STABILIZED CROUZEIX-RAVIART ELEMENT FOR THE
DARCY-STOKES PROBLEM
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Abstract. We stabilize the nonconforming Crouzeix-Raviart element for the Darcy-Stokes prob-
lem with terms motivated by a discontinuous Galerkin approach. Convergence of the method is
shown, also the in limit of vanishing viscosity. Finally, some numerical examples verifying the theo-
retical predictions are presented.
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1. Introduction. The Darcy-Stokes problem is interesting for a variety of rea-
sons. Apart from being a modeling tool in its own right, it also appears, less obviously,
in time-stepping methods for Stokes and for high Reynolds number flows (where of
course the convective term causes addidtional difficulties). It would thus be advanta-
geous if the same element could be used in both the Stokes limit and the Darcy limit.
One obvious candidate for such an element is the nonconforming Crouzeix-Raviart
(CR) element, which has several nice properties: in combination with piecewise con-
stant pressures it satisfies the inf-sup condition and is elementwise mass conserving;
it is also easy to implement. However, in a recent paper by Mardal, Tai, and Winther
[8] it is shown that the CR element does not converge when applied to the Darcy
problem (or the Darcy-Stokes problem with vanishing viscosity). It is also well known
that the CR element does not fulfill a discrete Korn’s inequality which precludes the
use of the physically more realistic form of the Stokes operator. Stabilization suffi-
cient for fulfilling the Korn’s inequality was introduced by Hansbo and Larson [7] for
the elasticity operator. In this paper we also show that a similar stabilization for a
mixed finite element method, with piecewise constant pressure, for the Darcy-Stokes
problem will ensure convergence in the Darcy limit.

For the Darcy problem, it turns out that our method yields a better convergence
numerically, O(h?), for the velocities than is to be expected from our analysis, which
gives errors of O(h) (here h is the mesh size parameter). The reason we cannot obtain
second order convergence in the analysis is that the error in the divergence term
appears in the form of the nonconformity in the normal jump emanating from the
Crouzeix-Raviart approximation. Thus the error in divergence is still present which
allows pollution from the poor approximation of the pressure. In H(div) conforming
methods there is no such term, and the problem is instead to obtain the full polynomial
approximation necessary for the analysis in the Stokes case. Examples of elements
with normal continuity and full polynomial approximation include the BDM element
[2], which however is nonconforming in the Stokes case, and the construction in [8]. We
remark that a drawback of such approximations is that they are geometry-dependent
and cannot be constructed on a reference element, unlike the CR element.
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2. Problem statement. In this paper we will consider a Darcy-Stokes problem
of the following type

ou—2uV-e(u)+Vp = f inQ,
(2.1)
Veu = ¢g inQ

Here Q) is an open subset of R?, d = 2 or d = 3, with outward pointing normal n, u
is the velocity vector, p is the pressure, € (u) = [e;; (u)];ij:1 is the symmetric part of
the velocity gradient tensor with components

( )_1 8ui+6uj
A _2 837]' 8:61 ’

d
V-.e= [Z;‘lzl 88@'/85@] i*l’ I = [61']']?7].:1 with 6ij =1ifq :j and (51']' =0ifq 75 j,
tre(u) =Y, ern(u) = V-u, and f and g are given force terms. Furthermore, ;1 > 0
is the viscosity constant and o > 0 is a permeability constant. We assume that either
o > 1or u> 1. For simplicity we assume Dirichlet conditions on the boundary, that
is, u = 0 on 9N for Stokes and u -1 = 0 on 0N in the limit case u = 0, i.e., Darcy
flow.

The main difference between Stokes and Darcy’s equations, from the point of
view of analysis, is that in Stokes the velocities are [H!(£2)]? whereas in the case of
Darcy they are only in H(div; Q). This loss of regularity must be accounted for in
the analysis, and this is the main reason why the stabilized mixed nonconforming
CR element combined with piecewise constant pressures is an ideal candidate for the
problem: since the incompressibility condition is tested with constants the solution
satisfies the incompressibility condition exactly on each element.

