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SUMMARY

We present multi-level geometrical approaches in the study of aorto-coronaric bypass anastomoses
configurations. The theory of optimal control based on adjoint formulation is applied in order to
optimize the shape of the incoming branch of the bypass (the toe) into the coronary. At this level
two possible options are available in shape design: one implements local boundary variations in
computational domain, the other is based on a linearized design in a suitable reference domain
through the theory of small perturbations. At a coarser level, reduced basis methodologies based
on parametrized partial differential equations are developed to provide (a) a sensitivity analysis for
geometrical quantities of interest in bypass configurations and (b) rapid and reliable prediction of
integral functional outputs. The aim is (i) to provide design indications for arterial surgery in the
perspective of future development for prosthetic bypasses, (ii) to develop multi-level numerical methods
for optimization and shape design by optimal control, and (iii) to provide an input-output relationship
led by models with lower complexity and computational costs. We have numerically investigated a
reduced model based on Stokes equations and a vorticity cost functional (to be minimized) in the
down-field zone of bypass. In local shape design procedure a Taylor like patch has been found. A
feedback procedure with Navier-Stokes fluid model is proposed based on the analysis of wall shear
stress and its related indexes of interest. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. FRAMEWORK: CFD in HAEMODYNAMICS

When a coronary artery is affected by a stenosis, the heart muscle cannot be properly
oxygenated through blood. Aorto-coronaric anastomosis restores the oxygen amount through
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a bypass surgery downstream an occlusion. At present, different kind and shape of aorto-
coronaric bypass anastomoses are available and, consequently, different surgery procedures are
used to set up a bypass. A bypass can be made up either by organic material (e.g. the saphena
vein taken from patient’s legs or the mammary artery) or by prosthetic material. Prosthetic
bypasses are less invasive. They may feature very different shapes for bypass anastomoses,
such as, e.g., cuffed arteriovenous access grafts.
Mathematical modelling and numerical simulation of physiological flows allow better
understanding of phenomena involved in coronary diseases (see References [10] and [11]).
Improvement in the understanding of the genesis of coronary diseases is very important as
it allows the reduction of surgical and post-surgical failures. It may also suggest new means
in bypass surgical procedures as well as with less invasive methods to devise new shape in
bypass configuration (see Reference [6] for an introduction to optimal design for arterial bypass
anastomosis).
A geometrical multi-level approach. In this work, the background provided by
mathematical modelling and numerical simulation has led us to apply the Optimal Control
theory of systems governed by partial differential equations (PDEs) with the aim of optimizing
the (full) configuration and the (local) shape of a simplified bypass model. In support to this
aim at macro-geometrical level efficient schemes for reduced-basis methodology [7] applied
to parametrized partial differential equations (P 2DEs) are being used to provide useful and
quick indications (outputs) in a repetitive design environment as shape design requires. With
the reduced basis approach also a sensitivity analysis of the initial configuration and a study
of important geometrical quantities in bypass is under investigation (see References [13] for
an introduction and [5] for details). Fig. 1 clarifies our geometrical double-level of interest for
bypass design.
A double control approach. At micro-geometrical level optimal control of one (or several)
aspect of the problem entails the minimization of a cost functional which describes physical
quantities involved in the specific problem. The problem is related both with optimal shape
design (see B.Mohammadi, O.Pironneau [4]) and flow control (involved in the observation
of the evolving system and in cost functionals (such as vorticity or wall shear stress)).
Optimization process is carried out by a control function used as parameter in modelling
the shape of the domain. At this level a double control approach has been used: in the former
case control function is used to define directly the boundary shape (local boundary variation
method) in the true domain (see Reference [9]); in the latter case control function is used to
define the mapping transformation from the reference domain to the true one. In this case the
design problem becomes an optimal control problem on coefficients and the analysis is based
on small perturbation theory (see Reference [1]). In both cases the adjoint approach proposed
by J.L. Lions [3] to get cost functionals gradient in problem with distributed or boundary
control and observation has been developed. In the functional optimization process a descent
gradient-type method is used. Numerical approximation is based on Galerkin-Finite Element
Method (see for example Reference [12]).
Results. At the end of a first investigation stage, which has been preliminary reported in [9],
based on optimal design by local boundary variation, a cuffed bypass is found with a shape
which resembles the Taylor arterial patch [2]. Results reported in Sec. 4, based on the multi-
level and double control approaches, go in the same direction. The effect of the shape obtained is
to reduce gradually the average velocity of the blood as it approaches the distal anastomosis,
since the cross-sectional area of the bypass is steadily becoming larger. This prevents the
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sudden deceleration experienced in the conventional model with the fluid returning to the
host vessel. The blood is guided more smoothly through the vessel thanks to the gradually
changing geometry. Consequently there is a smooth reduction of the momentum of the blood
while approaching the junction. Flow disturbances are abated, undesirable flow separation
at the toe of the bypass diminished. Vorticity reduction by the optimization process is quite
substantial. A feedback procedure has then been implemented by solving the unsteady Navier-
Stokes equations in the original configuration as well as in the final configuration obtained after
applying the optimal shape design process on the simplified model. The quadratic functional
used at this step keeps into consideration wall shear stress variations in time and along the
vascular wall we are modelling by shape design. A reduction of 25% in wall shear stress spatial
and temporal oscillations has been guaranteed.
Development Guidelines. Optimal control and shape optimization applied to fully unsteady
incompressible Stokes and Navier-Stokes equations and the setting of the problem in a
three-dimensional geometry will provide more realistic design indications concerning surgical
prosthesis realizations. Theoretical investigation based on perturbation theory analysis and
linearized shape design is providing results on existence and uniqueness of solution and about
well-posedness of the problem, and will permit us to better understand the problem from a
theoretical point of view. Reduced-basis methodology approximation is going to provide not
only high computational savings but also a methodological pre-process to detect the essential
feature of the optimization process itself (such as a sensitivity analysis). The ultimate goal is
to build an input-output relationship si = Fi(µk) with different models characterized by an
increasing degree of complexity, where si are outputs of interest (design quantities and fluid
mechanics indexes) and µk inputs (typically geometrical quantities).

