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Abstract — The reduced basis (RB) method is proposed for the approximationitifparametrized
equations governing an optimal control problem. The idea behind the &Baul is to project the so-
lution onto a space of small dimension, specifically designed on the prailband, and to decouple
the generation and projection stages (off-line/on-line computationaéguves) of the approximation
process in order to solve parametrized equations in a rapid and notsixpevay.

The application that we investigate is an air pollution control problem: we amegatating the emis-
sions of industrial chimneys in order to keep the pollutant concentratitmwhe certain threshold
over an observation area, like a town. Adopting the RB method for bothastdtadjoint equations of
the optimal control problem leads to important computational savings wstiect to the use of the
Galerkin-finite element method. We consider different parametrizationt(ol, physical and geome-
trical input parameters) so that we are able to solve the control prolotemé global and decisional
point of view.

Keywords: advection-diffusion parametrized partial differential equations, cedtbasis methods,
Galerkin approximation, optimal control, geometrical sensitivity analgsigsironmental fluid dyna-
mics.

1. INTRODUCTION

The control and optimization of an engineering component or system eschie
prediction of certain “quantities of interest”, which we shall generically@aiputs
They are typically expressed as functionals of the field variables (eiidier & ad-
joint variable) associated with a partial differential equation which dessrthe
physical behavior of the component or the system. The parameters, whishall
denoteinputs identify a particular “configuration” of the components: they may re-
present variables related to the control functipiut also physical or geometrical
parameters. We thus get an impliziput-outputrelationship whose evaluation re-
quires the solution of the underlying partial differential equations.

Generically speaking, the solution of control problems requapgl, reliable, and
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repeatedevaluations of the input-output relationship. This calls for methods that
can reduce complexity while preserving all relevant information and withomst
sing accuracy on the results.

The RB method is a powerful tool to solve parametrized equations. The idea is
project the solution on a small dimensional space, specific for our probistead

of adopting a generic high-dimension approximating space, like the finite elemen
space. The use of a model which is able to represent the problem with ansmmall

ber of degrees of freedom, without loosing accuracy, reduceslyrieamputational
costs.

In this paper we adopt the RB method to approximate the solution of the parame-
trized equations governing the control problem. Control problems solviudithe

RB method were already faced by Ito and Ravindran [8], [6] and [Givdver wi-
thout considering multi-parametrized problems and adopting different solpitm
cedures. Parameters can be sorted as control parameters (i.e dgpendiantrol
function), physical (like velocity field or diffusivity) and geometrical (irelated to
different domain configurations). Geometrical parameters are particutgrortant

in the optimal control framework, since they allow the solution of shape optimiza-
tion problems. In our formulation we will foresee all three classes of pasme
Recently, Grepl [5] has proposed the solution of parabolic problems etthced
basis (also in the optimal control framework). Other applications of retibasis
methods are provided in the field of inverse problems with non-affine parame
dependence by Nguyen [10].

As a study case, we consider an air pollution control problem: our goalrie-to
gulate the pollutant emission by industrial plants in order to keep pollution below
an acceptable level over an observation area, e.g. a town. We refepwlation
phenomena in a stationary frame on urban scales.

In Section 2 we formulate a generic control problem, for a linear time-incigren
advection-diffusion equation. In Section 3 we describe the reducésldgsoxima-

tion for the solution of the parametrized equations governing the contrblgmmo

In Section 4 we report some features of the air pollution control problem,itee
apply the formulation presented in Section 2 to derive our model. In Sections 5
6 and 7 we present the parametrized state and adjoint equations, somécalmer
results and an example for the case of control, physical and geometpca) in-
spectively. Some preliminary results were reported in [12]. In Section 8epert
some concluding remarks and indicate a perspective on further deveitgppme

2. OPTIMAL CONTROL PROBLEM FOR ADVECTION-DIFFUSION EQUA-
TIONS

Let us consider an advection-diffusion problem defined on the dofairiR?:

Aw= -0 (vOw)+V-Ow=uin Q,
w=0 onlp, (2.1)

o)
T‘:‘V:O only,
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wherew is the state variable) the control function defined on the domain the
velocity field andyv is the diffusivity that may depend on the domain coordinates
(x,y). A homogeneous Dirichlet condition is imposed on the inflow bounfary=
{xe€9Q : V(x)-n(x) < 0}, wheren(x) is the unit vector directed outward, and a
homogeneous Neumann conditionfgn:= dQ\l'p. Defining H_ := {ve H(Q) :

V|r, = 0}, the weak form of the state equation (2.1)fgd we H%D aw ) =
F(¢;u), V¢ € HE_, where

a(w, ) ::/Q vOw- O dQ+/Q V-Ow ¢ dQ, 2.2)

F(¢;u) :z/Q ug dQ. (2.3)

We then define the observation of the system on alpartQ of the domain through
the cost functionald(u,w) = 3 [ (w(u) — z3)?dD, wherez, is the desired observa-
tion.

