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Abstract

The reduced basis method on parametrized domains is applied to approximate blood flow through an arterial bypass.
The aim is to provide (a) a sensitivity analysis for relevant geometrical quantities in bypass configurations and (b) rapid

and reliable prediction of integral functional outputs (such as fluid mechanics indexes). The goal of this investigation is
(i) to achieve design indications for arterial surgery in the perspective of future development for prosthetic bypasses, (ii)
to develop numerical methods for optimization and design in biomechanics, and (iii) to provide an input–output

relationship led by models with lower complexity and computational costs than the complete solution of fluid dynamics
equations by a classical finite element method.

Keywords: Design of improved biomechanical devices; Parametrized PDEs; Generalized Stokes problem; Reduced

basis methods; Arterial bypass optimization, Haemodynamics.

1. Design and optimization in arterial bypass

configurations

When a coronary artery is affected by a stenosis, the
heart muscle cannot be properly oxygenated through
blood. Aorto-coronaric anastomosis restores the oxygen

amount through a bypass surgery downstream an
occlusion. At present, different kinds and shapes of
aorto-coronaric bypasses are available and, conse-

quently, different surgery procedures can be devised to
set up a bypass. Numerical simulation of physiological
flows allows better understanding of phenomena
involved in coronary diseases (see [1]) and a potential

reduction of surgical and post-surgical failures. It may
also suggest new means in bypass surgical procedures as
well as with less invasive methods to devise improved

bypass configuration (see [2] and [3]). Efficient schemes
for reduced-basis techniques [4] applied to parametrized
partial differential equations (P2DEs) have been devel-

oped to provide useful and real-time indications
(outputs) in a repetitive design environment as optimi-
zation requires and a sensitivity analysis on important

geometrical quantities, such as bypass diameter t,
arterial diameter D, stenosis length S, graft angle �,
bypass bridge height H, as shown in Fig. 1. See [5] for a
more general framework.

2. Reduced basis technique for Stokes equations in

parametrized domains

The essential properties of a reduced basis method, i.e.
(i) the rapid convergence of global reduced-basis
approximations (Galerkin projection onto a space WN

spanned by solutions of the governing partial differential
equations at N selected points in parameter space); (ii)
the off-line/on-line computational procedures which

decouple the generation and projection stages of the
approximation process (for the parameter-affine pro-
blems) and (iii) the operation count for the on-line stage
– given a new parameter value, we calculate the output

of interest – which depends only on N (typically very
small) and the parametric complexity of the problem,
have allowed computational economies of several orders

of magnitude. In the perspective of using low-order
methods for real-time pre-process optimization and then
higher fidelity method in feedback, at this stage we have

adopted the steady Stokes fluid model which provides
good approximation in mid-size arteries with low Rey-
nolds number and low mean velocity. A two-

dimensional parametrized bypass configuration (Fig. 1)
has been built assembling four simple subdomains. We
build a system of P2DEs depending on a set of geome-
trical parameters (�) as coefficients. The Stokes problem

on a reference domain � in its weak formulation reads:
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F0, G0 are terms due to non-homogeneous Dirichlet
boundary condition on �in (homogeneous Dirichlet on
�w and Neumann free-stress condition on �N = �out);
�D = �in [ �w (Fig. 1). Fs is a distributed force term. In

our case: � ¼
SR

r¼1 �r, R = 4. The true domain �̂ of
Fig. 1 has been traced back to a reference domain by an
affine mapping of the subdomains �̂r into �r. For any

x̂ 2 �̂r, r = 1, . . ., R, its image x 2 �r is given by x =
Grð�; x̂Þ ¼ Grð�)x̂þ gr; 1 � r � R, we thus write
@
@x̂i
¼ @xj

@x̂i
@
@xj
¼ Gr

jið�Þ @@xj, 1 � i, j�d =2, and in the refer-

ence domain � we have:
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Z
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where v̂i,j = v�i,j, gin is the term due to boundary inflow

condition and f̂r the force field. We introduce the para-

meter vector � = {t, D,L, S, H, �} 2 D� � R
P, D� is

given by:

tmin; tmax½ � � Dmin;Dmax½ � � Lmin;Lmax½ � � Smin;Smax½ ��
Hmin;Hmax½ � � �min; �max½ �

The transformation tensors for bilinear forms are defined

as follows:

�rijð�Þ ¼ Gr
ii0 ð�Þ�̂i0j0Gr

jj0 ð�ÞdetðGrð�ÞÞ�1; 1 � i; j � 2;

r ¼ 1; . . . ;R

Then in our case:

�1 ¼ �
t
H � tan �

� tan � 1þtan2 �
t H

� �
; �2 ¼ �

S
D 0
0 D

S

� �
;

�3 ¼ �
t
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0 D

t

� �
; �4 ¼ �

L
D 0
0 D

L

� �
ð5Þ

The tensors for pressure and divergence linear forms are:

X r
ijð�Þ ¼ Gr

ijdetðGrð�ÞÞ�1; 1 � i; j � 2; r ¼ 1; . . . ;R

and are given by:

X 1 ¼ t�H tan �
0 H

� �
; X2 ¼ S 0

0 D

� �
;

X 3 ¼ t 0
0 D

� �
; X4 ¼ L 0

0 D

� �
ð6Þ

Furthermore, we may define

�qði;j;rÞð�Þ ¼ �rijð�Þ; Aqði;j;rÞ
u;w

D E
¼
Z
�r
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@w
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d� ð7Þ
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p
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for 1 � r � R, 1 � i,j � d = 2. So:

Að�; u;wÞ ¼
XQa

q¼1
�qð�ÞAðu;wÞq; Bð�; p;wÞ ¼

XQb

s¼1
�sð�ÞBðp;wÞs

Fig. 1. Schematic bypass configuration and reference domain.
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in our case Qa = 20 and Qb = 9, in reality max (Qa) = d
� d � d � R = 32 and max (Qb) = d � d � R = 16.