In this paper we apply this mixed stabilized method to Stokes’ equations and
Darcy’s equations in a unified manner and prove optimal a priori estimates in the
energy norm applying to both systems. We also give numerical examples showing the
performance of the method on the separate problems.

3. Finite element formulation. In order to formulate our finite element method
we first introduce the weak formulation of problem (2.1). We introduce the Hilbert
spaces

WP ={ve Hg(Q) :v-n=0on 0},
for the case u = 0,
W = {v e [Hg ()]},

for p > ¢ >0, and
L={ee L@ [ qdr=0),
Q

with Q some open subset of R?. We denote the product space W x L2 by WX where
X is chosen to D or S depending on the choice of equation. Let

a(u,v) ::/92,ue(u):e('u)dﬂ+/ﬂau-'ud9
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and consider the bilinear form

(3.1) Bl(u,p), (v,9)] = a(u,v) = (p, V- v) + (¢, V - u).

The weak formulation of (2.1) now takes the form, find (u,p) € W such that
(3.2) Bl(u,p), (v,9)] = (f,v) V(v,q) € W¥

Let 75 be a conforming, shape regular triangulation of  and &, denote the set of all
element sides in the mesh. We introduce the non-conforming Crouzeix-Raviart finite
element space of piecewise linears and piecewise constants

Vi o= {0 vlx € [P /[v] ds =0, Ve € &),

(&

where [v] denotes the jump across the edge for internal edges and [v] = v for eNOQ #
(). Further,

Qn ::{q:q|K€P0(K):/qum:0}.

We will also use the space
Wy ={veV,: Z/ V-vgde =0 Vg€ Qp}.
= K

It is well known (see, e.g., [2]) that the spaces V}, Q) satisfy the inf-sup condition
and hence W}, is non-empty.

We introduce the following bilinear form on which we will base our finite element
method

Bh[(u>p)7(U)Q)] = ah(uav) - (p)v'v)h
—I—(q,V-u)h+Ju(u,v)+J0(u,v)
where
ap(u,v) :/Qau-'vdﬂ-%%:/KQus(u):s(v)da:,
(p,V-v)hzg/va-vdm,
= L 1u] - [w]ds
Tws) = S [ ihtil vl
and

1
Jo(u,v) = ;70 /81( E[nu] [n - v]ds,

where, for definiteness, n is the outward unit normal to K. Below, we shall use the
shorthand notation

j(u,'u) = JH(U)U) + J()(U,U).
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REMARK 3.1. The point of the jump terms is as follows. In [1] it was shown
that J,(u,v) controls the rigid body rotations which cause a lack of coercivity for the
Crouzeiz-Raviart approximation when applied to the Stokes problem written in terms
of the symmetric part of the velocity gradient (cf. also [7]). The term Jo(u,v) is
necessary in the Darcy limit to control the nonconformity emanating from the pressure
term.

REMARK 3.2. The jump terms can be motivated by applying the discontinuous
Galerkin method proposed by Hansbo and Larson [6] for the mized form of the elasticity
equations to the Crouzeiz-Raviart approrimation.

We propose the following finite element formulation: find (wp,pn) € Vi @Qn such
that

(3.4) Bu[(wn,pr), (0n,qn)] = (f,vn), V(vn,qn) € Vi X Qn.

This finite element formulation is simply the standard Galerkin formulation with the
penalizing terms J,(up, vs) and Jo(up, vy) added.

