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Abstract. The numerical modeling of solutes absorption processes by the arterial wall is of pa-
ramount interest for the understanding of the relationships between the local features of blood flow,
the nourishing of the inner arterial wall by the blood solutes, and the pathologies that can appear
when this process is for some reason perturbed. In the present work, two models for the solutes
dynamics are investigated. In the first model, which is essentially based on the one introduced by
Rappitsch and Perktold [J. Biomech. Engrg., 118 (1996), pp. 511–519] and Rappitsch, Perktold,
and Pernkopf [Internat. J. Numer. Methods Fluids, 25 (1997), pp. 847–857], the Navier–Stokes
equations for an incompressible fluid, describing the blood velocity and pressure fields, are coupled
with an advection-diffusion equation for the solute concentration. The wellposedness of this model is
discussed. The second model considers also the solutes dynamics “inside” the arterial wall, described
by a pure diffusion equation. Actually, this is a heterogeneous model, coupling different equations in
different parts of the domain at hand. Its wellposedness is proven. Moreover, in view of the numerical
study, an iterative finite element method by subdomains is proposed and its convergence properties
are analyzed. Finally, several numerical results comparing the different models in situations of
physiologic interest are illustrated.
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1. Introduction.

Motivations. The major task of blood is to provide oxygen and nourishment to
the tissues and the organs and to collect waste substances, such as carbon dioxide.
Different substances are therefore dissolved in blood and exchanged in different dis-
tricts. In particular, the inner part of the arterial wall (the so-called “intima”) is
involved by transport phenomena of blood solutes. These phenomena are essential
for the correct nourishment of these tissues and are possibly related to the develop-
ment of some diseases such as atherosclerosis (see, e.g., [2, 4, 26, 27]). The dynamics
of blood solutes are strongly related to the dynamics of blood. In fact, the solutes
are essentially convected by the blood along the vessels. The absorption processes
through the arterial wall are related to the stress induced by the blood on the vascu-
lar tissue (see, e.g., [2, 9, 26, 27]). Finally, the particular nature of the blood, which is
a suspension of many particles, is at the origin of a diffusivity enhancement of some
kind of gaseous solutes, such as oxygen. More precisely, a localized stirring caused
by the rotation of red blood cells produces a solute diffusivity augmentation, which
is definitely a function of the shear rate of blood (see [12, 30, 31, 3]). The numerical
simulation of solutes dynamics inside the vessels as well as into the vascular walls
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could therefore be useful for revealing the relationships between local flow patterns in
a district, absorption, and possible pathogenesis (see, e.g., [26]).

Problem formulation and analysis. In this paper we consider two different models
for the dynamics of solutes in the arteries. At first, we consider the model discussed in
[26] and [27] for the oxygen and lipoprotein absorption processes. In this model, the
Navier–Stokes equations for an incompressible fluid are adopted to describe the blood
motion and are coupled with an advection-diffusion equation, modeling the solute
dynamics. The velocity of blood provides the convective field of the solute equation.
Moreover, it is supposed that the permeability governing the absorption process of the
solute through the wall is a suitable function of the shear stress exerted by the blood
on the arterial wall; in mathematical terms, this means that the boundary conditions
for the solute equation on the arterial wall are again related to the blood velocity field.
Finally we assume that the diffusion of the solute is represented by a diffusivity tensor
which is a function of the shear rate. In this model we neglect the solute dynamics
“inside” the arterial wall, and therefore, for the sake of convenience, we refer to it as
the wall-free model. The wellposedness of this model is investigated.

Next, we consider an extension of this model, also taking into account the dynam-
ics of solutes inside the vascular tissue (see [10, 11]). The convective field inside the
wall is small and can be neglected; therefore the dynamics of solutes are described by
a pure diffusion equation. This equation is coupled to the advection-diffusion model
of the “fluid-side” by means of suitable boundary conditions, prescribing the conti-
nuity of the normal solute fluxes. Since the arterial wall plays the role of a selective
permeable membrane, the continuity of the solute concentration across the membrane
is not prescribed at all, but a kind of “constitutive law” for the membrane behavior is
considered. The wellposedness analysis of this second model, given by the coupling of
Navier–Stokes equations, an advection-diffusion equation in the fluid or lumen side,
and a diffusion equation in the wall side, is also carried out. We will refer to this
model as the fluid-wall one.

Numerical validation and assessment. The numerical treatment of the problems
associated with both the considered models is carefully discussed. For all the involved
equations, in the lumen as well as in the wall domain, the space discretization is based
on the finite element method, while the time discretization is carried out by means
of classical finite difference schemes. The time discretization of the Navier–Stokes
equations, in particular, is carried out by the Yosida method that allows a suitable
splitting of the velocity and pressure computation (see [20, 21]). Moreover, since the
fluid-wall model is actually a heterogeneous model, coupling different problems in
different parts of the computational domain at hand, it is worthwhile to introduce
an iterative procedure for solving alternatively two problems in the two subdomains.
(This provides a special instance of iterative substructuring approach; see, e.g., [25].)
Different iteration strategies can be carried out; although they all provide the same
limit solution, their numerical efficiency (i.e., convergence rate) can be quite different.
Here, we consider in particular a strategy based on Robin-like interface conditions
both for the fluid and the wall sides of the domain. This choice is mathematically jus-
tified and extremely effective. In particular, we prove the convergence of the solution
computed by the adopted subdomains method to the solution of the unsplit problem.
The rate of convergence will be proven to be independent of the space discretization
size. Finally, several numerical results concerning the wall-free as well as the fluid-wall
models are shown in physiologically relevant situations.

The paper is organized as follows. In section 2 we introduce the mathematical
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formulation of wall-free and fluid-wall models, discussing their relevant features. In
section 3 we prove the wellposedness of the associated weak problems. In section 4
we describe the numerical solution techniques for the two models: in particular, in
section 4.3, the convergence analysis of the iterative substructuring method adopted
for the fluid-wall model is carried out. Finally, numerical results on data of clinical
interest are addressed in section 5.

