〈A(x)〉α = gαAα (3.7)

where gα is the volumetric fraction of phase α. For the sake of simplicity, we will use
the notation < A(x) >α= Aα and < A(x)α >= gαAα, but we should keep in mind that
they represent averaged values.

With these definitions, we can write balance equations in the mushy zone as derived
by Ni and Beckerman [79]. We consider two phases, liquid and solid, noted respectively
with the subscript l and s, and suppose that no gaseous phase forms. The integration of
a mass balance over the solid phase gives:

1
Ω

∫
Ω

(
∂ρ

∂t
+ ∇ · (ρ−→v )) χs(x + ξ)dξ = 0 (3.8)



40 Chapter 3. Models for hot cracking

where ρ is the density and −→v the material velocity. As the volume of integration V is
constant, this expression can be integrated by part to give

∂

∂t

(
1
Ω

∫
Ω

ρ χs(x + ξ)dξ
)
+ ∇ ·

(
1
Ω

∫
Ω

ρ−→v χs(x + ξ)dξ
)
=

1
Ω

∫
Ω

(
ρ
∂χs

∂t
+ ρ−→v · ∇χs

)
dξ

(3.9)
With the notation of Eq. 3.7 this can be written :

∂(gsρs)
∂t

+ ∇ ·
(
ρsgs
−→vs

)
= Γs (3.10)

where the solid density ρs is considered homogeneous at the scale of the REV and has
been taken out of the second integral in Eq. 3.9. The term Γs is due to the evolution of
the function χs and can be written as an integral over the solid-liquid interface [78]:

Γs =
1
Ω

∫
Ω

(
ρ
∂χs

∂t
+ ρ−→v · ∇χs

)
dξ =

1
Ω

∫
S sl

(
ρs(−→wsl −

−→
v∗s) ·
−→ns

)
ds (3.11)

where S sl represents the solid-liquid interface, −→wsl the local interface velocity, −→ns the
normal to the interface pointing from the solid to the liquid, and

−→
v∗s is the local speed

of the solid at the interface. The term (−→wsl −
−→
v∗s) represents the interface speed in the

local frame of the solid, and therefore Γs represents the mass transfer due to phase
transformation.

Moreover, it is interesting to note that Γs can also be written

Γs =
S sl

Ω

1
S sl

∫
S sl

(
ρs(−→wsl −

−→
v∗s) ·
−→
nsl

)
ds = S vρswns (3.12)

where S v = S sl/Ω is the interface density and wns is the average normal velocity of
the interface relative to the solid velocity, the overbar denoting an average over the
interfacial area. All the transfer phenomena between the two phases can be written as
an average flux times the interface density and therefore S v is an important parameter
in two-phase models [79].

The same procedure can be applied to the liquid phase,

∂(glρl)
∂t

+ ∇ ·
(
ρlgl
−→vl

)
= Γl = −Γs (3.13)

where the mass transfer from liquid to solid due to phase transformation compensates
the mass transfer from liquid to solid. Therefore, Eqs. 3.10 and 3.13 give:

∂ρ

∂t
+ ∇ ·

(
ρsgs
−→vs + ρlgl

−→vl

)
= 0 (3.14)

where ρ = gsρs + glρl is the average density of the mushy zone. Note that this equation
is formally similar to the single phase mass balance.

Similarly, the momentum balance on phase k = s, l can be written [79]:

∂

∂t

(
ρk
−→vk

)
+ ∇ ·

(
ρk
−→vl ⊗
−→vl

)
= −∇ (gk pk) + ∇ ·

(
gk
←→τk

)
+ gkρk

−→g +
−→
Mk (3.15)

where ⊗ denotes the tensorial product, pk is the average pressure in phase k, ←→τ is the
deviatoric stress tensor, ρk

−→g is the average body force in phase k due to gravity, and
−→
Mk
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is the interfacial momentum transfer to phase k. Note that the stress tensor←→σ has been
separated into its hydrostatic and deviatoric parts by:

〈
←→σ k

〉
=

〈(
−p
←→
I
)k
〉
+

〈
←→τ k

〉
= −gk pk

←→
I + gk

←→τk (3.16)

where
←→
I is the identity tensor. The interfacial momentum transfer to phase k,

−→
Mk, can

be separated into two terms, one due to the phase change
−−→
MΓk , the other due to interfacial

stress,
−−→
Mσ

k . This last term does not exist for the mass balance as there is no mechanism
for mass diffusion.

−−→
MΓk =

−→vkiΓs (3.17)

where −→vki is the interfacial average velocity of phase k.

−−→
Mσ

k = pki∇gk + S v
−→tki (3.18)

where pki is the interfacial average of pressure in phase k and ←→tki is the interfacial
average of the force on the interface induced by the shear stress in phase k. Therefore,
the first term in Eq. 3.18 represents a buoyant force, whereas the second term is the
dissipative drag between the phases. The momentum transfers are related by:

−→
Ms +

−→
Ml +

−→
Mi =

−→
0 (3.19)

where Mi is the average force created by the surface tension of the interface [79].
This average procedure can be done for any conservative quantity in the system,

in particular for energy and solute [78, 79]. In the porous media theory, an entropy
inequality is also formulated in order to give restrictions to the constitutive equations
[80]. This procedure has been recently developed by Laschet and Benke for a mushy
zone [81].

The obtain set of average equations is exact, but it does not provide enough informa-
tion to solve the problem. Constitutive equations have to be provided to the model, they
should represent the various transport phenomena in the system but also the evolution
of Γs (solidification) and of S v [79]. Moreover, the resulting set of equations is strongly
coupled and thus is difficult to solve.

3.2.2 Simplification of the balance equations
We are specifically interested in hot cracking and therefore we do not necessarily need
to model all the phenomena of DC casting. Thus, appropriate approximations can con-
siderably reduce the complexity of the equations. We present here a model first derived
by Farup and Mo [82] and whose general form is used in most two-phase models of
mushy zone [83, 45, 14].

The first simplification is to decouple the thermal problem from the mechanical
problem. The energy balance is written :(

ρcp − ρlL
dgs(T )

dT

)
∂T
∂t
= ∇ · (λ∇T ) (3.20)
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where cp is the heat capacity, supposed the same in the solid and liquid phases, L is
the latent heat of solidification, T is the temperature, and λ the thermal conductivity
of the mixture. The energy dissipated by mechanical work is neglected, which is a
good approximation. The function gs(T ) is a parameter imposed to the model and is
computed by an analytical model for solidification, e.g., Clyne-Kurz model [13], or a
numerical microsegregation model [84] (see also Sec. 6.1). This hypothesis supposes
that the average Fourier number of the solidification is known and that the solidification
conditions do not vary much in the casting. Note also that those solidification models
are based on a solute balance at the microscale, and thus the transport of solute due to
fluid advection is neglected. The advective transport of energy is also neglected. These
assumptions are clearly wrong at low solid fraction [85], but as we are mainly interested
to the high solid fractions, where the mush permeability is low, these approximations
are reasonable.

The thermal calculation can thus be done independently from the mechanics with
a standard commercial code. The computed thermal history is then imposed to the
mechanical problem.

For the mechanical problem, the inertia terms are neglected in both liquid and solid
phases [82]. Moreover the interfacial momentum transfer due to phase change is ne-
glected. The momentum balance is therefore :

− ∇ (gk pk) + ∇ ·
(
gk
←→τk

)
+ gk
−→
bk + pki∇gk + S v

−→tki = 0 (3.21)

where k = s, l. The average interfacial pressure in both phases pki is taken equal to the
liquid pressure pl, which implies that the interfacial tension is neglected. Note that the
average pressure in the solid ps can be different from pl as a coherent solid network can
transmit stresses. Finally, the interfacial momentum transfer due to dissipative force

S v
−→tki is modelled by Darcy’s law and the diffusion of momentum in the liquid phase is

neglected in front of this term [82]. Finally the momentum equations are

− ∇ (gs ps) + ∇ ·
(
gs
←→τs

)
+ gsρs

−→g + pl∇gs +
g2

l ηl

κ(gl)
(−→vl −

−→vs) = 0 (3.22)

in the solid and

− gl∇pl + glρl
−→g −

g2
l µ

κ(gl)
(−→vl −

−→vs) = 0 (3.23)

in the liquid. µ represents the fluid viscosity and κ(gl) is the permeability of the mush.
Note that the g2

l term in Darcy’s law is due to the definition of permeability (see Sec.
3.2.3).

Equations 3.22 and 3.23 gives

∇ ·
(
gs
←→τs

)
+ (pl − ps)∇gs + gs∇(pl − ps) − ∇pl + ρ

−→g = 0 (3.24)

that is

∇ ·

(
←→
σe

s (−→vs)
)
+ ρ−→g = ∇pl (3.25)

where
←→
σe

s is the Terzaghi effective stress classically introduced in soil mechanics [86].
It expresses that the solid skeleton behaviour is essentially sensitive to the difference
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(a) (b)

Figure 3.6: (a) (1) Kozeny model of a regular arrangement of pipes, (2) tortuous
medium. (b) Anisotropy of tortuosity in a medium under compression [88].

of pressure between solid and liquid. Note that
←→
σe

s is implicitly function of the solid
velocity.

←→
σe

s = gs
←→σs + gs pl

←→
I = gs

←→τs − gs(ps − pl)
←→
I (3.26)

Equation 3.23 expresses the relative velocity of the liquid as a function of liquid
pressure and body forces. Therefore, it can be introduced in the mass balance (Eq. 3.14)
to give

∇ ·

(
ρl
κ(gl)
µ

(∇pl − ρl
−→g )

)
=
∂ρ

∂t
+ ∇ · (ρ−→vs) (3.27)

The left hand term describes the pressure drop due to fluid flow, whereas the second
hand term represents the pump term due to solid displacement and solidification. Note
that in the RDG criterion the pressure drop is calculated by the double integration of
this equation along the mushy zone, with a prescribed solid velocity.

Equation 3.25 and 3.27 couple the liquid pressure to the solid velocity. They are
sufficient to solve the whole mechanical problem provided constitutive laws for the
permeability and the effective stress are given.

3.2.3 Constitutive equation for the permeability
The permeability κ is defined from Darcy’s law for a fluid flow through a granular
packed bed [87]:

κ

µ

∆P
L
=

〈
vl
〉
= glvl (3.28)

where ∆P is the difference of pressure between the ends of the packed bed, and L is
its length. Note that, permeability should be expressed as a tensor in an anisotropic
medium.

Kozeny has modelled a packed bed as a regular arrangement of pipes with a Poiseuille
flow of the fluid [89]. He showed that

κ =
g3

l

k0S 2
v

(3.29)

where k0 is a constant equal to 2 for circular pipes and varies only slightly with the
shape of the cross-section [69]. If we consider a real medium, the path of the flow is
tortuous. We note Le the average length of the fluid effective path. The ratio of Le to the
length of the media L is called the tortuosity r = Le/L (see Fig. 3.6(a)). Therefore, the
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average effective speed of the fluid is ve
l = rvl and the effective gradient of pressure is

∆P/Le. Thus
g3

l

k0S 2
vµ

L
Le

∆P
L
= glrvl (3.30)

and

κ =
g3

l

k0r2S 2
v

(3.31)

Carman has shown that the constant k = kor2 varies only slightly with the geometry of
the packed bed [69]:

k = kor2 ' 5 (3.32)

The permeability of mushy zones has been measured by Nielsen et al. for various
types of microstructures (from small globules to large equiaxed dendrites)[90]. The
measurements were done just above the eutectic temperature and therefore S v can be
measured by image analysis after quenching the sample. The authors observed a good
agreement with Eqs. 3.31 and 3.32, namely the Kozeny-Carman relationship. Bernard et
al. have done X-Ray tomography on these samples and reconstructed the permeability
tensor by solving the Stokes equation in the measured geometry [91]. The computed
permeability is anisotropic but its trace is in good agreement with the experiment of
Nielsen et al.

The tortuosity is often included in the constant k, but its identification is useful
when the medium is anisotropic. Scholes et al. have modelled the evolution of the
permeability anisotropy in a porous medium under compression (Fig. 3.6(b)) [88]. They
showed that the evolution of the tortuosity anisotropy with compression is independent
of the particle shape and can be used to model the evolution of permeability.

Another form of Kozeny-Carman’s equation is frequently used by replacing the
specific surface S v by the specific surface per unit solid S s = 1/gsS v [68]. Indeed, S s

can easily be related to the characteristic length scale of the grain d (average grain size
for globulitic grains, secondary arm spacing for dendritic grains) S s ∼ 6/d [69]. Thus

κ '
g3

l d2

180g2
s

(3.33)

3.2.4 Constitutive equations for the effective stress
During DC casting, solid deformations in the mushy zone remain small, on the order of
0.1 to 1% strain [19]. Therefore, the small strain formalism can be used. The deforma-
tion tensor is separated into its elastic, plastic and thermal component :

←→εs =
←→
εel

s +
←→
εp

s +
←→
εT

s (3.34)

The elastic strains
←→
εel

s are related to the effective stress
←→
σe

s by Hooke’s law. Note that
even though this elastic regime is small, its presence stabilizes the numerical scheme
[83]. The thermal strain rate tensor is given by:

←→
ε̇T

s =
1
3
βT,s

∂T
∂t
←→
I (3.35)
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where βT,s is the thermal contraction coefficient of the solid phase.
In hot tearing models, we are specifically interested in the high solid fraction behav-

ior of the mush. Therefore, the constitutive laws for the plastic strain are derived as an
extrapolation of the fully solid behavior.

A first phenomenological approach is to multiply the viscoplastic law of the solid
by a term which varies with the solid fraction and tends to one at the solidus [92, 93].
Yet, with this approach, the plastic strains are only function of the deviatoric stress and
no consolidation due to pressure is predicted.

Nguyen et al. have developed a more rigorous approach inspired by soil mechan-
ics. A viscoplastic potential is expressed as a function of the first two invariants of the
effective stress (pressure and von Mises stress) and the solid fraction. The viscoplastic
strains are expressed by the normality rule (Eq. 3.39)[50]. This approach has been fur-
ther modified by Martin et al. to take into account the asymmetry in the mush behavior
between traction and compression [94, 95]. These models have been developed for the
modeling of semi solid state forming and are suited for process with high deformation.
They fail to describe correctly the mushy zone behavior at small strain, in particular the
progressive increase of stress with deformation (see Sec. 2.3)[37].

Therefore, Ludwig et al. have developed a model for the viscoplastic behavior of
the mush at low strain and high solid fraction, i.e., a model oriented toward hot cracking
[37, 45].

These authors model the viscoplasctic potential ω of the mushy zone as :

ω = ω(pe
s, σ

eq
s , gs,T,C) (3.36)

where pe
s is the effective pressure

pe
s = −

1
3

tr(
←→
σe

s ) = gs(ps − pl) (3.37)

σ
eq
s is the Von Mises stress

σeq
s =

√
3
2
←→
τe :
←→
τe (3.38)

where
←→
τe is the deviatoric effective stress and : represents the contracted product. C is

an internal variable representing the coherency of the mush (see below). ω represents
the power dissipated by the viscoplastic deformation and the strain rate tensor is ex-
pressed by the normality rule, which states that the strain rate tensor is normal to the
isosurfaces of ω [96].

←→
ε̇p

s =
∂ω

∂
←→
σe

s

(3.39)

The authors start from ω0, the viscoplastic potential of the fully solid material at
the solidus temperature(see [37, 45]). The first effect considered is the concentration of
stress in the solid due to the presence of liquid inclusions. This effect has been studied
by Michel and Suquet [97]. The new potential can be written:

ω1 = ω0
(
A2X2 + A3

) n+1
2 (3.40)

where 1/n is the strain rate sensitivity coefficient of the fully solid phase, X is the stress
triaxiality (X = pe

s/σ
eq
s ), A2 and A3 are functions of gs and n (see [37, 45]).
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Yet, this effect does not represent well the important influence of the liquid phase
on the mush behavior (see Sec. 2.3.2 Fig. 2.15). Indeed, the solid phase might not be
fully coherent and some deformations can be accommodated by fluid flow. Therefore,
these authors introduce an internal variable C which represents the mush coherency :

ω =
1

Cnω
1 (3.41)

Note that C = 1 corresponds to a fully coherent solid (the effect of liquid inclusions on
stress concentration is solely considered) and C → 0 corresponds to solid grains fully
surrounded by liquid.

The heart of the model is the equation for the evolution of C :

∂C
∂t
= α(gs,T )

(
1 −

C
C∗(gs, X)

)
ε̇eq

s (3.42)

where ε̇eq
s is the second invariant of the plastic strain rate tensor and is thus a measure

of the plastic deformation rate. C∗(gs, X) is the target coherency, i.e., the maximum
coherency that can be reached for a given solid fraction and triaxiality. α(gs,T ) repre-
sents the evolution rate of C with deformation, and appears as the initial slope of the
stress-strain curve in pure shear [37] (see Sec. 2.3.2 Fig. 2.12).

The functions C∗ and α have been identified by mechanical tests with different stress
states [37, 45].

C∗(gs, X ≤ 2) = 1 − (1 − gs)p, C∗(gs, X > 2) = 1, C∗(gs ≤ gtc
s , X) = 0 (3.43)

where gtc
s is the solid fraction at traction coherency (see Sec. 2.3.6) and the exponent

p is fitted to experiments. The maximum coherency C∗ is nil below gtc
s (by definition),

and increases up to 1 at gs = 1. For X > 2 the stress state is highly compressive and
tends to create a fully coherent mushy zone.

α∗(gs, X < 0) = α0 + α1
g1/3

s

1 − g1/3
s

ek(gs−gcoal
s ), C∗(gs, X ≥ 0) = α0 + α1

g1/3
s

1 − g1/3
s

(3.44)

where gcoal
s is the coalescence transition solid fraction, α0, α1 and k are fitted on exper-

iments. The asymmetry between traction and compression in the mushy zone behavior
is represented by the asymmetry of α. Indeed, for X > 0 (traction) α increases signifi-
cantly only above the coalescence transition due to the exponential term. Note that the
term (g1/3

s )/(1−g1/3
s ) is proportional to the ratio of the liquid channel length to the liquid

channel width in a regular hexagonal network (see Sec. 3.1.3).
In this model, a mushy zone without any accumulated strain has a nil coherency at

any solid fraction (except for gs = 1). Moreover, α is always positive and any defor-
mation makes the coherency C to evolve toward the target coherency C∗. The mush
coherency can nonetheless decrease with deformation, e.g., if solid fraction and thus C∗

locally decreases.
It is important to remark that, once again, the transitions of the mushy zone play a

central role in the model. Yet, these transitions appear as parameters. Moreover, they
might be implicitly function of the grain morphology or of the dihedral angle at triple
junctions.
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Figure 3.7: Simulation of the DC casting process for a billet [18]. The field rep-
resented are: thermal calculation, temperature T and solid fraction gs, mechanical
calculation, solid pressure ps and accumulated volume change due to plastic de-
formation CES W, porosity calculation, liquid pressure pl and porosity fraction gp.

3.2.5 Applications of two phase models
The two-phase formalism presented in this section can be implemented in numerical
codes for the simulation of solidification processes [82, 83, 51, 14]. This provides an
insight in the mechanical fields during solidification, but does not model hot cracking.
The computed mechanical and thermal fields can be used to locally evaluate hot crack-
ing criteria, i.e., RDG, CDI [70, 19, 77].

Pequet et al. [31] and then Couturier et al. [98] have modeled porosity formation
with a multi-phase formalism. They computed the pressure drop in the mush (Eq. 3.27)
while neglecting solid deformation in a first approximation (Eq. 3.25). The cavitation
depression is evaluated taking into account dissolved gases, e.g., hydrogen, and the
Young-Laplace term due to pore curvature. Before pore nucleation, this computation is
similar to the RDG criterion when −→vs = 0.

Mathier et al. have recognized that the pressure drop in the liquid (∼ kPa) is con-
siderably lower than stresses in the solid (∼ MPa) and therefore decided to neglect the
liquid pressure term in Eq. 3.25 [14]. Thus, the system of Eqs. 3.25 and 3.27 is only
semi-coupled. The thermal field is first computed (Eq. 3.20) and imposed to the sub-
sequent calculations. Then, the solid velocity is computed (Eq. 3.25) with a solid-state
mechanics commercial software. This velocity field is then imposed in the mass bal-
ance and the pressure field in the liquid (Eq. 3.27) is solved with the porosity code of
Pequet and Couturier (Fig. 3.7). This approach allows to compute the formation of
porosity in the mush, which is not possible with other two-phase approaches. Yet, a
simple criterion based on the porosity fraction does not model satisfactorily the HCS in
all situations [18].

These models are also useful for the interpretation of experimental tests (Fig. 3.8).
Indeed, during solidification, samples are necessarily non isothermal and thus non ho-
mogenous. Only numerical simulation can precisely deduce the local intrinsic fields
from the measured macroscopic quantities. Moreover, calculated fields such as poros-
ity or accumulated volume change allow finer interpretations of the experiments [18].
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Figure 3.8: Simulation of a mushy zone traction test [7, 18].
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Chapter 4

Scale invariance

In this chapter, we introduce two tools that will be useful for our study and yet do not
frequently appear in the hot cracking literature. These tools share a common point, they
point out relations between the various scales of a problem.

4.1 Percolation theory

The percolation theory studies the progressive formation of a continuous phase and is
therefore highly relevant for the study of hot cracking. We present here only a small part
of this theory which will be directly useful for the interpretation of our results. More
details can be found in references [17, 99].

4.1.1 Lattice percolation

The simplest percolation models start from a regular lattice, e.g., square lattice. Each
site can belong to one of two phases, e.g., black or white (see Fig. 4.1). We note p the
probability of a node to belong to the first phase, this probability being the same for
each site. Two sites of the same phase which are first neighbors are connected and form
a cluster [17].

For a small p value, we have isolated islands of phase 1 (Fig. 4.1(a)), while with
increasing p larger clusters are formed. For a given probability, phase 1 becomes con-
tinuous (Fig. 4.1(c)). This probability is called the percolation threshold pc. On a finite
size lattice, pc may vary with the different possible configurations but on an infinite
lattice pc is uniquely defined (see Sec. 4.1.2 for the finite size effects). Once p is larger
than pc, phase 1 is continuous and thickens with increasing p (Fig. 4.1(d)).

Table 4.1 shows the percolation thresholds for various regular latices in 2D and 3D.
Site percolation refers to the model described at the previous paragraph whereas bound
percolation correspond to a model where the bond between two sites is considered either
closed or open. For site percolation, it may appear surprising that pc is different from
0.5 as the problem is symmetric by the permutation of phases 1 and 2. Indeed, in 2D
there is a range of p for which neither phases are continuous and therefore pc > 0.5
(e.g., on Fig. 4.1(b) an continuous path can neither be found on the white phase nor on
the black one). In 3D, site percolation threshold is smaller than 0.5 as the two phases
can be simultaneously continuous [17].
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(a) (b)

(c) (d)

Figure 4.1: Percolation simulations for a square lattice of 50 × 50 sites. (a) p = 0.3
(b) p = 0.5 (c) p = pc = 0.593 (d) p = 0.7 (simulations done during the present
work)

We define the gyration radius of a cluster as the the root mean square distance among
the sites this cluster. The average gyration cluster ξ as a function of p follows a well
defined law.

ξ ∝ |p − pc|
−ν (4.1)

with ν > 0. Note that for p > pc, ξ represents the average gyration radius of clusters that
are not connected to the continuous cluster. This quantity is also called the correlation
length of the system (see Sec. 4.6). As expected, this law predicts an increase of cluster
radius with p < pc and its divergence for p = pc but the striking fact is that ν is
independent of the lattice nature. Indeed, it only depends on the dimensionality of the
problem and is therefore called a universal exponent [17].

