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Abstract — The reduced basis (RB) method is proposed for the approximation of multi-parametrized
equations governing an optimal control problem. The idea behind the RB method is to project the so-
lution onto a space of small dimension, specifically designed on the problemat hand, and to decouple
the generation and projection stages (off-line/on-line computational procedures) of the approximation
process in order to solve parametrized equations in a rapid and not expensive way.
The application that we investigate is an air pollution control problem: we aim atregulating the emis-
sions of industrial chimneys in order to keep the pollutant concentration below a certain threshold
over an observation area, like a town. Adopting the RB method for both stateand adjoint equations of
the optimal control problem leads to important computational savings with respect to the use of the
Galerkin-finite element method. We consider different parametrization (control, physical and geome-
trical input parameters) so that we are able to solve the control problem from a global and decisional
point of view.

Keywords: advection-diffusion parametrized partial differential equations, reduced-basis methods,
Galerkin approximation, optimal control, geometrical sensitivity analysis,environmental fluid dyna-
mics.

1. INTRODUCTION

The control and optimization of an engineering component or system requires the
prediction of certain “quantities of interest”, which we shall generically calloutputs.
They are typically expressed as functionals of the field variables (either state or ad-
joint variable) associated with a partial differential equation which describes the
physical behavior of the component or the system. The parameters, whichwe shall
denoteinputs, identify a particular “configuration” of the components: they may re-
present variables related to the control functionu, but also physical or geometrical
parameters. We thus get an implicitinput-outputrelationship whose evaluation re-
quires the solution of the underlying partial differential equations.
Generically speaking, the solution of control problems requiresrapid, reliable, and
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repeatedevaluations of the input-output relationship. This calls for methods that
can reduce complexity while preserving all relevant information and withoutloo-
sing accuracy on the results.
The RB method is a powerful tool to solve parametrized equations. The idea isto
project the solution on a small dimensional space, specific for our problem,instead
of adopting a generic high-dimension approximating space, like the finite element
space. The use of a model which is able to represent the problem with a smallnum-
ber of degrees of freedom, without loosing accuracy, reduces heavily computational
costs.
In this paper we adopt the RB method to approximate the solution of the parame-
trized equations governing the control problem. Control problems solved with the
RB method were already faced by Ito and Ravindran [8], [6] and [7], however wi-
thout considering multi-parametrized problems and adopting different solution pro-
cedures. Parameters can be sorted as control parameters (i.e depending, on control
function), physical (like velocity field or diffusivity) and geometrical (i.e.related to
different domain configurations). Geometrical parameters are particularly important
in the optimal control framework, since they allow the solution of shape optimiza-
tion problems. In our formulation we will foresee all three classes of parameters.
Recently, Grepl [5] has proposed the solution of parabolic problems with reduced
basis (also in the optimal control framework). Other applications of reduced basis
methods are provided in the field of inverse problems with non-affine parametric
dependence by Nguyen [10].
As a study case, we consider an air pollution control problem: our goal is tore-
gulate the pollutant emission by industrial plants in order to keep pollution below
an acceptable level over an observation area, e.g. a town. We refer to air pollution
phenomena in a stationary frame on urban scales.
In Section 2 we formulate a generic control problem, for a linear time-independent
advection-diffusion equation. In Section 3 we describe the reduced basis approxima-
tion for the solution of the parametrized equations governing the control problem.
In Section 4 we report some features of the air pollution control problem, then we
apply the formulation presented in Section 2 to derive our model. In Sections 5,
6 and 7 we present the parametrized state and adjoint equations, some numerical
results and an example for the case of control, physical and geometrical input, re-
spectively. Some preliminary results were reported in [12]. In Section 8 wereport
some concluding remarks and indicate a perspective on further developments.

2. OPTIMAL CONTROL PROBLEM FOR ADVECTION-DIFFUSION EQUA-
TIONS

Let us consider an advection-diffusion problem defined on the domainΩ ⊂ R
2:







Aw≡−∇ · (ν∇w)+V ·∇w = u in Ω,
w = 0 on ΓD,
∂w
∂n = 0 on ΓN,

(2.1)
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wherew is the state variable,u the control function defined on the domain,V the
velocity field andν is the diffusivity that may depend on the domain coordinates
(x,y). A homogeneous Dirichlet condition is imposed on the inflow boundaryΓD :=
{x∈ ∂Ω : V(x) ·n(x) < 0}, wheren(x) is the unit vector directed outward, and a
homogeneous Neumann condition onΓN := ∂Ω\ΓD. Defining H1

ΓD
:= {v∈H1(Ω) :

v|ΓD = 0}, the weak form of the state equation (2.1) is:f ind w∈ H1
ΓD

: a(w,ϕ) =

F(ϕ ;u), ∀ϕ ∈ H1
ΓD

, where

a(w,ϕ) :=
∫

Ω
ν∇w·∇ϕ dΩ+

∫

Ω
V ·∇w ϕ dΩ, (2.2)

F(ϕ ;u) :=
∫

Ω
uϕ dΩ. (2.3)

We then define the observation of the system on a partD⊂ Ω of the domain through
the cost functional:J(u,w) = 1

2

∫

D(w(u)−zd)
2dD, wherezd is the desired observa-

tion.
The Lagrangian functional reads:L (w, p,u) = J(u) + F(p;u) − a(w, p), where
w, p∈ H1

ΓD
(Ω) andu∈ L2(Ω). By differentiatingL with respect to the state varia-

ble, we obtain the weak form for the adjoint equation:f ind p∈ H1
ΓD

: aad(p,ϕ) =

Fad(ϕ ;w), ∀ϕ ∈ H1
ΓD

, where

aad(p,ϕ) :=
∫

Ω
ν∇p·∇ϕ dΩ+

∫

Ω
V ·∇ϕ p dΩ, (2.4)

Fad(ϕ,w) :=
∫

Ω
(w−zd) ϕ dD, (2.5)

whose differential form is:






A∗p≡−∇ · (ν∇p+V · p) = χD(w−zd) in Ω,
p = 0 on ΓD,

ν ∂ p
∂n +V ·np = 0 on ΓN,

(2.6)

whereχD is the characteristic function of the subdomainD.
By differentiating the Lagrangian functional with respect to the control functionu,
we obtain the weak form of the optimal control constraint:〈J′(u),ψ〉=