2. Description of the models.

2.1. The wall-free model. Let us denote by Ωf ⊂ R
d (d = 2, 3) the lumen

of a given vascular district. The boundary of Ωf is composed by different parts,
namely the proximal sections Γup, that is, the upstream part (with respect to the
heart and the blood flow) of the vascular district; the distal sections Γdw, which
delimit the district downstream; the part of ∂Ωf corresponding to the arterial wall is
denoted by Γw, so that ∂Ωf = Γw ∪ Γup ∪ Γdw (see Figure 2.1). Different boundary
conditions can be chosen for the fluid and the solute dynamics on Γup and Γdw; for the
mathematical analysis, without losing generality, we consider (homogeneous) Dirichlet
boundary conditions. Concerning the blood motion, we will introduce the following
hypotheses: (a) the blood is a Newtonian fluid, i.e., we assume that blood is a fluid
with a constant (kinematic) viscosity denoted by ν; (b) the arterial wall is rigid. The
first hypothesis is actually reasonable in large and medium size arteries (see, e.g., [22]).
The second hypothesis relies on the experimental observation of small displacements
for the vascular walls “in vivo.” The extension of the results of the present work to
the case of compliant walls will be the subject of a forthcoming paper.
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Fig. 2.1. Scheme of the wall-free (left) and the fluid-wall (right) models.

In what follows, for x ∈ Ωf and t > 0, u (t,x) ∈ R
d will denote the velocity field of

the blood, and P (t,x) the kinematic pressure, i.e., the ratio between the pressure and
the blood density. Moreover, Cf (t,x) will denote the concentration of the considered
solute (e.g., O2 or lipoproteins) in the blood. Finally, κw (t,x), for x ∈ Γw, denotes
the solute concentration on the arterial wall Γw. In this model, κw is a given quantity.

Remark 2.1. The choice of the concentration as the unknown of the advection-
diffusion problem is questionable. Actually, when gaseous solutes are involved, one
could also write the equations in terms of the (partial) pressure of the solute, since
in this way it is more immediate to consider different forms of the same solute (such
as oxygen, which is present both as free solute in plasma and as a form linked to
hemoglobin). By means of approximated empirical laws, the relationship between
partial pressure and concentration is assumed to be linear (see, e.g., [18]). Hence,
from the mathematical viewpoint, the associated models are very similar, and we
will refer to the solute unknown simply as “concentration.” For the same reason, in
our analysis we limit ourselves to consider the presence of just one solute. In blood
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there are indeed many solutes; however, the mathematical analysis of the multisolute
situations is not significantly more involved than in the case with one solute.

The wall-free model is defined through the two following systems.
Problem 2.1.

∂u

∂t
+ (u · ∇)u− ν∆u +∇P = f , x ∈ Ωf , t > 0,

∇ · u = 0, x ∈ Ωf , t > 0,

u = b on ∂Ωf\Γw, u = 0 on Γw, t > 0,

u = u0 with ∇ · u0 = 0, x ∈ Ωf , t = 0.

(2.1)

Problem 2.2.

∂Cf

∂t
−∇ · (µf∇Cf ) + u · ∇Cf = ff , x ∈ Ωf , t > 0,

(a) n · (µf∇Cf ) + ζCf = ζκw on Γw, t > 0,

(b) Cf = 0 on ∂Ωf\Γw, t > 0,

Cf = Cf,0, x ∈ Ωf , t = 0.

(2.2)

Recall that in this model the vessel wall is assumed to be rigid. The boundary
condition (2.2a) states that the flux of solute entering or leaving the blood domain
through Γw is related to the difference of concentration across the boundary by the
arterial wall permeability ζ. The diffusivity tensor µf is a function of the rate of
deformation tensor d, whose components are

dij :=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, . . . , d.

Then, by experimental observations (see [30, 31, 1]), it has been proposed that

(µf )ij := µf0 (δij +D|dij |ε) , i, j = 1, 2, . . . , d,(2.3)

where the positive coefficients µf0, D, and ε depend on the specific solute and on
the concentration of red blood cells, which is assumed to be constant; δij denotes the
Kronecker identity tensor.

Similarly, the wall permeability ζ is modeled as a function of the shear stress
σ(u) induced by the blood flow on the arterial wall (see [26, 27]). We recall that
σ(u) = τ · T(u) · n, where T(u) is the local stress tensor defined as T(u) = 2νd
and n, τ are the normal and the tangential unit vectors on Γw, respectively. More
precisely it is assumed that ζ = ζ(|σ(u)|), where ζ is a positive Lipschitz continuous
function; i.e., there exists a constant L such that 0 ≤ ζ(x) ≤ L|x| for each value of the
argument x. Here, we will assume that ζ > 0 on a subset of Γw with nonzero measure.
This hypothesis is obviously necessary in order to have a nonnull outgoing solute flux
through the arterial wall, which is exactly the process we wish to investigate. In [26]
and [27] some models for the dependence of ζ on σ(u) are proposed for various types
of solutes. We will provide an example in section 5.
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Finally, f and ff represent possible forcing terms for the blood velocity and the
solute concentration, respectively. More precisely, f could be the gravity force, while
ff could represent the effect of chemical reactions of the solute with other substances
dissolved in blood.

Referring to condition (2.2b), we point out that it is not restrictive to consider
homogeneous Dirichlet boundary conditions because any nonhomogeneous Dirichlet
problem can be reduced to a homogeneous one by extending the boundary datum into
the whole Ωf (see, e.g., [24]).

2.2. The fluid-wall diffusion model. The previous model can be improved
by considering the solute dynamics not only in the lumen, but also in the arterial
wall (see, e.g., [10, 11]). With this goal, assume that the computational domain is
composed by the lumen Ωf ⊂ R

d (d = 2, 3) and by Ωw, representing the wall. The
common interface between Ωf and Ωw is denoted by Γ ⊂ R

d−1, Γ ≡ Ωf ∩ Ωw (see
Figure 2.1). In what follows, we will denote Ω := Ωf ∪ Ωw and ∂Ω its boundary.