Other quantities such as the average number of sites per cluster S can be measured.
Moreover, if we consider that phase 1 is a conductor whereas phase 2 is an insulator,

lattice site percolation bond percolation
Square 0.593 0.5
Hexagonal 0.696 0.653
Triangular 0.5 0.347
Diamond 0.43 0.388
Cubic 0.312 0.249
BCC 0.246 0.180
FCC 0.198 0.119

Table 4.1: Percolation threshold for various 2D and 3D lattices considering both
site and bond percolation [17].
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Associated quantity exponent 2D 3D
Correlation length ν 4/3 0.88
Cluster mass γ 43/18 1.80
Conductivity µ 1.30 2.0

Table 4.2: A few percolation exponents in 2 and 3D [17]. The fractional numbers
give presumed exact values whereas those with decimal numbers are numerical
estimates.

the conductivity Σ of the system can also be measured. It is found that these quantities
follow a law similar to Eq. 4.1, with the same percolation threshold but with different
exponents.

S ∝ |p − pc|
−γ (4.2)

Σ ∝ (p − pc)µ p > pc (4.3)

Once again the exponents appear to be only function of the dimensionality of the prob-
lem. Table 4.2 shows the value of these three exponents in 2 and 3D. Note that several
other exponents can be defined (see [17] for more details)

The rigorous mathematical treatment of percolation is difficult. Indeed, most of
the results presented here are extrapolation of numerical results and few of them can
be mathematically proven [100]. Yet, it is interesting to note how simple are the laws
emerging form the percolation models. Percolation is thus a good illustration of a the-
oretical advance induced by the study of numerical simulations.

4.1.2 Continuum percolation
In the previous section, we have considered percolation on lattices. In order to study a
wider range of physical phenomena, the question of percolation in a continuum should
be raised.

Figure 4.2: The swiss cheese model, a represents the hole radius [101].

An example of a continuum percolation model is the so-called “swiss cheese model”
(Fig. 4.2) [101, 102, 103]. Holes of a given radius a are randomly placed in space. The
properties of the remaining space is studied. Kerstein has shown that this problem could
be mapped on a lattice percolation problem by using the Voronoi diagram of the holes’
centers set (Fig. 4.2 (a)) [103]. In that sense, this problem is very close to percolation
in the Voronoi solidification model developed in the present work (Sec. 6.1).



52 Chapter 4. Scale invariance

The same scaling laws as Eqs. 4.1-4.3 are observed in the swiss cheese model and
the correlation length exponent ν is the same as in lattice problems [101, 103]. More-
over, these laws can be equally expressed as functions of the fraction of open bonds
(projected on the Voronoi diagram) or as functions of the solid fraction (non void) gs

[103], e.g.,
ξ ∝

∣∣∣gs − gs,c

∣∣∣−ν (4.4)

where gs,c is the solid fraction at percolation threshold. These properties are common to
all continuum percolation models (provided there is no strong local correlations) [17].

Halperin et al. have studied the transport properties of the swiss cheese model
[101, 104]. In such a continuum model, the permeability of open channel (carrying
flow) diverges when its width δ tends to 0 (Fig. 4.2 (b)). Thus, a channel which is
open from the point of view of cluster formation, may have a so high permeability that
it cannot participate to the transport properties [101, 104]. This is the major difference
with a lattice model for which the permeability of an open channel is constant. As a
consequence, the exponent for the transport properties are modified by the local laws
for the channels permeability.

In 2D, the authors considered that the narrow necks between two holes are equiva-
lent to rectangles of width δ and of length

√
δa, where a is the holes radius and δ the

minimum distance between these two holes (Fig. 4.2). Thus, the electrical conduc-
tance of a single channel σe varies as σe ∼ δ

1/2 whereas the hydrodynamic conductance
(Poiseuille flow) varies as σh ∼ δ

5/2 (see Sec. 7.1). In a lattice model, both electric and
hydrodynamic conductance have the same percolation exponent µ. In the swiss cheese
model, the strong divergence of σh with δ can modifiy this exponent up to µh = µ+ 3/2
[101, 104]. For the electrical conductance the divergence σe is too slow to affect the
exponent µ. In 3D, the divergence of the local channel permeability is stronger and both
exponents are affected [104].

In summary, percolation in continuum follows the same laws as lattice percolation.
The exponent related to the geometry of the clusters, e.g., the correlation length expo-
nent ν, are unchanged. The exponents relative to transport properties can be modified
by the local rules for transport.

4.1.3 Finite size percolation
For percolation in a finite size lattice, a general law is also observed. Let us consider a
quantity X that, in a infinite lattice, scales as

X ∼ |p − pc|
−χ (4.5)

where χ is the percolation exponent of X. On a finite lattice of size L we have [17]

X(L, ξ) = ξχ/νx1(L/ξ) ∝
{
ξχ/ν L � ξ
Lχ/ν L � ξ

(4.6)

where x1 is a function with the proper asymptotic behaviour and ξ is given by Eq. 4.1.
Note that for L � ξ we retrieve the law for X on a infinite lattice (Eq. 4.5).

Therefore, observed at a scale L � ξ, the material appears as a standard material
and its intrinsic properties (such as cluster density or electrical conductivity) do not
depend on the sample size.
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Observed at a scale L � ξ, the same intrinsic properties do vary with the sample
size. This property is a characteristic of the self-similar objects (also called fractals see
Sec. 4.2.1). Naturally, there is a lower cut-off of this self-similar nature for a sample
size L on the order of a few elementary sites.

Therefore, a representative elementary volume (REV) defined on a percolating sys-
tem should be larger than ξ. Yet, at the percolation transition ξ becomes infinite (process
scale), and thus no REV can be defined. This points out one limit of the average models
of mushy zones.

On a finite sample of size L, a percolation threshold pc,L can be defined as the
lowest fraction of occupied sites for which a cluster spans from the left to the right
of the sample. Yet, there is no reason for this probability to correspond exactly to the
percolation threshold in an infinite lattice pc. Moreover, the value of pc,L may vary with
the precise repartition of the occupied sites. We thus consider < pc,L > the averaged
value of pc,L on several random configurations of the occupied sites. From Eq. 4.6 we
can deduce [17].

< pc,L > −pc ∝ L−1/ν (4.7)

i.e., the average percolation threshold tends to the infinite threshold as L−1/ν. We also
have √〈

(pc,L− < pc,L >)2〉 ∝ L−1/ν (4.8)

i.e., the standard deviation of the observed thresholds vanishes as L−1/ν when L tends
to infinity. These relations are practically used to numerically determine the infinite
percolation threshold.

4.2 Scaling properties of cracks
Once again the scaling properties of cracks is a broad subject [105]. Here, we only
present a few tools that have been used for the analysis of hot tearing fracture surfaces
(see Sec. 8.1.3).

4.2.1 Self-similarity and self-affinity

The term of self-similar structures or fractals describes objects which present the same
aspect at different scales. This concept has probably been introduced by the mathe-
matician Cantor at the end of the XIX century [106], the word “fractal” being due to
Mandelbrot [107] who pointed out the importance of this concept to describe natural
patterns. Mathematical fractals can be obtained by a recursive construction, e.g., the
Sierpinski gasket [108](see Fig. 4.3).

The pure scale invariance of mathematical constructions cannot be observed in na-
ture but objects with a statistical scale invariance are frequent. A well-known example
is a coast line [109](as a consequence the length of a coast line depends on the ob-
servation scale, see below). Another example is clouds which look the same directly
observed in the sky or on satellite images of weather forecast programs [99]. Naturally,
this self-similarity can only be observed for a given range of scales. For a coast line,
the upper cut-off is the size of the island, whereas the lower cut-off should be around
the size of the sand stone.
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Figure 4.3: The Sierpinski gasket is constructed from an elementary equilateral
triangle with a triangle hole in it. This pattern is then replicated in each fully solid
triangle. This recursive construction repeated to the infinity gives a scale invariant
pattern, a fractal [108].

Figure 4.4: 1D Brownian motion as observed at different scales. Time and space
units are chosen such as the topothesy l is one (see text). (b) If both time and space
scales are increased by the same factor, the apparent rugosity of the movement
decreases. (c) If time scale is increased by a factor b and space scale by a factor√

b, the statistical properties of the reference scale (a) are preserved. (simulations
done during the present work)

If we consider the Sierpinski gasket on Fig. 4.3, we see that if the observation
scale L is doubled, the structure consists in 3 original patterns and therefore the mass
(surface) m of the object is tripled [110]. Thus, the mass of the object varies with the
observation scale L as

m ∝ Ld f d f =
ln 3
ln 2
' 1.6 (4.9)

For an object with an Euclidian geometry, we have m ∝ Ld where d is the dimension
of the object and therefore d f is called the fractal dimension. The form of Eq. 4.9 is
also valid for other properties of fractals such as conductivity (with different exponents)
[99]. It also recalls the properties of finite size percolation clusters (Eq. 4.6). Indeed,
percolation clusters have a self-similar nature for a � L � ξ where a is the size of an
elementary site [17].

Another scale property is self-affinity [111, 112]. As self-similar structures are (sta-
tistically) invariant by a transformation (x, y, z)→ (bx, by, bz) where x, y, z are the three
space directions and b an arbitrary factor, self-affine structures are statistically invariant
by an affine transformation [105]

(x, y, z)→ (bx, by, bHz) (4.10)

where 0 < H < 1 is called the Hurst exponent of the structure. Let us consider two
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points r0 (x0, y0) and r (x, y) on the self-affine structure, the height-height correlation
function (also called Hurst transformation [112]) is given by

∆h(∆r) =
〈
(z(r) − z(r0))2

〉1/2
∆r = ((x − x0)2 + (y − y0)2)1/2 (4.11)

where the average < . > is done for all admissible positions of r0 and r, i.e., all pairs of
points with a distance ∆r in the plane (x,y). As a consequence of self-affinity, we have
[105, 111]

∆h
l
=

(
∆r
l

)H

(4.12)

where l is the topothesy of the structure, i.e., the scale at which ∆h = ∆r = l.
A classical example of self-affine structure is a 1D brownian motion expressed as

a function of time (Fig. 4.4) [99, 111]. In that case, time plays the role of direction x
and space the role of direction z. Indeed, the standard deviation of the distance from
the starting point scales as ∆h ∝

√
t and thus the Hurst exponent of this structure is

H = 1/2 (This property is also denoted in the diffusion Fourier number Dt/L2 ).
A seen on Fig. 4.4 (a) a self-affine structure observed at a scale close to l is almost

self-similar (with a local fractal dimension d f = 3 − H in 3D [105, 111]) but when ob-
served at a scale large as compared with l, the same structure appears almost Euclidian
(Fig. 4.4 (b)) [111].

4.2.2 Self-affinity of fracture
Fracture surfaces have a self affine nature, where the direction z corresponds to the
average normal to the fracture surface [105]. Once again, the Hurst exponent of the
surface is conjectured to be universal [113], i.e., not to depend on the material or on
the fracture speed and mode. This hypothesis has been experimentally verified on very
different materials such as glass, concrete, or aluminum and for various fracture speeds
[105]. In all situations, the measured Hurst exponent is around H ' 0.8 [113].

Yet, the topothesy l may vary greatly from a situation to another. Indeed, topothesy
is on the order of the typical heterogeneity length in the material (a few nm in glass, a
few mm in concrete). This explains why, at our scale, a glass fracture surface appears
much smoother than a concrete fracture surface. Moreover, in anisotropic media such
as wood, the anisotropy is reflected by an anisotropy of the topothesy but not by the
Hurst exponent [114].

Another class of materials has been identified which exhibits a Hurst exponent
around 0.5. These materials are granular materials with a weak coherency, such as
sand stone or sintered glass bead [115]. An explanation for this different behavior may
be that in these materials the plastically damaged zone is small as compared with the
heterogeneity scale (grain size)[116].

Recently, Ponson et al. have analysed fracture surfaces with a 2D height-height
correlation function [114]

∆h(∆x,∆y) =
〈
(z(x + ∆x, y + ∆y) − z(x, y))2

〉1/2
(4.13)

for several materials (either brittle, ductile or quasi-ductile) and crack velocities. This
function has been measured on samples in which the fracture propagation direction was
well controlled. If x is the direction of the crack propagation and y the direction parallel
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to the crack front, the authors measured two different Hurst exponents in these two
directions, i.e.,

∆h(∆x, 0) ∝ ∆xβ (4.14)

∆h(0,∆y) ∝ ∆yζ (4.15)

with β ' 0.6 and ζ ' 0.75. Moreover, the transition between these two behaviours
occurs for

∆y ∝ ∆x1/u u =
ζ

β
(4.16)

See references [114, 117] for more details. This scaling behaviour corresponds to a
class of phenomena called the Family-Vicek scaling [118]. It is observed in several
models, in particular the propagation of an elastic line in a random media [111].

The exponent ζ describes the geometry of the crack perpendicular to the propagation
direction and therefore gives an information on the static geometrical properties of the
crack. The exponent u describes how the influence of a given point propagates with the
fracture evolution. Finally, the morphology of the crack in the propagation direction
results from the two previous exponents β = ζ/u [117]. Naturally, if the isotropic
height-height correlation function is considered (Eq. 4.11), the exponent H is retrieved
[117].

Therefore, the 2D height-height correlation function (Eq. 4.13) provides an insight
in the physics of fracture. Moreover, it can be used to determine the fracture propaga-
tion direction on post-mortem fracture surfaces and thus can have significant practical
applications [117].
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Part II

The trunk
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Chapter 5

Experiment

5.1 A mushy zone traction test: the Pechiney’s rig test
The present thesis has been preceded by a Master internship at the Alcan (formerly
Pechiney) Voreppe Research Center (CRV) under the supervision of B. Commet. This
work was focused on a intensive measurement campaign on a mushy zone traction test,
the Pechiney’s rig test [38]. This work was held in the frame of an European research
program, the VIRCAST (Virtual Cast-house) project.

5.1.1 Description of the apparatus
This machine has been designed by B. Magnin, B. Commet and J.-F. Bonello at Alcan
CRV. It is inspired by an apparatus developed at the Aachen foundry institute by Ohm
et al. [54, 119] (see Sec. 2.3.4).

The machine is based on a commercial Lloyd traction machine with a load cell of
30 KN. The cast-iron jaws of the machine are preheated to 200 ◦C and cooled down
by a water circulation during the test. A consumable refractory mold is placed between
the jaws of the machine (Fig. 5.2(a)) and is maintained by a slight compression force
(-10N). This gives a dog-bone shape to the whole system. A cast-iron cooler is then
placed on the mold to close the system (Fig. 5.2(b)). Tightness is ensured by refractory
joints. Four type-K thermocouples (TC 1-4) measure the temperature in the sample
(Fig. 5.1): they go 3 mm into the sample in order to limit their perturbation on the
mechanics of the system. Two other thermocouples measure temperature in the jaws.

Liquid metal is poured into the feeding system with a dipper (Fig. 5.2(b)). A glass
fiber sieve retains the oxide layer (Fig. 5.1). A hole in the feeding system allows to con-
trol the metallostatic head in the system, this hole is closed by a cap during mold filling
(Fig. 5.2(b)). Liquid metal mainly solidifies on the upper chill and forms a solid shell
(phase 1). When a sufficient solid shell has formed (as controlled by the temperature
of TC1) the upper cooler is removed and heat is mainly extracted by the machine jaw
(phase 2). When the temperature measured by TC 1 has reached a prescribed value, the
traction automatically starts at a constant speed (phase 3) (Fig. 5.2(c)).

These three phases are reported on Fig. 5.3. In this picture, mold filling is observed
by a sharp increase of temperature, similarly the removal of the chill is visible on both
the thermal and mechanical curves (between phase 1 and 2). Note that during phases
1 and 2, the machine controls the force on the sample to -10 N in order to prevent the
formation of damage before the traction.
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Figure 5.1: Schematic diagram of the hot-tearing test apparatus. The position of
the 4 thermocouples is indicated by a black line and noted TC.

(a) (b) (c)

Figure 5.2: Pictures of the apparatus. (a) Mold before the experiment, (b) mold
filling (phase 1), (c) traction (phase 3).

Figure 5.3: Thermal and mechanical curves as measured during a typical test.
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This protocol has been conceived by Ohm et al. in order to reproduce the formation
of an air gap after the primary cooling in DC casting [54, 119] (see Sec. 1.2).

The cross section of a test sample is around 10 cm2, and this value is used to esti-
mate the stress in the sample. Moreover, the strains are supposed to be localized in the
central part of the sample which is the hotter part during the traction. This zone has
been first estimated by L. Maenner to be around 4 cm long [120]. These rough estima-
tions have been recently validated by numerical simulations of the apparatus done by V.
Mathier [18] and will be used hereafter. Yet, it should be pointed out that, at the end of
solidification, deformation tend to localize in a smaller zone. Therefore, this simplified
approach tend to slightly underestimate the local strains at high solid fractions [18].

Three imposed traction speeds have been used, 2.5 mm/min, 10 mm/min and 40
mm/min. They respectively correspond to estimated deformation rates of 10−3s−1, 4
×10−3 s−1 and 1.6 ×10−2 s−1 which represents well the range of deformation rates that
are encountered in DC casting [19].

Solid fraction is estimated by two methods. First, we use the Prophase software
developed at Alcan CRV [121]. This software couples a micro-segregation calculation
with thermodynamic data basis and therefore also allows to predict the formation of
secondary phases. Second, we use a single pan thermal analysis in which the solid
fraction is deduced from the cooling curve of the metal measured in an instrumented
crucible (see [38]). This last method is directly done during the experiments and with
the same metal.

5.1.2 The alloys
Three alloys were used, Al-2wt%Cu, Al-4wt%Cu, and a 5182 commercial alloy (Al-
Mg). The Al-Cu alloys were produced from a commercial 1085 alloy (99.88% Al) with
the addition of high purity cooper. All three alloys were inoculated by the addition of 2
Kg per ton of a AT5B master alloy (Al-5wt%Ti-1wt%B) and therefore presented a fine
grain microstructure.

Al-Cu alloys are well studied alloys and present a pure eutectic diagram in the range
of composition considered. Moreover, they are prone to hot cracking in particular at
the two compositions considered here (see Sec. 2.1). Therefore, they represent an
ideal system for our study. The 5182 alloy is a commercial alloy used for the end of
beverage cans. The understanding of hot cracking in this alloy represents a significant
industrial issue. In this experiment, as in all this thesis, we only consider a fine globular
microstructure (induced by the heavy inoculation). These parameters were fixed in
correlation with the work of other participants of the VIRCAST program, in particular
the work of Ludwig et al. [37, 45].

5.1.3 Observation of the fracture profiles
First, the fracture profiles have been simply observed with the naked eye. A longitudinal
cut has been done on some samples. This cut is normal to the fracture surface and
situated on the vertical symmetry axis on the sample. This cut is polished down with a
1 µm diamond spray, then attacked with a Keller solution and observed with an optical
microscope.

Fracture surfaces were directly observed in a scanning electron microscope (SEM)
at Alcan CRV. Moreover, 3D reconstructions of the fracture surfaces have been done by
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(a)

Spot diameter [mm] 0.6
Pulse frequency [Hz] 250
Energy per pulse [J] 4.4
Spot velocity vb [mm/s] 10, 20 and 30

(b)

Figure 5.4: (a) Schematic of the apparatus [124]. (b) Selected laser parameters
[10].

T. Meredith during her student work in the laboratory [122]. In this technique, two SEM
pictures of the sample are taken with a tilt angle of respectively −3◦ and +3◦. This tilt
angle corresponds to the natural tilt angle of human eyes and the superposition of these
two images produces a stereographic image of the sample (just as in 3D movies) [122].
Moreover, we used the MeX software [123] which allows to reconstruct the 3D profile
from the interpolation of these two images. Pictures were taken with a magnification of
30x (which is the lowest magnification of the SEM) and 50x.

5.2 Laser remelting experiments

It is possible to remelt a metal by an intense laser beam. The temperature gradients
around the laser spot are very strong and thus solidification conditions are favourable to
hot cracks formation. Moreover, such an experiment is quick and requires only small
test samples. Therefore, it is a convenient method to assess hot cracking sensitivity.
These remelting experiments were done by L. Germond during his student project at
the LSMX [10].

5.2.1 Description of the apparatus

We have used a Nd:YAG laser whose wavelength is 1.06 µm (near infrared). This laser
is pulsed, i.e., the energy is delivered by very brief and intense pulses. The pulses
parameters are summarized on Fig. 5.4(b). They have been set up by J.-D. Wagnière in
order to produce interesting re-solidification conditions. Indeed, if the energy absorbed
by the material is too low no crack forms, but if this energy is too high the matter can
be vaporized and form a plasma around the laser spot (Keyhole formation).

In order to have nice planar surfaces, the test samples were polished with a 1 µm
diamond spray. During the test, the laser beam had a fixed velocity vb relatively to the
sample (Fig. 5.4(a)). For each composition, three values of vb were used : 10, 20 and
30 mm/s. Note that most of the laser energy is reflected by the sample. Therefore, the
normal to the sample surface was tilted by 8◦ with respect to the beam in order not to
redirect the reflected beam in the laser cavity.
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5.2.2 The alloys
The alloy studied was an Al-4.26wt%Cu produced from a commercial 1085 alloy with
the addition of high purity cooper. The first two samples were respectively cast directly
(non-grain refined) and with the adjunction of 1 kg per ton of an AT5B master alloy
(grain refined). Two other samples have been cast in the same conditions but with
the adjunction of 300 ppm Barium. These alloys were cast at ALCAN CRV during
the Master thesis work of G. Chichignoud at INPG, in order to study the influence of
barium, a tensio-active element, on the shape of eutectic films [125, 62] (see Sec. 2.3.5).

5.2.3 Observations
First, the samples have been directly observed with an optical microscope. Then, they
have been polished with a 1 µm diamond spray, attacked with a Keller solution, and re-
polished in order to reveal the cracks. Finally, the polished samples have been observed
in a SEM with a secondary electron detector.

Moreover, an Electron Back-Scattered Diffraction (EBSD) have been used to deter-
mine the grains’ orientations [126]. In order to have a good signal with such a technique,
the zone mechanically affected by the mechanical polishing is removed with an elec-
trochemical polishing. This polishing is done with an A2 Struers electrolytic solution
under a 30 V tension during 10 s.

5.2.4 Estimation of grain misorientation
The EBSD detector can deduce grain orientations from the diffraction pattern of a SEM
electron beam. For a cubic lattice, the orientation of a grain is given by the three Euler
angles (ϕ1, φ, ϕ2) which define a rotation R from the reference frame (x0, y0, z0) to a
frame (x1, y1, z1) aligned with the directions < 100 > of the grain crystal lattice.

 x1

y1

z1

 =
 cosϕ1 − sinϕ1 0

sinϕ1 cosϕ1 0
0 0 1


 1 0 0

0 cos φ − sin φ
0 sin φ cos φ


 cosϕ2 − sinϕ2 0

sinϕ2 cosϕ2 0
0 0 1


 x0

y0

z0


(5.1)

Because of its symmetry the crystal lattice is invariant by a set of permutations Pi.
Therefore, several rotations PiR are possible. Note that these transformations can all
be expressed as a single rotation with a given axis and a given angle θ(Pi). The Euler
angles reported correspond to the rotation PiR for which θ(Pi) is minimun.

Similarly, if we consider two grains with the orientation given by the rotations R1

and R2, several rotations can transform the frame of grain 1 to the frame of grain 2 :

D1,2(Pi) = PiR2Rt
1 (5.2)

where .t denotes the transposition. Once again, these transformations can be expressed
as a single rotation with an angle θ1,2(Pi). A scalar estimation of the misorientation
between the two grains is thus given by the minimum value of θ1,2(Pi).
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Chapter 6

A solidification model for globular
microstructures

In the present work, we aim at describing the mushy zone behavior with a granular
model, i.e., taking into account explicitly the behavior of each grain. Yet, this model
must be simple at the scale of the grain in order to allow the computation of large mushy
zones.

In standard solidification conditions, primary phase solidification forms dendrites
(either columnar or equiaxed)[13]. Yet, in many industrial aluminium casting, particles
of TiB2 or TiC are added to serve as heterogeneous nucleation sites and therefore to
decrease the grain size (inoculation)[30]. In highly inoculated alloys, the grains do not
have enough space to form dendrites and their shape is almost spherical, i.e., globular
grains. Inoculation is interesting for casting practice because it gives a more uniform
product for further processing and reduces hot cracking sensitivity (see Sec. 2.1).