∫

Ω pψ dΩ =
0, ∀ψ ∈ L2(Ω).
We solve our problem using an iterative method where the variation of control func-
tion is led by a gradient method. From the optimal control constraint, we can derive
a stopping criterium for the iterative method. At thekth step of the iterative method:

• we solve the state equation:
f ind wk ∈ H1

ΓD
: a(wk,ϕ) = F(ϕ ;uk), ∀ϕ ∈ H1

ΓD
;

• we solve the adjoint equation:
f ind pk ∈ H1

ΓD
: aad(pk,ϕ) = Fad(ϕ ;wk), ∀ϕ ∈ H1

ΓD
;
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• if the stopping criterium is not satisfied, we update the control function

uk+1 = uk +δuk δuk = −τkJ′(uk) = −τkpk. (2.7)

The stopping criterium adopted is [3]:

‖pk‖L2 < tol, (2.8)

to check if our adjoint variablepk is too small to produce a significative variation
δuk on the new control functionuk+1.

2.1. Numerical discretization and stabilization

Both state and adjoint equations are advection-diffusion equations; sincethe trans-
port term dominates the diffusion one [4], a suitable numerical stabilization is nee-
ded. We adopt thestabilized Lagrangian[3],[2], instead of stabilizing separately
state and adjoint equations in a conventional manner [13]. In this way, stabilization
is not only based on a strongly consistent method, but also there is coherence bet-
ween state and adjoint stabilized equations.
In this work we have adopted the approach “optimize-then-discretize” to solve opti-
mal control problems, we have formulated an optimality condition, from this condi-
tion we have built an adjoint problem and then we discretize both state and adjoint
equations. An alternative approach would be “discretize then optimize” which has
been considered for the same kind of problem in [12].
Indicating with the indexh the discretized quantities, the stabilized state equation
reads:

f ind wh ∈ Xh : ah(wh,ϕh) = Fh(ϕh;uh), ∀ϕh ∈ Xh, (2.9)

with:
ah(wh,ϕh) := a(wh,ϕh)− ∑

K∈Th

δK

∫

K
Awh A∗ϕh dK,

Fh(ϕh;uh) := F(ϕh;uh)− ∑
K∈Th

δK

∫

K
uh A∗ϕh dK,

whereA is the state operator andA∗ is the adjoint operator. The termsa(wh,ϕh) and
F(ϕh;uh) are defined in (2.2), (2.3),wh anduh are discrete approximations of the
functionsw, u, and Xh ⊂ H1

ΓD
is the finite element space built up on a gridTh, so

that the computational domain isΩ =
⋃

K∈Th
K (see [13]).

The adjoint equation is:

f ind ph ∈ Xh : aad
h (ph,ϕh) = Fad

h (ϕh;wh;uh), ∀ϕh ∈ Xh, (2.10)

where:
aad

h (ph,ϕh) := aad(ph,ϕh)− ∑
K∈Th

δK

∫

K
A∗ph Aϕh dK,
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Fad
h (ϕh;wh;uh) := Fad(ϕh;wh)− ∑

K∈Th

δK

∫

K

(

χD

(

wh−zd

)

·

Aϕh +
(

Awh−uh

)

χDϕh

)

dK.

Note that the termsaad(ph,ϕh) andFad(ϕh;wh) are defined in (2.4) and (2.5) and
ph is the discrete approximation of the functionp.

3. REDUCED BASIS METHOD FOR OPTIMAL CONTROL

As anticipated in the Introduction, we consider three different types of input parame-
ters: control inputµu, which parametrizes the control functionu = u(µu); physical
input µp, like, for ex., velocity fieldV and viscosityν ; geometrical inputµg, which
characterizes the domain geometry. These parameter classes allow us to solve diffe-
rent types of control problems. Of course, inputs can be combined together to form,
for example, a control-physical input (i.e. control and physical quantities as parame-
ters). In this section, for convenience, we refer to a generic inputµ = {µu,µp,µg},
without specifying its own nature.
We introduce a set of parameter samplesSN = {µ1, ...,µN}, whereµn ∈ D , n =
1, ...,N. For each input vector inSN, we calculate a finite element method solution of
the state equationwh(µn) in the spaceXh; we choose a discretization refined enough
to ensure that the solution in the high-dimensional spaceXh is accurate enough to
approximate the exact solution in H1

ΓD
. We do the same for the adjoint problem: we

select a set ofN samplesSad
N = {µ1

ad, ...,µN
ad}, whereµn

ad ∈D , n= 1, ...,N, and cor-
respondingly we compute the finite element approximation of the adjoint variable
ph(µn

ad) ∈ Xh. The two setsSN andSad
N are chosen independently. Also the redu-

ced basis formulation and the basis construction procedure have been influenced by
the choice of using the approach “optimize-then-discretize” for the optimal control
problem. We then introduce the reduced basis spaces:

WN = span{ζ n ≡ wh(µn), n = 1, ...,N} (3.1)

for the state problem and

ZN = span{ξ n ≡ ph(µn
ad), n = 1, ...,N} (3.2)

for the adjoint problem. According to (3.1) and (3.2),WN and ZN consist of all
functions inXh that can be expressed as a linear combination of, respectively,ζ n

andξ n. We assume linear independence of the basis functions.
Starting from the state variable, in the RB approach we look for an approximation
wN(µ) in WN, that can be regarded as asurrogateof the finite element approximation
wh(µ); we can express the RB solutionwN(µ) as:

wN(µ) =
N

∑
j=1

wNj (µ)ζ j = (wN(µ))Tζ , (3.3)
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wherewN(µ) ∈ R
N is the column vector of the linear combination coefficientwNj ,

j = 1, ...,N.
Let pN be the RB approximation of the adjoint variable:

pN(µ) =
N

∑
j=1

pNj (µ)ξ j = (p
N
(µ))Tξ . (3.4)

The underlying idea of the RB method is a projection onto a lower-order approxi-
mation space, specific for the problem of interest, instead of a general high-order
one. The conjecture is that we should be able to accurately represent thesolution
corresponding to some new points in parameter space,µnew, as an appropriate com-
bination of solutions previously computed at a small number of sample points in
parameter space (µn andµn

ad, n = 1, ...,N). In this case we are interested in solving
the optimal control problem and finding the control function by evaluating thecost
functional in a rapid, reliable and repeated way.
At each iterative step of the method adopted to solve the control problem, forany gi-
venµ ∈ D and the corresponding control functionu (2.7), we compute the reduced
basis approximation of the state variablewN(µ) ∈WN, by solving

a(wN(µ),v; µ) = F(v;u), ∀v∈WN.