Let us denote by Cf (t,x) and Cw (t,x) the concentrations of the solute in the
blood and in the arterial wall, respectively. Observe that, in this case, the value of
Cw (t,x) on Γ is no longer a given datum, rather it is another unknown of the problem.

We consider again the Navier–Stokes equations to describe the blood motion
and an advection-diffusion equation for the solute to hold in the blood. Moreover,
because of the very low velocity of the solvent inside the wall, we neglect the advection
phenomena, so that Cw (t,x) actually satisfies a pure diffusion equation (see [18]).
Let nf be the unit outward normal vector on Γ with respect to Ωf and nw = −nf .
The dynamics of the solute in the vessel and in the arterial wall are expressed by
the following problem, where u (and consequently σ(u), µf (u)) are provided by the
solution of Problem 2.1.

Problem 2.3.
∂Cf

∂t
−∇ · (µf∇Cf ) + u · ∇Cf = ff in Ωf , t > 0,

Cf = 0 on ∂Ωf\Γ, t > 0,

(2.4)


∂Cw

∂t
−∇ · (µw∇Cw) = fw in Ωw, t > 0,

Cw = 0 on ∂Ωw\Γ, t > 0,

(2.5)

and we consider the following matching conditions at the interface:

µw
∂Cw

∂nw
= −nf · (µf∇Cf ) on Γ,(2.6)

nf · (µf∇Cf ) + ζ(Cf − Cw) = 0 on Γ.(2.7)

µf is again a function of the shear rate, according to (2.3), while µw can be
assumed constant; ff and fw represent possible forcing terms for the solute dynamics
(in the lumen and the wall, respectively). In particular, fw may take into account the
consumption of the solute by the arterial tissue.

Equation (2.6) states the equality of the solute fluxes across Γ and thus ensures
the conservation of solute in the whole domain Ω. Equation (2.7) is formally similar
to (2.2b); however, this time Cw is unknown. Both (2.6) and (2.7) therefore provide
a real coupling between the two values of the concentration Cf and Cw. By virtue of
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(2.7), the interface condition (2.6) can be equivalently substituted by

µw
∂Cw

∂nw
+ ζ (Cw − Cf ) = 0 on Γ.(2.8)

The pair of conditions (2.7) and (2.8) is equivalent to the pair (2.6) and (2.7).
However, when the problem is split into two subproblems (in the fluid and the wall,
respectively) in view of its numerical study, the choice of one set of interface condition
rather than the other leads to different substructuring iterative methods. Choosing the
pair of conditions (2.7) and (2.8) yields a more quickly convergent iterative method,
besides leading to a more elegant mathematical (weak) formulation of the problem.

3. Mathematical analysis of the two models.

3.1. Basic notation. The mathematical analysis of the wall-free as well as of
the fluid-wall problems is based on the weak formulation of Problems 2.1, 2.2, and 2.3,
both for the cases d = 2 and d = 3. In view of that, we need a few of basic notations.

Lp and Sobolev spaces. In what follows, Lp(Ω) will denote the space of functions
whose pth power is integrable in Ω. The norm in Lp(Ω) will be denoted by ‖·‖Lp(Ω.
The scalar product in L2(Ω) will be denoted with (·, ·) (both for scalar and vector
functions). The space L∞(Ω) features the essentially bounded functions in Ω, and
for s ∈ N, Hs(Ω) will denote the Sobolev space of functions v ∈ L2(Ω) such that
all their (distributional) derivatives of order up to s are functions of L2(Ω). Notice
that H0(Ω) ≡ L2(Ω). The norm in Hs(Ω) will be denoted by ‖·‖Hs(Ω). Since in the
subsequent analysis we will often have to distinguish between norms in Ωf and Ωw, a
subscript (f or w) will be added to the norm specification whenever needed.

Trace spaces. If Σ ⊂ ∂Ω is open and nonempty, then the trace space of Hs(Ω)
(s ≥ 1), i.e., the space of functions defined on Σ which are traces of functions belonging
to Hs(Ω), is indicated by Hs−1/2(Σ). We recall (see [16]) that the trace operator
γ : Hs(Ω) → Hs−1/2(Σ) is surjective and continuous and there exists an injective,
linear, and continuous map L : Hs−1/2(Σ) → Hs (Ω) called lifting, such that λ = γLλ
for all λ ∈ Hs−1/2(Σ). In particular, there exists a constant βt such that the following
trace inequality holds:

‖γφ‖H1/2(Σ) ≤ βt‖φ‖H1(Ω) ∀ φ ∈ H1(Ω).(3.1)

In what follows, we will denote by γf (resp., γw) the trace operator from H1 (Ωf )
(resp., H1 (Ωw)) to H1/2(Γ). Correspondingly, the lifting in Ωf (resp., Ωw) of a
function λ ∈ H1/2(Γ) will be denoted with Lfλ (resp., Lwλ).

Let us denote with H1
0 (Ω) the subspace of H1 (Ω) made of functions whose trace

vanishes on ∂Ω (see [16]). If the functions have null traces on a subset Σ of the
boundary with positive measure, we will denote the corresponding subspace of H1(Ω)
by H1

Σ(Ω). In H1
Σ(Ω) the following Poincaré inequality holds:

‖φ‖L2(Ω) ≤ α‖∇φ‖L2(Ω) ∀ φ ∈ H1
Σ(Ω),(3.2)

α being a constant depending on Ω. Owing to this inequality, the equivalence inH1
Σ(Ω)

between the H1 norm of a function and the L2 norm of its gradient holds true.
Now, suppose that Γ denotes a d − 1 dimensional manifold in Ω (⊂ R

d) and
consider the trace on Γ of a function u of H1

Σ(Ω). If Γ∩Σ is nonempty, then the trace

of u on Γ belongs to a subspace of H1/2(Γ) usually denoted by H
1/2
00 (Γ) (see [16]).
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Let ρ and λ be two functions of H1/2(Σ) and ζ be a positive function in L2(Σ).
Then, the following definition makes sense:

(ρ, λ)ζ,Σ =

∫
Σ

ζρλdγ =
(√

ζλ,
√
ζρ
)
.(3.3)

Indeed, by Sobolev embedding of H1/2(Σ) in L4(Σ), the product λρ belongs to L2(Σ).
Denoting by Lλ and Lρ any continuous lifting of λ and ρ from Σ to Ω, we obtain

| (ρ, λ)ζ,Σ | ≤ β2
e‖ζ‖L2(Σ)‖λ‖H1/2(Σ)‖ρ‖H1/2(Σ) ≤ β2‖Lλ‖H1(Ω)‖Lρ‖H1(Ω),(3.4)

with β2 = β2
eβ

2
t ‖ζ‖L2(Σ), where βe is the embedding constant of H1/2(Σ) in L4(Σ)

and βt is the constant of the trace inequality (3.1). For the sake of simplification,
we will drop the specification Σ in (ρ, λ)ζ,Σ since it will be clear from the context.
Accordingly, we set

‖λ‖2
ζ = (λ, λ)ζ = ‖

√
ζλ‖2.

Remark 3.1. If we suppose that ζ(·) > 0 almost everywhere, ‖λ‖ζ is a norm of
λ equivalent to ‖λ‖H1/2(Σ). In the application at hand, this hypothesis implies that
the vascular tissue has a minimal nonzero permeability independently of the value of
the shear stress on the wall. Although being realistic (see [19]), we will not make this
assumption in our analysis any further.

Space-time functions. When considering space-time functions v : (0, T )×Ω → R,
we introduce the space

L2(0, T ;Hs(Ω)) ≡
{
v : (0, T ) → Hs| v(t) is measurable,

∫ T

0

‖v(t)‖2
Hs(Ω)dt < ∞

}

endowed with the norm

‖v‖L2(0,T ;Hs(Ω)) ≡
(∫ T

0

‖v(t)‖2
Hs(Ω)dt

)1/2

.

We then set

L∞(0, T ;L2(Ω)) ≡
{
v : (0, T ) → L2| v(t) is measurable,

and ‖v(t, ·)‖2
L2(Ω) is essentially bounded in (0, T )

}
endowed with the norm

‖v‖L∞(0,T ;L2(Ω)) ≡ inf
{
M > 0|‖v(t, ·)‖2

L2(Ω) ≤ M almost everywhere in (0, T )
}
.

3.2. The Navier–Stokes problem. As pointed out in the introduction, blood
is essentially an incompressible fluid, which can be mathematically described by means
of the classical Navier–Stokes equations. Since the velocity field of blood influences
the solutes dynamics, its regularity affects the analysis of the solutes problem. It is
therefore worthwhile recalling some results about the solution of the Navier–Stokes
equations.

The weak formulation of the Navier–Stokes problem reads as follows.
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Problem 3.1. Given u0 ∈ (L2(Ωf ))
d with ∇ · u0 = 0 and f ∈ L2(0, T ; (L2(Ωf ))

d),
find u ∈ L2

(
0, T ; (H1(Ωf ))

d
) ∩ L∞ (0, T ; (L2(Ωf ))

d
)
and P ∈ L2

(
0, T ;L2(Ωf )

)
such

that for all t > 0
(
∂u

∂t
,v

)
+ ν (∇u,∇v) + ((u · ∇)u,v)− (∇ · v, P ) = (f ,v) ∀ v ∈ (H1

0 (Ωf ))
2,

(∇ · u, q) = 0 ∀ q ∈ L2(Ωf ),
u = b on ∂Ωf \ Γw, u = 0 on Γw

with u (0) = u0 for t = 0.

(3.5)

We recall that existence of the solution has been proved by Leray [13, 15, 14] and
Hopf [7]; the uniqueness has been proved in the two-dimensional case, while in the
three-dimensional case it is still an open problem (see, e.g., [28, 29]). Moreover, it is
possible to prove that the solution is regular when the boundary ∂Ωf and the initial
datum u0 are more regular. In particular, we recall the following results that will be
particularly useful to our purpose (its proof can be found in [6]).

Theorem 3.1. Let u0 ∈ H2(Ωf ) and f be smooth enough (e.g., f ∈ L∞(Ωf ) and
∇f ∈ L∞(Ωf )). Assume that

• (Cattabriga assumption on the domain Ωf ) for a given g ∈ L2(Ωf ), the steady
Stokes problem

−∆v +∇q = g, ∇ · v = 0 in Ωf , v|∂Ω = 0,

has a unique solution that satisfies the inequality

‖v‖H2(Ωf ) + ‖q‖H1(Ωf )\R ≤ c‖g‖L2(Ωf ),(3.6)

where c is a constant;
• there exists a time T , 0 < T ≤ ∞ and a constant A such that the solution of
the Navier–Stokes problem (3.5) satisfies

sup
0<t<T

‖∇u(·, t)‖L2(Ωf ) ≤ A.(3.7)

Then there exists a constant B such that the solution of the Navier–Stokes problem
(3.5) satisfies

sup
0<t<T

‖u(·, t)‖H2(Ωf ) ≤ B.(3.8)

Whenever we consider the dependence of the diffusivity tensor µf on the shear
rate (i.e., D �= 0 in (2.3)), the following result is useful (for its proof, see [5, Theo-
rem 9]).

Theorem 3.2. Suppose that the hypotheses of the previous theorem hold. More-
over, let Ω be any three-dimensional domain whose boundary is uniformly of class
C3. Suppose that the boundary value prescribed can be extended to a solenoidal func-
tion g smooth enough and that f ∈ C∞((0,∞) × Ω). Then, on some interval [0, T ],
there exists a solution u, P of the Navier–Stokes problem such that, in particular,
u ∈ C([0, T )× Ω) ∩ C∞((0, T )× Ω).