The shape of globular grains is simple. Moreover, their size is small as compared
with the process scale and thus a representative elementary volume (REV) can be de-
fined, which might not be the case for large dendritic grains. Therefore, globular mi-
crostructures are particularly well suited for a first granular model.

6.1 A model based on Voronoi diagrams

6.1.1 Derivation of the model

This two dimensional (2D) solidification model is based on the work of Mathier et al.
[127, 60]. During the present thesis, the hypotheses of the model were further simplified
in order to reduce computation time and thus to allow the computation of large mushy
zones. This model has been published in Refs. [128, 129].

The model assumes simultaneous nucleation of grains in a plane with a given density
of random sites. This hypothesis will be justified in Sec. 6.2.2. Further assuming that
the temperature difference across the average grain size is small with respect to the
undercooling (i.e., small thermal gradient), the growth conditions of two neighboring
grains are almost identical. Therefore, at the end of solidification each grain will occupy
the space which is closer to its nucleus than to any other nuclei [130].

Given a set of points, we can associate to each point the space that is closer to that
point than to any other point. This construction creates a tessellation of the space, which
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Figure 6.1: Various enlargements of the granular model: Voronoi tessellation as-
sociated with the nuclei centers (a); shape of the grains during solidification (b);
solute balance within one triangle (c); smoothing procedure of the solid-liquid inter-
face near the grain corners (d).

is referred to as the Voronoi tessellation [131]. The final grain structure is thus close
to the Voronoi tessellation of the set of nuclei (Fig. 6.1, (a)). In the present work, this
tessellation is computed using the free access software qhull [132].

In order to further simplify the solidification model, the solute flux between elemen-
tary triangles is neglected in a first step. Thus, the smooth interface of each grain during
growth can be approximated by a linear segment in each triangle connecting the nucle-
ation center with a Voronoi segment. By construction, these segments are perpendicular
to the vectors connecting the nucleation centers and the two triangles issued from the
same Voronoi segment are symmetrical, (Fig. 6.1, (b)).

Solidification is therefore reduced to a one-dimensional problem in each triangle,
with the assumption of complete mixing of solute in the liquid phase and back-diffusion
in the solid. A solute balance integrated over the liquid phase of an elementary triangle
gives

x∗Ds
∂c∗s
∂x

(x∗) + v∗x∗(k − 1)cl +
1
2

(L2 − x∗
2
)
∂cl

∂t
= 0 (6.1)

where x∗ and v∗ are the position and speed of the interface, respectively, cs and cl the
solute concentration in the solid and liquid phase, c∗s the solute concentration in the solid
at the interface, k the partition coefficient, t the time, Ds the diffusion coefficient in the
solid, L the height of the elementary triangle perpendicular to the Voronoi segment and
x the coordinate along this direction (Fig. 6.1, (c)).

For a given temperature, concentrations at the solid-liquid interface are imposed
by the phase diagram. Thus, as we assume complete mixing in the liquid, the phase
diagram imposes the whole liquid concentration cl. We can thus write

∂cl

∂t
=
∂cl

∂T
∂T
∂t
=

Ṫ
m

(6.2)

where m is the liquidus slope, and Ṫ the local cooling rate. Thus, Eq. 6.1 becomes:

x∗Ds
∂c∗s
∂x

(x∗) + v∗x∗(k − 1)cl +
1
2

(L2 − x∗
2
)
Ṫ
m
= 0 (6.3)

In the present work, we consider that the cooling rate Ṫ is imposed and constant. A
constant enthalpy rate condition, which takes into account the latent heat released by
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solidification, can also be implemented [84, 60]. This last condition leads to more
realistic temperature evolutions but requires to couple Eq. 6.1 with an energy balance.
In the present model we look for a very efficient scheme and moreover we are interested
in the last stages of solidification during which the cooling rate is in any case almost
constant.

The first term in Eq. 6.3 associated with back-diffusion in the solid is computed by
solving the cylindrical diffusion equation in the solid phase, which can be viewed as the
solute balance between slices of the elementary triangle for constant x:

∂cs

∂t
= Ds

(
∂2cs

∂x2 +
1
x
∂cs

∂x

)
(6.4)

In order to easily account for solidification, we use a Landau transformation of the
solid domain [0, x∗(t)] into the reference 1D domain [0, 1], as introduced by Voller and
Sundarraj [133]:

cs(x, t)→ cs(η, t) η =
x
x∗

(6.5)

Eq. 6.4 becomes: (
∂cs

∂t

)
η

=
Ds

x∗2
∂2cs

∂η2 +

(
ηv∗

x∗
+

Ds

ηx∗2

)
∂cs

∂η
(6.6)

where the term ηv∗/x∗ accounts for the advection of the mesh with the solidification
front.

This equation is solved using a finite difference scheme, with a nil flux condition for
η = 0 and an imposed concentration c∗s = kcl for η = 1. Knowing the flux associated
with back-diffusion and the concentration evolution in the liquid, the second term of
Eq. 6.3 allows to deduce the velocity of the interface, v∗, and thus to find the new
position x∗(t + dt). This back-diffusion model is similar to that of Ohnaka [134].

Note that solidification does not depend on the opening of the elementary triangles
but only on its height L, i.e., on the half-distance between two nucleation centers.

6.1.2 A model for coalescence
When two flat interfaces get very close to each other, the coalescence undercooling
introduced by Rappaz et al. [33] (see Sec. 2.3.5) is considered in the calculations in a
way similar to Mathier et al. [60]:

∆Tcoal =
γgb − 2γsl

∆S fδ
if γgb > 2γsl (6.7)

where γgb is the grain boundary energy, γsl is the solid-liquid interfacial energy, ∆S f

is the volumetric entropy of fusion and δ is the thickness of the diffuse solid-liquid
interface.

The crystal lattice orientation of a grain I is chosen at random and is defined by
a single angle θI in 2D. The grain boundary energy is calculated for each boundary
IJ of the Voronoi tessellation, assuming a simplified Read-Shockley distribution (see
Sec. 2.3.5 Fig. 2.21(b))[61] in which the initial sinus variation is replaced by a linear
variation.

γgb,IJ =
|θI − θJ |

20◦
γgb,max 0◦ < |θI − θJ | < 20◦ (6.8)
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Figure 6.2: Evolution of the liquid concentration as a function of temperature in a
binary Al-Cu alloy. In the first stage of solidification, liquid concentration is imposed
by the phase diagram. When the liquid film thickness is of the order of δ, the coa-
lescence effect is felt. Back diffusion progressively reduces the film concentration.
Solidification ends when the coalescence line is reached.

γgb,IJ = γgb,max 20◦ < |θI − θJ | < 45◦ (6.9)

where γgb,max is the grain boundary energy of a fully disordered boundary. Note that
0◦ < |θI − θJ | < 45◦ for a cubic symmetry.

For an alloy Rappaz et al. have shown that coalescence occurs when a coalescence
line (surface) is reached (see Fig. 6.2) [33]. This coalescence surface or line is parallel
to the liquidus but ∆Tcoal below . Due to back-diffusion during the last stage solidifica-
tion, the concentration of the last liquid film decreases as shown in Fig. 6.2

Coalescence effects are felt when the liquid film thickness is on the order of the
diffuse solid-liquid interface thickness (δ ∼ 1 − 3 nm). It is extremely computation
intensive to compute the evolution of the interface at the nanometer scale while com-
puting the diffusion equation (Eq. 6.4) at the scale of the microstructure [60]. Moreover,
the solute rejected by the solidification of such a thin film is clearly negligible.

Therefore, when the solid-liquid interfaces of two neighbouring grains are closer
than δ, the exact position of the interface is no longer computed. Back diffusion in
the solid fixes the concentration of the thin remaining liquid film and when the liquid
composition reaches the coalescence line (for the prescribed temperature), the grain
boundary is considered to be dry or solid (see Fig. 6.2).

6.2 A model for grain corners

6.2.1 Derivation of the model

Although the previous model predicts fairly well the evolutions of the grains, of the
solid-liquid interface and of the solid fraction (see section 6.2.2), it leads to polyhedral
grains (Fig. 6.1, (d)). This situation is clearly unrealistic as sharp corners are normally
remelted by surface tension in non-faceted crystals. Furthermore, no liquid pocket can
form at the triple junctions of the grains. As a consequence, this model overestimates
the volume fraction of solid at which contact between grains occurs, as compared with
experiments [128, 35].
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Figure 6.3: Schematics of the solute flux model which accounts for the Gibbs-
Thomson effect near a grain corner.

In order to remove these limitations, the Gibbs-Thomson effect at grain corners has
to be considered. Assuming again that temperature is homogeneous at the scale of a
grain, the liquid concentration at an interface with a local radius of curvature R is given
by

cR
l = c∞l +

Γsl

Rm
(6.10)

where c∞l is the liquid solute concentration for a flat interface and Γsl is the Gibbs-
Thomson coefficient. (Note that, in general, the liquidus slope m is negative). If so-
lidification were arrested, solute would flow from low curvature areas to high curvature
areas, as for coarsening, thus remelting the highly curved zones. Yet, globular grains are
not spherical during solidification and another phenomenon should balance the Gibbs-
Thomson effect.

Therefore, the idealized situation represented in Fig. 6.3 is considered for smooth-
ing the shape of polyhedral grains based on the Gibbs-Thomson effect. The grain corner
is modelled by a curved interface with a constant radius of curvature R, whereas else-
where the interface is supposed flat and parallel to the final grain boundary. Moreover,
the liquid is divided into two zones, delimited by the dotted line AA’ in Fig. 6.3 . This
line passes through the point separating the flat and circular portions of the solid-liquid
interface (point labelled A in Fig. 6.3 ). Close to the corner, the liquid has a con-
centration equal to cR

l , whereas in the second zone, surrounding the planar interface, a
homogeneous concentration equal to c∞l is considered.

The gradient of solute around the corner can be estimated by (cR
l − c∞l )/(R sinα)

where R sinα is the distance between the tips of the corner and limit of the two zones.
Moreover, we consider that the flux of solute is effective over a length of the order of
R sinα. This leads to an estimation of the overall flux flowing from the zone surrounding
the flat interface to the zone surrounding the corner:

Φ ∼ Dl(c∞l − cR
l ) = −

DlΓsl

mR
> 0 (6.11)

We further look for a radius of curvature that is stable with time, i.e., Ṙ = 0. This
implies that the limit between the curved and planar interfaces stays along the dotted
line AA’ in Fig 6.3. Once this constraint is fixed, it can be shown that the rejection of
solute associated with a flat interface moving at a velocity v∞ is equal to that rejected by
the projection of the curved interface moving at a velocity vR. Indeed, the projection of
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the curved interface is given by R sinα, whereas the velocity is given by vR = v∞/ cosα.
So one has:

v∞R tanα = R sinαvR = R sinα
v∞

cosα
(6.12)

where R tanα is the length of the extended flat interface (dotted line AB in Fig. 6.3).
However, the grey surface is an additional volume of liquid, compared to the flat inter-
face, and represents the advantage of the corner for solute diffusion. In other words, the
small incoming flux of solute contributes to increasing the concentration of the liquid in
the area, S , of the grey zone. A more rigorous development, based on solute balances,
is given in App. B. But in summary, one has:

Φ =
dcR

l

dt
S =

dc∞l
dt

S =
Ṫ
m

S =
Ṫ
m

R2

2
(tanα − α) (6.13)

Combining Eq. 6.11 and 6.13, one finally gets:

R3 = AC
2

tanα − α
ΓslDl

−Ṫ
(6.14)

where AC is a dimensionless constant, arising from the simple description of the so-
lute distribution (see Eq. 6.11 ). Nonetheless, simply setting its value to 1 produces
satisfying results and this value will be used hereafter.

It is interesting to note at this stage that Eq. 6.14 is close to a coarsening law: the
radius of curvature of a grain corner is proportional to the third power of a driving force
given by ΓslDl

∆To
, where ∆To is the solidification interval of the alloy, and to the third power

of the solidification time, t f . The geometrical factor in front of this term is such that the
radius of curvature becomes infinite when α is equal to 0 (the grain corner is flat) and
nil when α is equal to π/2 (the grain has disappeared).

Using this relationship for the radius of curvature of the grain corners, the shape of
the solid-liquid interface can be computed as follows.

• The position of the flat interface or solid fraction is computed for each elementary
triangle using the back-diffusion model described in Sec. 6.1

• The radius of curvature at each grain corner is computed using Eq. 6.14. Please
note that, for a fixed cooling rate, the radius is constant and can be computed only
once before the time stepping procedure.

• The interface in each elementary triangle is approximated by a flat portion and
two rounded corners. If the length of the flat interface becomes negative, the
interface is approximated by an arc of a circle.

• Rounded interfaces increase the overall volume of liquid by creating liquid pock-
ets at grain corners. The position of the flat interface is then moved slightly
forward in order to conserve the solid fraction computed with the flat interface
method (see Fig. 6.1 (d)).

6.2.2 Validity and limits of the model
The predictions of the present model have been compared with those obtained with a
pseudo front tracking method (PFT) [15]. In this technique, the fraction of solid within
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Figure 6.4: Solid fraction as a function of time computed with the Voronoi and the
PFT methods

each cell of a hexagonal network is computed based on an explicit solute diffusion cal-
culation. A layer of cells always separates the solid and liquid phases and the solute flux
balance for such cells is converted into a solid fraction evolution. The position of the
interface within these interfacial cells is computed using a piece-wise linear interface
calculation (PLIC) algorithm [135]. Once the interface position within each interfacial
cell is known, its curvature and the associated Gibbs-Thomson effect are calculated us-
ing a distance-field method similar to level-set. This method leads to predictions close
to the phase field method as shown in more details in Ref. [15].

The same simulations have been carried out with the PFT and the Voronoi meth-
ods. Six nuclei have been randomly placed in a 4.5 × 10−2 mm2 domain with periodic
boundary conditions. The average grain size dc is therefore around 90 µm. An Al-
1wt%Cu has been considered with a linearised phase diagram (m = −6.67 K/wt% and
k = 0.14). The other parameters used in these calculations are: Ds = 1.5 × 10−13 m2/s,
Dl = 10−9m2/s, Γsl = 5 × 10−7 Km, Ṫ = -1 K/s.

Figure 6.4 shows the evolution of the solid fraction, gs, computed with the two meth-
ods. Please keep in mind that, in the Voronoi method, the solid fraction calculated with
rounded grains is equal to that obtained with polygonal grains. At the very beginning
of solidification, grain growth predicted with the PFT method is slightly faster as the
Voronoi method assumes complete mixing of solute in the liquid. As soon as a state of
complete mixing is reached with the PFT method, the predictions of the two models are
in very good agreement, even at high solid fraction. This shows that, despite the fairly
strong assumptions of the (flat interface) Voronoi model, solute back-diffusion is well
approximated.

In order to compare in more details the shape of the interfaces predicted by the two
methods, the normalized specific solid liquid interface, S ◦s , is represented in Fig 6.5
as a function of gs. This dimensionless number corresponds to the total length of the
solid-liquid interface of the grains divided by the number of grains and by the average
final grain size dc. This important parameter strongly influences the permeability of
the grain assembly via the Carman-Kozeny relationship (see Sec. 3.2.3). In Sec. 9.1
this parameter is used as an indicator of the morphological transitions of the mushy
zone [136]. As solid grains grow, the length of the solid liquid interface increases as
√

gs in 2D until impingement/contact of the solid grains makes it go to zero. Thus,
S ◦s is maximum when the new contacts between the grains counterbalance the natural
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Figure 6.5: Comparison of the solid liquid interface shape predicted by the Voronoi
and the PFT methods at various solid fractions.

increase of the interface length.
As can be seen on the left of Fig. 6.5, the overall shapes of S ◦s(gs) are in excellent

agreement, but the Voronoi method slightly overestimates this parameter, thus revealing
that grains are still slightly less rounded than those calculated with the PFT method. It
should be specified that, under these conditions, the grains are clearly globular without
significant destabilization of the interface. Formation of dendritic or globular dendritic
grains would definitely increase the length of the solid-liquid interface, thus making
S ◦s,PFT > S ◦s,Vor.

The grain shapes predicted by the two models at various solid fractions are also
represented in Fig. 6.5. For visualization purpose, the grains computed by the Voronoi
method are represented in grey, whereas the interfaces predicted by the PFT method
are represented with black lines. Again, a fairly good agreement between the two sim-
ulations, especially near the grain corners, can be seen. Please note that interfaces
predicted with the Voronoi model are not necessarily continuous as solidification is
computed separately for each elementary triangle. Yet, these slight discontinuities do
not affect much the topology of the liquid channel network, nor the estimation of the
channels permeability and mushy zone topology.

The maximum of S ◦s is predicted to occur at gs = 0.86 by the PFT model, while it is
delayed to gs = 0.89 with the Voronoi model. This difference can be easily understood
by looking at the shape of the grains at gs = 0.88. With the PFT model, the liquid
film in between two close neighboring grains can break down into small droplets by
coalescence, whereas with the Voronoi model it remains a film until final impingement.
Such a liquid film instability occurs when the grain boundary energy is lower than twice
the solid-liquid interfacial energy, i.e., attractive boundaries, and the film thickness is
on the order of the thickness of the diffuse solid-liquid interfaces [33]. Here, no grain
boundary energy is considered in the PFT and Voronoi calculations, but the instability
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Figure 6.6: Comparison of grain shape at gs=0.68 for various sets of solidification
parameters. Starting from the reference simulation (right figure), one parameter is
changed at a time: Dl (a), Γsl (b) and k (c) are multiplied (top) or divided (bottom)
by 2 with respect to the reference.

occurs too early with the PFT method as it is conditioned by the mesh size rather than
the diffuse interface thickness. Note that the quantitative simulation of the coalescence
phenomenon remains a challenging topic despite advances done in the thermodynamic
framework [33] and in the modelling of triple phase boundaries [137].

Despite the numerical difficulties associated with simulation of the last stage solid-
ification, the radii of curvature at grain corners calculated with Eq. 6.14 are close to
those arising from the complex PFT calculation, even for relatively narrow channels.
After breakdown of the liquid films, the sizes of the liquid pockets at triple junction
points are also in fairly good agreement. Note that the isolated liquid pocket are rep-
resented nevertheless with a negative curvature in the Voronoi simulation. It is clear
that the rounding procedure does not account for the coalescence phenomenon which
transforms globally convex globular grains into convex liquid pockets. This simplified
approach nevertheless allows to introduce realistic volumes of liquid at triple junctions,
thus decreasing the volume fraction of solid at which the flat portions of the grain inter-
faces impinge.

Figure 6.6 shows the effect of various parameters on the shape of the solid liquid
interfaces. It is convenient to introduce a dimensionless number, C:

C =
1
dc

(
ΓslDl

(−Ṫ )

) 1
3

(6.15)

This number is the ratio of a "typical" curvature radius at grains corner, i.e., when
(tanα − α)−1 = 0.5, and the average grain size dc. Figures 6.6 a) and b) show that a
larger C number corresponds indeed to a larger radius of curvature at grains corners,
regardless whether this is achieved by increasing Dl or Γsl. The agreement between the
PFT and Voronoi predictions remains when the physical parameters are changed.
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Yet, Fig. 6.6 also points out the limits of the present model, in particular at small
C number. Indeed, the PFT predicts a destabilization of the globular grains into den-
dritic ones when C decreases. A criterion for the transition from globular to dendritic
equiaxed grains has been recently proposed by Diepers et al. [138]. These authors
found that it occurs when:

dGD
c = AGD

(
L

k∆Tocp

ΓslDl

(−Ṫ )

) 1
3

(6.16)

where cp and L are the volumetric specific heat and latent of fusion, respectively, and
AGD a dimensionless factor function of the anisotropy of the solid-liquid interfacial en-
ergy. Although this criterion has been derived for a sphere and a cooling rate imposed
only at the boundaries of the system, it is interesting to note that the same power-law
of the ratio DlΓsl

Ṫ is retrieved. The additional term,(L/(k∆Tocp)), comes from the solute
undercooling ahead of the solidification front and from an overall thermal balance. The
destabilisation of the interface occurs at the beginning of solidification when this un-
dercooling is crucial, whereas the selection of the grains corner curvature occurs later
in solidification when the solutal profile is flat. A change in the partition factor k, which
does not affect the radius of curvature of the grains calculated with Eq. 6.14, neverthe-
less slightly influences the destabilization of the grains as predicted by Eq. 6.16 from
the factor k∆To and as observed with the PFT method (Fig. 6.6 c).

For a high C number, another limitation of the model is encountered as illustrated
by the solidification of the smallest grain in Figs. 6.6 a) b). The Voronoi model does not
predict well the solidification of this grain at high C number. This is because the overall
curvature of the grain is not accounted for in the Voronoi method. Yet, the curvature
undercooling during growth of globulitic grains remains very small, typically 0.01 K
for a spherical grain of 20 µm radius. That of the last liquid droplets is slightly higher
considering that the droplets are smaller and have a negative curvature, opposite to that
considered here for the last liquid located at triple junctions. But in any case, curvature
undercooling, despite its importance for coarsening and for the shape of the dendrite
tip, is small in dendritic and globulitic solidification under normal conditions.

In order to use a Voronoi construction, e.g., linear grain boundaries, to predict the
final grain structures, two assumptions have been made: first, the temperature is uniform
at the scale of the grains, and second, the nuclei all start at the same time. The first
hypothesis is usually verified for globulitic structures, e.g., grains of about 100 µm
growing in a thermal gradient lower than 1 K/cm. The temperature difference across a
reference specimen containing 100 grains is just 1 K in this case. The second hypothesis
clearly pertains to alloys which are inoculated. It has been shown in the case of Al-
alloys inoculated with TiB2 particles that nucleation is athermal [139]. In athermal
nucleation, the activation of a nucleant is a function of the undercooling only and not
of time. In this case, the range of particle sizes which have been shown to be activated
during solidification is typically 2-5 µm in diameter [139]. Therefore, the maximum
nucleation undercooling is about 0.2 K for a Gibbs-Thomson coefficient of 10−7 Km.
This value is small compared to the growth undercooling and thus an instantaneous
nucleation assumption appears reasonable.

The most striking feature of the present Voronoi model is its low computation cost.
The PFT simulations presented in Fig. 6.5 take around 12 Hours on a 2.8 GHz Pentium
4 personal computer, whereas the Voronoi calculations requires less than 2 s! This
represents a gain of more than 4 orders of magnitude. This difference is even more
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striking with large mushy zones. The computation of a whole mushy zone solidification
that contains 14000 grains (see Sec. 9.1 Fig. 9.1) requires less than 10 seconds on the
same computer.
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Chapter 7

Mushy zone mechanics

Several models have been developed for the simulation of granular materials [140, 141,
142], these models being able to simulate the behavior of a large number of spherical
grains, rigid [140, 141] or not [142]. Such methods are generally called Discrete El-
ement Method (DEM). Yet, the interactions between the grains are due to solid-solid
contacts and the influence of the surrounding media (air) is neglected. To model hot
tearing, we not only need to consider solidification but also need to account for the
influence of fluid flow on the mechanical behavior of the mushy zone.

Therefore, in this chapter we progressively build a granular model of mushy zone
mechanics. We first suppose that the solid is fixed and derive a simple model for liq-
uid feeding (Sec. 7.1). Then, this approximation is relaxed and grain movement is
considered together with thermal shrinkage (Sec. 7.2).

7.1 A model for feeding: the KPL model
In this section we derive a model for mushy zone liquid feeding. In the network of
connected liquid films given by the solidification model of Chap. 6, a pressure drop
calculation is performed assuming a Poiseuille flow in each channel, Kirchhoff’s con-
servation of flow at nodal points and flow Losses compensating solidification shrinkage
(KPL model).

7.1.1 Derivation of the model
Since the densities of the solid ρs and of the liquid ρl are not equal, solidification induces
shrinkage. In a first step, it is assumed that the solid remains fixed and that no pore
forms. This means that solidification shrinkage should be fully compensated by liquid
flow. The speed of the liquid −→vl at a solid-liquid interface is given by :

vl,n = −βv∗ (7.1)

where β is the solidification shrinkage (β = ρs/ρl − 1), and v∗ is the speed of the (flat)
solid-liquid interface. The normal −→n to the interface along which −→vl is projected is
pointing toward the liquid.