The Lagrangian functional reads?(w, p,u) = J(u) + F(p;u) — a(w, p), where
w,p € Hf_(Q) andu € L%(Q). By differentiating. with respect to the state varia-
ble, we obtain the weak form for the adjoint equatiéimd p H%D  a(p,¢) =

Fad(¢;w), V¢ € HE_, where
a(p,9) ::/Q vOp- 0¢ dQ+/Q V.0¢ pdQ, 2.4)

Fe(g.w) = [ (w-2) ¢ dD. (2.5)
Q
whose differential form is:

A'p=-0-(vOp+V-p)=xp(W—2) in Q,
p=0 onTlp, (2.6)
v 1V .np=0 onfly,

wherexp is the characteristic function of the subdomBin

By differentiating the Lagrangian functional with respect to the contnotfionu,
we obtain the weak form of the optimal control constra{dt(u), ¢/) = [, py dQ =

0, Yy € L%(Q).

We solve our problem using an iterative method where the variation of ¢duntio
tion is led by a gradient method. From the optimal control constraint, we qarede
a stopping criterium for the iterative method. At & step of the iterative method:

e Wwe solve the state equation:
find wk e HE : a(wk, ¢) = F(¢;u¥), Vo € HE ;

e we solve the adjoint equation:
find pf € HE, : a™(p,¢) = F24(@;wh), v € HE ;
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e if the stopping criterium is not satisfied, we update the control function
U = K Uk Suk = —TRI(U¢) = —TRpk. (2.7)

The stopping criterium adopted is [3]:
Ip¥)|,2 < tol, (2.8)

to check if our adjoint variabl@X is too small to produce a significative variation
duk on the new control function®+?,

2.1. Numerical discretization and stabilization

Both state and adjoint equations are advection-diffusion equations;teieteans-
port term dominates the diffusion one [4], a suitable numerical stabilizatiogeis n
ded. We adopt thetabilized Lagrangiari3],[2], instead of stabilizing separately
state and adjoint equations in a conventional manner [13]. In this wayliza#ibn

is not only based on a strongly consistent method, but also there is nobdret-
ween state and adjoint stabilized equations.

In this work we have adopted the approach “optimize-then-discretize’lte spti-
mal control problems, we have formulated an optimality condition, from thisieond
tion we have built an adjoint problem and then we discretize both state anidtadjo
equations. An alternative approach would be “discretize then optimizehatas
been considered for the same kind of problem in [12].

Indicating with the indexh the discretized quantities, the stabilized state equation
reads:

find Wh € Xp - ah(wh, ¢h) = Fh(¢h; Uh), \V/(bh S Xh, (2.9)
with:
an(Wh, n) := a(Wh, n) — KGZ%&/K Anh A" ¢y, dK,
Fn(én; Un) :=F(¢n;un) — KEZ%CSK/K Un A" ¢ dK,

whereA is the state operator ad is the adjoint operator. The terraéa, ¢r,) and
F(¢n; un) are defined in (2.2), (2.3W, anduy, are discrete approximations of the
functionsw, u, and %, C H}-D is the finite element space built up on a g, so

that the computational domain@ = Uy # K (see [13]).
The adjoint equation is:

find ph € Xn : af4(pn, $n) = F2%(dn;Wh;tn), Yobh € Xn,  (2.10)

where:

a2 (pn, ¢n) == a®(pn, ¢n) — > 5K/K A’ pn Agp dK,

Ke%h
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R i ) = F (i) — 5 /. (xo(wn—za):

Adn + (AWh - Uh) XD¢h> dK.

Note that the terma?(pp, ¢n) andF29(¢n; W) are defined in (2.4) and (2.5) and
pn is the discrete approximation of the functipn

3. REDUCED BASISMETHOD FOR OPTIMAL CONTROL

As anticipated in the Introduction, we consider three different types ot ipgrame-
ters: control inputu,, which parametrizes the control functian= u(Ly,); physical
input Ly, like, for ex., velocity fieldv and viscosity; geometrical inputig, which
characterizes the domain geometry. These parameter classes allow ug iffelv
rent types of control problems. Of course, inputs can be combined trgetform,

for example, a control-physical input (i.e. control and physical quastissgparame-
ters). In this section, for convenience, we refer to a generic ippat{ i, Hp, Ug},
without specifying its own nature.

We introduce a set of parameter sampis= {u?,...,uN}, whereu" € 2, n =
1,...,N. For each input vector iy, we calculate a finite element method solution of
the state equation,(u") in the space,; we choose a discretization refined enough
to ensure that the solution in the high-dimensional spgcis accurate enough to
approximate the exact solution irﬂ)—l We do the same for the adjoint problem: we
select a set dfl sampless{d = {ply, ..., uN,}, whereul, € 2,n=1,...,N, and cor-
respondingly we compute the finite element approximation of the adjoint variable
Pn(HDg) € Xn. The two setsSy and %d are chosen independently. Also the redu-
ced basis formulation and the basis construction procedure have beemagt by
the choice of using the approach “optimize-then-discretize” for the optiovétal
problem. We then introduce the reduced basis spaces:

Wy = span{{"=wy(u"), n=1,...,N} (3.1)
for the state problem and
Zy =span{&" = pn(Hag), N=1,...,N} (3.2)

for the adjoint problem. According to (3.1) and (3.¥)y and Zy consist of all
functions inX, that can be expressed as a linear combination of, respect{/ely,
andé&". We assume linear independence of the basis functions.