Should the assumptions of Theorem 3.2 hold, we conclude that µf is a bounded
vector function, i.e.,

|µf (t,x)| ≤ m ∀ x ∈ Ω, t > 0,(3.9)

where m is a suitable constant.
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3.3. The wall-free model. Let us introduce the bilinear form

af (ψf , φf ) =
(
µf∇ψf ,∇φf

)
+ ((u · ∇)ψf , φf )(3.10)

with φf , ψf ∈ H1 (Ωf ). Observe that property (3.9) and Sobolev embedding theorems
(see, e.g., [24]) ensure that for all φf and ψf , af (·, ·) is well defined and continuous.

Indeed,

|af (ψf , φf ) | ≤ m‖∇ψf‖L2(Ωf )‖∇φf‖L2(Ωf )

+ ‖u‖L4(Ωf )‖φf‖L4(Ωf )‖∇ψf‖L2(Ωf )(3.11)

≤ (m+ ‖u‖H1(Ωf ))‖ψf‖H1(Ωf )‖φf‖H1(Ωf ).

The weak formulation of (2.2) reads as follows.
Problem 3.2. Let Cf,0 ∈ L2(Ωf ) and κw(t) ∈ H1/2(Γw) (for all t > 0) be two

given functions and let u (t,x) be the solution of Problem 3.1. Then, we look for a
function Cf ∈ L2(0, T ;H1

∂Ωf\Γw
(Ωf )) ∩ L∞(0, T ;L2(Ωf )) which satisfies for all t > 0(

∂Cf

∂t
, φ

)
+ af (Cf , φ) + (Cf , φ)ζ = (κw, φ)ζ + (ff , φ)(3.12)

for all φ ∈ H1
∂Ω\Γw

(Ωf ), with Cf = Cf,0 at t = 0.
The following result holds.
Lemma 3.1. If the solution u of Problem 3.1 is smooth enough—namely, accord-

ing to the features given in Theorem 3.2—then Problem 3.2 admits a unique solution,
which depends continuously on the data.

Proof. Owing to (3.4) and the regularity of u, the right-hand side in (3.12) is
a linear and continuous functional in H1

∂Ω\Γw
(Ωf ) and the bilinear form af (ψ, φ) +

(ψ, φ)ζ is continuous for all φ, ψ ∈ H1(Ωf ). Moreover, this bilinear form is coercive.
Indeed, since ∇ · u = 0 and u|Γw = 0, owing to (2.3), we have

af (ψ,ψ) + (ψ,ψ)ζ ≥ µf0‖∇ψ‖2
L2(Ωf ) +

∫
Γw

ζψ2dγ ∀ ψ ∈ H1
∂Ωf\Γw

(Ωf ).(3.13)

Since ζ ≥ 0, by virtue of the Poincaré inequality there exists a positive constant αf

such that

af (ψ,ψ) ≥ αf‖ψ‖2
H1(Ωf ).(3.14)

By standard arguments about parabolic problems (see, e.g., [24]), the continuity of
the right-hand side in (3.12) together with continuity and coercivity of af (·, ·) allows
us to conclude that Problem 3.2 has a unique solution, depending continuously on the
data κw and ff .

Remark 3.2. Obviously, for constitutive laws for the diffusivity µf different from
the one in (2.3), or for specific values of the parameters (ε in particular), less regularity
to the velocity field (with respect to the specifications of Theorem 3.2) can be required
in order for af (·, ·) to be well defined and continuous. In particular, if we assume that
the diffusivity of the solute does not depend on the shear rate (i.e., we set D = 0 in
(2.3)), it is enough that u ∈ H3/2(Ωf ) in order to make the term (·, ·)ζ well defined

and depending continuously on its arguments. Indeed, if u ∈ H3/2(Ωf ) for every
t > 0, then σ(u) ∈ L2(Γw). Moreover, by hypothesis, both Cf and κw belong to
H1/2(Γw) and henceforth to L4(Γw); therefore (Cf , φ)ζ and (κw, φ)ζ are finite for all

φ ∈ H1(Ωf ).
Finally, the advective term ((u · ∇)Cf , φ) is bounded, as u ∈ H1(Ω).
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3.4. The fluid-wall model. The weak formulation of the coupled Problem 2.3
is obtained as follows.

Let us consider the weak formulation of the “fluid-side” problem, which can be
obtained by proceeding exactly as for Problem 3.2, leading to the equation(

∂Cf

∂t
, φf

)
+ af (Cf , φf ) + (Cf − Cw, φf )ζ = (ff , φf )(3.15)

for all φf ∈ H1
∂Ωf\Γ (Ωf ), with Cf = Cf,0 for t = 0. This time, the interface integrals

(·, ·)ζ are carried out on the fluid-wall interface Γ.
Proceeding in the same way as for the “wall-side” problem, i.e., by multiplying

equation (2.5) by a test function φw ∈ H1
∂Ωw\Γ(Ωw), integrating in Ωw, and then

applying the Green formula, we obtain the weak formulation of the wall problem.
More precisely, similarly to (3.10), for all φw, ψw ∈ H1 (Ωw), we set

aw (ψw, φw) = µw (∇ψw,∇φw) .(3.16)

Observe that the bilinear form aw (·, ·) is continuous, coercive and, in particular,
symmetric, i.e.,

aw (ψw, φw) = aw (φw, ψw)

for all ψw, φw ∈ H1(Ωw). Now, referring to boundary conditions (2.7) and (2.8), the
weak formulation of the wall-side equation reads as(

∂Cw

∂t
, φw

)
+ aw (Cw, φw) + (Cw − Cf , φw)ζ = (fw, φw)(3.17)

for all φw ∈ H1
∂Ωw\Γ (Ωw) with the initial condition Cw = Cw,0 for t = 0. Observe

that (3.15) and (3.17) are formally very similar, provided each equation is considered
in the respective domain.