OncewN is available, we determine the solutionpN ∈ ZN of the adjoint equation:

aad(pN(µ),ϕ ; µ) = Fad(ϕ,wN(µ)), ∀ϕ ∈ ZN.

Finally we evaluate the reduced basis approximation of our output, i.e. the cost
functionJ(u,wN) and the adjoint variablepN, then we check whether the stopping
criterium is satisfied.
To apply the reduced basis method, we shall suppose that for some finite (prefe-
rably small) integersQ andQad, the bilinear formsa(·, ·; µ) andaad(·, ·; µ) can be
expressed as follows:

a(w,v; µ) =
Q

∑
q=1

σq(µ)aq(w,v), ∀w,v∈ H1
ΓD

, ∀µ ∈ D ,

aad(p,ϕ ; µ) =
Qad

∑
q=1

σq
ad(µ)aq

ad(p,ϕ), ∀p,ϕ ∈ H1
ΓD

, ∀µ ∈ D ,

for some suitableσq(µ) : D → R, aq : H1
ΓD

×H1
ΓD

→ R, q = 1, ...,Q, and for some
σq

ad(µ) : D → R, aq
ad : H1

ΓD
×H1

ΓD
→ R, q = 1, ...,Qad. This is an assumption of

affine parameter dependence and is crucial to computational efficiency because it
allows to split the computing procedure. We assume also affine parameter depen-
dence for the functionalsF andFad.
Coming to the matrix form, we define the matricesAN(µ) = a(ζ i ,ζ j ; µ) and
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Aad
N (µ) = aad(ξ i ,ξ j ; µ), 1 6 i, j 6 N, and the vectorsFN = F(ζ j ,u) andFad

N =
Fad(ξ j ,wN), 16 j 6 N. It is a simple matter to observe that:

AN(µ) =
Q

∑
q=1

σq(µ)Aq, Aad
N (µ) =

Qad

∑
q=1

σq
ad(µ)Aq

ad, (3.5)

whereAq
i, j = aq(ζ i ,ζ j), 16 i, j 6 N, 16 q6 Q, andAq

adi, j
= aq

ad(ξ
i ,ξ j), 16 i, j 6 N,

1 6 q 6 Qad. Note thatAq ∈ R
N×N, 16 q 6 Q, andAq

ad, 16 q 6 Qad, areindepen-
dentof the input parameterµ.
We can then reformulate the state equation as: givenµ ∈D , find the unique solution
wN(µ) to

AN(µ)wN(µ) = FN, (3.6)

and the adjoint equation as: givenµ ∈D andwN(µ), find the unique solutionp
N
(µ)

to
Aad

N (µ)p
N
(µ) = Fad

N . (3.7)

3.1. Computational procedure: off-line/on-line decomposition

Since the matricesAq andAq
ad are parameter-independent, they can be computed

only once and for all.
Indeed, in anoff-line stage, we findζ i , ξ i , i = 1, ...,N, and formAq, for 16 q 6 Q,
Aq

ad, for 16 q 6 Qad, andFN, Fad
N . Then in anon-linestage, for any given newµ,

we only need to formAN(µ) from theAq, Aad
N (µ) from theAq

ad, through (3.5), then
solve (3.6) forwN(µ) and (3.7) forp

N
(µ) and finally evaluateJ(u,wN; µ). For an

analysis of the computational costs of the two stages, see [11].
Note that the two processes are completely decoupled. The expensive off-line com-
putation can be processed at an early stage and needs to be done only once. The
efficient on-line computation can then be used for very fast evaluations of outputs
at different points in the parameter space. The incremental cost to evaluate the out-
put for any given newµ is very small: first becauseN is very small (typically of
the order of 10, owing to the good convergence properties ofWN andZN [11]); and
second because (3.6) and (3.7) can be inverted very rapidly.

3.2. Error on control and error on cost functional

When solving a simple equation, for example the state equation, by the reduced
basis approach we look for an approximationwN(µ) (to wh(µ)) in WN. In factwN is
expressed by a linear combination of FE functions computed on a gridTh. Thus we
should indicate it aswN

h , however the subindexh will be omitted for simplicity of
notation. As a preliminary test we are interested to check that the control problem
solved with the finite element method and the one solved with the reduced basis
method (when the basis functions are calculated on the same mesh) convergeto the
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same control solution, although they evolve separately. To this aim, we define

εu =
∫

Ω
(uf

h −uf
N)2dΩ; εJ = |J f (uN,wN)−J f (uh,wh)|,

i.e. the square of theL2-norm of the difference on the control and the error on the
cost functional evaluation, respectively, at convergence of the optimization process.
Here f stands forfinal and refers to values taken at convergence, whileuf

h anduf
N

are given by:

uf
h = uf−1

h −τJ′(uf−1
h )= u0−τ

f−1

∑
i=1

J′(ui
h), uf

N = uf−1
N −τJ′(uf−1

N )= u0−τ
f−1

∑
i=1

J′(ui
N),

whereu0 is the initial control function for both iterative processes.
We note that:

εu =
∫

Ω

(

τ
f−1

∑
i=1

(

J′(ui
N)−J′(ui

h)
))2

dΩ = τ2
f−1

∑
i=1

∫

Ω

(

pi
N − pi

h

)2
dΩ,

sinceJ′ = p by Riesz theorem: thusεu at convergence depends on the sum, exten-
ded to all previous iterations, of the errors on the adjoint variable, multiplied by
the relaxation parameterτ > 0. So the larger number of iterations to converge, the
largerεu. We want that even in the worst case, where many iterations are necessary
before convergingεu, be still small. Further we use an adaptive procedure for the
construction of the basis (see [14]), so that the dimension of the reducedbasis space
N is large enough to ensure that the errorsεu andεJ are “small” in any case.