Starting from the state variable, in the RB approach we look for an apprtirima
wn (U) in Wy, that can be regarded asarrogateof the finite element approximation
Wh(U); we can express the RB solutiom (1) as:

N .
wi(p) =y w, (1)) = (wi (k)" (3:3)
j=1
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wherewy (1) € RN is the column vector of the linear combination coefficiegy,
j=1,...,N.
Let py be the RB approximation of the adjoint variable:

ZpN, H)E = (p(H)TE. (3.4)

The underlying idea of the RB method is a projection onto a lower-ordeoappr
mation space, specific for the problem of interest, instead of a genefrabhigr
one. The conjecture is that we should be able to accurately represesulttien
corresponding to some new points in parameter sgat¥, as an appropriate com-
bination of solutions previously computed at a small number of sample points in
parameter spacg:( anduj , n=1,...,N). In this case we are interested in solving
the optimal control problem and finding the control function by evaluatingtist
functional in a rapid, reliable and repeated way.

At each iterative step of the method adopted to solve the control probleamyayi-
venu € 2 and the corresponding control functiar§2.7), we compute the reduced
basis approximation of the state variablg(u) € Wy, by solving

a(Wn(H),v; i) = F(v;u), YveW.

Oncewy is available, we determine the solutipR € Zy of the adjoint equation:

a®(pn(p), di 1) = F(¢,wn(p)), Vo € Z.

Finally we evaluate the reduced basis approximation of our output, i.e. the cos
functionJ(u,wy) and the adjoint variabley, then we check whether the stopping
criterium is satisfied.

To apply the reduced basis method, we shall suppose that for some firgte-(p
rably small) integer® andQ?, the bilinear formsa(-, -; 4) anda?’(-,-; u) can be
expressed as follows:

Q
awvip) =y o9(patwy), YwveHz,, Vu e 2,
g=1

a®(p,p; ) = Zdﬁd ,0), Vp,¢ eHE, YU E P,

for some suitable9(u): 2 — R, a%: H%D X H%D —R,g=1,...,Q, and for some
oh(1): 2 =R, aly: HE xHL — R, q=1,..,Q% This is an assumption of
affine parameter dependence and is crucial to computational efficienauge it
allows to split the computing procedure. We assume also affine parametsr-dep
dence for the functionals andFaq. o

Coming to the matrix form, we define the matricag(u) = a(Z',{!;u) and
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A () =a?(E" &) ), 1<i,j <N, and the vector§y = F({J,u) and g =
Fad(EJ,WN), 1< j < N.ltis a simple matter to observe that:

Q Qad
An(p) =Y oA, A (k) = Zlagd(U)Agd’ (3.5)
q:

whereA!; =ad(Z',¢1), 1<i,j <N, 1<q<Q, andAgdAj =ady(&,&1),1<i,j <N,
1< g< Q. Note thatA? € RN*N, 1< g < Q, andAl,, 1< g < Q% areindepen-
dentof the input parameteu.
We can then reformulate the state equation as: giverg, find the unique solution
Wy (M) to

An(H)wy(H) = Ey, (3.6)

and the adjoint equation as: givare 2 andw, (), find the unique squtioEN(u)
to

A (1) py, (1) = B (3.7)

3.1. Computational procedure: off-line/on-line decomposition

Since the matrices\ andAgd are parameter-independent, they can be computed
only once and for all. o

Indeed, in aroff-line stage, we find', &',i =1,...,N, and formAY, for 1 < g < Q,
Al for 1< q< Q¥ andFy, F&. Then in anon-linestage, for any given ne,
we only need to fornAy (1) from theAd, A2(u) from theAgd, through (3.5), then
solve (3.6) forwy (1) and (3.7) forp (1) and finally evaluate(u, wy; ). For an
analysis of the computational costs of the two stages, see [11].

Note that the two processes are completely decoupled. The experfdive @om-
putation can be processed at an early stage and needs to be done anly loa
efficient on-line computation can then be used for very fast evaluatibogtputs
at different points in the parameter space. The incremental cost to evéheout-
put for any given newu is very small: first becaush is very small (typically of
the order of 10, owing to the good convergence properti&soandZy [11]); and
second because (3.6) and (3.7) can be inverted very rapidly.

3.2. Error on control and error on cost functional

When solving a simple equation, for example the state equation, by the reduced
basis approach we look for an approximatidh(u) (to ws(u)) in Wy. In factwN is
expressed by a linear combination of FE functions computed on &gridihus we
should indicate it asv, however the subindelx will be omitted for simplicity of
notation. As a preliminary test we are interested to check that the contiakepto
solved with the finite element method and the one solved with the reduced basis
method (when the basis functions are calculated on the same mesh) cdovbge
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same control solution, although they evolve separately. To this aim, we define
_ f_uf)2do: _11f _qf
&= Q(uh uy)“dQ; &5 =13"(un,wWn) —J' (Un,Wh)],

i.e. the square of the?-norm of the difference on the control and the error on the
cost functional evaluation, respectively, at convergence of the ogiioizprocess.
Here f stands foifinal and refers to values taken at convergence, V\thjlandu,(,

are given by:

f-1 f-1
u =u -t = -t 21 J(up, ul =ui =t Y =uw—1 Zl J (uy),
1= 1=

whereuy is the initial control function for both iterative processes.
We note that:

£ = /Q (ngl (J’(uL,)-J’(uL)))ZdQ _ 12 fi/g (piN _ pih>2dQ,

sinceJ’ = p by Riesz theorem: thus, at convergence depends on the sum, exten-
ded to all previous iterations, of the errors on the adjoint variable, multiphed b
the relaxation parameter> 0. So the larger number of iterations to converge, the
largerg,. We want that even in the worst case, where many iterations are ngcessa
before converging,, be still small. Further we use an adaptive procedure for the
construction of the basis (see [14]), so that the dimension of the rethasixispace

N is large enough to ensure that the errgrande; are “small” in any case.