In order to give a compact vector formulation of the coupled problem (3.15),
(3.17), let us define the product space

H := H1
∂Ωf\Γ(Ωf )×H1

∂Ωw\Γ(Ωw)

endowed with the norm

‖Φ‖H ≡
(
‖φf‖2

H1(Ωf ) + ‖φw‖2
H1(Ωw)

)1/2

.

Let us define a vector unknown C ≡ [Cf , Cw], a forcing vector F = [ff , fw] and a
vector test function Φ = [φf , φw] ∈ H. Summing up (3.15) and (3.17), we obtain the
following problem for the unknown C.

Problem 3.3. Given [Cf,0, Cw,0] ∈ L2(Ω) and F ∈ L2(0, T, L2(Ω)), for all t > 0
find C ∈ L2 (0, T ;H) ∩ L∞(0, T ;L2(Ω)) such that(

∂C

∂t
,Φ

)
+A (C,Φ) = (F,Φ) ∀ Φ ∈ H(3.18)

with C(0) = (Cf,0, Cw,0) for t = 0, where

A (C,Φ) := af (Cf , φf ) + aw (Cw, φw) + (Cf − Cw, φf − φw)ζ(3.19)
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is the bilinear form associated to the coupled Problem 3.3.
The wellposedness of this problem is proven in the following theorem.
Theorem 3.3. Under the hypotheses of Theorem 3.2, Problem 3.3 admits a

unique solution which depends continuously on the data.
Proof. Proceeding exactly as in the proof of Lemma 3.1, we see that the right-

hand side of (3.18) is a linear and continuous functional in H, and the regularity of u
ensures that the bilinear form A (C,Φ) is continuous in H for every t > 0. Moreover,
A (C,Φ) is coercive. This follows from the coercivity of af (·, ·) and aw (·, ·). Indeed,
there exists a constant α > 0 such that, for all Φ ∈ H,

A (Φ,Φ) = af (φf , φf ) + aw (φw, φw) + ‖φf − φw‖2
ζ ≥ α‖Φ‖2

H.(3.20)

In fact, the coercivity of af (·, ·) has been proved in (3.14). On the other hand the
coercivity of aw (·, ·) is again an immediate consequence of the Poincaré inequality.

The wellposedness of Problem 3.3 is therefore proven by a standard application
of the Faedo–Galerkin method (see, e.g., [24]).

Remark 3.3. Let us point out again that, if the diffusivity of the solute in fluid
does not depend on the shear rate, the smoothness requirement on u can be relaxed,
exactly as done in Remark 3.2.

4. Numerical approximation.

4.1. Time and space discretization of Problems 3.2 and 3.3. Both Prob-
lems 3.2 and 3.3 involve the coupling of the Navier–Stokes equations (Problem 3.1)
with an advection-diffusion problem. In our models, the advection-diffusion equation
depends on the Navier–Stokes solution, through the advective field, the boundary per-
meability, and possibly the augmented diffusivity. Hence the Navier–Stokes problem
is solved at a first step, and then, with the vector field u, the shear rate d, and the
shear stress σ(u) available, we solve the advection-diffusion problem.

For the space discretization of the equations at hand, we use the finite element
method. In particular, for what concerns the Navier–Stokes equations, in order to
satisfy the compatibility inf-sup condition, we have adopted a linear approximation
based on the so-called P

1isoP2−P
1 element, while the backward Euler time discretiza-

tion has been coupled with a semi-implicit treatment of the nonlinear term. Finally, a
splitting of the velocity and pressure problem based on the so-called Yosida method is
carried out. For more details about these techniques, the interested reader is referred
to [24, 20, 21].

Referring to the advection-diffusion equations, both Problems 3.2 and 3.3 feature
a very low diffusivity of the solute. In other terms, these problems are dominated
by advection effects. Indeed, if h denotes the space discretization step (which in our
simulation is equal to 10−2cm), |u| is a representative value of the blood velocity,
for instance equal to 10cm/s, and the diffusivity is equal to ζ = 10−5cm2/s, we have
an indicative value of the Péclet number (which weighs the convection effects with
respect to the diffusive ones) of 104. As it is well known, finite element techniques (and
in general Galerkin methods) could be inaccurate when facing convection dominated
problems and resorting to a stabilization technique becomes mandatory. Different
strategies can be pursued in this regard: the interested reader is referred to [8] and [24].
In our simulations, streamline-upwind/Petrov–Galerkin (SUPG) has been successfully
adopted and will be addressed later on.

4.2. An iterative subdomains scheme for the fluid-wall model. In this
section, we focus our attention on the numerical solution of Problem 3.3. This problem
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deals indeed with two differential subproblems to be solved in different parts of the
computational domain. For the sake of numerical efficiency, we suitably split the
whole problem into a sequence of two subproblems in the two physical subdomains
(namely, the lumen and the arterial wall), to be solved in an iterative framework. This
approach can be therefore seen in the general framework of the iterative substructuring
methods (see [25]).

Different splitting strategies can be adopted according to different choices for
the interface conditions prescribed to each subproblem as boundary conditions. As
previously pointed out, our choice is to consider the interface conditions (2.7) and
(2.8).

In particular, here we introduce the adopted splitting scheme, analyzing in detail
the features of the subproblems to be solved at each step. In section 4.3, we will prove
the convergence of the solution computed by the iterative scheme to the solution of
the coupled lumen-wall problem.

First of all, let us introduce the time discretization of Problem 3.3, subdividing
the time interval [0, T ] in N time steps tn = n∆t, with ∆t > 0 and n = 1, . . . , N ,
and use the backward Euler finite difference scheme for the time differential problem.
Then, set χ = 1/∆t and

âf (ψf , φf ) = χ (ψf , φf ) + af (ψf , φf ) ,(4.1)

âw (ψw, φw) = χ (ψw, φw) + aw (ψw, φw) .(4.2)

As for aw (·, ·), observe that âw (·, ·) is symmetric. With this notation, the time-
discrete (continuous-in-space) counterpart of Problem 3.3 can be formulated as fol-
lows.