4. APPLICATION: CONTROL OF AIR POLLUTION

Now we consider a particular case of control problem governed by an advection
diffusion equation: our goal is to regulate the pollutant emission (in large part Sul-
fur Dioxide) by industrial plants in order to keep the pollutant level below a fixed
threshold over an observation area, for instance a town. This applicationcan be re-
garded as an extension of the one presented in [3] and [12], in which weaccount for
parametric dependence of our equations. We refer to the domain in Fig.1: thescale
is urban (the dimension of the domain is in the range 10−50 Km), Q1, Q2, Q3 are
the three chimneys emitting pollutant andD is the observation area. Admitted pol-
lutants concentrations are ruled by normative, changing from Country to Country.
Typically there are two limits:attention levelandalarm level.
Our purpose is to develop a systematical method to control, for example, SO2 emis-
sion so that pollution concentration over a certain areaD is acceptable (i.e., below
attention level), taking into account wind and meteorological conditions in a statio-
nary frame.
We consider three differentatmospherical stability classes[4]: stable atmosphere-
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Figure 1. Reference domain for pollution control problem

air vertical motions are slowed down so that vertical diffusion is poor;neutral at-
mosphere- indifferent equilibrium to air vertical motion so that vertical diffusion is
mostly due to mechanical turbulence;unstable atmosphere- pollutant diffusion is
enhanced.
We adopt a 2D transport-diffusion equation to govern pollutant concentration at ef-
fective height (chimney’s geometrical height + smokes raising height) andwe pro-
ject this concentration down to the ground by analogy with the Gauss model [4].
For our simulations, we take 110µg/m3 as target concentration levelzd and
H = 100mas the effective height.

4.1. The mathematical model for the air pollution problem

Pollutant concentration distribution at effective height satisfies the state equation
(2.1), whereν represents the turbulent diffusivity term, instead of the usual mole-
cular diffusivity, thusV describes the mean motion of the air, rather than the wind
velocity field [3]. Diffusivity ν depends on problem type, domain geometry and
atmospheric conditions. In Fig.2ν is reported as function of thex coordinate for
each stability class. We assumeu= ∑3

i=1uiχQi , beingχQi the characteristic function
of the region occupied by the chimneyQi andui the rate of pollutant issuing from
the i-th source. Then Eq.(2.3) can be written as:F(ϕ;u) = ∑3

i=1
∫

Qi
uiϕ dQi . When

solving the control problem with the iterative method, at each step we update the
control function with the following increment:δuk = ∑3

i=1 δuk
i = −τ ∑3

i=1 pχQi .
In analogy with the Gauss model [4], which is a simple tool to predict concen-
tration at a given height of a pollutant emitted by a chimney, we introduce a

projection term of pollutant concentration at ground:g(x,y) = 2e−
1
2( H

σz
)2

, where
σz is a model dispersion coefficient which accounts for meteorological stability
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Figure 2. Viscosity as function of thex coordinate for the three stability classes.

class and soil orography. Values typically considered for urban soil are [3]: σz =

0.012x(1+0.0002x)−
1
2 [m] for stable air;σz = 0.040x(1+0.0002x)−

1
2 [m] for neu-

tral air; σz = 0.220x(1+0.0001x)−
1
2 [m] for unstable air.

5. CONTROL INPUT: VARIABLE EMISSION RATES

We consider a two components control input parameterµu = {u1,u2}. We fix a
total emission valueutot = 2700g/s corresponding to the industrial plant working
at its maximum productivity and writeu3 = 2700− u1 − u2 and µu ∈ D , where
D = [0,2700]× [0,2700] with u1 +u2 6 2700.

5.1. Parametrized state equation

The residuals of equations (2.1) and (2.6) are:

R(wh,uh) := Awh−uh, Rad(ph,wh) := A∗ph−L(wh)

whereL(wh) := χDg (g wh− zd). To compute the reduced basis approximation of
the state variable (3.3), we need to find theN unknown componentswNj (µu) by
solving the system:

ah(wN(µu),ζi) = Fh(ζi) i = 1, ...,N, (5.1)

where

ah(wN(µu),ζi) =
N

∑
j=1

wNj (µu)
[

∑
K∈Th

∫

K
ν∇ζ j ·∇ζi + ∑

K∈Th

∫

K
(V ·∇ζ j)ζi− (5.2)
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∑
K∈Th

δK

∫

K
Aζ j A∗ζi

]

and
Fh(ζi) = ∑

K∈Th

∫

K
uh(µu)ζi − ∑

K∈Th

δK

∫

K
uh(µu)A

∗ζi . (5.3)

We define now the following matrices, related to the diffusive, convective and sta-
bilization terms, respectively:

Ci, j = ∑
K∈Th

∫

K
ν∇ζ j ·∇ζi , (5.4)

Bi, j = ∑
K∈Th

∫

K
(V ·∇ζ j)ζi , (5.5)

Si, j = − ∑
K∈Th

δK

∫

K
Aζ j A∗ζi . (5.6)

The matrixAN (3.5) can thus be written as:AN = C+B+S.
In this particular case,AN is independent of the input parameterµu.
Let us define also the following column vectors depending onµu:

Gi(µu) = ∑
K∈Th

∫

K
uh(µu)ζi , (5.7)

Hi(µu) = − ∑
K∈Th

δK

∫

K
uh(µu)A

∗ζi , (5.8)

so thatFN(µu) = G(µu)+ H(µu). The unknown vectorwN(µu) is the solution of
the system:

ANwN(µu) = FN(µu). (5.9)

5.2. Parametrized adjoint equation

TheN unknown componentspNj (µu) for the reduced basis approximation of adjoint
variable (3.4) are the solution of the problem:

aad
h (pN(µu),ξi) = Fad

h (ξi ;wN,uh) i = 1, ...,N, (5.10)

where

aad
h (pN(µu),ξi) =

N

∑
j=1

pNj (µu)
[

∑
K∈Ti

∫

K
ν∇ξ j ·∇ξi+ (5.11)

∑
K∈Th

∫

K

(

V ·∇ξi

)

ξ j − ∑
K∈Th

δK

∫

K
A∗ξ j Aξi

]

,
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and
Fad

h (ξi ;wN(µu),uh) = ∑
K∈Th

∫

K
χDg(gwN(µu)−zd)ξi− (5.12)

∑
K∈Th

δK

∫

K
L(wN(µu)) Aξi − ∑

K∈Th

δK

∫

K
R(wN(µu),uh) L′(ξi).