2. CONTROL and SHAPE DESIGN: A DOUBLE APPROACH

The Stokes equations in a two-dimensional computational domain Ω with velocity vector
u = {u, v} and pressure p read:



−ν∆u +∇p = 0 in Ω ⊂ R2,
∇ · u = 0 in Ω,
u = 0 on Γw, u = gin on Γin, T · n̂ = 0 on Γout,

(1)

where n̂ is normal unit vector on the boundary ∂Ω. The latter is partitioned in three
components: Γin is the inflow boundary, where a Hagen-Poiseuille’s velocity profile gin is
imposed, Γout is the arterial outflow boundary, with a free-stress Neumann-type condition on
stress tensor T , and Γw is the boundary corresponding to the arterial wall, the stenosed artery
portion and the incoming branch of bypass with no-slip conditions imposed; Fig. 1 represents
schematically the computational geometry and the symbols used.
Velocity values at the inflow are chosen so that the Reynolds number has order 103. Blood

kinematic viscosity ν is 4 · 10−6 m2 s−1 [10].
In this first approach the control w represents the shape of Γc: a part of Γw(typically the
upper part of the incoming branch), made up of M branches Γj

c(w) = Γj
c +wj , where wj is the

control variable, the curves Γj
c are shape functions (polynomials). The control shape function

wj changes of a quantity δwj during the optimization process. At the k-th iteration we have:
wj

k(s) =
∑k−1

m=0(δw
j
m).
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Figure 1. Bypass schemes: macro geometrical (left) and local configurations (right).

The observation on the system. We consider vorticity as distributed observation (flow
control and shape optimization combined problems) in the down-field zone Ωwd of the incoming
branch of the bypass, defined as ∇× u = ∂v

∂x − ∂u
∂y and we control the system by minimizing

the functional: J(w) =
∫
Ωwd

| ∇ × u |2 dΩ. During the optimization iterative process we must
solve the following adjoint problem, to estimate the cost functional gradient J ′(w):

{ −ν∆q +∇π = ∇×∇× u|Ωwd
in Ω,

∇ · q = 0 in Ω, q = 0 on ∂Ω,
(2)

where q and π denote the adjoint velocity and pressure, respectively. The feedback procedure
based on unsteady Navier-Stokes applied on the two different configurations is based on the
following cost functional:

Jτ = mean0≤t≤T Σ(t) =
1
T

∫ T

0

Σ(t)dt =
1
T

∫ T

0

∫

Γw

( ∂

∂t
τw(t)