4. APPLICATION: CONTROL OF AIR POLLUTION

Now we consider a particular case of control problem governed bydgection
diffusion equation: our goal is to regulate the pollutant emission (in largeSogs
fur Dioxide) by industrial plants in order to keep the pollutant level belowxedfi
threshold over an observation area, for instance a town. This applicatiobe re-
garded as an extension of the one presented in [3] and [12], in whiglteaaint for
parametric dependence of our equations. We refer to the domain in Figscatee
is urban (the dimension of the domain is in the range-BD Km), Q1, Q2, Q3 are
the three chimneys emitting pollutant abds the observation area. Admitted pol-
lutants concentrations are ruled by normative, changing from Countrptmt®y.
Typically there are two limitsattention levelndalarm level

Our purpose is to develop a systematical method to control, for exampjesr8ie-
sion so that pollution concentration over a certain dda acceptable (i.e., below
attention level), taking into account wind and meteorological conditions in a-statio
nary frame.

We consider three differemttmospherical stability class¢4]: stable atmosphere
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4+ T
3 €
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_377 rN
_4,,

x [Kml
Figure 1. Reference domain for pollution control problem

air vertical motions are slowed down so that vertical diffusion is poeutral at-
mosphere indifferent equilibrium to air vertical motion so that vertical diffusion is
mostly due to mechanical turbulenamstable atmospherepollutant diffusion is
enhanced.

We adopt a 2D transport-diffusion equation to govern pollutant coretéatrat ef-
fective height (chimney’s geometrical height + smokes raising heightenpiro-
ject this concentration down to the ground by analogy with the Gauss mddel [4
For our simulations, we take 110g/m® as target concentration levey and

H = 100m as the effective height.

4.1. The mathematical model for theair pollution problem

Pollutant concentration distribution at effective height satisfies the stai@ienq
(2.1), wherev represents the turbulent diffusivity term, instead of the usual mole-
cular diffusivity, thusV describes the mean motion of the air, rather than the wind
velocity field [3]. Diffusivity v depends on problem type, domain geometry and
atmospheric conditions. In Fig.2 is reported as function of the coordinate for
each stability class. We assume: 332 ; uixq,, beingxq, the characteristic function

of the region occupied by the chimn€y andu; the rate of pollutant issuing from
thei-th source. Then Eq.(2.3) can be written B$¢;u) = z?:1 Jo li¢ dQ. When
solving the control problem with the iterative method, at each step we update th
control function with the following incremenéiu = 52 , Suk = —152 , pxo,.

In analogy with the Gauss model [4], which is a simple tool to predict concen-
tration at a given height of a pollutant emitted by a chimney, we introduce a

1/H
projection term of pollutant concentration at groumyx,y) = 2e*?(?z)2, where
o, is a model dispersion coefficient which accounts for meteorological stability
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Viscosity field for the three different air conditions (V| = 1)

| | — — stable air -

neutral air -

— — — unstable air

v [m2/s]
g

Figure 2. Viscosity as function of th& coordinate for the three stability classes.

class and soil orography. Values typically considered for urban sei[3: g, =
0.012¢(1+0.000) 2 [m] for stable air,o; = 0.040x(1+ 0.0002) 2 [m] for neu-
tral air; o, = 0.22x(1+ 0.000JX)*% [m] for unstable air.

5. CONTROL INPUT: VARIABLE EMISSION RATES

We consider a two components control input paramgtge= {ug,uz}. We fix a
total emission valuet, = 2700g/s corresponding to the industrial plant working
at its maximum productivity and writez = 2700— u; — up and y, € &, where
2 =1(0,2700 x [0,2700 with u; + up < 2700.

5.1. Parametrized state equation

The residuals of equations (2.1) and (2.6) are:
R(Wh, Un) := AW, — Un, R29(pn,wh) := A" prn— L(Wh)

whereL(wy,) := xpg (g Wh — 24). To compute the reduced basis approximation of
the state variable (3.3), we need to find tdeunknown componenten; (k) by
solving the system:

ah(WN(uu)7Zi) = Fh(ZI) I = 17-'-7Na (51)

where

N
(Wi (Hy), &) = glejwu)[ S [veg-oa+ Y [(voga- (62

Keg, Keg,
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and

R =3 | ()G = 5 & [ wnl)AG (5.3)

Keh

We define now the following matrices, related to the diffusive, convectinbesta-
bilization terms, respectively:

G = vOg; - 07, 5.4
=2 Jv (5.4)
B = V-0Z)4, 5.5
1= 3 Jveon) (55)
S, :_Kg%éK/KAZj Ag. (5.6)

The matrixAy (3.5) can thus be written a8y =C+B+S.
In this particular casé)y is independent of the input parametgy.
Let us define also the following column vectors dependingign

Gl = 5 ] unlu)a. (5.7)
M) == 3 & [ unlugA G, (5.8)

so thatFy (u,) = G(u,) +H(u,). The unknown vectowy (1, is the solution of
the system:

AN\LVN(UU) :EN(”u)' (5.9)
5.2. Parametrized adjoint equation

TheN unknown componentsy; (1) for the reduced basis approximation of adjoint
variable (3.4) are the solution of the problem:

af%(pn (), &) = F9(& Wi, un) i =1,...,N, (5.10)
where "
3 (pn (k). &) = J; P; (Hu) [KGZJ/K vOgj - D& + (5.11)

KEZ%/K <V.D€i>fj _Kg%&(/KA*Ej Afi},
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and
F29(&; Wi (Hy), Un) /ng gWn (Hy) — 2Zd)&i— (5.12)

&/LWN DAE- T & /RwN ), un) L'(&).