We note Φi→ j(x) the fluid flow in the channel from vertex i to j

Φi→ j(x) =
∫ h

−h

−→vl (x, y) · −→exdy (7.2)
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Figure 7.1: An elementary liquid channel.

where x is the coordinate along the channel length and y is the coordinate along the
channel width, the origin of the reference frame being at the center of the channel (see
Fig. 7.1). −→ex is the elementary vector in the x direction and h is the half channel width.
For an incompressible flow, the mass balance can be simplified into a volume balance,
i.e.,

∇ ·
−→vl = 0 (7.3)

This balance integrated along a slice dx of the channel gives:

∂Φi→ j(x)
∂x

= −2βv∗ (7.4)

We assume that fluid flow can be modeled by a Poiseuille flow, i.e., a viscous flow
(no inertial term) with a no-slip condition at the solid liquid interface. This hypothesis
is discussed in Sec. 7.2.2. The fluid velocity is thus linked to the pressure gradient by:

∂p
∂x
= µ

∂2vx

∂y2 (7.5)

where µ is the fluid viscosity and the subscript l for the fluid velocity is omitted when
no confusion is possible. We consider that pressure is homogenous along the width of
the channel (Poiseuille flow). The no-slip condition imposes that vx(y = − + h) = 0.
Thus,

vx =
1

2µ
∂p
∂x

(y2 − h2) (7.6)

This equation can be integrated along the width of the channel to get the flux of liquid
flowing through the channel.

Φi→ j(x) = −
2

3µ
∂p
∂x

h3 (7.7)
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Equations 7.4 and 7.7 give the master equation:

h3

3µ
∂2 p
∂x2 = βv∗ (7.8)

7.1.2 Numerical integration
A simple approach is to integrate Eq. 7.8 along the channel length to get

p(x) =
3µβv∗

2h3 (x2 − (
L
2

)2) +
P j − Pi

L
x +

Pi + P j

2
(7.9)

where L is the length of the channel, Pi and P j are the pressures at nodes i and j respec-
tively (see Fig. 7.1). Thus,

Φi→ j(x) = −2βv∗x +
2h3

3µL
(Pi − P j) (7.10)

We note Φi the fluid flux entering in the channel at node i, i.e.,

Φi = Φi→ j(−
L
2

) =
2h3

3µL
(Pi − P j) + βv∗L (7.11)

and

Φ j = −Φi→ j(
L
2

) =
2h3

3µL
(P j − Pi) + βv∗L (7.12)

Therefore, we can write the elementary matrix of the channel, which relates the
pressure to the fluid flux at both end of the channel.(

Φi

Φ j

)
=
←→
Ep

(
Pi

P j

)
−
−→
bp (7.13)

with
←→
Ep =

2h3

3µL

(
1 −1
−1 1

)
,
−→
bp = −βv∗L

(
1
1

)
(7.14)

The matrix
←→
Ep represents the hydrodynamic resistance of the channel, whereas the vec-

tor
−→
bp represents the flux losses due to solidification shrinkage.
It is interesting to note that this matricial problem can be equally obtain from Eq. 7.8

by a one-dimensional (1-D) Finite Element Method (FEM). We introduce the test func-
tion ψi(x) which is 1 at node i, 0 at node j and varies linearly along the channel.

ψi(x) = −
x − 1

2 L
L

(7.15)

and

ψ j(x) =
x + 1

2 L
L

(7.16)

The pressure in the channel is approximated by

p(x) = Piψi(x) + P jψ j(x) (7.17)
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We then use the Galerkin method [143], i.e., we write the weak formulation of Eq. 7.8
for the test function ψi.∫ L/2

−L/2

2h3

3µ
∂2 p
∂x2ψi(x)dx =

∫ L/2

−L/2
2βv∗ψi(x)dx (7.18)

An integration by part of the right hand side of this equation gives:[
2h3

3µ
∂p
∂x
ψi(x)

]L/2

−L/2
−

2h3

3µ

∫ L/2

−L/2

∂p
∂x

∂ψi(x)
∂x

dx =
∫ L/2

−L/2
2βv∗ψi(x)dx (7.19)

Using the decomposition of Eq. 7.17 we have:∫ L/2

−L/2

∂p
∂x

∂ψi(x)
∂x

dx = Pi

∫ L/2

−L/2

∂ψi(x)
∂x

∂ψi(x)
∂x

dx + P j

∫ L/2

−L/2

∂ψ j(x)
∂x

∂ψi(x)
∂x

dx (7.20)

Therefore, using Eq. 7.7 for the first term of Eq. 7.19, the integration of the test functions
gives:

φi −
2h3

3µL
(Pi − P j) = βv∗L (7.21)

Similarly the weak formulation of Eq. 7.8 projected on ψ j gives:

φ j −
2h3

3µL
(P j − Pi) = βv∗L (7.22)

and we retrieve the equations system of Eq. 7.13.
The global problem can be constructed from the elementary problems if we consider

the conservation of fluid flow at each node, i.e., Kirchhoff’s condition:

∀i
∑

s

φs
i = −φ

ext
i (7.23)

where the superscript s denotes a channel linked to node i and φext
i represents the fluid

flux flowing out node i due to boundary conditions (non zero only at the domain bound-
ary if a natural condition is applied). The addition of the elementary problems therefore
gives:

←→
Etot

p

−−→
Ptot =

−−→
btot

p (7.24)

where
−−→
Ptot is the unknown pressure vector in the whole mushy zone,

←→
Etot

p the sum of the

elementary matrices, and the component i of vector
−−→
btot

p is

btot
p (i) =

∑
s

−βv∗sLs − φext
i (7.25)

where the superscript s denotes the quantities in channel s. Note that the term btot
p (i)

corresponds to the fluid losses associated either to solidification shrinkage or boundary
conditions.

The problem of Eq. 7.24 can be solved by standard linear algebra method, e.g.,
Gauss pivot.

As the relation between pressure drop and fluid flow is locally linear, the network of
liquid channels is equivalent to an electrical resistance network. However, this network
has flow losses corresponding to the shrinkage term, i.e., the resistances are not well
insulated from the board on which they are fixed.
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7.2 Grain movement

7.2.1 Hypothesis and notations
In this section, solid grains movement is considered. For the sake of simplicity, we
only consider translations and solid contraction of the grains. Indeed, the detection of
contacts between polygonal grains is difficult if rotations are considered [140]. This
hypothesis is strong but experimental study shows that at high solid fraction the main
deformation mechanism is grain boundary sliding (see Sec. 2.3)[56].

Moreover, we suppose that the solid phase is perfectly rigid and therefore that all
the deformation is concentrated in the liquid films. This hypothesis should be correct
before the ductility minimum, on the descending branch of the ductility curve (see
Sec. 2.3). Yet, after the coalescence transition, the mush deformation is dominated
by solid plasticity, and thus the present assumption is not valid anymore. Nonetheless,
it should be pointed out that natural hot cracking surfaces do not exhibit significant
plastic deformation of the solid phase.

In summary, in the present section the hypotheses of the model are:

• The solid grains are perfectly rigid

• The solid grains do not rotate, i.e., the interfaces of a liquid channel remain par-
allel

• The liquid is a Newtonian fluid

• No gaseous phase forms

Under these assumptions, the behaviour of the whole mush is dictated by fluid dis-
placement and therefore the model is based on the constitutive equations of an elemen-
tary liquid channel.

Figure 7.2 shows the various notations for an elementary liquid channel, as two
grains can have a translation displacement with respect to each other, a mismatch be-
tween the extremities of the channel can exist. We note L the length of the solid-liquid
interface for one grain, Lc the length of the channel for which the two grains effectively
face each other and Lia the length of the solid liquid interface from the centre of the
channel to the extremity of grain a near the vertex j. Note that L ja + Lia = L. h is still
the half width of the channel. Note also that even though the channel can be curved
at its extremities, we model it with straight lines for the determination of the pressure
field.

We note Oa the centre of grain a, and
−−→
VOa its speed (see Fig. 7.2). This last term is

the main difference with Sec. 7.1, it adds to the solidification shrinkage to impose the
fluid velocity at a solid-liquid interface. The average speed of the liquid at the interface
with grain a is noted −→vl (y = h) =

−→
Va.

−→
Va =

(
VT

Oa

VN
Oa
− βv∗

)
(7.26)

where the normal elementary vector
−→
N is directed from grain a to b, and the tangential

vector
−→
T is directed from vertex i to vertex j (see Fig. 7.2). Note that vector

−→
N is

different from vector −→n which points from solid to liquid, indeed it is important to
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Figure 7.2: An element of the mechanical model for rigid grains

project the grains velocities on the same vector in order to construct the elementary
matrix (see below). Therefore, the liquid speed at grain b solid-liquid interface can be
written:

−→
Vb =

(
VT

Ob

VN
Ob
+ βv∗

)
(7.27)

At the two extremities of the channel, the pressure p is imposed by the pressure of
the integration node and is noted Pi at point i.

7.2.2 Dimensional analysis and simplification of the equations
In the KPL model, we have supposed that fluid flow can be modeled by a Poiseuille
flow. Yet, this hypothesis (together with other implicit hypotheses, see below) can be
clearly justified by a dimensional analysis.

Liquid metals can be considered as incompressible Newtonian fluids, therefore :

ρl
dvx

dt
= −

∂p
∂x
+ µ(

∂2vx

∂x2 +
∂2vx

∂y2 ) (7.28)

We put this equation in dimensionless form using the following normalisation :

x◦ =
x
Lc
, y◦ =

y
2h
, v◦x =

vx − VT
a

VT , v◦y =
vy − VN

a

VN , t◦ =
tVT

Lc
, P◦ =

P − Pi

∆Px
(7.29)

where VT = (VT
b − VT

a ), VN = (VN
b − VN

a ) and ∆Px = (P j − Pi). We get the normalized
equation

4h2ρlVT

µLc

dv◦x
dt◦
= −

4h2∆Px

µVT Lc

∂P◦

∂x◦
+

4h2

L2
c

∂2v◦x
∂x◦2 +

∂2v◦x
∂y◦2 (7.30)
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This form is important as it shows the importance of each term in the equation.
The factor 2h

Lc
appears in several terms, it can be expressed as a function of the solid

fraction gs,
2h
Lc
= 2

Htot

Ltot

(
1 − g1/2

s

g1/2
s

)
(7.31)

where Htot is the height of the elementary triangle, and Ltot the length of its base. Thus,
for a regular hexagonal network of solid grains, we have

2h
Lc
=
√

3
(
1 − g1/2

s

g1/2
s

)
(7.32)

which is precisely the term introduced by Lahaie and Bouchard in their criterion (Sec.
3.1.3) [75]. We are interested in solid fractions gs > 0.8 and for gs = 0.8, (g−

1
2

s − 1) ∼
(1 − gs)/2 ∼ 0.1.

We consider the typical values of the physical parameters in an inoculated Al-Cu
alloy ρl ∼ 2440 Kgm−3, µ ∼ 1.5×10−3 Pas, Lc ∼ 10−4 m [42]. Moreover, in a DC casting
the typical strain rate is of the order of ε̇ ∼ 10−3 s−1 [19] and thus VT ∼ Lcε̇ ∼ 10−7

ms−1. Thus
4h2ρlVT

µLc
∼ 10−6 (7.33)

and the inertia term of Eq. 7.30 are definitely negligible. Similarly

4h2

L2
c
∼ 10−2 (7.34)

and we can reasonably neglect the term in ∂2vx
∂x2 . Thus, we get a simplified equation

∂2v◦x
∂y◦2 =

4h2∆Px

µVT Lc

∂P◦

∂x◦
(7.35)

The same procedure on the equation for the y component of the fluid velocity gives

∂2v◦y
∂y◦2 =

2h∆Py

µVN

∂P◦

∂y◦
(7.36)

We get an estimation of the pressure variation in the channel

∆Px ∼
µVT Lc

4h2 , ∆Py ∼
µVN

2h
(7.37)

and thus
∆Py

∆Px
∼

2h
Lc

(7.38)

Thus, at first approximation, we can neglect the variation of pressure along the y axis
with respect to the variation of pressure along the x axis. Therefore, even though fluid
flow exists in the y direction due to solidification shrinkage or grain displacement, the
Poiseuille equation gives a good approximation of the flow.

In the derivation of the model, we only consider the dissipation along the channels
and neglect the dissipation at triple junctions. Indeed, the dissipation along the channels
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is mainly due to viscosity (regular head losses), while the dissipation at triple junctions
is due to the brutal direction change of the flow (singular head losses) and therefore is
proportional to the kinetic energy of the flow [144]. Equation 7.33 shows that the ratio
between kinetic energy and viscous dissipation (Reynolds number) is of the order of
10−5 and therefore it is reasonable to neglect the dissipation at triple junctions.

When the channel width becomes of the order of a few nanometers, the Newto-
nian behavior of the liquid is to be questioned. Yet, Israelachvili has measured the
apparent viscosity of Newtonian fluids in very thin films. He measured a good agree-
ment between the apparent viscosity and the bulk viscosity for films larger than 5 nm
[145, 146]. Another effect observed in thin films is a slipping at solid liquid interface
which may be due to the formation of a nanometric air gap [147, 146]. This slipping
occurs when the shear stress overpasses a critical value and might be an interesting
phenomenon in hot tearing.

In the present model, we do not model the mechanical behavior of channels smaller
than δ, the coalescence interaction distance (Sec. 6.1.2) and consider that below this
value such very thin channels are mechanically strong. This cut-off also allows to elim-
inate very large coefficients in the problem matrix and thus to ensure a better condition-
ing of the problem. For channels larger than δ, we consider a pure Newtonian behavior
of the fluid.

7.2.3 Integration of the constitutive equation
The constitutive equation integration is similar to the KPL model, the only difference
being the boundary conditions at solid-liquid interfaces. We start from Eq. 7.35 in
dimensional form

∂p
∂x
= µ

∂2vx

∂y2 (7.39)

and the mass balance equation integrated as before over the width of the channel

∂Φi→ j

∂x
= −VN (7.40)

where Φi→ j is the flux from vertex i to j at a given x and

VN = VN
b − VN

a (7.41)

represents the pump term in the channel. These equations can be integrated to give the
speed of the fluid and its pressure

p(x) =
3µVN

4h3 (x2 − (
Lc

2
)2) +

P j − Pi

Lc
x +

Pi + P j

2
(7.42)

vx(x, y) =
(
3VN

4h3 x +
P j − Pi

2µLc

)
(y2 − h2) +

VT
b − VT

a

2h
y +

VT
b + VT

a

2
(7.43)

Equation 7.43 can then be integrated to give the liquid flux

Φi→ j(x) = −VN x +
2h3

3µLc
(Pi − P j) + 2h

VT
b + VT

a

2
(7.44)



7.2. Grain movement 85

The stress tensor in the liquid can be deduced from the pressure and velocity fields
(see App. C) :

←→σ (x, y) =

 −p ( 3µVN

2h3 x + P j−Pi

Lc
)y + µVT

b −VT
a

2h
′′ −p

 (7.45)

and the force density on grain b can be written :

−→tb (x) =←→σ (x, y = h)
−→
N =

 ( 3µVN

2h3 x + P j−Pi

Lc
)h + µVT

b −VT
a

2h
−p(x)

 (7.46)

Equation 7.45 gives the stress tensor in the part of the channel where the two grains
match. In the part where they do not match, we simply consider that we have a homo-
geneous pressure equal to the pressure of the integration point (Pi or P j, see Fig. 7.2).
Thus, we can integrate the force exerted by a grain on the liquid

−→
Fa =

 (P j − Pi)h − µ Lc
2h (VT

b − VT
a )

−µ
(

Lc
2h

)3
VN + PiLia + P jL ja

 (7.47)

and
−→
Fb =

 (P j − Pi)h + µ Lc
2h (VT

b − VT
a )

µ
(

Lc
2h

)3
VN − PiLib − P jL jb

 (7.48)

Similarly we can integrate the volume balance for an incompressible fluid flow (see
App. C)

∇ ·
−→vl = 0 (7.49)

This integration is made on the liquid channel with the fluid velocity imposed at the
solid-liquid interface, (

−→
Va,
−→
Vb), and a pressure imposed at each vertex (Pi, P j). We get

Φi =
2h3

3µLc
(Pi − P j) + 2h

VT
b + VT

a

2
+ LibVN

b − LiaVN
a (7.50)

and

Φ j =
2h3

3µLc
(P j − Pi) − 2h

VT
b + VT

a

2
+ L jbVN

b − L jaVn
a (7.51)

where Φi denotes the flux flowing from vertex i to the liquid channel.
Finally these equations can be written in a matrix, which will be the elementary

matrix of our problem.



Φi

Φ j

FN
a

FN
b

FT
a

FT
b


=



+C1 −C1 −Lia +Lib +h +h
−C1 +C1 −L ja +L jb −h −h
+Lia +L ja +C2 −C2 0 0
−Lib −L jb −C2 +C2 0 0
−h +h 0 0 +C3 −C3

−h +h 0 0 −C3 +C3





Pi

P j

VN
a

VN
b

VT
a

VT
b


(7.52)

with

C1 =
2h3

3µLc
C2 = µ

( Lc

2h

)3

C3 = µ
Lc

2h
(7.53)
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We will note
−→
U the unknown vector

−→
U =



Pi

P j

VN
a

VN
b

VT
a

VT
b


(7.54)

Note that this elementary matrix
←→
E can be expressed as the sum of a symmetric

matrix
←→
S and a antisymmetric matrix

←→
A . With

←→
S =



+C1 −C1 0 0 0 0
−C1 +C1 0 0 0 0

0 0 +C2 −C2 0 0
0 0 −C2 +C2 0 0
0 0 0 0 +C3 −C3

0 0 0 0 −C3 +C3


(7.55)

and

←→
A =



0 0 −Lia +Lib +h +h
0 0 −L ja +L jb −h −h
+Lia +L ja 0 0 0 0
−Lib −L jb 0 0 0 0
−h +h 0 0 0 0
−h +h 0 0 0 0


(7.56)

Matrix
←→
S corresponds to the decoupled part of the various phenomena whereas

←→
A corresponds to the coupling between grain displacement and liquid pressure. Ap-

parently, there are deep physical reasons for this decomposition, which are related to
the different behaviours between vectorial and scalar quantities with respect to time re-
versal [148, 149]. It is interesting to note that we have found these relations by mere
integration. Note that the matrix

←→
A can be made symmetric by a modification of the

orientations conventions. However, such a convention would lead to negative terms on
the diagonal of the matrix. The matrix would loose its physical signification.

Indeed, it is interesting to note that the power dissipation is

Ẇ =
−→
Vb ·
−→
Fb +

−→
Va ·
−→
Fa + PiΦi + P jΦ j (7.57)

that is

Ẇ =
2h3

3µLc
(Pi − P j)2 + µ

( Lc

2h

)3

(VN
b − VN

a )2 + µ
Lc

2h
(VT

b − VT
a )2 (7.58)

and
Ẇ =

−→
U t←→E

−→
U ≥ 0 (7.59)

where the operator .t denotes the transposition of a vector. Thus, our elementary ma-
trix is definitely positive and represents a quadratic form related to dissipation in the
channel. Moreover if we decompose the elementary matrix

←→
E =

←→
S +

←→
A , we have

Ẇ =
−→
U t(
←→
S +

←→
A )
−→
U =

−→
U t←→S

−→
U (7.60)
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and thus
−→
U t←→A

−→
U = 0 (7.61)

For any set of unknowns,
←→
S , the symmetric part of the matrix

←→
E corresponds to the

power dissipation, whereas
←→
A is a coupling term that does not dissipate energy.

7.2.4 Implementation of volumetric shrinkage
We consider a shrinkage rate αs in the solid, αl in the liquid. And we note it α when the
considerations apply to both cases. We have in 2D :

α =
1
S
∂S
∂t

(7.62)

where S is the surface of the domain considered. Yet, there can be different reasons for
shrinkage, such as thermal shrinkage or solutal shrinkage. Thus

α =
1
S

(
∂S
∂T

∂T
∂t
+
∂S
∂c

∂c
∂t

) (7.63)

where c is the solute concentration and T the temperature.

α = βT
∂T
∂t
+ βc

∂c
∂t

(7.64)

where βT and βc are the respective coefficients for thermal shrinkage and solutal shrink-
age. α can be related to the density variation.

α = −
1
ρ

∂ρ

∂t
(7.65)

Thus, if we neglect the local variation of density in the flux term we have

∇
−→v = α (7.66)

where −→v represents the velocity field in the material.
In the solid phase, we consider that αs is homogeneous and isotropic at the scale of

a grain. Thus, the difference of speed between two points O and M of a given grain is
in 2D:

−→vM −
−→vO =

−−→
OM

αs

2
(7.67)

Mathematically speaking this transformation is an homotetie of factor 1 + αs
2 .

Thus, the evolution of a grain is given by the translation of a given point O and by
an homotetie of centre O and of factor 1 + α

2 . Note that any point can be chosen as
the centre of the homotetie, as two homoteties with the same factor but with a different
centre are equivalent modulo a translation.

We note Cb the point at the centre of the channel on grain b see Fig. 7.3, and we
consider a point Mb on the solid-liquid interface of grain b.The liquid velocity at this
point of the interface is :

−→vl (Mb) =
−−→
VOb +

αs

2
−−−−→
ObCb − βv∗

−→
N +

αs

2
−−−−→
CbMb (7.68)
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Figure 7.3: Notations for the implementation of volumetric shrinkage.

We note
−→
Vb the terms that do not depend on the position in the channel.

−→
Vb =

−−→
VOb +

αs

2
−−−−→
ObCb − βv∗

−→
N (7.69)

Thus
−→vl (Mb) =

−→
Vb +

αs

2
−−−−→
CbMb =

−→
Vb +

αs

2
x
−→
T (7.70)

Similar expressions are obtained for −→vl (Ma) on the other interface. The constitutive
equation of the flow is unchanged (Eq. 7.39)

∂p
∂x
= µ

∂2vx

∂y2 (7.71)

This equation should be integrated with the boundary conditions of Eq. 7.70, i.e.,

vx =
1

2µ
∂p
∂x

(y2 − h2) +
VT

b − VT
a

2h
y +

VT
b + VT

a

2
+
αs

2
x (7.72)

Similarly, we have in the fluid
∇
−→v = αl (7.73)

and therefore
∂Φi→ j(x)

∂x
− 2hαl + VN

b − VN
a = 0 (7.74)

Finally, the pressure in the channel can be integrated from Eqs. 7.72 and Eq. 7.74.

p(x) =
3µ
4h3 (VN

b − VN
a − 2hαl + hαs)(x2 − (

Lc

2
)2) +

P j − Pi

Lc
x +

Pi + P j

2
(7.75)



7.2. Grain movement 89

Note that one term is added to the expression of the pressure due to shrinkage. This
term also appears in the expression of the force on the grains.

−→
Fa =

 (P j − Pi)h − µ Lc
2h (VT

b − VT
a )

−µ
(

Lc
2h

)3
(VN

b − VN
a − 2hαl + hαs) + PiLia + P jL ja

 (7.76)

and
−→
Fb =

 (P j − Pi)h + µ Lc
2h (VT

b − VT
a )

µ
(

Lc
2h

)3
(VN

b − VN
a − 2hαl + hαs) − PiLib − P jL jb

 (7.77)

To understand the physical meaning of this term, one should keep in mind that the
shrinkage of the solid grains in the normal direction is included in the velocity of the
fluid at the interface (VN

a ,V
N
b ). Therefore, the term added by shrinkage in the expression

of the force corresponds to the effect of shrinkage for fixed solid-liquid interfaces in the
normal direction.

Thus if αs < 0 and αl = 0, the solid contracts in the tangential direction. There
is a relative outward flow of liquid, which induces a pressure increase at the centre of
the channel. If αs = 2αl, the solid contracts twice as fast as the liquid in the tangential
direction, but as the liquid also contracts in the normal direction there is no relative flow
of matter.