LEMMA 3.3. For v € Wy, we have V -v|g =0 VK € Ty,

Proof. Since V - v is a constant on each K for v € V},, we may take ¢ =V -v on
K, q = 0 elsewhere, leading to

0= / |V - v|? dz = meas(K) |V - v|%
K

which is the statement of the lemma. O

4. Stability. For the stability analysis, we consider first the following reduced
problem: Find u, € W}, such that

ap(un,vp) + j(un,vn) = (f,vn) Yo € Wh.
On W}, we have

ah(u)vh) + j(u)vh) = (O’U,'Uh) + (2#,6(“), E(Uh))h

(ou =V - 2pue(u), va)n
+Y (2un - e(u), [val)or — Z(p, [n - va])ok

K
= (fion) +)_(2un - e(u) aK—ZP,n vn)ox
K K

and thus the following Galerkin orthogonality relation holds:

a(u —up,vp) +j(u —up,vn) = Y p(2pn-e(u),[vi])ox

(4.1)
=2 k(D [n-vr])ox.

We next define the norm

(4.2) lalll == [0 2ull® + 1 2ulf + j(u, w),

where

onls ==Y [walin ),
K
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llvnll := llvellL.(q), and, for use below,

1/2
lonlln = (levhlli2(1()> :
K

By 7, we denote the Crouzeix-Raviart interpolant,
ry: [HY ()] = Wy,

and note that if V- w = 0, then rj, takes u into Wy, (cf. [4]).
We now wish to estimate the error measured in the triple norm, |||u — u]||. Set

E€p = ThHU — Up
and assume that u € [H2(Q2)]¢. By the triangle inequality
[l —wnlll < lllw = rawnlll + lllealll-

For |||es||| we have the following result.
LEMMA 4.1. There holds

(4.3) llerlll < C (Illu —ruulll + 120l ) + b ||p||H1(Q))

Proof. Define 1y as the projection onto piecewise constants. By Korn’s inequality
for piecewise H' vector fields,

1! Ponlh < Clu'Pe(on)llh + i (vn, va)),
cf. Brenner [1], and the Galerkin orthogonality (4.1) we have
cllenll* < llo'Penll” + llu'*e(en)ll; + i(en, en)

= a(en,en) < la(rpu —up,ep)| + j(rnu — up, ep)

Xk 2pun-e(u), [en))ox| + | Xk (P, [0 - enl)ox]

< llw = rpull fllenlll + 122 2 pn - (e(u) — moe(u)), [er])ox|
+| > k(P — mop, [ - er])ar]
< llu = rau [llexll

(S l2an 2 - (e(w) = moe(u)llox ) lleall

1/2
+(Sk 1120 = 7op)laxc) " lleall
and, using the trace inequality
(4 luer < ORI e + hxlblBne), Yo € HY(E),
we find

Y lInPn - (e(w) = moe(w))ll5 < D hicllull3 &
K K
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and

Y12 = mop)liak <Y WilIplli x-
K K

which ends the proof. O
LEMMA 4.2. For |[|u — rpul|| we have the following approzimation result:

(4.5) Il = raull < C (/202 4 /20 4912121

Proof. This follows from the trace inequality (4.4) and interpolation theory for
T, see [4]. O

Combining Lemmas 4.1 and 4.2, we have the following a priori estimate.

THEOREM 4.3. Assuming that v, and vy are bounded from above and below, there
holds

(46) llw = walll < O (020> + 2B [ull ey + b 9l sy ).
For the pressure, we have the following estimate.
THEOREM 4.4. There holds

I = pallzae) < C (01202 + 1 2B full @) + B pllir o) ) -

Proof. We split the error into

llp — prll < |lp — mopllzo@) + Imop — PrllLy(@),

where 7y is the Lo—projection of p onto Q. For the first part we have the standard
estimate

llp = mopll < Chlpllur )

For the second part, we proceed as follows. By the surjectivity of the divergence
operator (see [5]) there exists v, € [Hg(Q)]? such that V-v, = mop—py, and ||v,||1.0 <
C||mop — pr||- This gives, using the orthogonality of the La—projection,

Imop — pull?> = (mop — pr, V- vp) = (m0p — Pr, V  1a0p)n = (0 — P, V - ThVp)

ap(u — up, rRUp) + j(u — wp, TRVp)