Ke7h Ke7h

We now defineB24, S through their components:

BYj = V-0& )& =By, 5.13

N KGZ%/K ( ) i =5, (5.13)

Sa,? 5K/ A*fj Aé = Sii, (5.14)
Ke%

whereB; ;, S;; are defined by (5.5), (5.6). Then matAg® = C + B + 4.
Let G4, Had, |24 phe the column vectors defined as:

ad _ .
G Kg% /K Xo9éi, (5.15)
HY=— S & / XDOEAS, (5.16)
Ke?h
129 = > & / Xp9?&i (A& —Un). (5.17)
Keﬁh

All the matricesC, B, $9 and the vector&29, H29, |29 are computed off-line (i.e
only once and stored), while for every ngw we assemble on-line the right-hand-
sideF2". The unknown vectop, (Up) is the solution of the system:

Apy (M) = E¥ (). (5.18)

5.3. Someresults and one example

In Tab.1 we report the number of basis functions (for both state and aeéjgira-
tions), the mean error on cost functional and on control function atergence
(computed on a high number of random inputs) and the computational sawing f
neutral and unstable air. The convergence tolerant is 10~ 7. In the case of sta-

ble air, there is no need of finding an optimal solution, since pollutant coratem

is always under attention level. The computational saving compares the time nee
ded to perform the on-line steps with the one necessary to complete a finitaneleme
simulation using a mesh with about“€lements.

The number of basis functions and the saving percentages are the sahetivo
cases. The orders of magnitude of the errors are nearly the same.
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Table 1. Control input: number of basis functions, mean errors on cost fumedtiand on control
function at convergence and time saving for neutral and unstable air.

Air condition N Mean erroronJ MeanHerroronu Saving

neutral 7 14E — 11 25E -5 90%
unstable 7 BE -12 61E -6 90%

Table 2. Control input for state equation: meart4drror and time saving for the three air conditions.

Air condition mean H-error Saving

stable E-8 96%
neutral 21E -8 94%
unstable 3’E -8 90%

In Tab.2 we report some details regarding only the state equation: the mean H
error with respect to the finite element solution (computed on a high number of
random inputs) and the computational saving for the three different aditons.

The number of basis functions for the reduced basis approximation opstdtiem

is N = 7 for the three cases. Dealing with a test case we calculated several erro
on control function, on cost functional and its gradient. To show amei@ we

start from the upper chimney emitting at 45%ugf; and the central switched off,
thatisu, = {12150} [g/9], in neutral air. The control problem solved with the two
methods (finite element and reduced basis) leads for both to the following dbptima
solution: the upper chimney emission rate is reduced to 3.49%, central chimney
remains switched off and the lower one work at 55.02%gf Fig.3 shows the
reduced basis approximations of both initial and optimal solutions.

6. PHYSICAL INPUT: VARIABLE EMISSION RATESAND WIND DIREC-
TION

This case is more complex: we consider an input made of four compopgnts

{ug, u2,Vx, Vy }. Once agaimiz = 2700— u; — Uz g/s, having imposedi; + Uz < Utot,

and we fix the velocity absolute vall¥| = 1. We assume that the wind velocity
direction can vary in the intervéd-40°, 90°].

Noting that diffusivity can be written a8 = v - n(x), wherev is the diffusivity
coefficient (withv = 1/2 for the case of control input). As physical input one could
also choose the “diffusivity coefficient”. The coefficienis an air stability index:

the smallew, the more stable the air. Since we already consider three atmospherical
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3
1

Initial Reduced Basis solution at ground [ pg /m Final Reclused Basis solufon at ground [/l

Figure 3. Control input: initial reduced basis solution (right) and final reducedstsdution (left) of
state equation. Pollutant concentration i§tig/m°].

stability classes, it is more significant to take wind velocity direction as physical
input.
6.1. Parametrized state equation

TheN unknownswy; (1,,) (3.3) are the solution of the problem (5.1), whereand
F, respectively defineolJ in (5.2) and (5.3).
The matrixAy can be written as follows:

An(Hp) = C+ViB+WBy + S(y), (6.1)
whereC is the matrix (5.4)Sis defined by (5.6) an8, andB, are given by:

By . = z Ux-0¢)¢, 6.2
Xi, j N h/K( ZJ)Z ( )
By,= ¥ [ (Uy-04)3 6.3

1j Ke,ﬁh/K( y ZJ)Z ( )

with Uy = (1,0) andUy = (0,1); B=\4B+WB,, whereB (5.5) is the matrix related

to the convective term.

The source ternfey is given by:Fy(Hp) = G+ H(H,), whereG andH are the
vectors defined by (5.7) and (5.8).

All the parameter-independent matric€s B,, B,) are formed in the off-line stage,
while matricesS, G, H, depending on the parameter in a non-affine way, must be
formed on-line for each new ,. Assembling ofAy (1) andEy (1)) is carried out

in the on-line stage.