Similarly, the fluid fluxes become :

Φi =
2h3

3µLc
(Pi − P j) + 2h

VT
b + VT

a

2
+ LibVN

b − LiaVN
a + (αs − αl)Ωip − αlΩil (7.78)

and

Φ j =
2h3

3µLc
(P j − Pi) − 2h

VT
b + VT

a

2
+ L jbVN

b − L jaVN
a + (αs − αl)Ω jp − αlΩ jl (7.79)

where Ω jl is the volume of fluid in the linear channel attributed to vertex j and Ω jp is
the volume of liquid attributed to vertex j entrapped in the polygonal envelope of the
grains (see Fig. 7.3). This last term shows that if the liquid contracts more rapidly than
the solid, liquid will be sucked in the envelope of the grains.

The modified equations can be introduced to form the new matricial problem,

Φi

Φ j

FN
a

FN
b

FT
a

FT
b


=
←→
E



Pi

P j

VN
Oa
+ 1

2αsda
N − βv∗

VN
Ob
− 1

2αsdN
b + βv∗

VT
Oa
+ 1

2αsdT
a

VT
Ob
+ 1

2αsdT
b


=



(αl − αs)Ωip + αlΩ
′
il

(αl − αs)Ω jp + αlΩ
′
jl

C2(−2hαl + hαs)
−C2(−2hαl + hαs)

0
0


(7.80)

where

dN
a =
−−−−→
OaCa ·

−→
N > 0, dT

a =
−−−−→
OaCa ·

−→
T , dN

b = −
−−−−→
ObCb ·

−→
N > 0, dT

b =
−−−−→
ObCb ·

−→
T (7.81)

and
←→
E is the elementary matrix (Eq. 7.52). Note that the term dN

a represents the
distance between the interface and the centre of the cluster in the normal direction.
Therefore, this term will become more and more important with the increase of the
average cluster size.
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We keep as unknowns the speed of the grains centre and put all the terms induced
by shrinkage in the second member.

Φi

Φ j

FN
a

FN
b

FT
a

FT
b


=
←→
E



Pi

P j

VN
Oa

VN
Ob

VT
Oa

VT
Ob


=
−→
b (7.82)

with

−→
b =



(αl − αs)Ωip + αlΩil + Lia( 1
2αsdN

a − βv∗) + Lib(1
2αsdN

b − βv∗) − hαs
dT

a +dT
b

2

(αl − αs)Ω jp + αlΩ jl + L ja(1
2αsdN

a − βv∗) + L jb(1
2αsdN

b − βv∗) + hαs
dT

a +dT
b

2
C2(−2hαl + hαs −

1
2αs(dN

b + dN
a ) + 2βv∗)

−C2(−2hαl + hαs −
1
2αs(dN

b + dN
a ) + 2βv∗)

C3(1
2αs(dT

b − dT
a ))

−C3(1
2αs(dT

b − dT
a ))


(7.83)

7.3 First analysis of the equations

7.3.1 Comparison with continuum equations
Classically, the mass balance in 2 phases approaches is written (Sec. 3.2.2 , Eq. 3.27):

∇ ·

(
ρl
κ

µ
(∇pl − ρl

−→g )
)
=
∂ρ

∂t
+ ∇ · (ρ−→vs) (7.84)

where κ is the permeability of the mush, µ the fluid viscosity. Yet, this equation cannot
be directly compared to the present model. We have to get back to the initial form of
the equations (Sec. 3.2.1 Eqs. 3.10 and 3.13).

∂(gsρs)
∂t

+ ∇ ·
(
ρsgs
−→vs

)
=

1
Ω

∫
S s/l

(
ρs(−−→ws/l −

−→
v∗s) ·
−→n

)
ds (7.85)

∂(glρl)
∂t

+ ∇ ·
(
ρlgl
−→vl

)
= −

1
Ω

∫
S s/l

(
ρl(−−→ws/l −

−→
v∗l ) · −→n

)
ds (7.86)

where Ω is the REV volume, S s/l is the solid-liquid interface, −−→ws/l is the interface ve-
locity, −→n the normal to the interface pointing from the solid to the liquid,

−→
v∗s and

−→
v∗l are

the material speeds at the interface of the solid and the liquid, respectively. We divide
each equation by its respective density and get:

gs

ρs

∂ρs

∂t
+
∂gs

∂t
+

gs

ρs

−→vs · ∇ρs + ∇ ·
(
gs
−→vs

)
=

1
Ω

∫
S s/l

(
(−−→ws/l −

−→
v∗s) ·
−→n

)
ds (7.87)

The addition of this equation expressed for the solid and the liquid gives:

−αsgs−αlgl+
gs

ρs

−→vs ·∇ρs+
gl

ρl

−→vl ·∇ρl+∇·
(
gs
−→vs + gl

−→vl

)
=

1
Ω

∫
S s/l

(
(
−→
v∗l −
−→
v∗s) ·
−→n

)
ds (7.88)
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where the shrinkage coefficients αs, αl have been introduced. The right hand term of
this equation can be evaluated by a local mass balance around the interface [78].

ρl(
−→
v∗l −
−−→ws/l) · −→n = ρs(

−→
v∗s −
−−→ws/l) · −→n (7.89)

We introduce v∗, the normal velocity of the interface in the solid reference frame

−−→ws/l ·
−→n =

−→
v∗s ·
−→n + v∗ (7.90)

and get (
−→
v∗s −
−→
v∗l

)
·
−→n = βv∗ (7.91)

and thus Eq. 7.88 gives

− αsgs − αlgl +
gs

ρs

−→vs · ∇ρs +
gl

ρl

−→vl · ∇ρl + ∇ ·
(
gs
−→vs + gl

−→vl

)
+

1
Ω

∫
S s/l

βv∗ds = 0 (7.92)

This equation represents a volume balance in a Eulerian frame and states that the in-
ternal volume change (terms multiplied by α or β ) is balanced by a volumetric flow of
matter. This is as general as Eq. 7.84 and Eq. 7.92 could be equally implemented in
two-phase approaches.

In the present approach we introduce Darcy’s law to express the relative fluid ve-
locity (Sec. 3.2.2, Eq. 3.23), neglecting the variation of density at the scale of the REV
(∇ρ terms) as well as gravity. Thus,

−αsgs − αlgl + ∇ ·
−→vs − ∇ ·

(
κ

µ
(∇pl)

)
+

1
Ω

∫
S s/l

βv∗ds = 0 (7.93)

This equation can be directly related to the present model:∑ 2h3

3µLc
(Pi − P j) ∼ −

∫
∂Ω

(
κ

µ
∇pl) · −→nΩd(∂Ω) (7.94)

∑
(2h

VT
Ob
+ VT

Oa

2
+ LibVN

Ob
− LiaVN

Oa
) ∼

∫
∂Ω

−→vs ·
−→nΩd(∂Ω) (7.95)

∑
(Libβv∗ + Liaβv∗) ∼

∫
S s/l

βv∗ds (7.96)

∑
− αlΩil ∼

∫
Ω

−αlgldΩ (7.97)

∑
−

1
2
αs(LiadN

a + LibdN
b ) ∼

∫
Ω

−αsgsdΩ (7.98)

where the sum is done on all the channels around vertex i. −→nΩ represents the normal
to the REV and ∂Ω is its contour. For the last equation, the term dN

a is positive and
represents the distance from the interface to the cluster centre in the normal direction.
As cluster size increases, this term will increase showing the localization of shrinkage at
the cluster boundaries. This feature is not present in the continuum form of the equation.
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The relationship with the continuum equation for mechanical equilibrium is more
straightforward (Sec. 3.2.2, Eq. 3.25), we have

∇ ·

(
←→
σe

s (−→vs)
)
= ∇pl (7.99)

where
←→
σe

s is the Terzaghi effective stress in the solid. Thus∑ (
−(P j − Pi)h
−PiLia − P jL ja

)
∼ −

∫
Ω

∇pldΩ (7.100)

∑  µ Lc
2h (VT

b − VT
a )

µ
(

Lc
2h

)3
(VN

b − VN
a − 2hαl + hαs)

 ∼ ∫
∂Ω

←→
σe

s
−→n dS (7.101)

where the sum is done on all the channels surrounding one cluster.

7.3.2 Dimensionless matrix
It is important to get a dimensionless matrix of the problem not only for a good con-
vergence of the computation but also to get an insight of the physics involved. Here we
only write roughly the equations, with the implicit meaning that all the terms with the
same dimension are normalised by the same factor.

We introduce a characteristic length scale Lre f of the order of the grain size and a
time scale tre f which is not known yet (it will be imposed by the boundary conditions,
see below). Thus, we can do the following normalisation.

P→
µ

tre f
P′ V →

Lre f

tre f
v′ (7.102)

We get an equation for the flux

tre f

L2
re f

Φ ∼
1

12
(2h)3

LcL2
re f

P′ +
L

Lre f
V ′ (7.103)

Yet, this equation cannot be considered as a proper normalised form because the term
(2h)3

LcL2
re f

has a value which varies greatly with solid fraction. A similar term has already

been introduced in Eq. 7.30.
We introduce a dimensionless number

Norm =
2hre f

Lre f
(7.104)

If we consider an hexagonal solid grain, we get, once again, the term introduced by
Lahaie and Bouchard [75].

Norm =
√

3
1 − g1/2

s

g1/2
s

=
√

3(g−1/2
s − 1) ∼

√
3

2
(1 − gs) gs → 1 (7.105)

This factor decreases with solid fraction and has a value around 10−1 for gs = 0.8. This
term outlines the change of deformation mechanism as solidification proceeds. We see
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that it naturally appears in our problem with a power 3. Introducing this term in the
equation we get:

tre f

L2
re f Norm3

Φ =
2
3

h3

LcL2
re f

1
Norm3 P′ +

L
Lre f

1
Norm3 V ′ (7.106)

We choose

P◦ = P′ =
tre f

µ
P V◦ =

1
Norm3 V ′ =

tre f

Lre f Norm3 V Φ◦ =
tre f

L2
re f Norm3

Φ (7.107)

and get a properly normalised equation, i.e., all the coefficients are on the order of 1 :

Φ◦ =
1
12

2h3

LcL2
re f

1
Norm3 P◦ +

L
Lre f

V◦ (7.108)

Figure 7.4: Grains structure for two different solid fractions. As the solid fraction
increases, the displacement of grains and fluid becomes more and more difficult.
This fact is simply represented by the Norm3 term

If we look at the equation for the force balance we get :

F◦ =
L

Lre f
P◦ +

( L
2h

)3

Norm3 V◦ (7.109)

with
F◦ =

tre f

µLre f
F (7.110)

finally we can write the dimensional matrix as(
P◦

V◦

)
=

 tre f

µ
0

0 tre f

Lre f Norm3

 ( P
V

)
(7.111)

and (
Φ◦

F◦

)
=

 tre f

L2
re f Norm3 0

0 tre f

µLre f

 ( ΦF
)

(7.112)
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Here we can see that for a given constrain on the material, the characteristic fluid flux

and solid speed scale as Norm3 ∼

(
g−

1
2

s − 1
)3

which is already a valuable insight in the
mechanics of the problem. Note also that from the numerical point of view, it is much
better to solve a properly dimensionless matrix as it ensures a better conditioning of the
problem.

Work done by the second member

If we write the dimensional form of the equations as(
Φ

F

)
=

(
D1 L1

−tL1 D2

) (
P
V

)
=

(
bΦ
bF

)
(7.113)

where bΦ and bF are the second members for the fluxes and the forces, respectively.
The dimensionless form of the equation is(

Φ◦

F◦

)
=

 µ

L2
re f Norm3 D1

1
Lre f

L1

− 1
Lre f

tL1
Norm3

µ
D2

 ( P◦

V◦

)
=

 tre f

L2
re f Norm3 bΦ

tre f

µLre f
bF

 (7.114)

It is interesting to note that the time scale does not appear in the normalised matrix but
appears in the normalisation of the second member.

If the time scale is imposed by a condition on the flux we have

tre f

L2
re f Norm3

bΦ ∼ 1 (7.115)

thus

tre f ∼
L2

re f Norm3

bΦ
(7.116)

On the other hand, an imposed condition on the force gives

tre f

µLre f
bF ∼ 1 (7.117)

thus

tre f ∼
µLre f

bF
(7.118)

Some interesting remarks come out if we compute the power dissipation

Ẇ =
(

P
V

)
·

(
Φ

F

)
=
µL2

re f Norm3

t2
re f

(
P◦

V◦

)
·

(
Φ◦

F◦

)
(7.119)

First, the power dissipation coming from the displacement of the grains is on the
same order as the dissipation coming from the fluid flow whatever the solid fraction is.
Second, introducing a value for tre f we get :

Ẇ ∼
µb2
Φ

L2
re f Norm3

(7.120)
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for a condition of imposed flux and

Ẇ ∼
Norm3b2

F

µ
(7.121)

for a condition of imposed force.
Therefore, the power dissipation increases as gs increases for a condition of imposed

flux (same for an imposed velocity), whereas, for an imposed force, the power dissipa-
tion decreases as the solid fraction increases. This becomes of particular importance
when shrinkage is considered.

7.3.3 Linearity of the equations
We can raise a very simple but important remark : all the equations of the problem are
linear. Thus, if we consider two sets of second members, the solution for the addition of
the second members will be the sum of the solutions for each isolated second member,
i.e., (

P1

V1

)
= E−1

(
b1
Φ

b1
F

)
,

(
P2

V2

)
= E−1

(
b2
Φ

b2
F

)
⇒

(
P1 + P2

V1 + V2

)
= E−1

(
b1
Φ
+ b2

Φ

b1
F + b2

F

)
(7.122)

As a consequence, it is possible to isolate the role of each mechanical stress on the
material. In particular we can apply to a sample an external deformation rate in one
direction, then a deformation rate in the other direction, and compute the rigidity tensor
that relates the average deformation rate tensor to the average stress tensor. This feature
is particularly important for an up-scaling procedure.

7.3.4 Detection of contacts
In the previous derivation of the model, we did not specify a criterion for the detection
of the contacts between grains. However, the mechanical resistance of a channel tends
to infinity when the channel width tends to 0 (with the power -3). This phenomenon
is sufficient to prevent the interpenetration of the grains, providing the time step is
sufficiently small. In extremely constrained situations, a dynamic refining procedure of
the time step is implemented in the code to prevent grain interpenetration.

However, in the derivation of the model, we have supposed that the first neighbours
of the grains remain always the same. For important deformations, this might no longer
be the case. Such problems arise earlier for short channels as represented on Fig. 7.5.
On this figure, the smooth contour of the grains is represented together with the ideal-
ized linear interfaces.

After some deformation, it is possible that the two edges of a channel do not match
anymore (Fig. 7.5(b)). In this situation the resistance of the channel is modelled by a
small but finite value. Such a situation does not affect much the global response of the
simulation as it generally occurs on a short channel whose role is negligible.

A more problematic situation arises when the two not matching edges tend to inter-
penetrate (Fig. 7.5(c)). In that case, the apparent width of the channel tends to become
negative and the problem matrix looses it physical meaning. Another problem is the
interpenetration of two grains that were not first neighbours at the beginning of the
computation. Indeed, the program cannot detect such a contact as it does not model the
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(a) (b)

(c) (d)

Figure 7.5: Various problematic configurations of the channels. (a) Reference. (b)
Channel mismatch. (c) Channel interpenetration. (d) Change of neighbourhood.

interaction between these two grains. A similar situation occurs when modelling grain
growth by a vertex technique [150].

Such problems can be solved by a real time update of the first neighbours as im-
plemented in DEM methods [140]. Yet, with such a method , the channels between the
grains would not be necessarily linear anymore. An important work would be necessary
for the modelling of the channels and the detection of contacts.

However, for solid fraction larger than 0.9, the size of liquid channels is very small
as compared to the solid grain size. Deformation in the mush is limited and problematic
situations almost never arise. Therefore, the present model is suitable for the study of
hot cracking but its extension to lower solid fractions would require a significant work.



97

Part III
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Chapter 8

Experimental results

8.1 Traction test

We describe here the results produced with the mushy zone traction test at Alcan CRV
(rig test) described in Sec. 5.1.

8.1.1 Mechanical measurements

Figure 8.1 shows the evolution of the stress-strain curves for an Al-2wt%Cu (noted
AU2) with a deformation rate of 4× 10−3 s−1. The ductility minimum (DM) is observed
for T= 594◦C , i.e., an estimated solid fraction of gcoal

s =0.95. Note that this value is
similar to the value reported by Ludwig et al. on the same heavily inoculated alloy
[45]. Note also that stress and strain have been estimated from recorded force and
displacement as presented in Sec. 5.1.1.

In Fig. 8.1(a) the stress-strain curves are represented for solid fractions below the
DM and therefore correspond to the descending branch of the ductility curve (U-curve,
see Sec. 2.3.4), i.e., increasing gs decreases the ductility. Both stress increase and
fracture are smooth. With increasing solid fraction, fracture occurs at a higher stress
and a lower deformation. At the DM, stress increases linearly with strain but fracture
remains relatively smooth.

Above the DM, the stress increases linearly with strain at low deformation and frac-
ture is then very abrupt (Fig. 8.1(b)). The initial slope of the stress response increases
with solid fraction. These curves can be compared to the fully solid response (Fig.
8.1(b) T=525◦C). The behaviour at low strain is in the continuity of the mushy zone be-
haviour but no fragile rupture is observed, a viscoplastic plateau is reached and fracture
occurs after a very important plastic deformation (not shown on the graph).

Figure 8.2 shows stress-strain curves as recorded for different tests at the same tem-
perature, which allows to appreciate the dispersion of the results and the effect of strain
rate. Below the DM (Fig. 8.2(a)), the dispersion of the measured behaviour is relatively
important. At low strain rate, the stress response is smoother than that measured at
high deformation rate. This effect might be linked to the compliance of the machine.
Otherwise, no clear effect of the strain rate can be observed.

At the DM (Fig. 8.2(b)), the initial slope of the stress response increases with the
strain rate. There is an appreciable dispersion of strain at fracture and the influence of
strain rate on this quantity is not clear.
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(a) (b)

Figure 8.1: Evolution of stress-strain curves with solid fraction for an AU2 alloy
with an imposed deformation rate of 4 × 10−3 s−1. (a) Descending branch of the
U-curve. (b) Ascending branch of the U-curve.

(a) (b)

(c)

Figure 8.2: Stress-strain curves as measured for different tests on a AU2 alloy.
(a) T= 615◦C gs= 0.92. (b) T= 594◦C gs= 0.95. (c) T= 540◦C (below eutectic
temperature)
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(a) (b)

Figure 8.3: Fractures properties of AU2 alloy in the mushy zone. (a) Ductility. (b)
Stress at fracture. The error bars represent the evolution of solid fraction during
the test.

Above the DM (Fig. 8.2(c)), the rheology of the material is well defined and is
similar to a viscoplastic behaviour. The initial slope of the stress response increases
with strain rate. A viscoplastic plateau can be reached and its height also increases with
strain rate. Fracture is very abrupt and occurs randomly on the common rheological
behaviour. Note that, despite the clear effect of strain rate on the material rheology, no
clear effect is observed for the occurrence of fracture.

Therefore, the DM corresponds to a transition from a mechanics dominated by fluid
flow (at lower gs) to a mechanics dominated by solid deformation. At that point, neither
deformation mechanism is efficient and ductility is very low.

Another transition is observed in Fig. 8.2(c). Indeed, these tests were done just
below the eutectic temperature, but a fragile behaviour is still observed. For the test
done at the lower strain rate (10−3s−1), temperature has more time to evolve (see Fig.
8.4) and the transition from a fragile to a ductile behaviour can be observed.

The measured fracture stress and strain for the AU2 alloy in the mushy zone are
reported on Fig. 8.3. The classical U-shape of the ductility curve is retrieved together
with the sharp increase of stress at fracture above the DM (see Sec. 2.3.4). These two
quantities appear to be independent of strain rate. The error bars correspond to the
evolution of solid fraction during the test due to its non-isothermal nature. Naturally
this evolution is more important at low solid fraction and for low strain rate.

The point reported at gs= 0.99 corresponds to the stress-strain curves shown on Fig.
8.2(c). The tests are done at 540◦C but solid fraction would be 0.99 if eutectic solid-
ification is not considered, e.g., because of an undercooling. The tests with a ductile
behaviour are reported with a filled square whereas the brittle behaviour at this value of
gs is reported with an open square. For these tests, the strain at the viscoplastic plateau is
reported as the strain at fracture is difficult to evaluate and would be far out of the graph
range. Similarly, the stress reported is the stress at the beginning of the viscoplastic
plateau as the apparent strain hardening is mainly due to temperature evolution.

The behaviour of the Al-4wt%Cu (AU4) in the mushy zone is fairly close to the
AU2 behaviour. Yet, the transition from a fragile to a ductile behaviour occurs at a
significantly lower temperature. Indeed, stress at fracture as a function of temperature
is reported on Fig. 8.4 for both AU2 and AU4. Fragile behaviour is reported with open
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(a) (b)

Figure 8.4: Stress at fracture as a function of temperature (a) AU2 (b) AU4.

(a) (b)

Figure 8.5: Comparison between the behaviour of AU2 and AU4 at 510◦C. (a)
Stress-strain curves. (b) Test specimens after deformation.

symbols whereas ductile behaviour is reported with filled symbols. For the AU2 alloy,
the fragile-ductille transition occurs around T= 530◦C, i.e., 15◦C below the eutectic
temperature. For the AU4 alloy, only two samples exhibit a ductile behaviour, one at
540◦C and a strain rate of 10−3s−1, the other at 490◦C and 1.6 × 10−2s−1.

Figure 8.5(a) shows the stress-strain curves for AU2 and AU4 samples tested at
510◦C, i.e., 25 ◦C below the eutectic temperature. At low strain, the two alloys have
about the same behaviour. Brittle fracture occurs rapidly for the AU4 alloy whereas the
AU2 samples have a viscoplastic deformation. Figure 8.5(b) shows the test specimens
after rupture, the AU2 sample has encountered a significant deformation and striction,
whereas the AU4 sample is almost not deformed.

The experiments done with the 5182 alloy give qualitatively the same results as with
the Al-Cu alloys but as only a few experiments have been carried on we do not present
then here (see [38]).

8.1.2 Observations of fracture profiles

As observed with the naked eye, the fracture surfaces of the samples present original
profiles and seem very different from classical fracture surfaces (Fig. 8.6). Note that
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(a) (b)

(c) (d)

Figure 8.6: Fracture profiles as observed with the naked eye. (a) Brittle failure,
low gs ductility (AU2 T=615◦C gs= 0.92) (b) Brittle failure at the DM (AU2 T=595◦C
gs=0.95) (c) Brittle failure, high gs ductility (AU4 T= 540◦C) (d) Ductile failure (AU2
T=525◦C ).

it is difficult to really reproduce the 3D nature of the surface on a 2D photograph. In
particular, the surfaces appear much smoother than what they really are.

Samples fractured at a solid fraction below the DM (Fig. 8.6(a)) present a shinny
aspect (which is not well reproduced on the picture), an important rugosity is observed
up to a few millimetres but at a larger scale the profile is relatively flat. At the DM
(Fig. 8.6(b)), the height variations become important at any visible scale. Some chips
of metal detach from the surface and remain fixed by one side. These chips are present
at any visible scale (from small ones of a fraction of millimetre to large ones of several
centimetres). The shiny aspect is reduced. For higher solid fractions, the rugosity
increases together with the density of chips (Fig. 8.6(c)). The profile for the ductile
failure is very different (Fig. 8.6(d)), an important striction is observed together with
the presence of spikes and cupules characteristic of ductile rupture.

Metallographic observations of a section normal to the fracture surface are presented
on Fig. 8.7. In all the samples, important porosity is observed. Indeed, liquid metal is
brought to the sample by a small channel (see Fig. 5.1) and therefore liquid feeding
is not sufficient to ensure a perfectly sound metal. Moreover, the compositions studied
naturally tend to form porosity [30]. At low gs (Fig. 8.7(a)), fracture does not penetrate
deep in the material. With increasing solid fraction, damage is observed deeper in the
material (Figs. 8.7(b), 8.7(c)). This phenomenon recalls the formation of chips on the
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(a) (b)

(c) (d)

Figure 8.7: Metalographies of the fracture profile. (a) Brittle failure, low gs ductility
(AU2 T=636◦C gs=0.8) (b) Brittle failure at the DM (AU2 T=595◦C gs=0.95) (c)
Brittle failure, high gs ductility (AU4 T=525◦C ) (d) Ductile failure (AU2 T=525◦C ).

fractured surfaces. Moreover, this phenomenon can also be understood considering that
as gs increases, solid grains start to coalesce and form grain clusters (see Sec. 2.3.6).
As grain clusters become bigger, fracture should follow longer paths to go around them.