We now defineBad, Sad through their components:

Bad
i, j = ∑

K∈Th

∫

K

(

V ·∇ξi

)

ξ j = B j,i , (5.13)

Sad
i, j = − ∑

K∈Th

δK

∫

K
A∗ξ j Aξi = Sj,i , (5.14)

whereB j,i , Sj,i are defined by (5.5), (5.6). Then matrixAad
N = C+Bad +Sad.

Let Gad, Had, Iad be the column vectors defined as:

Gad
i = ∑

K∈Th

∫

K
χDgξi , (5.15)

Had
i = − ∑

K∈Th

δK

∫

K
χDgξiAξi , (5.16)

Iad
i = − ∑

K∈Th

δK

∫

K
χDg2ξi (Aξi −uh). (5.17)

All the matricesC, Bad, Sad and the vectorsGad, Had, Iad are computed off-line (i.e
only once and stored), while for every newµu we assemble on-line the right-hand-
sideFad

N . The unknown vectorp
N
(µ p) is the solution of the system:

Aad
N p

N
(µu) = Fad

N (µu). (5.18)

5.3. Some results and one example

In Tab.1 we report the number of basis functions (for both state and adjoint equa-
tions), the mean error on cost functional and on control function at convergence
(computed on a high number of random inputs) and the computational saving for
neutral and unstable air. The convergence tolerance istol = 10−7. In the case of sta-
ble air, there is no need of finding an optimal solution, since pollutant concentration
is always under attention level. The computational saving compares the time nee-
ded to perform the on-line steps with the one necessary to complete a finite element
simulation using a mesh with about 104 elements.
The number of basis functions and the saving percentages are the same for the two
cases. The orders of magnitude of the errors are nearly the same.



Reduced Basis Methods for Advection-Diffusion Problems 13

Table 1. Control input: number of basis functions, mean errors on cost functional and on control
function at convergence and time saving for neutral and unstable air.

Air condition N Mean error on J Mean H1-error on u Saving

neutral 7 1.4E−11 2.5E−5 90%
unstable 7 1.9E−12 6.1E−6 90%

Table 2. Control input for state equation: mean H1-error and time saving for the three air conditions.

Air condition mean H1-error Saving

stable 1E−8 96%
neutral 2.1E−8 94%
unstable 3.7E−8 90%

In Tab.2 we report some details regarding only the state equation: the mean H1-
error with respect to the finite element solution (computed on a high number of
random inputs) and the computational saving for the three different air conditions.
The number of basis functions for the reduced basis approximation of stateproblem
is N = 7 for the three cases. Dealing with a test case we calculated several errors
on control function, on cost functional and its gradient. To show an example, we
start from the upper chimney emitting at 45% ofutot and the central switched off,
that isµu = {1215,0} [g/s], in neutral air. The control problem solved with the two
methods (finite element and reduced basis) leads for both to the following optimal
solution: the upper chimney emission rate is reduced to 3.49%, central chimney
remains switched off and the lower one work at 55.02% ofutot. Fig.3 shows the
reduced basis approximations of both initial and optimal solutions.

6. PHYSICAL INPUT: VARIABLE EMISSION RATES AND WIND DIREC-
TION

This case is more complex: we consider an input made of four componentsµ p =
{u1,u2,Vx,Vy}. Once againu3 = 2700−u1−u2 g/s, having imposedu1+u2 6 utot,
and we fix the velocity absolute value|V| = 1. We assume that the wind velocity
direction can vary in the interval[−40o,90o].
Noting that diffusivity can be written asν = ν̄ · n(x), whereν̄ is the diffusivity
coefficient (withν̄ = 1/2 for the case of control input). As physical input one could
also choose the “diffusivity coefficient”. The coefficientν̄ is an air stability index:
the smaller̄ν , the more stable the air. Since we already consider three atmospherical
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Figure 3. Control input: initial reduced basis solution (right) and final reduced basis solution (left) of
state equation. Pollutant concentration is in[µg/m3].

stability classes, it is more significant to take wind velocity direction as physical
input.

6.1. Parametrized state equation

TheN unknownswNj (µ p) (3.3) are the solution of the problem (5.1), whereah and
Fh respectively defined in (5.2) and (5.3).
The matrixAN can be written as follows:

AN(µ p) = C+VxBx +VyBy +S(µ p), (6.1)

whereC is the matrix (5.4),S is defined by (5.6) andBx andBy are given by:

Bxi, j = ∑
K∈Th

∫

K
(Ux ·∇ζ j)ζi , (6.2)

Byi, j = ∑
K∈Th

∫

K
(Uy ·∇ζ j)ζi , (6.3)

with Ux = (1,0) andUy = (0,1); B=VxBx+VyBy, whereB (5.5) is the matrix related
to the convective term.
The source termFN is given by:FN(µ p) = G+ H(µ p), whereG andH are the
vectors defined by (5.7) and (5.8).
All the parameter-independent matrices (C, Bx, By) are formed in the off-line stage,
while matricesS, G, H, depending on the parameter in a non-affine way, must be
formed on-line for each newµ p. Assembling ofAN(µ p) andFN(µ p) is carried out
in the on-line stage.
The unknown vectorwN(µ p) is the solution of the system:

AN(µ p)wN(µ p) = FN(µ p). (6.4)
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The difference between (5.9) and (6.4) is that in the latter alsoAN depends on input
parameterµ p. To improve efficiency of the assembling procedure we may apply the
decomposition of non-affine terms by the empirical interpolation method introduced
in [1].

6.2. Parameterized adjoint equation

We want to find the weights of the linear combination (3.4), in order to have the re-
duced basis approximation of the adjoint variable, solution of (5.10). Bilinear form
aad

h and functionalFad
h are the same as in (5.11) and (5.12).