Problem 4.1. Given C0
f = Cf,0 ∈ L2(Ωf ) and C0

w = Cw,0 ∈ L2(Ωw), for

n = 0, 1, . . . , N find [Cn+1
f , Cn+1

w ] ∈ H such that for all φf ∈ H1
∂Ωf\Γ(Ωf ) and φw ∈

H1
∂Ωw\Γ(Ωw),

âf

(
Cn+1

f , φf

)
+
(
Cn+1

f − Cn+1
w , φf

)
ζ
= χ

(
Cn

f , φf

)
+
(
fn+1
f , φf

)
φf ∈ H1

∂Ωf\Γ(Ωf ),

(4.3)

âw
(
Cn+1

w , φw

)
+
(
Cn+1

w − Cn+1
f , φw

)
ζ
= χ (Cn

w, φw) +
(
fn+1
w , φw

)
φw ∈ H1

∂Ωw\Γ(Ωw),

(4.4)

where fn
f and fn

w denote the value of the functions ff and fw at time tn.
Remark 4.1. The bilinear forms âf (·, ·), âw (·, ·) are continuous and coercive,

with coercivity constants α̂f and α̂w, which are related to the Poincaré inequality
constants in Ωf and Ωw, respectively. Therefore, proceeding as for Problem 3.3, it
can be proven that the time discrete Problem 4.1 is well posed.

The splitting of Problem 4.1 into subproblems, one in the fluid domain Ωf , the
other in Ωw, can be carried out as follows.

To start the iterative method, an initial guess for Cn+1
w is needed; it will be

denoted by Cn+1
w,0 . Then, we find the sequence of functions [Cn+1

f,k , Cn+1
w,k ] ∈ H, by

solving the following equations for k = 0, 1, . . . :

âf

(
Cn+1

f,k+1, φf

)
+
(
Cn+1

f,k+1, φf

)
ζ

= χ
(
Cn

f , φf

)
+
(
Cn+1

w,k , φf

)
ζ
+
(
fn+1
f , φf

)
∀ φf ∈ H1

∂Ωf\Γ(Ωf ),
(4.5)
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and

âw

(
Cn+1

w,k+1, φw

)
+
(
Cn+1

w,k+1, φw

)
ζ

= χ (Cn
w, φw) +

(
Cn+1

f,k+1, φw

)
ζ
+
(
fn+1
w , φw

) ∀ φw ∈ H1
∂Ωw\Γ(Ωw).

(4.6)

4.3. Convergence analysis of the substructuring iterative method. The
analysis of convergence for the splitting method (4.5)–(4.6) does not straightforwardly
follow from available convergence results, due to the lack of continuity between Cn+1

f,k+1

and Cn+1
w,k+1 at the subdomain interface Γ. In the subsequent analysis, we will fo-

cus our attention on the convergence of the sequence [Cn+1
f,k , Cn+1

w,k ] to the solution

[Cn+1
f , Cn+1

w ] at the time step n + 1. Since all the relevant equations for the con-
vergence analysis will deal only with quantities evaluated at the time level n+ 1, for
notational convenience we will drop the index identifying the time level. Thus, we will
use Cf,k instead of Cn+1

f,k and Cw,k instead of Cn+1
w,k . The time index will be explicitly

indicated only when referring to a different time step.
Finally, let us introduce the splitting error :

ef,k := Cf − Cf,k, ew,k := Cw − Cw,k, λk := γwew,k,(4.7)

where [Cf , Cw] is the solution of Problem 4.1. From (4.7) it follows that ef,k ∈
H1

∂Ωf\Γ(Ωf ), ew,k ∈ H1
∂Ωw\Γ(Ωw), and λk ∈ H1/2(Γ). More precisely, since Γ∩∂Ω �= ∅,

and the concentration is null on ∂Ω, the trace λk belongs to H
1/2
00 (Γ), according to

the definition given in section 3.1. In what follows, we will set Λ := H
1/2
00 (Γ).

Now if we subtract memberwise equations (4.3) and (4.5) and correspondingly
(4.4) and (4.6), given an initial guess λ0, we obtain, for all k = 0, 1, . . . ,

âf (ef,k+1, φf ) + (ef,k+1, φf )ζ = (λk, φf )ζ ∀ φf ∈ H1
∂Ωf\Γ(Ωf ),(4.8)

âw (ew,k+1, φw) + (ew,k+1, φw)ζ = (γfef,k+1, φw)ζ ∀ φw ∈ H1
∂Ωw\Γ(Ωw).(4.9)

We will refer to (4.8) and (4.9) as splitting error equations.
Let us introduce the following definitions.
• Let Rf : Λ → Λ be the following operator. For a given function ψ ∈ Λ,
Rfψ = γfuf , where uf ∈ H1

∂Ωf\Γ(Ωf ) satisfies

âf (uf , φf ) + (uf , φf )ζ = (ψ, φf )ζ ∀ φf ∈ H1
∂Ωf\Γ(Ωf ).(4.10)

• Let Rw : Λ → Λ be the following operator. For a given function ξ ∈ Λ,
Rwξ = γwuw, where uw ∈ H1

∂Ωw\Γ(Ωw) satisfies

âw (uw, φw) + (uw, φw)ζ = (ξ, φw)ζ ∀ φw ∈ H1
∂Ωw\Γ(Ωw).(4.11)

The iterative scheme corresponding to the error equations (4.8), (4.9) can now be
regarded as a fixed point iteration:

λk+1 = Tλk, k = 0, 1, . . . , where T = Rw · Rf .(4.12)

In order to prove the convergence of the scheme, we prove the following prelimi-
nary result.
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Lemma 4.1. There exists a constant K < 1 depending on Ωf , Ωw, and ζ such that

‖Tψ‖ζ ≤ K‖ψ‖ζ ∀ ψ ∈ Λ.(4.13)

Proof. Let uf be the function associated to ψ through problem (4.10). We set
ξ = Rfψ so that ξ = γfuf . Set, moreover, λ = Rwξ, so that λ = Tψ. There exists a
constant Kf < 1, depending on Ωf and ζ, such that