+Y ([0 rrvplox — Y _(2pn-e(u), [rrv,))ox

K K

Using the trace inequality we find

ap(u — up, rRUp) + j(u — up, TRVp)

IN

Clllw = wnll lvpll ()

IN

Clllw = [l [[7op = pall

Z(Pa [n-ropllox = Z((p—ﬁop)a[n'rh'vz)])al(

K K

1 7 1/2
< 2 Z h}(/2||p — mop|lox <i([n “rRUp) 1 rhvp]>3K>
Y% K
< Chlplla @) llmop — pall



STABILIZED CROUZEIX-RAVIART ELEMENT FOR THE DARCY-STOKES PROBLEM 7

and

IN

> @un-e(w), [ravy))ox

K

Y 2u(n-e(u) —mmn-e(w), [rvyox

K
C h[|ull (o) llmop — pall;

IN

(where mom - e(u) is understood as the projection onto [Q5]?). Dividing both sides by
[[mop — prl| concludes the proof. O

We end this section with an Lay—estimate for the velocities. We emphasize that
this estimate can only be valid if ¢ is bounded from below since the necessary a priori
regularity estimate does not hold otherwise.

Consider the dual continuous problem of seeking ¢ and r such that

op —2uV-e(p)+Vr = e in(Q,
(4.7)
Vo = 0 inQ
where e := u — uy, and assume that we have the regularity estimate
(4.8) el 2 @) + 17|l a o) < llell-
Multiply the first line of (4.7) by e and integrate by parts to obtain

lell? = ai(e, 9) + ile, ) = 3@ un - (@), felox + 3 (r,In - el)ox.
K K

Using orthogonality and the zero mean value property of the Crouzeix-Raviart ele-
ment, we obtain

lell> = an(e, —rnp) +j(e,0 —rne) = X (2 u(n - e(p) — mon - e(9)), [e)ax
+ 2 g (r = mor, [n - elox = Xk (2u(n - e(p) —mon - e(p)), [ —rrpllox

+ 2 k(P —mop, [0 (¢ —Thp)]) ok

IN

llelll lle = raell

1/2
+ (ke hrclizut(n - () = mon - (@) 3, 011 ) el

1/2
+ (X hellr = morllLacor)) ' el

1/2
+ (Sw bl (n - e(0) = mon - (@) o0)) oo = el

1/2
+ (X k hirllp — mopllLo0k)) / lle — rrelll-

Using Lemma 4.2, the trace inequality and estimates for piecewise contant interpola-
tion, we arrive at

lell* < Ch (llelll + lullm(@) + Pl @) (Iellrz@) + lIrllm @)

and thus we have
THEOREM 4.5. Under the regularity assumption (4.8), the La—error in the veloc-
ities can be estimated as

(4.9) lell < Cn? ([ullmzo) + IPllmi(9)) -
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5. Numerical results.

5.1. Convergence study for Darcy flow. The first numerical example, taken
from [8], is a study of convergence rates for Darcy flow. The domain under consider-
ation is the unit square with a given exact pressure solution p = —sinw z + 2/7 and
velocity field u = (—7 sin2 7y sin 7z, wsin 27 x sin® 7y). We set 79 = 1. In Figure
5.1, we show the convergence of the method in the Lo—norm, which yields second
order accuracy for the velocities and first order for the pressure. In Figure 5.2 we
show the effect of removing the stabilizing normal jump. As pointed out in [8] there
is in fact no convergence at all if y9 = 0.
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Fic. 5.1. Convergence in the Darcy case
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Fic. 5.2. Approzimate solution of the velocities with and without normal jump stabilization

5.2. Convergence study for Stokes flow. Again, we consider the unit square
with exact flow solution given by u = (20z 43, 52* —5y*) and p = 60 2%y —20y3 + C.
Choosing v, = 70 = 1 and imposing zero mean pressure (C' = —5), we obtain the
optimal convergence shown in Figure 5.3.
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F1c. 5.3. La-norm convergence of the velocity and of the pressure for Stokes.
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