Let Aad
N be the matrix:Aad

N (µ p) = C+VxBad
x +VyBad

y + Sad(µ p), whereC is defi-

ned by (5.4),Sad is the stabilization matrix (5.14) (now parameter-dependent). The
elements of matricesBad

x andBad
y are given by:

Bad
xi, j

= ∑
K∈Th

∫

K

(

Ux ·∇ξi

)

ξ j = Bx j,i , Bad
yi, j

= ∑
K∈Th

∫

K

(

Uy ·∇ξi

)

ξ j = By j,i ,

with Ux = (1,0) andUy = (0,1), while Bx j,i andBy j,i are (6.2) and (6.3). Moreover
Bad = VxBad

x +VyBad
y , whereBad is the matrix related to the convective term (5.13).

The source termFN is given by:Fad
N (µ p) = Gad+Had(µ p)+ Iad(µ p). In this case,

Had (5.16) andIad (5.17) are parameter-dependent, since they depend on velocity
vector, whileGad (5.15) is parameter-independent. Also in this case an efficient
computational procedure should be used.
The unknown vectorp

N
(µ p) is the solution of system:

Aad
N (µ p)p

N
(µ p) = Fad

N (µ p). (6.5)

Even in this case, the difference between (5.18) and (6.5) is that in the latteralso
Aad

N depends on input parameterµ p.

6.3. Some results and one example

The use of the reduced basis method to solve both state and adjoint equations, at
each step of our iterative method to solve control problem, implies several advanta-
ges from a computational point of view. In the case of control and physical input we
have time savings up to 65-70%, which means that in the same time the finite ele-
ment method solves just one iteration (state and adjoint equation using a mesh with
about 104 elements), the reduced basis method solves 3 iterations. This is a good
result dealing with optimal control problems, which are not real-time problems,but
time savings could be even improved if we can adopt a stabilization method based
on terms which can be built off-line. At present, stabilization is needed also inthe
reduced basis formulation because without using it, i.e. using the pure Galerkin me-
thod, we would find a “plateau” asN → ∞, corresponding to the Galerkin residual
evaluated for the stabilized “truth” solutions.
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Table 3. Physical input: number of basis functions, mean errors on cost functional and on control
function at convergence and time saving for neutral and unstable air. Without fixing the online velocity
field at first iteration the computational saving are∼ 65−70%.

Air condition N Mean error on J MeanH1-error on u Saving

neutral 132 0.9E−9 2.5E−7 80%
unstable 81 0.5E−9 1.1E−7 80%

Table 4. Physical input for state equation: mean H1-error and time saving for the three air conditions.

Air condition mean H1-error Saving

stable 1.1E−6 95%
neutral 3.8E−7 95%

unstable 5.4E−5 90−95%

In our case, we can fix the velocity field (the desired online value) beforeapplying
optimal control (at first iteration) and so we can buildSandSad offline or at a step
we can call “pre-online” for our optimal control problem. Note that the basis has
been assembled offline by considering different values for velocity field.
We report in Tab.3 the number of basis functions, the mean error on cost functional
and on control function at convergence (computed on a high number of random in-
puts) and the computational saving (having fixed the “online” velocity field atfirst
iteration) for neutral and unstable air, having imposedtol = 10−7. Once again for
stable air there is no need of searching an optimal solution, since the pollution level
in town is always under attention level, whateveru1, u2 andu3 may be.
To understand the difference in the number of basis functions, we need tocompare
the weight of the diffusive term and the one of the convective term inAN (6.1).
As diffusivity increases, diffusive term becomes dominant and so just “few” basis
functions are needed to have a good approximation of the solution depending on
convective velocity. Since for unstable air the diffusivity absolute value ishigher,
the convective term is less influent and fewer basis functions are needed.
In Tab.4 we report some details on the state equation: the mean H1-error with re-
spect to the finite element solution (computed on a high number of random inputs)
and the computational saving for the three different air conditions. The number of
basis functions for the reduced basis approximation of state variable isN = 81 for
unstable air andN = 132 for both neutral and stable air.
To show an example, we choose the following input:u1 = 30% andu2 = 40%, re-
spectively, ofutot and wind direction at 45o with respect tox-axis. Fig.4 shows the
initial reduced basis solution and the reduced basis solution at convergence, with the
upper chimney emitting at 30.02%, the central at 38.81% and the lower at 7.27%.
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Figure 4. Physical input: initial reduced basis solution (right) and final reduced basis solution (left)
of state equation. Pollutant concentration is in[µg/m3].

7. GEOMETRICAL INPUT: PARAMETRIZED DOMAINS

In this section we combine optimal control problems with geometrical sensitivity
analysis. Our aim is twofold: to minimize pollutant concentration and maximize in-
dustrial production.
As an illustrative example we consider the physical domainΩ̂ ⊂ R

2 at Fig.5,
divided in seven subdomainŝΩr , r = 1, ...,7. We have chosen the parameters
µg = {C1,C2,C3,C4}, with C1+C2 = 3 KmandC3+C4 = 3 Km. The central chim-
ney position is fixed, while the positionC3 of the upper chimney and the positionC2
of the lower chimney can vary.
This kind of parametrized domain would allow, e.g., to answer the question on
where to place a new chimney. The method is based on the affine mapping proce-
dure from reference subdomains (the ones withC1 = 2 Km, C2 = 1 Km, C3 = 1 Km
e C4 = 2 Km) to the true ones (Ωr → Ω̂r ). This methodology can be extended to
non-affine parametric dependence, see [1] and [15].

7.1. Parametrized state equation

Let R be the number of subdomains in which the real domain is divided:Ω̂ =
⋃R

r=1 Ω̂
r
. We are interested in writing a partial differential equation depending on

the set of geometrical parameters given as input. For this purpose, we refer the pro-
blem to areference domainby an affine mapping from the “true” subdomainsΩ̂r

into the correspondingΩr . For any ˆx ∈ Ω̂r , r = 1, . . . ,R, its imagex ∈ Ωr is given
by:

x = G
r(µ; x̂) = Gr(µ)x̂+gr , 1 6 r 6 R.
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Figure 5. Scheme for the real computational domain: subdomains and parameters.