On ductile failure profiles, spikes and cupules are visible (Fig. 8.7(d)). Moreover,
an important damage is observed in the material even far from the fracture surface (Fig.
8.8(b)). This damage appears as elongated pores and has probably developed from the
as-cast porosity. Indeed, in the AU4 alloy with a ductile fracture, deformation at rupture
is less important and damage appears as nearly spherical cavities (Fig. 8.8(a)).

Electron microscope observations of the samples presented in Fig. 8.7 are shown on
Fig. 8.9. A back scattered electron detector is used (atomic mass contrast) and therefore
the copper rich zones appear in light grey.

At the lower solid fraction (Fig. 8.9(a)), the smooth contour of the globular grains
is visible. There are copper-rich zones around the grains. This is due to the liquid films
that have been pumped between the grains by capillarity after fracture.

At the DM (Fig. 8.9(b)), the grains appear more polygonal as solidification is more
advanced. Moreover, local coalescence between the grains can be observed, i.e., the
presence of grain clusters. Gaps are locally present between the clusters, which, once
again, illustrates the localization of deformation. In those gaps, copper rich bridges
can be observed. They probably result from liquid menisci which did not break down
during fracture (see Sec. 2.2.1).
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(a) (b)

Figure 8.8: Observation of damage in ductile failures. (a) AU4 T=490◦C . (b) AU2
T=525◦C , far from the fracture surface.

(a) (b)

(c) (d)

Figure 8.9: Back Scattered Electron micrographies of fracture surfaces (atomic
mass contrast). (a) Brittle failure , low gs ductility(AU2 T= 636◦C gs= 0.8) (b) Brittle
failure at the DM (AU2 T= 595◦C gs = 0.95) (c) Brittle failure, high gs ductility (AU4
T= 525◦C) (d) Ductile failure (AU2 T= 525◦C).
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(a) (b)

Figure 8.10: Detailed view of fracture surfaces (atomic mass contrast). (a) Brittle
failure above eutectic temperature (AU2 T= 595◦C gs = 0.95) (b) Brittle failure well
below eutectic temperature (AU4 T= 525◦C).

In Fig. 8.9(c), the presence of grain clusters and the localization of deformation is
also visible. Yet, sharp copper rich zones are observed (see below).

Finally, on the ductile fracture profile (Fig. 8.9(d)), an important plastic deformation
is visible. Moreover, locally, in the cupules, the smooth contour of some non-deformed
solid grains can be observed. This clearly indicates that damage has grown from as-cast
porosity.

A more detailed view of the fracture surfaces is given on Fig. 8.10. On Fig. 8.10(a),
some copper rich spikes are observed: they are frequently reported on hot tear surfaces
as already mentioned in Sec. 2.2.1 [34, 35]. Some more extended copper rich zones can
also be observed, they might result from the breakdown of liquid menisci (before they
solidify). Moreover, the coalescence between the grains is even clearer at that scale.

On Fig. 8.10(b), the shape of copper rich zones is clearly different. Indeed, the
sample has fractured well below the eutectic temperature (525◦C). Therefore, the copper
rich zones represent secondary phases already solidified before fracture. This points
out the importance of coalescence not only for the primary phase but also between
secondary and primary phases.

8.1.3 Scaling analysis of fracture surfaces
The scaling analysis of the fracture surfaces has been done by T. Meredith during her
student project at the LSMX [122]. The fracture surfaces have been reconstructed by a
stereo pair of SEM images as described in Sec. 5.1.3. From these profiles, the height-
height correlation function (Hurst Transformation) has been computed by a small c
program developed during the project (Eq. 4.13).

The idea of this analysis, together with the introduction to the field, was given by L.
Ponson from the Fracture Group of the CEA, Saclay France [117]. He also performed
further analysis on the recorded fracture profiles.

Figure 8.11 shows the stereo pair of SEM images as taken for four different samples,
these images should be viewed with blue-red glasses. We used a commercial software,
MeX [123], to reconstruct a meshing of the surfaces from the interpolation of the stere-
ographic images. Figure 8.12 shows the SEM images as projected on this mesh.
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(a) (b)

(c) (d)

Figure 8.11: Stereographic SEM images of fracture surfaces (a) Brittle failure, low
gs ductility (AU2 T= 636◦C gs= 0.8) (b) Brittle failure at the DM (AU2 T= 595◦C
gs = 0.95). (c) Brittle failure, high gs ductility (AU4 T= 525◦C) (d) Ductile failure
(AU2 T= 525◦C).(to be viewed with blue-red glasses)

(a) (b) (c) (d)

Figure 8.12: Same fracture surfaces as reconstructed by the MeX software [123].
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Figure 8.13: Hurst transformation in the x direction (AU2 T= 595◦C gs = 0.95).(T.
Meredith)

Figure 8.14: Hurst exponent as a function of the angle θ (AU2 T= 636◦C gs =

0.8).(L. Ponson)

Let us note x the vertical direction on Fig. 8.11 and y the horizontal direction. Figure
8.13 shows the Hurst transformation in the x direction as computed for an AU2 alloy
at the DM, i.e., the average of Eq. 4.11 is done for all pair of points with ∆y = 0 and
a given ∆x. A power law fit is used to find the Hurst exponent in this direction. Note
that the quality of data is necessarily lower when ∆x reaches the size of the image as
the number of points on which the average can be done is limited. Then, the frame x, y
is rotated by an angle θ and the analysis is done in the new x direction.

Figure 8.14 shows the Hurst exponent as a function of the angle θ as computed
for an AU2 alloy broken at 636 ◦C. The value found is consistent with the "universal"
value measured in most materials (Sec. 4.2.2)[113]. Yet, the anisotropy of this Hurst
exponent is very low and is not sufficient to define clearly a propagation direction of the
fracture. On a sample of AU2 alloy broken at 525◦C (ductile failure), a weak anisotropy
of the Hurst exponent was also observed.

On Fig. 8.15(a) the same calculation is represented for a AU2 alloy broken at the
ductility minimum. This time, the anisotropy of the Hurst exponent is pronounced and
allows to define a new frame (x1, y1) where x1 corresponds to the propagation direction
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(a) (b)

Figure 8.15: Sample AU2 T= 595◦C gs = 0.95 (a) Hurst exponent as a function
of the angle θ (b) Hurst transformation in the two principal directions, x1 and y1.(L.
Ponson)

(a) (b)

Figure 8.16: (a) ∆hre f as a function of primary phase fraction (T. Meredith) (b)
Distribution of the local slopes in the rugosity profile for three AU2 samples.(L.
Ponson)

of the crack. This propagation direction corresponds to a diagonal from the left down
corner to the right top corner of Fig. 8.11(b). Figure 8.15(b) shows the Hurst transfor-
mation in direction x1 and y1 with the determination of the exponent in these directions,
respectively β and ζ. These two exponents are consistent with the values measured on
most materials [114].

Therefore, hot tears appear at first sight as "classical" fractures with a Hurst expo-
nent around 0.75. The absence of anisotropy at low-gs fracture is maybe due to the
fracture mechanism in which no clear fracture propagation direction can be defined. In-
deed, we have seen on Fig. 8.1(a) that fracture is very smooth at low gs. Note also that
the anisotropy behaviour of fracture is observed in experiments where a propagation di-
rection is clearly imposed to the system, e.g., a single-edge notched beam [114], which
is not the case in a uniaxial traction of a cylinder. Similarly, the progressive coalescence
of damage in the ductile failure may not allow to define a propagation direction.

Further information on the fracture mechanism can be obtained with the Hurst trans-
formation. We choose a characteristic length of 100 µm, i.e., the average grain size, and
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Figure 8.17: Hurst transformation on a profile measured with a mechanical pro-
filometer (AU2 T= 636◦C gs = 0.8).(L. Ponson)

report the value of ∆h(∆x = 100) (noted ∆hre f see Fig. 8.13). This measure allows
to characterize the amplitude of rugosity at the scale of the grain. This function is re-
ported on Fig. 8.16(a) as a function of the solid fraction at fracture1. It appears that the
local amplitude of rugosity is less important for brittle failures at the DM (gs = 0.95).
This measure is clearly confirmed by the observation of the stereographic fractogra-
phies (Fig. 8.11). Moreover, Fig. 8.16(b) shows the distribution of local slopes in the
rugosity profile for three AU2 samples. The predominance of sharp slopes is visible at
T=636◦C and T=525◦C but not at the DM (T=595◦C).

Another quantity that can be extracted is the length scale ξ above which the self-
affine behaviour is not visible anymore. Yet, the SEM images are too local to do cor-
rectly such measurement. L. Ponson has measured the profile of a AU2 broken at 636◦C
with a mechanical profilometer that allows to do measurement at much scale larger scale
(Fig. 8.17). On this measurement, ξ is clearly visible. Its value is 230 µm, i.e., only a
few grains. Therefore, the fracture at low gs has a rugosity at the scale of the grain ∆hre f

on the order of the grain size itself, but it remains confined in a layer of a few grains
(ξ). This is confirmed by the observations of Figs. 8.11(a) and 8.6(a). The measure
of ξ should be interesting for other temperatures but we did not have enough time to
do it. It is probable that ξ becomes much larger at the DM, as clued by the naked eye
observations (Fig. 8.6(b)).

Yet, it is important to note that the notion of self affinity supposes that the height of
the surface z can be expressed as a function of the two other direction (x, y), i.e., there
are no overhang in the surface (which is the case in most fracture surfaces). We have
observed in brittle failures at high gs the presence of layers which tend to detach from
the surface (Figs. 8.6(b), 8.6(c) and 8.7(c) ). In that case, the height of the surface is not
uniquely defined for a given (x, y). Naturally, the SEM images only record the highest
points of the surface, but a complete analysis of the fracture surface should include the
presence of these overhangs. A possible method would be to vapour-deposit nickel on
the fracture surface and examine different sections of the sample with a Backscattered
Electron Detector [105]. Such a method would allow us to check whether the apparent

1 The AU4 rupture below the eutectic temperature (525◦C) with a fragile profile is reported at gs =

0.95, which correspond to the fraction of primary phase at the eutectic temperature.
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self-affine behaviour of the highest points in the interface results from a self-similar
nature of the whole interface [151].

8.1.4 Summary
We have experimentally characterized two transitions in the behaviour of the mushy
zone.

The ductility minimum (DM) is observed at gs= 0.95 which is in good agreement
with the value reported in the literature for heavily inoculated alloys (see Sec. 2.3.6).
We have seen in this work that this point corresponds to the transition from a defor-
mation mechanism dominated by fluid flow to a deformation mechanism dominated by
solid deformation. Moreover, at the DM, coalescence between grains begins and grain
clusters are observed on fracture surfaces.

A transition from a fragile fracture to a ductile fracture is observed below the eu-
tectic temperature. This points out the importance of the coalescence undercooling on
the formation of a fully coherent solid. The experiments on the AU4 alloy also outlined
the importance of coalescence undercooling between grains of primary phase and the
secondary phase.

An important question remains: at which solid fraction and under which conditions
a "natural" hot crack occurs? Indeed, the in-situ measurement of a hot crack formation
in a casting is difficult. The study of post-mortem fracture profiles might allow to define
more precisely these conditions, in particular with the use of the tools presented in Sec.
8.1.3. Yet, these tools still require further developments.

8.2 Laser remelting experiments
These laser remelting experiments have been done by L. Germond during his student
project at the LSMX [10]. The experimental protocol is presented in Sec. 5.2.

8.2.1 Crack statistics
Figure 8.18 shows optical micrographs of the laser traces after polishing (Sec. 5.2). The
traces have been obtained for a laser beam velocity vb of 20 mm/s and for the four alloys
considered, respectively non grain refined (NGR), grain refined (GR), NGR + barium,
GR + barium (see Sec. 5.2). The laser spot is displaced from the right to the left of
the pictures. Several cracks can be observed, most of them start from the edges of the
laser trace and seem to propagate along the temperature gradient. Some cracks at the
centreline can be observed [152]. Note also that the underlying grain structure can be
observed, in particular the difference between NGR and GR microstructures is visible.

Using these micrographs, the number of cracks and their length has been measured.
Table 8.1 shows the statistics of the crack repartition for each laser trace. An increase
in crack density is clearly observed with an increase of the spot velocity, the refining
of the microstructure and the addition of barium. This last point corroborates the work
of G. Chichignoud et al. which has shown a decrease of the solid-liquid surface energy
with the addition of barium (see Sec. 2.3.5)[125]. Indeed, a reduction of the solid-liquid
surface energy increases the coalescence undercooling and thus should increase the hot
cracking sensitivity [33] (see Sec. 2.3.5).
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(a) (b)

Figure 8.18: Metallographies of the laser traces for a spot velocity vb of 20 mm/s
(a) NGR + Ba (b) GR + Ba.

Alloy
Laser spot velocity [mm/s] 10 20 30 10 20 30 10 20 30 10 20 30

Number of cracks [-] 1 56 72 19 84 82 33 84 92 29 65 102
Average length [µm] 303 133 136 96 141 160 94 147 126 142 210 188
Minimun lenght [µm] 303 26 26 28 10 28 20 28 15 41 5 22
Maximun lenght [µm] 303 387 476 237 462 840 291 534 411 373 696 1062
Mean deviation  [µm] 87 89 55 88 157 59 108 91 75 141 148

Total crack length [µm] 303 7432 9776 1823 11875 13104 3090 12385 11635 4115 13629 19178
Cracks density [mm-1] 0.05 1.43 2.11 0.31 2.28 2.82 0.53 2.38 2.51 0.71 2.61 4.13

Average density [mm-1]

NGR + Ba

1.73

GR + Ba

2.361.12 1.71

NGR GR

Table 8.1: Statistics of cracks length and number in each sample.

8.2.2 Grain orientation relations

In order to study in more details the effect of coalescence undercooling on the formation
of hot cracks, an estimation of the grain boundary energy is essential.

Figure 8.19 shows maps of grain orientation as recorded by an EBSD detector (see
Sec. 5.2). These maps cover the whole laser trace and are reconstructed from several
images. The grain structure of the unmodified metal is visible together with the struc-
ture of the remelted grains. The software provided with the EBSD system can then look
for the zones with a strong variation of orientation and identify them as grain bound-
aries. Figure 8.20 shows the same laser traces as represented on Fig. 8.19 but with a
representation of the grain boundaries. A colour code is used to represent the scalar
estimation of the boundary misorientation θ (see Sec. 5.2). Note that very low misori-
entation boundaries cannot be detected as they are considered as belonging to the same
grain.

The last step is to identify the position of fractures on this EBSD map. Yet, the
pictures directly taken with the secondary electron detector of the microscope could not
be superimposed directly with the EBSD maps. Indeed, these maps are taken with a
70◦ tilt angle which results in an appreciable deformation of the picture. Hopefully,
the EBSD detector also provides a map of the signal intensity, called the band contrast
field. As the signal in fractures is very low, this information allowed us to localize their
position.
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(a)

(b)

(c)

Figure 8.19: Map of the whole laser trace as analysed by EBSD, each colour
corresponds to a grain orientation (vb=20 mm/s). (a) NGR (b) GR (c) GR + Ba.

(a)

(b)

(c)

Figure 8.20: Same laser traces, the colours indicates the misorientation θ at grain
boundaries. red: 5◦ < θ ≤ 20◦, green: 20◦ < θ ≤ 30◦,yellow: 30◦ < θ ≤ 40◦,blue:
40◦ < θ ≤ 45◦,.

Figure 8.21: Superposition of the Euler angle indexation and of the band contrast
information. The cracks are outlined in red. (a) NGR (b) GR (vb=20mm/s)
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Figure 8.22: Statistics of the number of lateral crack as a function of the scalar
estimate of grain boundary misorientation θ. (a) GR (b) GR + Ba (vb=30mm/s)

The superimposition of the orientation map together with the band contrast map is
shown on Fig. 8.21. The cracks have been outlined in red. This superimposition also
reveals the microstructure of the unmodified metal and therefore allows to distinguish
three zones. Zone 1, the metal is unmodified. Zone 2, the metal has been remelted but
has grown epitaxialy from the grains located at the weld trace periphery. Zone 3, new
grains have nucleated and grown in the direction of the temperature gradient. This last
morphology is due to the strong convection in the liquid melt, induced by the Marangoni
effect [153].

As expected, the cracks are always observed at the grain boundaries and therefore
their shape is imposed by solidification mechanisms. It is interesting to note that on the
NGR alloy, no cracks are observed in the epitaxial zone, whereas they are present in the
GR alloy. Indeed, the columnar microstructure in the NGR alloy results from a growth
selection. All the grains have one crystallographic axis approximately oriented in the
same direction (the direction of the thermal gradient during the solidification of the
columnar grains). Therefore, the average misorientation between two columnar grains
is lower than between two equiaxed grains. As a consequence, in the NGR alloy the
misorientation between two epitaxial grains is relatively low and no crack forms. This
mechanism explains the influence of the refining on the crack statistics (Table 8.1).

Finally, the repartition of grain boundary misorientation is reported on Fig. 8.22
for two laser traces on a GR alloy, without and with Ba. Cracked grain boundaries are
reported with a red bar whereas grain boundaries without cracks are reported with a
yellow bar. No cracks are observed at very low misorientations. For the alloy without
Ba only one crack is observed for θ < 25◦ whereas several cracks are observed for the
alloy with Ba.

These results tend to corroborate two important points (Sec. 2.3.5).

• The coalescence of grains can be decisive for the formation of hot cracking.

• Addition of a surfactant such as Ba increases the coalescence undercooling and
therefore increases hot cracking sensitivity.
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Chapter 9

Transitions of the mushy zone

In this chapter, we present results obtained with the KPL model. This relatively simple
model already allows to study transitions which occur during solidification (Sec. 2.3.6).

9.1 Grain structure evolution

9.1.1 Formation of grain clusters

The solidification model presented in Chap. 6 allows to compute the solidification of
large mushy zones. Figure 9.1 shows the type of result that can be obtained under
steady conditions for the directional solidification of an Al-1wt%Cu alloy [136]. The
thermal conditions of this Bridgman-type solidification are a vertical thermal gradient
of 60 K/cm and a velocity of 1.6 × 10−2 cm/s (i.e., cooling rate of -1 K/s). The average
grain density was fixed to 108 m−2, i.e., average grain size of 100 µm (14 000 grains in
the present simulation).

The temperature profile is shown on the right of Fig. 9.1 together with the average
solid fraction profile, gs, computed in horizontal sections of the grain structure shown
at the center. The liquid is shown in black and the grains with various grey shades.
As the grains are much smaller than the extent of the mushy zone (100 µm compared
to more than 1 cm), 4 enlargements of the grain structure are shown on the left with
the corresponding scale for typical regions of the mushy zone that are further discussed
hereafter. The location of these zones in the grain structure is indicated with rectangles.

In this low-concentration alloy, gs rapidly increases just below the liquidus and ac-
cordingly the liquid channels are already fairly narrow in the first enlargement (Fig.
9.1(a)). Their width is mainly a function of the distance between the associated nucle-
ation centers: the closer the nuclei, the thinner the width of the liquid channel. As so-
lidification proceeds, smaller channels get closed while larger ones remain open. Note
that the coalescence undercooling at the final stage of solidification (Sec. 6.1.2) is not
accounted for in this picture in order to emphasise the mechanical contact between the
grains. Indeed, nanometric liquid channels already provide a important mechanical re-
sistance (see Sec. 7.2). This phenomenon leads to the formation of grain clusters, i.e.,
a cluster being defined as a group of connected solid grains. Such clusters are observed
on hot tear fractographies (Sec. 8.1.2). In Fig. 9.1, the grains belonging to the same
cluster are shaded with the same grey level.

The 4 zooms in Fig. 9.1 characterize well the evolution of the cluster morphology
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Figure 9.1: Calculated mushy zone for an Al-1wt%Cu alloy cooled down at -1 K/s
in a gradient of 6000 K/m. In order to emphasize the formation of grain clusters,
grains in mechanical contact are shaded with the same grey level.

in the mushy zone: in (a) (typically for 0 < gs < 0.89), most of the grains are isolated;
in (b) (0.89 < gs < 0.97), clusters of a few grains are formed; in (c) (0.97 < gs <
0.99), larger clusters are visible, with a few isolated liquid films remaining inside; in
(d) (0.99 < gs < 1), the solid network is continuous and continuous liquid films in
the mush no longer exist. These different stages are further analysed in this section.
But note already that cluster formation is directly induced by the stochastic nature of
the nucleation centre location, a feature that has not been considered in past simulation
works related to hot tearing.

In order to quantify the clustering or aggregation of grains, it is interesting to com-
pute the specific solid-liquid surface (in 2D length), S v, i.e., the surface of the solid-
liquid interface, S s/l, divided by the volume (surface in 2D) of the domain, Ω (see also
Sec. 3.2.1). This quantity can be normalised by the characteristic length scale of the
microstructure d, in the present case the grain radius:

S ◦v =
S s/ld
Ω

(9.1)

Figure 9.2 shows the computed normalised specific surface, S ◦v , as a function of gs,
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Figure 9.2: Normalised specific solid-liquid interfacial area,S ◦v , as a function of the
volume fraction of solid. The theoretical curves calculated for the hexagonal and
square networks are also shown.

for a small isothermal volume of an Al-1wt%Cu alloy cooled down at -1 K/s. The + and
the × correspond to the random network of smooth and edgy grains, respectively. These
two curves are compared with the regular square and hexagonal arrangements of edgy
grains, the lowest normalised specific surface occurring for the hexagonal network, at
least for gs < 0.8 (analytical expressions given in Fig. 9.2). As can be seen, S ◦v for these
regular arrangements raises monotically with the solid fraction until gs = 1 where it falls
abruptly to 0. For the random numerical models, S ◦v has a maximum and smoothly falls
to 0, even for the edgy grains. This maximum is reached when the natural increase of
solid-liquid interface with grain size is compensated by the progressive closure of liquid
channels, i.e., this maximum reveals the formation of an increasing number of clusters.
As the grains are slightly rounded in the smooth grain model, they come into contact
earlier (gs = 0.89) as compared with the edgy grain model (gs = 0.92). The value
of gs corresponding to the maximum of S ◦v will be denoted gs,maxS , and corresponds to
a number of contacts between grains that is sufficient to overcome the increase of the
solid-liquid surface during solidification. It has been marked with a dashed white line
in Fig. 9.1 and is referred to as grain contact.

9.1.2 Localization of feeding

In order to study the permeability of the mushy zone, an isothermal volume element of
the mushy zone is considered at various instants (or values of gs). Neglecting solidifi-
cation shrinkage and imposing a pressure difference between the left and right vertical
sides of the domain while the top and bottom boundaries are closed, the Poiseuille flow
is computed for a volume element containing typically 50× 50 grains (size 5× 5 mm2).
This numerical experiment allows to view the mush as a homogeneous porous medium
and to compute its global permeability.
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Figure 9.3: Permeability, κ, normalised with the square of the intrinsic specific
solid-liquid interface, S s, as calculated for a random network of grains with the KPL
model, assuming edgy or smooth grains. The Kozeny-Carman (KC) relationship is
also represented for comparison.