In the reduced basis approximation we take some
suitable samples S

�
N = {�1, . . ., �N}, where �n 2 D�, n =

1, . . ., N.

The reduced-basis pressure space is QN = span {�n,
n = 1, . . ., N}, where �n = p(�n).

The reduced-basis velocity space is Y�
N = span {�n,

n = 1, . . ., 2N} = span {�n, T� �n, n = 1, . . ., N}, where
�n = u(�n) and T�: Q ! Y is the supremizer operator
(T�q, w)Y = Bð�; q, w;), 8 w 2 Y. Using the affine
dependence of B(q, w, �) on the parameter and the lin-

earity of T� we can write T�� =
PQb

q¼1 �qð�ÞTq� for any
� and �. The problem in reduced basis approximation
reads: find (uN (�), pN(�)) 2 Y�

N � QN

Að�; uNð�Þ;wÞ þ Bð�; pNð�Þ;wÞ ¼ F;wh i; 8w 2 Y�
N

Bð�; q; uNð�ÞÞ ¼ G; qh i; 8q 2 QN:

�
ð9Þ

The supremizers solutions guarantees the fulfillment of

an equivalent inf-sup (LBB) condition: �N(�) � �(�) �
�0 > 0, 8 � 2 D� where
�Nð�Þ ¼ infq2QN

supw2Y�
N

Bð�;q;wÞ
wk kY qk kQ and

�ð�Þ ¼ infq2Q supw2Y
Bð�;q;wÞ
wk kY qk kQ (see [6]). For a new sample

� we look for a solution

uNð�Þ ¼
X2N
j¼1

uNjð�Þ�j; pNð�Þ ¼
XN
l¼1

pNlð�Þ�l

where the unknown coefficients are found as the solution
of the following reduced basis linear system:P2N

j¼1 A
�
ijuNjð�Þ þ

PN
l¼1 B

�
ilpNlð�Þ ¼ F�i 1 � i � 2N

P2N
j¼1 B

�
jluNjð�Þ ¼ G�

l 1 � l � N

8<
: ð10Þ

where:

A
�
ij ¼

XQa

k¼1
�kð�ÞAð�i; �jÞk; B�il ¼

XQb

k¼1
�kð�ÞBð�i; �lÞk

F
�
i ¼ F; �ih i; G�

l ¼ G; �lh i; 1 � i; j � 2N; 1 � l � N

For further details on Stokes reduced basis approxima-
tion and other supremizers options see [7]. As measure
of blood flow perturbation we consider for example the

mean blood velocity:

sð�Þ ¼
XR
r¼1

R
�r

uj jd�R
�r

d�
ð11Þ

3. Some numerical results

With great computational costs savings we can pro-
vide in real time useful clinical indication dealing with a
great number (i.e. hundreds) of bypass configurations

and to understand the role of each geometrical para-
meter and their reciprocal influence. Numerical results
indicate a very good convergence behaviour and a tight

control on the maximum N, i.e. on the dimension of
reduced basis matrices, whose assembling computa-
tional costs are O(Qa (Qb + 1)24N2) for the sub-matrix
A, O((Qb + 1)22N2) for B, O((Qb + 1) N) for F and

O(9N3) for the inversion of the global matrix. Numerical
tests on the bypass configuration (Fig. 1) have been
carried out imposing a mean Reynolds number of 103, a

blood kinematic viscosity v of 4. 10�6 m2 s�1 and a force
field: f = (0,9.8). Solutions used as basis functions are
obtained by the Galerkin-finite element method with

Taylor–Hood elements (P2 and P1 for velocity and
pressure, respectively). Figure (2) shows good con-
vergence of the errors (H1 for velocity and L2 for

pressure) testing a great number of configurations. We
have carried out three different medical application-
oriented tests by our input–output methodology. Figure
(3) shows the first case of study where we have investi-

gated the bypass graft angle perturbation (other
parameters are frozen) measuring the increase of our
output of interest Eq.(11): varying � form � 0 to 	

3 the

increase of the mean blood flow is very high in the range
[0, 	/6] and smoothed in the range [	/6, 	/3]. Results are
shown for different N to underline the fidelity of

approximation with a few basis functions. Figure (4)
shows the flow perturbations with respect to the quan-
tity S

D: the ratio between the stenosis length and the
arterial diameter (best performances when S�

D � 1) and

the quantity t
D (improving performances when the ratio

Fig. 2. Reduced basis convergence results: mean error on

velocity and pressure.
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is less than unity, i.e. bypass diameter smaller than
arterial diameter).

4. Conclusion

Development guidelines are devoted to the applica-

tion of reduced basis (i) to Navier–Stokes equations [8]
in parametrized domains, (ii) in problems involving non-
affine mapping dependence (introduction of curved

walls) [9] and (iii) in using a great number of geometrical
parameters.
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Fig. 3. Output s [ms�1�10�2] versus the parameter �.

Fig. 4. Output s [ms�1�10�2] versus the ratios t/D and S/D.
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