For convenience, we useµ instead ofµg. After settingGr
ji (µ) =

∂x j

∂ x̂i
on each sub-

domainr from the weak form of the state equation (2.9), we define the following
bilinear and linear forms in the reference domainΩ:

A (w,v; µ) =
R

∑
r=1

∫

Ωr

∂w
∂xi

(

Gr
ii ′(µ)ν̂ r

i′ j ′G
r
j j ′(µ)|(Gr(µ))−1|

) ∂v
∂x j

dΩ,

B(w,v; µ) =
R

∑
r=1

∫

Ωr
Vi

∂w
∂xi

(

Gr
ii ′(µ)|(Gr(µ))−1|

)

vdΩ,

F (v; µ) =
R

∑
r=1

∫

Ωr

(

û|(Gr(µ))−1|
)

vdΩ,

S (w,v; µ) =
R

∑
r=1

∑
K∈T r

h

δK

∫

K
Vi

∂w
∂xi

(

Gr
ii ′(µ)Gr

j j ′(µ)|(Gr(µ))−1|
) ∂v

∂x j
Vj dK,

G (v; µ) =
R

∑
r=1

∑
K∈T r

h

δK

∫

K
ûVi

∂v
∂xi

(

Gr
ii ′(µ)|(Gr(µ))−1|

)

dK,

for 1 6 i, j 6 2, r = 1, ...,Randν̂ r
i, j = νδi, j .

Thetransformation tensorsfor the bilinear forms are defined as follows:

ν r
i j (µ) = Gr

ii ′(µ)ν̂ r
i′ j ′G

r
j j ′(µ)|(Gr(µ))−1|, 1 6 i, j 6 2, r = 1, ...,R,

λ r
i j (µ) = Gr

ii ′(µ)Gr
j j ′(µ)|(Gr(µ))−1| =

ν r
i j

ν
, 1 6 i, j 6 2, r = 1, ...,R,

whereν is the constant diffusivity in the reference subdomains. For the linear forms
we define:

χ r
i (µ) = Gr

ii ′(µ)|(Gr(µ))−1|, 1 6 i 6 2, r = 1, ...,R. (7.1)
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Furthermore, we may define:

σq(i, j,r)(µ) = ν r
i j (µ), A

q(i, j,r)(w,v) =
∫

Ωr

∂w
∂xi

∂v
∂x j

dΩ,

Φs(i,r)(µ) = χ r
i (µ), B

s(i,r)(w,v) =
∫

Ωr
Vi

∂w
∂xi

v, dΩ, (7.2)

ϒq(i, j,r)(µ) = λ r
i j (µ), S

q(i, j,r)(w,v) = ∑
K∈T r

h

δK

∫

K
Vi

∂w
∂xi

∂v
∂x j

Vj dK, (7.3)

G
s(i,r)(v) = ∑

K∈T r
h

δK

∫

K
ûVi

∂v
∂xi

dK,

for 1 6 i, j 6 2, r = 1, ...,R, with q ands “condensed” indexes for combinations of
i, j, r andi, r. We can now apply the affine decomposition:

A (σ(µ),w,v) =
Qa

∑
q=1

σq(µ)A q(w,v), B(Φ(µ),w,v) =
Qb

∑
s=1

Φs(µ)Bs(w,v),

S (ϒ(µ),wN,v) =
Qa

∑
q=1

ϒq(µ)S q(wN,v), G (Φ(µ),v) =
Qb

∑
s=1

Φs(µ)G s(v),

where max(Qa) = 2×2×Rand max(Qb) = 2×R.
The reduced basis approximation of the stabilized state equation in the reference
domainΩ reads:f ind wN(µ) ∈WN such that

A (wN,v; µ)+B(wN,v; µ)+S (wN,v; µ) = F (v; µ)+G (v; µ), ∀v∈WN.

7.2. Parametrized adjoint equation

From the weak formulation of the adjoint problem (2.10), in the reference domain,
we have:

B
ad(p,v; µ) =

R

∑
r=1

∫

Ωr
Vi

∂v
∂xi

(

Gr
ii ′(µ)|(Gr(µ))−1|

)

p dΩ,

F
ad(v; µ) =

R

∑
r=1

∫

Ωr

(

χDĝ
(

ĝŵ− ẑd

)

|(Gr(µ))−1|
)

v dΩ,

S
ad(p,v; µ) =

R

∑
r=1

∑
K∈T r

h

δK

∫

K
Vi

∂ p
∂xi

(

Gr
ii ′(µ)Gr

j j ′(µ)|(Gr(µ))−1|
) ∂v

∂x j
Vj dK,
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G
ad(v; µ) = −

R

∑
r=1

∑
K∈T r

h

δK

∫

K
χDĝ

(

ĝŵN − ẑd

)(

Vi
∂v
∂xi

)(

Gr
ii ′(µ)|(Gr(µ))−1|

)

dK,

H
ad(v; µ) = −

R

∑
r=1

∑
K∈T r

h

δK

∫

K
χDĝ2

(

Vi
∂ ŵN

∂xi

)(

Gr
ii ′(µ)|(Gr(µ))−1|

)

v dK.

We introduce:

Φs(i,r)(µ) = χ r
i (µ), B

s(i,r)
ad (p,v) =

∫

Ωr
Vi

∂v
∂xi

p dΩ,

S
q(i, j,r)
ad (pN,v) = ∑

K∈T r
h

δK

∫

K
Vi

∂ pN

∂xi

∂v
∂x j

Vj dK, ∀v∈ ZN,

G
s(i,r)
ad (v) = − ∑

K∈T r
h

δK

∫

K
χDĝ

(

ĝŵN − ẑd

)(

Vi
∂v
∂xi

)

dK,

H
s(i,r)

ad (v) = − ∑
K∈T r

h

δK

∫

K
χDĝ2

(

Vi
∂wN

∂xi

)

v dK,

for 1 6 i, j 6 2, 16 r 6 R, whereχ r
i (µ) is defined by (7.1).