The unknown vectowy (i) is the solution of the system:

AN(up)WN(up) :EN“lp)' (6.4)
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The difference between (5.9) and (6.4) is that in the latter Alsdepends on input
parametey ,. To improve efficiency of the assembling procedure we may apply the
decomposition of non-affine terms by the empirical interpolation method inteatluc
in [1].

6.2. Parameterized adjoint equation

We want to find the weights of the linear combination (3.4), in order to havesthe r
duced basis approximation of the adjoint variable, solution of (5.10). Bilifuem

a9 and functionaF24 are the same as in (5.11) and (5.12).

Let AX be the matrix AR () = C+ VB3 + VB3 + S9(p ), whereC is defi-

ned by (5.4) S is the stabilization matrix (5.14) (now parameter-dependent). The
elements of matriceB2 andB;‘,d are given by:

B = 3 [ (ueDE)E =By, B = 5 [ (Uy-08)5 =By,

Ke% Ke%,

with Uy = (1,0) andUy = (0,1), while By;; andBy,; are (6.2) and (6.3). Moreover
B =\, B3+ VB3, whereB™? is the matrix related to the convective term (5.13).
The source terrfy is given by:Fg(up,) = G2+ H3 () +12%(u,). In this case,

H2d (5.16) andl 29 (5.17) are parameter-dependent, since they depend on velocity
vector, whileG? (5.15) is parameter-independent. Also in this case an efficient

computational procedure should be used.
The unknown vectop, (M) is the solution of system:

A () Py (Hp) = FR (). (6.5)

Even in this case, the difference between (5.18) and (6.5) is that in thedéster
AY! depends on input parametey.

6.3. Someresults and one example

The use of the reduced basis method to solve both state and adjoint equations
each step of our iterative method to solve control problem, implies severahizd

ges from a computational point of view. In the case of control and palsiput we

have time savings up to 65-70%, which means that in the same time the finite ele-
ment method solves just one iteration (state and adjoint equation using a mesh with
about 16 elements), the reduced basis method solves 3 iterations. This is a good
result dealing with optimal control problems, which are not real-time problbais,

time savings could be even improved if we can adopt a stabilization method based
on terms which can be built off-line. At present, stabilization is needed als®in
reduced basis formulation because without using it, i.e. using the purekBates-

thod, we would find a “plateau” dd — oo, corresponding to the Galerkin residual
evaluated for the stabilized “truth” solutions.
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Table 3. Physical input: number of basis functions, mean errors on costifunat and on control
function at convergence and time saving for neutral and unstableigtioMYfixing the online velocity
field at first iteration the computational saving aré&5— 70%.

Air conditon N  MeanerroronJ Meah!-erroronu Saving

neutral 132 ®E-9 25E—-7 80%
unstable 81 BE -9 11E-7 80%

Table4. Physical input for state equation: meah-error and time saving for the three air conditions.

Air condition mean H-error  Saving

stable 1E -6 95%
neutral 38E -7 95%
unstable HE -5 90— 95%

In our case, we can fix the velocity field (the desired online value) befopéying
optimal control (at first iteration) and so we can buldnd S offline or at a step
we can call “pre-online” for our optimal control problem. Note that theibass
been assembled offline by considering different values for velocity. field

We report in Tab.3 the number of basis functions, the mean error onwuagidnal
and on control function at convergence (computed on a high numbandbm in-
puts) and the computational saving (having fixed the “online” velocity fiefitstt
iteration) for neutral and unstable air, having imposeld= 10-. Once again for
stable air there is no need of searching an optimal solution, since the pollwén le
in town is always under attention level, whateugru, anduz may be.

To understand the difference in the number of basis functions, we nesdnoare
the weight of the diffusive term and the one of the convective terrAyn(6.1).

As diffusivity increases, diffusive term becomes dominant and so fast"basis
functions are needed to have a good approximation of the solution degeorlin
convective velocity. Since for unstable air the diffusivity absolute valuggker,
the convective term is less influent and fewer basis functions are theede

In Tab.4 we report some details on the state equation: the méamret with re-
spect to the finite element solution (computed on a high number of random)inputs
and the computational saving for the three different air conditions. Th&au of
basis functions for the reduced basis approximation of state variahle=i81 for
unstable air antl = 132 for both neutral and stable air.

To show an example, we choose the following inpyt= 30% andu, = 40%, re-
spectively, ofu: and wind direction at 45with respect toc-axis. Fig.4 shows the
initial reduced basis solution and the reduced basis solution at coneergeith the
upper chimney emitting at 30.02%, the central at 38.81% and the lower at 7.27%
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°]

Initial Reduced Basis solution at ground [ g /md) Final Reduced Basis solution at ground [ g /m

8000

6000

44000 4000

2000 2000

4! o 4 o
5 0 5 5 o 5

Figure 4. Physical input: initial reduced basis solutlon (right) and final reducetstslution (left)
of state equation. Pollutant concentration igtig/nm®].

7. GEOMETRICAL INPUT: PARAMETRIZED DOMAINS

In this section we combine optimal control problems with geometrical sensitivity

analysis. Our aim is twofold: to minimize pollutant concentration and maximize in-

dustrial production. A

As an illustrative example we consider the physical dom@ic R? at Fig.5,

divided in seven subdomain@', r = 1,...,7. We have chosen the parameters
{Cl,Cz,Cg,C4} withC, +C, =3 Km andC3+C4 = 3 Km. The central chim-

ney position is fixed, while the positidy of the upper chimney and the positiGa

of the lower chimney can vary.

