Files

Action Filename Description Size Access License Resource Version
Show more files...

Abstract

In this paper we deal with reduced basis techniques applied to Stokes equations. We consider domains with different shape, parametrized by affine and non-affine maps with respect to a reference domain. The proposed method is ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. An empirical, stable and inexpensive interpolation procedure has permitted to replace non-affine coefficient functions with an expansion which leads to a computational decomposition between the off-line (parameter independent) stage for reduced basis generation and the on-line (parameter dependent) approximation stage based on Galerkin projection, used to find a new solution for a new set of parameters by a combination of previously computed stored solutions. As in the affine case this computational decomposition leads us to preserve reduced basis properties: rapid and accurate convergence and computational economies. The applications and results are based on parametrized geometries describing domains with curved walls, for example a stenosed channel and a bypass configuration. This method is well suited to treat also problems in fixed domain with non- affine parameters dependence expressing varying physical coefficients.

Details

Actions

Preview