By definitions, we have:

B
ad(Φ(µ), p,v) =

Qb

∑
s=1

Φs(µ)Bs
ad(p,v), S

ad(ϒ(µ), p,v) =
Qa

∑
q=1

ϒq(µ)S q
ad(p,v),

G
ad(Φ(µ),v) =

Qb

∑
s=1

Φs(µ)G s
ad(v), H

ad(Φ(µ),v) =
Qb

∑
s=1

Φs(µ)H s
ad(v),

whereϒq(µ) e Φs(µ) are respectively defined in (7.3) and (7.2).
The reduced basis approximation of the stabilized adjoint equation in the reference
domainΩ is: f ind pN(µ) ∈ ZN such that

A (pN,v)+B
ad(pN,v)+S

ad(pN,v) = F
ad(v)+G

ad(v)+H
ad(v) ∀v∈ ZN.

At this point we solve aparametrized optimal control problem.

7.3. Geometrical sensitivity analysis results

We fix the chimneys emission rates (u1 = 20% of utot = 2700g/s, u2 = 5%, then
u3 = 75%) and the wind velocity (V = (2.5,0)), considering as variable parameters
the geometrical quantities only. With an adaptive procedure [14], we find 35 basis
functions.
We report in Fig.6 the result of the analysis for the parametrized domain illustrated
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in Fig.5. We note that, fixingC3 (i.e. the position of the upper chimney), pollutant
concentration over the city decreases whenC2 goes from 0.1 to 1.3Km, while for
1.36C2 6 2.9 there are no important variations. This is due to the fact that forC2 >

1.3 the city is outside of the lower chimney emission cone. If we keep constantC2,
and therefore the position of the lower chimney, we note that pollutant concentration
over the city increases rapidly till it reaches its maximum aroundC3 = 1, then it
decreases tillC3 = 2.9. A possible explanation of this behavior is that forC3 = 0.1
the city is only partially under the pollutant wake, forC3 = 1 it is totally inside of it,
while whenC3 > 1 the city sets gradually outside of the emission cone.
Summing up the results, moving the lower chimney towards the lower domain edge,
beyondC2 = 1.3, does not imply any advantages, while moving the upper chimney
from C3 = 1 toC3 = 2.9 causes a pollution reduction of around 80%.

Figure 6. Variations of pollutant concentration (inµg/m3) over the city when the upper (C3) and
lower (C2) chimney positions change.

7.4. Sensitivity analysis applied to control problem

The choice of geometrical inputs allows us to study the state variable sensitivityto
domain variations, to know how the pollutant concentration over the observation
area varies according to the geometrical changes. We want now to exploitthis state
variable sensitivity in solving the control problem, in order to maximize the factory
productivity level while keeping the pollution level under the fixed threshold. With
our model we can find the best positions for the upper and lower chimneys.
To that purpose we modify the iterative method adopted to solve the control pro-
blem. Starting always from an initial value for control variableu0, we solve both
the state and adjoint equations. Oncep is known, we check if the stopping criterium
(2.8) is satisfied. At every iterative step in which the adjoint variable does not satisfy
the stopping criterium, instead of starting directly an iterative process on control va-
riableu, we try first to fulfill the criterium by simply varying the positions of upper
and lower chimneys. If we cannot satisfy it just by modifying the geometry, then we
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update control variable value adopting the steepest descent method (2.7). In this way
we minimize the number of iterations onu and therefore we maximize the produc-
tivity, because chimneys emissions decrease at every step (sinceuk+1 = uk−τδuk).
Fig.7 illustrates the flow diagram of this new method for solving the control pro-
blem.
Six input parameters are used for this test problem, comprising the emission rates of
the first two chimneys and the geometrical parameters, that isµ = {u1,u2,C1,C2,C3,C4},
ranging in the setD = [0,2700]× [0,2700]× [0.1,2.9]× [0.1,2.9]× [0.1,2.9]×
[0.1,2.9].
We notice that forN = 80 of basis functions, the reduced basis solution of the con-
trol problem is a “good” approximation of the finite element solution, i.e. the mean
H1-error for random inputs is about 10−5. To verify that the control problem solved
with the finite element method and the one solved with the reduced basis method
converged to the same solution, we compute the two errorsεu andεJ for a certain
number of random inputs. Imposingtol = 10−7, we find that the order of magnitude
for εu is 10−5, while for εJ is 10−10.
As an illustrative example, we consider the following initial configuration: upper

w(u)

u

J’J

z d

p

J’ < toltol

J’

J’ < tol

NO

NO

NO

YES

YES

YES

State Equation
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Adjoint Equation

State Equation

Adjoint Equation

(RB)

(RB)

(RB)

(RB) µVariation of

Test onµ

k+1u      = u   −   J’( w  , u  )k kkτ

Figure 7. Flow diagram of the iterative process to solve control problem combined with sensitivity
analysis.

chimney emitting at 30% ofutot = 2700g/s and central chimney emitting at 40%,
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in unstable air conditions. Fortol = 10−7, the iterative method converges after four
iterations onu to the optimal solution: the upper chimney switched off, the central
one emitting at 18.3% of utot and the lower one at 29.83%, withC2 = 0.4 Km and
C3 = 2.9 Km. The control problem without sensitivity analysis has another solu-
tion: u1 = 3.55%,u3 = 28.66% and central chimney switched off, which means that
the productivity is reduced by 15.92% on totalutot. In this case,εJ = 2 ·10−10 and
εu = 4.4·10−5.

Figure 8. Geometrical Input: initial reduced basis solution (right) and final reduced basis solution
(left) of state equation. Pollutant concentration is in[µg/m3].

8. CONCLUDING REMARKS

By adopting the reduced basis method for the solution of both state and adjoint
equations at every steps of the iterative method used to solve the optimal control
problem may yield significant advantages from a computational point of view.
The reduced basis method shows great versatility. In fact we analyzed different input
parameter classes:control input- in our application this kind of input is related to
the productivity level of the industrial plant, and so to regulations and economical
and commercial factors;physical input- this kind of input allows us to take into
account meteorologic conditions and characteristics of the area where thefactory
and the city lie;geometrical input- in order to consider the position of the city with
respect to the industrial chimneys.
With all these different parametrizations we are able to solve the control problem
from a global and decisional point of view, considering, at the same time, several
aspects of the same problem.
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