Figure 9.3 shows the computed permeability κ normalised by the square of the in-
trinsic specific surface S s, which is the specific surface (length in 2D) of the solid-liquid
interfaces per unit volume of solid Vs, i.e., S s =

S v
gs

1. The Kozeny-Carman (KC) rela-
tionship which relates the normalised permeability of a packed bed to the solid fraction
is also displayed. As presented in Sec. 3.2.3, the general form of this equation is de-
rived from a theoretical network of pipes, while the factor 5 is empirical but shows good
agreement with most grain arrangement [69]. Note that this form of the KC equation
is presented as it is widely used in hot cracking literature and allows a direct compar-
ison with experimental work [90], the form of Eq. 3.31 naturally gives the same re-
sults. As can be seen, the permeability calculated with the KPL model, for both smooth
and edgy grains (but without losses!), follows the KC relationship fairly accurately up
to very high solid fraction. But for gs > 0.92 (0.98) with the smooth (edgy) grain
model, the calculated permeability becomes significantly lower than the prediction of
KC. Whereas, for a regular hexagonal network of grains, it was found that the calcu-
lated permeability follows the KC relationship until the very end of solidification [128].
This can be explained by two factors:

• First of all, at high gs, a few liquid channels are still present but no longer par-
ticipate to feeding, whereas in a regular arrangement of grains, all the channels
remain connected and liquid until gs = 1. In this respect, the smooth grain model
leaves isolated liquid pockets at triple junctions and thus induces a departure from
KC earlier as compared with the edgy grain model. This situation is actually
closer to observations on organic or metallic alloys, which reveal liquid droplets
in between grains or dendrites (see, e.g., Sec. 2.2.1 Fig. 2.7)[35]. Despite the

1In Ref. [136] the notations for S s and S v are inverted for a coherency with the work of Nielsen et al.
[90]. In this manuscript we use the present notations which are more widely accepted.
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Figure 9.4: Fluid flow through an isothermal mushy zone volume element (5 × 5
mm2), the width of each channel being proportional to the local flow normalized by
the overall flow.

fact that these liquid droplets have a positive curvature, the effect of which is
not taken into account with the solidification model (Sec. 6.2), the smooth grain
model is nevertheless a much better approximation. Therefore this model will be
exclusively used hereafter, unless otherwise stated.

• The second reason of departure from the KC relationship can be found in Fig.
9.4. In this figure, the intergranular flow calculated with the KPL smooth grain
model is represented with a line, the thickness of which is proportional to the
local flow and normalized by the overall flow (i.e., relative flow intensity). At low
gs, the intergranular flow is fairly well distributed among the different channels.
When gs > 0.97, the flow tends to be localized along preferential paths. For
gs = 0.98, the flow only goes through a few preferential paths while most open
liquid channels, despite the fact they are still connected to the continuous channel
network, carry a negligible part of the flux (thin grey channels).

As pointed out by A. Hoadley, this localization of flux at high solid fraction should
have an influence on the tortuosity r of the flow, i.e., the ratio of the actual path length of
the flow to the length of the porous media (Sec. 3.2.3) [154]. In the present numerical
calculation, tortuosity is estimated by the following formula:

r =
1

LtotΦtot

∑
i

LiΦi (9.2)

where Ltot is the length of the sample, Φtot is the overall liquid flow in the mush, Li is the
length of channel i andΦi is the liquid flow through this channel2, the sum being done on

2As no losses are considered here, fluid flow is constant within a channel.
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Figure 9.5: Evolution of tortuosity r as a function of solid fraction.

Figure 9.6: Comparision between flow localisation and grain clusters structure for
an isothermal mushy zone at gs=0.985.

every channel in the mush. This quantity is the ratio of the average path length weighted
by the local flux to the sample length. Therefore, it corresponds to the definition of
tortuosity.

Figure 9.5 shows tortuosity r measured as a function of solid fraction for both the
edgy and smooth grains model. Up to very high solid fraction, r is constant around
1.4 which is, once again, in good agreement with the KC law (Eq. 3.32). Around gs =

0.92 the tortuosity of the mush increases and diverges as the solid fraction increases.
Note that the increase of the tortuosity precisely corresponds to the divergence between
the KC law and the calculated permeability. However, the sole introduction of the
tortuosity divergence in the KC law is not sufficient to reproduce the strong divergence
of permeability as calculated.

Figure 9.6 shows the localization of feeding and the cluster structure of the same
isothermal mushy zone with a solid fraction gs=0.985. The characteristic length scale
of feeding (typically 2 mm at this solid fraction) is substantially larger than the charac-
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Figure 9.7: Pressure profile and fluid flow induced by solidification shrinkage for
a 2 × 2 mm2 mushy zone element. In this sample T = 590◦C and gs = 0.984.
The width of each channel is magnified proportionally to the local flow and its local
pressure is indicated with a grey scale (drawn also within the adjacent grains).

teristic size of the clusters (typically 1 mm). Indeed, a single channel with a very low
permeability can block a whole feeding path. Such finding illustrates well the predic-
tions of the continuum percolation theory as presented in Sec. 4.1.2 [17, 101].

Figure 9.7 is another illustration of feeding localisation at high volume fraction of
solid. It shows a mushy zone of an Al-1wt%Cu alloy with gs = 0.98, the liquid flow
in this case being associated with solidification shrinkage. The flow is imposed nil on
the right side of the domain, while a nil pressure is imposed on the left side (the top
and bottom edges are again closed). The grey scale in this case represents the pressure
in the liquid phase. Although the pressure is defined only in the liquid channels, the
grey scale is also represented within the grains for visibility. White areas correspond
to liquid channels which are no longer connected to the main liquid pocket on the left
and in which the pressure calculation is no longer performed. The width of the liquid
channels has been magnified again proportionally to the local flow.

It appears that there is mainly one path that feeds the entire mush. As a result, a large
pressure drop occurs along the main feeding path, typically from 0 kPa at the entrance
to -170 kPa near region 7. It is clear that, in real cases, such large pressure drops should
be released by the formation of pores/hot cracks. A few channels (white areas) are no
longer fed while huge negative pressures (MPa) can be observed in some liquid channels
(regions 9 or 10). Such high depression, associated with the hypothesis of fixed and
rigid grains, will clearly compete with the solid grain deformation/displacement when
mechanical aspects are considered (Sec. 10.1).

The feeding ability of a mush can be divided into two steps. At low volume fraction
of solid, the mush is well described with a KC law with the grain size as a typical
length scale. At higher value of gs. it is described by the percolation theory, i.e., with
a characteristic length scale which increases with the solid fraction. At this stage, the
treatment of the mush as a continuum is not straightforward as feeding is extremely
localised. The transition between these two regimes is linked with the appearance of
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isolated liquid channels, i.e., open liquid channels that are not connected to the feeding
network anymore. This interdendritic separation, a term widely used in the literature to
describe this occurrence (Sec. 2.3.6)[66, 56], is of course ideal for the initiation of hot
tears (Sec. 3.1.1)[23, 68]. In the present contribution, we also argue that liquid feeding
is fairly localised at this stage.

From these simulations, the volume fraction of solid, gs,1%ilc, at which 1% of the liq-
uid channels become isolated from the feeding network is computed and called liquid
isolation. For an Al-1wt%Cu cooled down at -1 K/s, gs,1%ilc = 0.97 (see the correspond-
ing white dashed line drawn in Fig. 9.1). Note that the divergence of the tortuosity can
be equally used as an indicator of this transition.

It should still be kept in mind that this model overestimates the volume fraction of
solid at which flow becomes localized, as it is still 2D and neglects any liquid encapsu-
lated within the grains due to a destabilisation of the interfaces, i.e., globular-dendritic
grains.

9.1.3 Percolation of solid grains

By definition, a cluster is fully surrounded by a liquid film. As solidification proceeds,
the size of the clusters increases until a unique cluster spreads over the whole domain.
Note that, in 2D, only one phase can be continuous, either the solid or the liquid3,
whereas both can be continuous in 3D. In a volume element of uniform temperature
such as that shown in Fig. 9.6, the continuity of the liquid path from the left to the right
side can be tested. When there is no longer a liquid path, the solid phase has percolated.
In the present case, two criteria can be selected to detect this percolation: 1) the grains
can be in "mechanical contact" but still separated by nanometric liquid films; 2) the
grains are coalesced and the interfaces are dry. These two percolation criteria are called
percolation by contact and percolation by coalescence or percolation by bridging,
respectively. The corresponding values of gs are labelled gs,pct and gs,pbr, respectively.
In the first case, a continuous liquid film still exists but does not allow feeding anymore.
It could induce brittle fracture along a still wet path. In the second case, the mechanical
behaviour of the mush should be very close to that of the fully (ductile) solid material
as only a few discontinuous liquid channels remain. In our model, for an Al-1wt%Cu
cooled down at -1 K/s, gs,pct = 0.985, a value which is in good agreement with that
introduced in the literature [23, 68]. It is also drawn with a dashed white line in Fig.
9.1 and corresponds visually to the formation of a continuous cluster. Note that the line
of percolation by coalescence is not reported in this figure as it occurs fairly below the
eutectic solidification.

Figure 9.8 shows the structure of the clusters for the same mushy zone according
to the two percolation criteria. It is clear that clusters formed of truly coalesced grains
are always much smaller than clusters of grains which are simply in mechanical contact
(with still a nanometric liquid layer). On the second column of Fig. 9.8, a single cluster
spawns in the mush according to the mechanical contact criterion, while a relatively
fine cluster structure remains according to the bridged interface criterion.

Such a situation illustrates the experimental observation of a transition from brittle
to ductile failure below the eutectic temperature (Sec. 8.1.1). Moreover, it raises, once

3Note that in our case the situation is different from site percolation as liquid channels and solid
bounds are along different networks (dual one from each other) [131].
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Figure 9.8: Grain clusters structure for two different criteria, mechanical contact
and coalesced/bridged interfaces. The alloy considered is an Al-1wt%Cu cooled at
-1K/s.

again, the question of the influence of eutectic solidification on the definitive bridging
of the solid.

9.2 Morphological maps for the mushy zone

9.2.1 Definition of the transition points
Four transitions have been identified in the previous section: 1) gs,maxS (grain contact),
when the grain contacts overcome the increase of the solid-liquid interface; 2) gs,1%ilc

when 1% of the liquid channels are isolated from the feeding network; 3) gs,pct when
percolation of the solid grains is achieved by simple contact between them (with the
possibility of having nanometric liquid films in between); and 4) gs,pbr when the solid
grains are percolated via truly coalesced/bridged boundaries.

The first two characteristic values of gs do not correspond to percolation transitions,
just to some states of the mushy zone, but the two last ones are. At gs,pct or gs,pbr, the
morphology of the mushy zone switches from a continuous liquid path to a continuous
cluster. As described in Sec. 4.1.3, the standard error for the percolation threshold
(i.e., apparition of a continuous cluster) varies according to a power law of the domain
(sample) size D [17] : √

< (gs,c− < gs,c >D)2 >D ∼ D−
1
ν (9.3)

The average labelled < . >D is performed over a large number of simulations done
for a given domain of size, D, with various random nuclei configurations. Each of
these simulations will give a slightly different value of gs,c, the threshold value at which
percolation occurs (in our case, formation of one big cluster by contact or by bridging).
< gs,c >D is the average percolation threshold for a domain size D. Thus, the left hand
term of Eq. 9.3 is the mean deviation of the threshold values. The coefficient ν is the
correlation length exponent, equal to 4/3 in 2D (Sec. 4.1.1) [17].
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Figure 9.9: Different transitions of the mushy zone (horizontal axis) as a function
of the domain size (vertical axis) according to the following criteria: grain contact
(+), gs,maxS , liquid isolation (×), gs,1%ilc, percolation by contact (S), gs,pct, and by
bridging (�), gs,pbr. For each domain size, 100 calculations were carried out with
various repartitions of the nuclei.

In order to check this tendency, simulations have been carried out for an isothermal
square domain containing from 100 to 102400 grains. For each domain size, 100 simu-
lations were performed with different repartitions of the nuclei. The computations were
done for an Al-1wt%Cu alloy cooled down at -1 K/s. Figure 9.9 shows the computed
solid fraction and temperature at which the 4 transitions are observed as a function of
the domain size. Each symbol corresponds to one computation. As can be seen, small
domains give a wide spread of the percolation thresholds, while for large domains, the
results of the computations are almost superimposed. Nevertheless, the scattered val-
ues for small domains are well centred around the mean value. For the two percolation
criteria, the domain dependence (Eq. 9.3) is well verified: the exponent 1/ν is found to
be 0.71 ± 0.015 for the percolation by contact and of 0.73 ± 0.04 for the percolation by
bridging.

Although the grain contact and liquid isolation values, gs,maxS and g1%ilc, do not
correspond to percolation phenomena, they have also been reported in Fig. 9.9. They
converge to well defined values when the size D of the domain increases. For grain
contact, a coefficient close to the correlation length exponent is found (1/ν = 0.704 ±
0.001) whereas for liquid isolation, this coefficient is closer to unity (1/ν = 1.11±0.04).
For this last exponent, the discrepancy with the percolation exponent value might be due
to the influence of the domain boundary on the liquid isolation criterion (i.e., a liquid
film channel touching the border becomes isolated as soon as the two neighbouring
channels are closed, whereas, for a liquid film channel within the domain, with four first
neighbours in average, there are many more possible paths that can keep it connected
to the main liquid network).

Although limited to 2D, this study brings already two valuable informations: First,
it enables to determine a critical threshold value of gs according to a given criterion for
an infinite system; Second, for a finite volume of a real mushy zone, e.g., in a thermal
gradient, it allows to assess the dispersion of this critical threshold value due to the
specific configuration. Such dispersion is especially important for the occurrence of hot
tears, which presents an intrinsic random nature (see, e.g., Sec. 8.1.1 Fig. 8.2(c)).
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9.2.2 Parameters sensitivity
The 4 calculated transitions are reported in the Al-Cu phase diagram as a function of
two parameters: the cooling rate, Ṫ , and the solid-liquid interfacial energy, γsl (Fig.
9.10). For a fixed density of grains, the first parameter controls essentially microsegre-
gation and thus the temperature at which the first grain contacts are established. More
precisely, microsegregation is controlled via the Fourier number, Fo:

Fo =
Ds∆T0

d2|Ṫ |
(9.4)

where d is the average grain radius, ∆T0 the equilibrium solidification interval and Ds is
the diffusion coefficient in the solid. Although the Fourier number influences the actual
solid fractions at which the various transitions occur4, its main influence is through
the T (gs) relationship itself: for a fixed value of gs characterising a given transition of
the mushy zone, a fast cooling rate (low Fo) tends to give a relationship gs(T ) close to
Scheil-Gulliver (i.e., lower value of T (gs)), whereas a slow cooling rate (high Fo) makes
it closer to lever rule. Moreover, the cooling rate influences a second dimensionless
number:

C =
1
d

(
DlΓsl

|Ṫ |

)1/3

(9.5)

which corresponds to the ratio of the average radius of curvature at grain corners over
the average grain size d (see Eq. 6.15). A fast cooling rate (small C number) lead to
edgy grains, with a low amount of residual liquid, i.e., contact between grains occurs at
higher solid fraction.

The second parameter γsl is influencing the final stage of coalescence [33]: as repul-
sive grain boundaries, i.e., boundaries which are characterised by a large coalescence
undercooling, are given by γgb > 2γsl, lowering the value of γsl tends to increase the
number of repulsive grain boundaries, i.e., to delay the formation of percolation by
bridging.

At the same time, decreasing the solid-liquid interfacial energy has a tendency to
make the grains more edgy via its influence on the C number, and thus to increase the
volume fraction of solid at which the transitions occur.

These trends are shown in Fig. 9.10 where the 4 transitions calculated with the
granular model have been reported for various concentrations of Cu, keeping the same
conditions as those of Fig 9.1. Note that the solidus has not been reported on the maps
as it is meaningless, mainly due to microsegregation. As described above, an increased
cooling rate makes the transition lines steeper. A decrease of the interface energy sig-
nificantly shifts down the transition line associated with percolation by bridging and
slightly shifts down the other transitions lines.

As expected, for very low solute content, a fully coalesced solid appears quickly,
before eutectic solidification. Moreover, for a large nominal concentration in Cu (more
than 8 wt% Cu), eutectic solidification occurs before contact between the grains. In
the concentration range where the hot tearing sensitivity increases (0.5-3 wt% Cu),
most of the solidification time is spent between liquid isolation and percolation by con-
tact, where localisation phenomena are intense. For nominal concentrations where the

4In particular, no geometrical length arises at the two limits of Scheil-Gulliver (Fo = 0) and of lever
rule (Fo = ∞), i.e, all the liquid channels become closed at the same time when gs = 1, and thus no
gradual transition occurs within the mushy zone.



126 Chapter 9. Transitions of the mushy zone

Figure 9.10: Morphological maps of the mushy zone for different values of the
cooling rate, Ṫ , and of the solid liquid surface energy, γsl. The domains labelled
with the letters a-d correspond to the four grain structures in Fig. 9.1.

hot cracking sensitivity decreases (> 3 wt% Cu), solidification time is spent between
grain contact and liquid isolation. Note that, in a way, this finding is similar to the
Clyne-Davis hot tearing criterion (Sec. 3.1.1)[23], but in the present model no a priori
parameters are required.

These transitions might help in understanding the main deformation mechanism of
the material at high temperature, in relation with hot tearing. Between the liquidus and
the point of grain contact (i.e., 0 < gs < gs,maxS ), grains moves freely in the mush
and liquid feeding is easy (figure 9.1 (a)). Between grain contact and liquid isolation
(i.e., gs,maxS < gs < gs,1%ilc), the permeability of the mush decreases drastically and
the formation of clusters starts to localise deformation (figure 9.1 (b)). Between liq-
uid isolation and percolation by contact (i.e., gs,1%ilc < gs < gs,pct), feeding is almost
impossible and very localised. Moreover, large clusters are present; this localises de-
formation induced by thermal contraction and solidification shrinkage at the cluster
boundaries (figure 9.1 (c)). This region of the mushy zone is therefore very brittle. Be-
tween percolation by contact and percolation by coalescence (i.e., gs,pct < gs < gs,pbr),
the mechanical properties of the mush are very close to the fully solid material. De-
formation of the mushy zone will be more ductile, but at some remaining liquid films,
opening is still possible, with probably plastic deformation of the already established
solid bridged (figure 9.1 (d)). Once the material has reached the line of percolation by
coalescence, its mechanical properties are very close to the fully solid material.
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Chapter 10

Mushy zone mechanics

10.1 Tractions tests

10.1.1 Redistribution of fluid
In order to investigate the mechanical properties of the mushy zone under a tensile load,
two numerical experiments are used.

Their boundary conditions (BC) are presented on Fig. 10.1. On the left side, the
fluid flux is imposed nil together with the solid velocity in the x direction (horizontal).
The solid velocity in the y direction is free. Therefore, this BC corresponds to a sym-
metry plane of the problem. A similar BC is applied in the y direction, on the bottom
side of the sample. On the right side, the solid velocity in the x direction is imposed to
ε̇L where L is the size of the sample and ε̇ the imposed strain rate. Moreover, the fluid
velocity is imposed nil on this boundary1.

The two cases differ from the BC applied on the top boundary. In the first case
(Fig. 10.1(a)), the pressure on the solid and on the liquid is imposed to P0, which,
therefore, corresponds to the average hydrostatic pressure on the system. Note that
the fluid flux is not imposed and a fluid flow is possible via this boundary. Thus, this

1Note that for BC, the liquid flux is considered in the frame of the solid grains. With a Eulerian point
of view, a fluid flux is observed due to the advection of the solid

(a) (b)

Figure 10.1: Boundaries conditions for two traction tests along the x axis. (a) With
ideal feeding. (b) Without feeding.



128 Chapter 10. Mushy zone mechanics

(a) (b)

Figure 10.2: Stress strain curves for a sample at gs = 0.94 and with a strain rate
ε̇ = 4 × 10−3 s−1. (a) P0 = 0 (b) P0 = −1kPa.

situation corresponds to a sample in contact with a liquid pocket at pressure P0 and will
be called "ideal feeding".

In the second case, the fluid flow is imposed nil on the top boundary. This cor-
responds to a situation where feeding is impossible. Note that theses BC are similar
to those in the model derived by Lahaie and Bouchard for a regular arrangement of
hexagonal grains (see Sec. 3.1.3)[75].

Naturally, a real situation would be in between those two extremes, depending on
the design of the casting. A pressure P0 is imposed on the solid. In both cases, the solid
velocity on the top boundary is free, i.e., V x

s and Vy
s are not imposed.

In these numerical experiments, the solidification of the system is calculated first
and then the mechanics of the mushy zone is computed without further solidification.

Figure 10.2 shows the stress-strain curves for a sample at gs = 0.94 cooled down at
-1Ks−1 before traction (this value will be exclusively used hereafter). The strain rate is
ε̇ = 4 × 10−3 s−1.

The curves in Fig. 10.2(b) have been calculated for the same situation shown in
Fig. 10.2(a) but with a pressure P0 1 kPa lower. The resulting curves can be perfectly
superimposed, the stresses in Fig. 10.2(b) being simply shifted up by 1 kPa. Indeed,
P0 corresponds to the external hydrostatic pressure imposed to the system, and as de-
scribed by the Terzaghi effective stress, the behaviour of the mush only depends on
the difference between the applied stress and the hydrostatic pressure (see Sec. 3.2.4)2.
This remark is important as it allows to simply extent the following results to any value
of the hydrostatic pressure.

At low strain, the two tests in Fig. 10.2(a) follow a similar line. At 1.5% strain,
stress increases abruptly in the test without feeding, whereas it remains low in the test
with perfect feeding.

This phenomenon can be understood by looking at the local deformation mecha-
nisms. Figure 10.3 shows an isothermal mushy zone with a solid fraction of 0.92. This
mushy zone is submitted to a traction with a strain rate of ε̇ = 4×10−3 but is represented

2From the numerical point of view, it is clear that a situation with no grain displacement and a uniform
pressure is a solution of the problem matrix. Therefore, by linearity of the equations, any solution of the
problem can be shifted up by a uniform value of the pressure without affecting the displacement of the
grains.
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Figure 10.3: Mushy zone at zero strain for an isothermal mushy zone with gs = 0.92
and ε̇ = 4 × 10−3 s−1.
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at nil strain. The cluster structure together with the grain velocity field is represented
on the upper part of the figure.

On Fig. 10.3(b), the fluid flow has been represented with lines whose width is
proportional to the fluid flow, the direction of the flow being represented by a black
triangle. If two grains get closer, they squeeze out liquid from the channel and the
width of the line increases (maybe more visible on Fig. 10.4). On the contrary, if they
move away from each other, liquid is pumped in the channel. As can be seen on Fig.
10.3, deformation of the mush is achieved by fluid flow but these flows are small and
remain extremely local. Therefore, a long-range feeding of the mush is not necessary.
Both tests (with and without feeding) give the same behaviour of the mush. Stresses in
the sample are very low.

Indeed, in Fig. 10.3(c) the forces between the grains are represented by a line whose
width is proportional to the absolute value of the force. A blue (dark grey) line repre-
sents a compression force whereas a red (light grey) line represents a traction force. In
this sample the forces are very low and the lines representing the forces are almost not
visible.

Figure 10.4 shows the same mushy zone after 4% strain and with the possibility
of feeding. On Fig. 10.4(a) the initial shape of the sample is represented by a dashed
square. It is important to note that deformation is essentially localized in a few chan-
nels, roughly oriented normally to the traction direction. Therefore, to accommodate
deformation, the fluid tends to flow from channels oriented in the direction of the stress
to channels oriented normally to the stress. This is also confirmed by the representation
of forces on Fig. 10.4(c) that shows traction in the x direction and compression in the y
direction.

It is also interesting to note that fluid flow is much more important on Fig. 10.4(b)
as compared with Fig. 10.3(b). However, the imposed strain rate is the same in both
cases. This shows that redistribution of fluid occurs on more important distances with
the accumulation of deformation. Fluid flow from the upper border is clearly visible
(Fig. 10.4(b)) and allows to relax stresses in the upper part of the sample (Fig. 10.4(c)).

On Fig. 10.5, a similar mushy zone with the same deformation is represented in the
case where no feeding is allowed. An important fluid flow can also be observed. Yet, as
no feeding from the top is possible, fluid has to follow more difficult paths and therefore
stresses in the samples are more important.

In summary, at low strain, deformation is accommodated by local redistribution of
the liquid. As deformation gets more important, more channels get closed and fluid
redistribution occurs at a larger scale. At that point, the feeding ability of the mush
becomes important.

10.1.2 Transition in the feeding mechanism
Figure 10.6 shows stress-strain curves for various solid fractions. On Fig. 10.6(a) the
same behaviour as described previously can be observed. Naturally, the deformation at
which feeding becomes important decreases with the solid fraction.