This kind of parametrized domain would allow, e.g., to answer the question on

where to place a new chimney. The method is based on the affine mappirg proc

dure from reference subdomains (the ones @ith- 2 Km, C; = 1Km, C3 = 1 Km

e Cs = 2 Km) to the true ones® — Q). This methodology can be extended to

non-affine parametric dependence, see [1] and [15].

7.1. Parametrized state equation

Let R be the number of subdomains in which the real domain is dividee:

Ur 1Q We are interested in writing a partial differential equation depending on
the set of geometrical parameters given as input. For this purposefevé¢he pro-
blem to areference domaity an affine mapping from the “true” subdomaifs

into the correspondin@’. For anyx'e Q', r = 1,...,R its imagex € Q" is given

by:

x=4"(1,%) =G (Wx+d, 1<r<R
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Figure5. Scheme for the real computational domain: subdomains and parameter

For convenience, we ugeinstead ofu,. After settingGGi (n) = ‘;XJ on each sub-
domainr from the weak form of the state equation (2.9), we define the following
bilinear and linear forms in the reference dom@in

A (Wi p) = ;/r /J-/G;j/<u><ef<u>>-1|)§vjdn

i) = 3 [ 9 (601G ) ve

F(V; ) Z/ 0)(G" (u 1|)de
ov

F W) = ;&/v."w ()G (I( (1) ) 57 Vy 0K

ik = le > o f gy (LIS ) )oK

forl<i,j<2,r=1,. Randv =V .
Thetransformatlon tensorEDr the blllnear forms are defined as follows:

Vi (1) = Gl ()0h Gl (I () 1, 1< j <2 1=1,..R

v o
/\irj (IJ) |I’(l'l)Gr (U)|(Gr(ll))7l| = %v 1<i,j<2,r=1..,R

wherev is the constant diffusivity in the reference subdomains. For the lineansfor
we define:

X () =G (l(G' () Y. 1<i<2 r=1,..R (7.2)
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Furthermore, we may define:

- ow ov
q(i,jor) - qi Jr bl
o (u) Vlj(u) 'Q{ /Qf (?X| dXJ Q
SG0) () ol s(ir) _ , OW
QXU () = Xi (1), 22V (W) = | Vim—v, dQ, (7.2)
Q0%
Y0 (1) = AT (), #9000 v Gk, (73
(H) = N (h), W= 3 & Mo a5 (7.3)
€Y
5K / vde
Ke
fori<ij<2,r=1..R Wlthqands ‘condensed” indexes for combinations of
i,j,randi,r. We can now apply the affine decomposition:
Q? Q
A (o(H),wyv) =5 o (u)/I(wyv), Z(O(H),WV) =" ®(1)B(W,V),
g=1 S=
Qa Qb
(Y)W, v) =5 Y)Y (W, V), G(P(H),v) =5 P (1)F3(v),
g=1 S=

where maxQ?) = 2 x 2x Rand maxQ®) =2 x R.
The reduced basis approximation of the stabilized state equation in thencfere
domainQ reads:find wy () € Wy such that

A (WN,V; 1) + B(WN, Vs )+ (W, V) = F (V) + 9 (V ), TV E W

7.2. Parametrized adjoint equation

From the weak formulation of the adjoint problem (2.10), in the refereonoesaih,
we have:

o= 5 [ w2 .
%"’@Nv“)—;/grvm " (1)|(G () ) p a2

i) = ;/ X08(— 24) (G (1)) )v dox

ov

#(p.vip1) = Z]‘* [V ()Gl (I( () ) 52V k.



20 A. Quarteroni, G. Rozza, and A. Quaini

e ZJ‘*/XDQ i —2) (V) (G (1I(G (1) )k
A i) = ZK; & [ X0 (UG (G (wI(G () H)v dk
We introduce:
S ) = X (), 257 (pY) = [ Vigrpd,
A0 (o v V=3 @/\/.‘;p'“;vjv,dK We Zy,
Yo" (V) == 5, | x08(0i —2) (v g)\('/)dK,

(P A2 _dWN
Hag (V) = 2 r5K/<XDg (V. X )vdK,

for1<i,j <2,1<r <R wherex{(u) is defined by (7.1).
By definitions, we have:

Qb
@ad(¢(u)7p,V):Zl¢S(u) Sa(BV), 721 ZYq p.v),

Qb
(s Zfbs , A(D(p),v) = ;¢S(u)%%(V>

whereY9(u) e ®5(u) are respectively defined in (7.3) and (7.2).
The reduced basis approximation of the stabilized adjoint equation in thremeée
domainQ is: find py(u) € Zy such that

o (Pn,V) + 229 (pn, V) + 2 (p, V) = .Z39(v) + 939 (v) + 2729 (v) We Zy.

At this point we solve garametrized optimal control problem

7.3. Geometrical sensitivity analysis results

We fix the chimneys emission ratas (= 20% of et = 27009/s, uz = 5%, then

uz = 75%) and the wind velocity = (2.5,0)), considering as variable parameters
the geometrical quantities only. With an adaptive procedure [14], we finoBS3is
functions.