)2

dΓdt, (3)

which is the L2 norm of the rate of the wall shear stress (τw(t)). See for details [9].
Small perturbations. A second approach to local shape design is based on a map from
the real domain Ω to a (rectangular) reference one Ω̃ using a variable transformation
x̃ = x, ỹ = 1

f(x,ε)y, where f(x, ε) represents the upper shape and can be developed as f(x, ε) =
f0(x) + εf1(x) + ε2f2(x) + ..., being f0(x) the unperturbed shape. Assuming that problem (1)
has a solution u, p that is infinitely differentiable with respect to ε: u = u0 + εu1 + ..., and
p = p0 + εp1 + ..., and using small perturbation techniques we can derive the equations for
uk, pk starting from (1), after mapping Ω to the reference domain. At this point we can use
optimal control techniques to solve the problem for u1, p1 (the first corrections), the function
f1(x) represents a perturbation in the shape f0(x) (weighted by ε) and is another unknown for
the problem, used as control variable. Like in the first approach we use an adjoint formulation,
a gradient-type method and the same functional (observation). In this case the shape design
problem is transformed into an optimal control problem on the coefficients, which depend on
the coordinate transformation itself. Results are shown in Fig. 3 and a detailed analysis is
reported in [1].
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3. REDUCED BASIS TECHNIQUES FOR PRE-PROCESS

Reduced basis techniques (see A.T.Patera et al., e.g. [7] and [8]) are being used for a pre-
process applied to macro bypass configuration (Fig. 1). We need quantitative information
(s(µ)) about sensitivity of some geometrical quantities before applying local shape design.
By choosing a certain number of geometrical parameters (bypass diameter t, artery diameter
D, stenosis length S, graft angle θ, bypass bridge height H) and a number (N) of sample
parameters µk = {tk, Dk, Sk, θk,Hk} we solve our state equations in a reference domain Ω̃,
properly mapped by an affine geometrical transformation [13] (off-line procedures). With N
solutions uk(µk), pk(µk) of problem (1) we build a (reduced) basis functional space for velocity
(ζ = {uk(µk), σk(µk)}) and pressure (ξ = {pk(µk)}). Note that ζ has been enriched by
additional velocity σk(µk) which are the so-called Supremizer solutions. They are obtained by
solving the additional problem:

∫
Ω̃
(σk · w + ∇σk · ∇w)dΩ =

∫
Ω̃

pk∇ · wdΩ, where both the
solution σk and the test functions w belong to the Sobolev space [H1

Γw
(Ω)]2 which vanishes on

Γw. These extra functions allow the spaces ζ and ξ to satisfy an equivalent inf-sup condition
[12]. Choosing a new sample µ we can get a new (on-line) solution for our problem s.t.:
uN = Σ2N

k=1Uk(µ)ζk(µk), pN = ΣN
k=1Pk(µ)ξk(µk). The components of the weights U = {Uk}

and P = {Pk} are given by the solution of the reduced basis Stokes linear system:{ −νΣ2N
j=1Ψij(µ)(

∫
Ω̃
∇ζi · ∇ζjdΩ)Uj + ΣN

l=1Φli(µ)(
∫
Ω̃

ξl∇ · ζidΩ)Pl = Θi(µ)(
∫
Ω̃

fζidΩ),
Σ2N

j=1Φlj(µ)(
∫
Ω̃

ξl∇ · ζjdΩ)Uj = 0, 1 ≤ l ≤ N, 1 ≤ i ≤ 2N.
(4)

Ψij(µ),Φli(µ),Θi(µ) are the affine mapping coefficients. An adaptivity procedure in choosing
parameters samples to minimize error between Galerkin-Finite Element solution and the
reduced basis solution has been used. A-posteriori estimates on outputs of interest s(µ) is
under investigation ([5]).

4. SOME NUMERICAL RESULTS

We present below some numerical results obtained applying optimal control by local boundary
variation (Fig. 2) and using small perturbations techniques (Fig. 3), starting from the same
configuration with a small graft angle and a cuffed upper part (as suggested by results in [9]).
Shape are smoothed at the intersection with artery to guide blood and the corner disappears.
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Figure 2. Bypass configuration (velocity [ms−1 · 10−2]) near the incoming branch before (left) and
after (local) shape optimization.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1–6
Prepared using fldauth.cls



6 GIANLUIGI ROZZA

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3. Linearized bypass configuration (velocity) near the incoming branch after shape design
by small perturbations (right) and its adjoint solution in reference domain (right). Adjoint solution

provides an indication of the most sensible zone related with our observation in the domain.
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