For gs > 0.97 this behaviour is not observed anymore. The curves for the test with
and without feeding do not follow the same line even at nil strain.

Once again, the local observation of the mushy zone brings some information. Fig-
ure 10.7 shows a mushy zone with 0.975 solid fraction. Even though the deformation
of the mush is nil, an important redistribution of the fluid can be observed. Moreover,
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Figure 10.4: Mushy zone at 4% strain for an isothermal mushy zone with gs = 0.92
and ε̇ = 4 × 10−3 s−1. Feeding from the upper face is possible.
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Figure 10.5: Mushy zone at 4% strain for an isothermal mushy zone with gs = 0.92
and ε̇ = 4 × 10−3 s−1. Feeding is impossible.
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(a) (b)

Figure 10.6: Stress as a function of strain with ε̇ = 4 × 10−3 s−1. (a) gs < gs,1%ilc

(liquid isolation see Sec. 9.1.2) (b) gs > gs,1%ilc.

Figure 10.7: Mushy zone at zero strain for an isothermal mushy zone with gs =

0.975 and ε̇ = 4 × 10−3 s−1 .Feeding from the upper face is allowed.
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Figure 10.8: Mushy zone at 0.05% strain for an isothermal mushy zone with gs =

0.975 and ε̇ = 4 × 10−3 s−1 .Feeding from the upper face is allowed.

fluid coming from the upper boundary is clearly redistributed in the channels. The same
mushy zone is represented for 0.05 % strain. Most of the fluid which accommodates
deformation is brought from the upper boundary.

Therefore, above gs = 0.97 the deformation mechanism due to local fluid redistri-
bution is not possible anymore due to the presence of relatively large clusters. Note that
this point has already been identified as the liquid isolation transition gs,1%ilc, i.e., the
point at which the permeability of the mush deviates from the Kozeny-Carman relation-
ship (see Sec. 9.1.2).

Now, we see that this solid fraction also corresponds to the point where accommo-
dation of deformation by fluid flow becomes extremely difficult. Therefore, it can be
identified with the ductility minimum point experimentally observed (see Sec. 8.3),
also called coalescence solid fraction by some authors (see Sec. 2.3.6). Yet, we find
this point for gs = 0.97 and experiments shows that it occurs for gs = 0.95. As already
mentioned, this might be due to the 2D nature of the model which under-estimates the
size of the last liquid films (cylindrical instead of spherical)

Moreover, if we compare the points at which feeding becomes important on Fig.
10.6(a) and the experimental ductility reported in Fig. 8.3, we see a good agreement if
0.02 is subtracted to the solid fraction given by the numerical model.

Yet, the experimental stress-strain curves are clearly different from the curves re-
ported on Fig. 10.6(a). This is maybe because we have considered a material without
any strain at the beginning of the traction which is clearly not the case for a real casting.
In particular, the fluid flow trough the mush due to feeding do impose strains in the
mushy zone [45].

Moreover, a good description of these curves would imply the modelling of solid
deformation, in particular for gs > gs,1%ilc.

Unfortunately, due to a lack of time once the model was developed and tested, it
was not possible to exploit its full potential. Nevertheless, these first results are very
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Figure 10.9: (a) Equilibrium of forces at triple junction. (b) Shape of the meniscus
between two grains.

encouraging. They show the localization of feeding and strains in the network of dis-
crete grains.

10.2 Toward a criterion for hot tearing

10.2.1 A simple model for hot tear nucleation
Following the work on porosity [31, 98], a criterion for hot crack nucleation can be
written:

pl < pc = pH − ∆pγ (10.1)

where pl is the local pressure in the liquid, pH is the equilibrium pressure of dissolved
gases associated with the maximum solubility and ∆pγ the over-pressure in the gas
bubble due to surface tension. pc represents the cavitation pressure at which a pore
forms. In porosity models, this value is expressed as a function of dissolved gaseous
elements concentration, but here we will simply consider it equal to 0.

As the liquid channels are small compared with the capillarity length, the liquid-gas
interface is an arc of a circle of radius R. The equilibrium at triple junctions (Fig. 10.9
(a)) imposes

γlg cosΘ = γsg − γsl (10.2)

and thus
R =

h
cosΘ

(10.3)

where h is the half width of the liquid channel (Fig. 10.9 (b)) and Θ de dihedral angle.
Therefore

∆pγ =
γlg

R
=

cosΘ γlg

h
=
γsg − γsl

h
=

I
h

(10.4)

Where I is called the impregnation factor, its value being around 1 Jm−2 for Al and h
is the local half width of the channel. It is interesting to note that if we consider an
elementary displacement of the liquid-gas interface toward the liquid (pore growth), an
extra work should be furnished to the sytem due to interfacial forces ∆Wγ

dWγ = 2h∆pγdx = 2(γsg − γsl)dx (10.5)

which precisely corresponds to the energy necessary to replace two solid-liquid inter-
faces by 2 solid gas interfaces.
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Figure 10.10: Maximum value of the cavitation pressure in the mushy zone as a
function of strain for an impregnation factor I of 1 Jm−2.

The important point here is that pc is strongly dependent on h, indeed

∂pc

∂h
=

I
h2 ∼ 4 × 104Pa µm−1 (10.6)

where a characteristic half channel width of 5 µm is considered. Moreover, in the previ-
ous section we have seen that deformation is localized on a few channels. This remark
is also important for the propagation of the hot crack as a variation of a few percents in
the channel width breaks down the liquid menisci (see Ref. [155] for a description of
menisci dynamics).

The maximum cavitation pressure is plotted on Fig. 10.10 as a function of deforma-
tion for isothermal mushy zone with various solid fraction, deformed with a strain rate
of ε̇ = 4 × 10−3 s−1. This pressure corresponds to the pressure necessary for cavitation
of a pore in the largest channel of the mush, hmax. This channel width decreases with
increasing gs and considerably increases with strain, in particular for high solid fraction
samples. Note that this evolution is largely independent of the other parameters.

The variations of pc due to strain are therefore more important than the variation of
pressure drop due to strain rate. This phenomenon can explain the apparent insensitivity
of hot cracking to strain rate.

This idea is further illustrated on Fig. 10.11 where a mushy zone is represented
at various strain levels. In this test ε̇ = 4 × 10−3 s−1, gs = 0.92 and feeding from
the upper surface is not allowed. Moreover, the localization of the fluid flow and the
grain velocity are represented on the same picture. Channels in which feeding is not
represented (white channels), correspond to those in which a pore has nucleated. In
order to reach depressions able of producing cavitation of a pore, the pressure at the
upper boundary was fixed to P0 = −120000 Pa. Moreover, the impregnation factor I
was fixed to 1 Jm−2.

Figure 10.11 clearly shows the nucleation of pores in the largest channels in which
deformation has been localized. Note that this approach allows estimating the appear-
ance of damage in the mushy zone, but cannot model fracture as it would require to
model explicitly the deformation of the solid grains.



10.2. Toward a criterion for hot tearing 137

Figure 10.11: Mushy zone at various strain levels with gs = 0.92 and ε̇ = 4 ×
10−3 s−1. Grain velocity (black arrows) and fluid flow (grey lines) are represented
on the same picture. The channels on which feeding is not represented (white
channels) correspond to those where a pore has nucleated. Feeding from the
upper surface is not allowed
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Chapter 11

Conclusion

As widely described in the literature, three transitions can be observed in the tensile
behaviour of a mushy zone. At the traction coherency (gtc

s = 0.6 for a globular micros-
tucture), the material starts to transmit measurable stresses and ductility is relatively im-
portant. Ductility decreases with increasing solid fraction and reaches a minimum for a
given solid fraction called the ductility minimum or coalescence transition (gcoal

s = 0.95
for a globular microstucture). Above this solid fraction, the stress at rupture and the
ductility increase strongly with solid fraction. In the fully solid region, a transition
from inter to intra-granular rupture is finally observed.

Mushy zones are extremely sensitive to hot cracking for solid fractions around the
ductility minimum. The traction tests done at Alcan CRV illustrate that this point cor-
responds to a transition from a deformation mechanism dominated by fluid flow to a
mechanism dominated by solid viscoplasticity. At the minimum of ductility, none of
these two deformation mechanisms is efficient and the material is extremely brittle.

The numerical models developed during this work give a deeper insight into the
transitions of the mushy zone. The Voronoi solidification model shows the progressive
formation of a continuous solid phase by the formation of increasingly larger grain
clusters. Two transitions are observed : grain contact, which denotes the formation of
grains clusters, and solid percolation, i.e., the formation of a continuous solid phase.

Moreover, the KPL model shows a strong localization of feeding for solid fraction
above gs,1%ilc = 0.97. This localization induces a permeability of the mush much lower
than the predictions of the Kozeny-Carman law. The mechanical model also outlines
that above this point the deformation mechanism based on fluid flow is not efficient
anymore. Therefore, this point corresponds to the ductility minimum. The difference
between the computed solid fraction gs,1%ilc = 0.97 and the experimental one gcoal

s =

0.95 is probably due to the two-dimensional nature of the model, which underestimates
the size of the last liquid films.

The mechanical model shows the strong localization of deformation due to the dis-
crete nature of the grains. This deformation is localized in channels normal to the stress
direction which therefore becomes ideal sites for the nucleation and the propagation of
a hot crack. Moreover, the localization of thermal shrinkage at the edges of the grain
clusters should reinforce the concentration of deformation. However, due to a lack of
time, the full exploitation of the mechanical model could not be carried on.

Finally, it is interesting to note that the results of this work are essentially due to the
consideration of two physical phenomena that are classically hidden by the averaging
procedure of continuum approaches:
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• The first phenomenon is the random nature of nucleation, which induces a pro-
gressive formation of a continuous solid phase during solidification (Chap. 9).
This includes the formation of grain clusters and the localization of feeding at
high solid fraction.

• The second phenomenon is precisely the granular nature of the mushy zone (Chap.
10). This granular nature induces a further localization of deformation (beside
the localization due to grain clusters). Recently, Gourlay and Dahle have ex-
perimentally outlined the importance of this granular nature of solidifying alloys
[156, 157].

Therefore, this model constitutes an ideal basis for a more precise formulation of
continuum constitutive equations (Sec. 3.2) which would be able to account for these
two points. Moreover, considering the very low computation time of the model, its
extension to three dimensions is clearly feasible.

It is also important to point out the limits of the model. The most important one is
maybe the non-consideration of grain rotations. This hypothesis is necessary to have
a tractable model as the detection of contacts between randomly oriented polygonal
grains is extremely computation intensive [140]. However, this hypothesis reduces the
degrees of freedom of the grain but maybe more important, forbid to model locally the
deformation of the solid grains.

Therefore, a complementary approach to the present one would be to start the me-
chanical calculation from the fully solid part, including the clusters attached or next to
this zone. Knowing the deformation and thus the velocity of the points located in this
region, the fluid flow induced by shrinkage and these deformations could be computed
with the KPL model. This new approach could benefit from the results of the present
model for the fluid part, but would be more accurate at very high solid fraction. It is
expected that their domain of validity would precisely cross at the minimum of ductility.
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List of symbols

Roman letters
Symbol Description Units
←→
A Antisymmetric part of the elementary matrix −
−→
b Second member of a matricial problem −

cp Heat capacity JK−1kg−1

c Solute concentration mass%
C Coherency −

C Dimensionless number relative to grain corner −

C Point on the interface (middle of the channel) −

d f Fractal dimension −

dN
a Distance from the cluster centre to the interface m

D Solute diffusion coefficient m2s−1

←→
E Elementary matrix −

F Force N
Fo Fourier Number −

gα Volumetric fraction of phase α −
−→g Gravity acceleration ms−2

h Half width of a channel m
H Hurst exponent −
←→
I Unit tensor −

k Partition coefficient −

K Viscoplastic coefficient −

l Topothesy m
L Latent heat of solidification Jkg−1

L Channel length m
Lc Matching channel length m
m Liquidus slope Kat%−1

m Strain rate sensitivity coefficient −

Mα Interfacial momentum transfer Nm−3s−1

M Point on the interface −
−→n Outward normal to a domain −

Norm Normalization factor due to solidification −

O Cluster centre −

p Pressure (continuum fields) Pa(Nm−2)
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p Occupation probability −

P Pressure (discrete points) Pa
T Temperature ◦C,K
←→
S Symmetric part of the elementary matrix −

S f Volumetric entropy of fusion JK−1m−3

S Surface m2

S v Interface specific surface m−1

S s Interface specific surface per unit solid m−1

t Time s
−→t Force density Pa
←→
U Unknown vector −

v Velocity (continuum fields) ms−1

vb Laser spot velocity ms−1

V Velocity (discrete points) ms−1

w Interface velocity ms−1

Ẇ Power dissipation Js−1

Greek letters
Symbol Description Units
α Dilatation rate s−1

α Angle at grain corner ◦

β Hurst exponent in the propagation direction −

β Solidification shrinkage coefficient −

βT Thermal expansion coefficient K−1

βc Solutal expansion coefficient mass%−1

γ Interfacial energy Jm−2

γ Cluster mass exponent −

Γα Interfacial mass transfer kgm−3s−1

Γsl Gibbs-Thomson coefficient Km
δ Thickness of the diffuse solid-liquid interface m
←→
ε̇ Strain rate tensor s−1

ε̇ Scalar strain rate s−1

ε̇eq Equivalent viscoplastic shear rate s−1

ζ Hurst exponent normal to the propagation direction −
η Coordinate in the Landau transformation −

θ Misorientation angle ◦

Θ Dihedral angle ◦

κ Permeability m2

µ Viscosity Pas
µ Permeability exponent −

ν Correlation length exponent −

ξ Correlation length m
ρ Density kgm−3

←→σ Stress tensor Pa
←→
σe

s Terzaghi effective stress Pa
σ

eq
s Von Mises stress Pa
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←→τ Deviatoric part of the stress tensor Pa (Nm−2)
Φ Fluid flow m2s−1

ψ FEM test function −

ω Viscoplastic potential Js−1

Ω Volume of the REV m2(2D),m3(3D)
Ωip Liquid volume entrapped in the grain envelope m2(2D)
Ωil Liquid volume in the idealized liquid channel m2(2D)

Subscripts and superscripts

Symbol Description
α Given phase
a, b, c solid grains
c Critical (percolation threshold)
coal Coalescence
e Effective
el Elastic
gb Grain boundary
i, j, k Integration points in the liquid
i→ j from i to j
l Liquid
lg Liquid-gaz
maxS Grain contact transition (S v maximun)
N Normal
p Plastic
p Pore
pcb Percolation by bridging
pct Percolation by contact
pk Maximum packing
R Rounded interface
s Solid
sc Shear coherency
sp Solid percolation
sl Solid-liquid
s, k, l Liquid channels
tc Traction coherency
tot Total
T Tangential
1%ilc Isolation of liquid channels
∗ Interface
∞ Flat interface
◦ Dimensionless
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Operators

Symbol Description
d Differential
∂ Partial differential
∆ Variation
χα Function whose value is 1 in phase α, 0 elsewhere
〈.〉 Average∫

Integral∑
Sum

· Scalar product
∇ Gradient
∇· Divergence
: Contracted product
.t Transposition
. Integral along the interface
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Appendix B

Solute balance at a grain corner

In this appendix we derive in more details the solute balance at the grain corner used
for the solidification model with smooth grain interfaces (Sec. 6.2).

Considering a section of the flat interface far from the corner (see Fig. 6.3), the
speed of the interface can be estimated from the following flux balance.

h
∂c∞l
∂t
= c∞l (1 − k)v∞ − j∞bd (B.1)

The left hand term represents the variation of solute in the liquid, where h is the thick-
ness of the liquid film. The first right hand term corresponds to the solute rejected in
the liquid due to the advance of the interface and j∞bd is the flux pumped in the solid
by back-diffusion. Similarly, a solute balance on the liquid part surrounding the corner
(see Fig. 6.3) can be derived. If Ω denotes this domain, one has.∫

Ω

∂cl

∂t
ds = cR

l (1 − k)R sinαvR − αR jR
bd + Φ (B.2)

Please note that this balance accounts for the flux Φ exchanged between the flat and
curved portions of the interface.

The variation of solute concentration at the interface is imposed by the cooling rate
and ∂tc∞l = ∂tcR

l = Ṫ/m. As a consequence, whatever is the precise repartition of solute
around the grain corner, the variation of solute around the grain corner can be estimated
by: ∫

Ω

∂cl

∂t
ds = S Ω

Ṫ
m

(B.3)

where S Ω is the area of the domain surrounding the round corner. As vr = v∞/ cosα
(see main section), Eqs B.1, B.2 and B.3 give:

S Ω
Ṫ
m
=

cR
l

c∞l
R tanα(h

Ṫ
m
+ j∞bd) − αR jR

bd + Φ (B.4)

Considering that cR
l /c

∞
l ∼ 1 and neglecting the differences of back diffusion along the

flat and curved parts of the interface, one gets:

(S + Rh tanα)
Ṫ
m
= Rh tanα

Ṫ
m
+ Φ (B.5)

where the surface S Ω have been separated into the surface delimited by the extension
of the flat interface (Rh tanα) and an extra surface S represented in grey in Fig. 6.3. As
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stated in the main part, one retrieves the fact that the solute rejected by the flat interface
moving at velocity v∞ is equivalent to that rejected by the curved interface moving at
a velocity vr = v∞/ cosα. Removing this term on the left and right hand sides finally
gives:

S
Ṫ
m
= Φ (B.6)

This represents the solute balance between the solute flux induced by the Gibbs-Thomson
effect and the geometrical advantage of a corner for diffusion.
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Appendix C

Detailed integration of the constitutive
equations

In this appendix, we give more details on the integration of the constitutive equations
for the mechanical model (Chap. 7).

C.1 Stress tensor
In Sec. 7.2.2 the fluid flow in the y direction has been neglected (by dimensional anal-
ysis). The integration of the constitutive equation for a fluid flow in the x direction (see
Fig. 7.2) gives the fluid velocity in the x direction together with the pressure p in the
channel.

p(x) =
3µVN

4h3 (x2 − (
Lc

2
)2) +

P j − Pi

Lc
x +

Pi + P j

2
(C.1)

vx(x, y) =
(
3VN

4h3 x +
P j − Pi

2µLc

)
(y2 − h2) +

VT
b − VT

a

2h
y +

VT
b + VT

a

2
(C.2)

Yet, the integration of the fluid flow in the y direction allows to compute the full stress
tensor in the liquid.

We have for an incompressible fluid

∇ ·
−→v = 0 (C.3)

As the speed profile along the x axis is already defined (Eq. C.2), we get:

∂vy

∂y
= −

∂vx

∂x
= −

3VN

4h3 (y2 − h2) (C.4)

with
VN = VN

b − VN
a (C.5)

thus

vy = −
VN

4h3 y3 +
3VN

4h
y +

VN
b + VN

a

2
(C.6)

where the constant of integration satisfies both boundaries conditions vy(y = −h) = VN
a

and vy(y = h) = VN
b . Thus, taking the dimensional form of Eq. 7.36

∂p
∂y
= µ

∂2vy

∂y2 (C.7)
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We get the variation of pressure along the y direction

p = −
3VN

4h3 y2 + f (x) (C.8)

where f (x) is the pressure in the channel for the line y = 0 which we take equal to the
pressure profile of Eq. C.1. Finally the pressure profile is:

p(x, y) =
3µVN

4h3

(
x2 −

(Lc

2

)2

− y2
)
+

P j − Pi

Lc
x +

Pi + P j

2
(C.9)

As stated in the dimensional analysis, the pressure loss in the y direction is negligible in
front of the pressure variation in the x direction. Note that we found here the relationship
∆Py/∆Px ∼ h2/L2

c whereas the dimensional analysis gives a relationship ∆Py/∆Px ∼

h/Lc (Eq. 7.38).
The stress tensor in the liquid can be derived from :

←→σ (x, y) =

 −p + 2µ∂vx
∂x µ(∂vx

∂y +
∂vy

∂x )
µ(∂vx

∂y +
∂vy

∂x ) −p + 2µ∂vy

∂y

 (C.10)

and thus

←→σ (x, y) =

 −p + 3µVN

2h3 (y2 − h2) ( 3µVN

2h3 x + P j−Pi

Lc
)y + µVT

b −VT
a

2h
′′ −p − 3µVN

2h3 (y2 − h2)

 (C.11)

where p is given by Eq. C.9. Note that the ∂xvy term is nil. This stress field is coherent
as we can check that :

∇ ·
←→σ (x, y) =

−→
0 (C.12)

For the simplicity of the equations, we choose to neglect the variation of pressure in
the y direction (Eq. C.1). Thus, we should also neglect the y2 terms in the diagonal of
the stress tensor as they are exactly of the same order.

←→σ (x, y) =

 −p ( 3µVN

2h3 x + P j−Pi

Lc
)y + µVT

b −VT
a

2h
′′ −p

 (C.13)

Note that the divergence of this tensor is not nil anymore. However, considering this
stress tensor, the sum of forces and of rotational momentum on the boundaries of a
channel are nil [158], which is the condition for the coherency of the numerical scheme.

C.2 Mass balance
Even if the mass balance equations are relatively simple, their integration should be
done carefully. In particular, we have a Lagrangian point of view on the solid and an
Eulerian point of view on the liquid.

We derive the mass balance around a vertex i connected to the vertices j, k, l by the
channels s, t, u and surrounded by the grains a, b, c, respectively (see Fig. C.1). We
consider a control volume Ω which goes through the middle of each channel and each
centroid of the solid grains. This control volume is an Eulerian control volume, i.e., it
does not move with the solid grains. If we draw such a volume around each vertex, we
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Figure C.1: flux balance around one vertice

define a tessellation of the system, and thus this control volume is suitable for a mass
balance of the system.

The simplest way to obtain the fluid mass balance inside the domainΩ is to consider
only the part of Ω where we have the fluid, Ωl. As the fluid is incompressible we have:∫

Ωl

(∇ · −→vl )dΩ = 0 (C.14)

and thus ∫
∂Ωl

(−→vl ·
−→n )ds +

∫
Ils

(−→vl ·
−→n )ds = 0 (C.15)

where Isl corresponds to the solid liquid interface inside the domain Ω, ∂Ωl is the part
of ∂Ω that is liquid and −→n is the normal pointing outward the domain.

Let us consider the idealized solid liquid interfaces I′ls which corresponds to the
idealized channel geometry used for the estimation of pressure drop (see Fig. C.1).

Around each grain, the interfaces I′ls and Ils form a closed loop. Therefore, the nil
divergence of the fluid flow gives :∫

Ils

(−→vl ·
−→n )ds =

∫
I′ls

(−→vl ·
−→n )ds (C.16)

which can be written with the notation of Sec. 7.2 :∫
Ils

(−→vl ·
−→n )ds =

∑
s

(LibVN
b − LiaVN

a ) (C.17)

where the sum over s is the sum on the channels connected to vertex i, the indices a and
b being changed into grains having similar role when the channel is changed.

The fluid flow through ∂Ωl is given by Eq. 7.44∫
∂Ωl

(−→vl ·
−→n )ds =

∑
s

Φs
i→ j(x = 0) (C.18)
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with

Φs
i→ j(x = 0) =

2hs3

3µLs
c
(Pi − P j) + 2hs VT

b + VT
a

2
(C.19)

and where the superscript s denotes the channel s.
Finally, Eqs. C.17 and C.18 gives :∑

s

2hs3

3µLs
c
(Pi − P j) + 2hs VT

b + VT
a

2
+ LibVN

b − LiaVN
a = 0 (C.20)

which can be written ∑
s

Φs
i = 0 (C.21)

with

Φs
i =

2hs3

3µLs
c
(Pi − P j) + 2hs VT

b + VT
a

2
+ LibVN

b − LiaVN
a (C.22)

This equation can be viewed as a mass balance over the small white triangle surrounding
vertex i on Fig. C.1, where the Φs

i are the flux flowing out of each face of the triangle.
Similarly, if the flux is computed for a vertex j, i.e., on the other side of the channel

with respect to the tangential vector
−→
T , we have

Φs
j =

2hs3

3µLs
c
(P j − Pi) − 2hs VT

b + VT
a

2
+ LibVN

b − LiaVN
a (C.23)

The superscript s is omitted when non-necessary.
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