We report in Fig.6 the result of the analysis for the parametrized domain iledtra
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in Fig.5. We note that, fixin€s (i.e. the position of the upper chimney), pollutant
concentration over the city decreases whkigmgoes from 0.1 to 1.XKm, while for

1.3 <G, < 2.9 there are no important variations. This is due to the fact th&for

1.3 the city is outside of the lower chimney emission cone. If we keep corStant
and therefore the position of the lower chimney, we note that pollutant ntnatien

over the city increases rapidly till it reaches its maximum aroQge- 1, then it
decreases tilC3 = 2.9. A possible explanation of this behavior is that @r= 0.1

the city is only partially under the pollutant wake, for = 1 it is totally inside of it,
while whenCs > 1 the city sets gradually outside of the emission cone.

Summing up the results, moving the lower chimney towards the lower domain edge,
beyondC, = 1.3, does not imply any advantages, while moving the upper chimney
from C3 = 1 toCz = 2.9 causes a pollution reduction of around 80%.

Output varying the distance of the upper chimney

-
8

—o—C2=01
—=—C2-04
—e—C2-07
4-C2=1

—4—C2=13

C2=186
—*—C2=19
—»—C2=22
—A—C2=25
—*—C2=-29

2
8

g
8

§

o
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pollutant concentration [ g / m)
N
8

g

05 1 15 2 25

Figure 6. Variations of pollutant concentration (ipg/m3) over the city when the uppe€{) and
lower (Cy) chimney positions change.

7.4. Sensitivity analysisapplied to control problem

The choice of geometrical inputs allows us to study the state variable sengitivity
domain variations, to know how the pollutant concentration over the olismiva
area varies according to the geometrical changes. We want now to ekpastate
variable sensitivity in solving the control problem, in order to maximize the fgctor
productivity level while keeping the pollution level under the fixed threshalih
our model we can find the best positions for the upper and lower chimneys.

To that purpose we modify the iterative method adopted to solve the control pr
blem. Starting always from an initial value for control variablg we solve both
the state and adjoint equations. Onis known, we check if the stopping criterium
(2.8) is satisfied. At every iterative step in which the adjoint variable doesatisfy
the stopping criterium, instead of starting directly an iterative process drotwa-
riableu, we try first to fulfill the criterium by simply varying the positions of upper
and lower chimneys. If we cannot satisfy it just by modifying the geometey) the
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update control variable value adopting the steepest descent methodi{ehi§ way

we minimize the number of iterations arand therefore we maximize the produc-
tivity, because chimneys emissions decrease at every step (§irlce uk — T5UX).
Fig.7 illustrates the flow diagram of this new method for solving the control pro-
blem.

Six input parameters are used for this test problem, comprising the emistasiofa
the first two chimneys and the geometrical parameters, thatigu; , uy,Cq,Cp,C3,Cs},
ranging in the setz = [0,270Q x [0,2700 x [0.1,2.9] x [0.1,2.9] x [0.1,2.9] x
[0.1,2.9].

We natice that foN = 80 of basis functions, the reduced basis solution of the con-
trol problem is a “good” approximation of the finite element solution, i.e. the mean
H-error for random inputs is about 18 To verify that the control problem solved
with the finite element method and the one solved with the reduced basis method
converged to the same solution, we compute the two egpasde; for a certain
number of random inputs. Imposingl = 10~7, we find that the order of magnitude
for &, is 1072, while for &5 is 10710,

As an illustrative example, we consider the following initial configuration:arpp

@% uktl=yk £ (W &
T

State Equation | (RB) %‘ Variation of [ ‘

+

w(u) : i

3 NO
Adjoint Equation | (RB) !

State Equation | (RB)

i

Adjoint Equation | (RB)

Optimal Solution

Figure 7. Flow diagram of the iterative process to solve control problem combingdsensitivity
analysis.

chimney emitting at 30% afio,t = 2700g/s and central chimney emitting at 40%,
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in unstable air conditions. Fool = 1077, the iterative method converges after four
iterations onu to the optimal solution: the upper chimney switched off, the central
one emitting at 18% of u,o; and the lower one at 283%, withC, = 0.4 Km and

C3 = 2.9 Km. The control problem without sensitivity analysis has another solu-
tion: u; = 3.55%,u3 = 28.66% and central chimney switched off, which means that
the producti\gity is reduced by 15.92% on totg);. In this caseg; = 2-10-1° and
&=44-107",

Initial RB solution at graund [u g /m?) Final RB solution at ground [pg/m?]

2500
2000
1500

1000

500

5 0 5 5 4 5 o

Figure 8. Geometrical Input: initial reduced basis solution (right) and final reduzssis solution
(left) of state equation. Pollutant concentration i/ me].

8. CONCLUDING REMARKS

By adopting the reduced basis method for the solution of both state and adjoint
equations at every steps of the iterative method used to solve the optimadlcontr
problem may vyield significant advantages from a computational point of view

The reduced basis method shows great versatility. In fact we analiffredt input
parameter classesontrol input- in our application this kind of input is related to
the productivity level of the industrial plant, and so to regulations andauaral

and commercial factorghysical input- this kind of input allows us to take into
account meteorologic conditions and characteristics of the area whefactbey

and the city liegeometrical input in order to consider the position of the city with
respect to the industrial chimneys.

With all these different parametrizations we are able to solve the contrblgumo
from a global and decisional point of view, considering, at the same tieveral
aspects of the same problem.
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