‖ξ‖ζ ≤ Kf‖ψ‖ζ ∀ ψ ∈ Λ.(4.14)

Indeed, by choosing φf = uf in (4.10), we obtain

α̂f‖uf‖2
H1(Ωf ) + ‖ξ‖2

ζ ≤ ‖ψ‖ζ‖ξ‖ζ .(4.15)

From (3.4), we have that for all ξ ∈ Λ

‖ξ‖2
ζ ≤ K2‖uf‖2

H1(Ωf ),(4.16)

with K2 = β2
eβ

2
t,f‖ζ‖2

L2(Γ), βe being the embedding constant of Λ in L4(Γ) and βt,f
the trace constant of inequality (3.1). Therefore, (4.15) yields(

α̂f

K2
+ 1

)
‖ξ‖ζ ≤ ‖ψ‖ζ ,(4.17)

that is, inequality (4.14) with Kf = K2

K2+α̂f

< 1.

In a similar way, we can prove that there exists a constant Kw < 1 such that

‖λ‖ζ ≤ Kw‖ξ‖ζ ∀ ξ ∈ Λ.(4.18)

Indeed, from (4.11) with φw = λ, being λ = γwuw, we obtain

α̂w‖uw‖2
H1(Ωw) + ‖λ‖2

ζ ≤ ‖ξ‖ζ‖λ‖ζ ,(4.19)

and proceeding as for (4.17), we obtain (4.18) with Kw = K4

K4+α̂w

, where (with obvious

meaning of the notation) K4 = β2
eβ

2
t,w‖ζ‖2

L2(Γ).

Now, assembling (4.14) and (4.18), we have

‖λ‖ζ ≤ K4

K4 + α̂w

K2

K2 + α̂f
‖ψ‖ζ < ‖ψ‖ζ ,(4.20)

which concludes the proof.
As an immediate consequence of Lemma 4.1, we have

lim
k→∞

‖λk‖ζ = 0.(4.21)

Remark 4.2. If we suppose that ζ > 0 a.e. on Γ (see Remark 3.1), Lemma 4.1
states that T is a contraction in Λ with respect to the metric induced by the norm
‖ · ‖ζ . Correspondingly, (4.21) yields ‖ew,k‖Λ tends to zero as k → ∞.

Now, we can prove the following convergence result.
Corollary 4.1. The scheme (4.5), (4.6) is convergent, precisely

lim
k→∞

(
‖ef,k‖H1(Ωf ) + ‖ew,k‖H1(Ωw)

)
= 0.(4.22)
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Proof. The thesis is a consequence of (4.21). Indeed, let us consider (4.8), with
φf = ef,k+1. By the Poincaré inequality, we obtain

α̂f‖ef,k+1‖2
H1(Ωf ) ≤ ‖λk‖ζ‖γfef,k+1‖ζ .

Exploiting inequality (4.16), we obtain that for all k > 0 there exists a constant K5

such that

‖ef,k+1‖H1(Ωf ) ≤ K5‖λk‖ζ .(4.23)

Proceeding in a similar way on (4.9) for φw = ew,k+1, it is possible to verify that
for all k > 0 there exists a constant K6 such that

‖ew,k+1‖H1(Ωw) ≤ K6‖ef,k+1‖H1(Ωf ).

Now (4.22) follows from (4.21).
Remark 4.3. A different convergence proof could be carried out following the

approach of [17] for proving the convergence of the so-called “Robin–Robin” scheme
for the Poisson problem.

Indeed, let us consider (4.8) with φf = ef,k+1:

âf (ef,k+1, ef,k+1) + (ef,k+1, ef,k+1)ζ = (λk, ef,k+1)ζ .

As already pointed out, if ζ > 0 a.e. on Γ, ‖·‖ζ is a norm, thus by means of the
Cauchy–Schwarz inequality, we obtain

âf (ef,k+1, ef,k+1) +
1

2
‖ef,k+1‖2

ζ ≤ 1

2
‖ew,k‖2

ζ .

Similarly, considering equation (4.9) with φw = ew,k+1 and applying the Cauchy–
Schwarz inequality, we obtain

âw (ew,k+1, ew,k+1) +
1

2
‖ew,k+1‖2

ζ ≤ 1

2
‖ef,k+1‖2

ζ .

Therefore,

âf (ef,k+1, ef,k+1) + âw (ew,k+1, ew,k+1) +
1

2
‖ew,k+1‖2

ζ ≤ 1

2
‖ew,k‖2

ζ .

Summing up in the previous inequality from k = 0 to k = M we obtain

M∑
k=0

[âf (ef,k+1, ef,k+1) + âw (ew,k+1, ew,k+1)] +
1

2
‖ew,M‖2

ζ ≤ 1

2
‖ew,0‖2

ζ ,

and owing to the coercivity of âf (·, ·) and âw (·, ·), we have

M∑
k=0

[
α̂f‖ef,k+1‖2

H1
∂Ωf\Γ

(Ωf ) + α̂w‖ew,k+1‖2
H1

∂Ωw\Γ
(Ωw)

]
≤ 1

2
‖ew,0‖2

ζ .

Passing to the limit M → ∞, we find that the series

∞∑
k=0

[
α̂f‖ef,k+1‖2

H1
∂Ωf\Γ

(Ωf ) + α̂w‖ew,k+1‖2
H1

∂Ωw\Γ
(Ωw)

]
is convergent, and thus {ef,k+1} → 0 as k → ∞ in the norm of H1

∂Ωf\Γ(Ωf ) and

{ew,k+1} → 0 as k → ∞ in the norm of H1
∂Ωw\Γ(Ωw). However, no information

on the error reduction rate at each step is deduced, as it was instead possible from
Lemma 4.1.
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4.4. Algorithmical issues.

Convergence of the finite element scheme. In order to carry out a Galerkin finite
element discretization of Problem 4.1, a triangulation Th of Ω is introduced. It is
supposed to be regular; i.e., the ratio between the external diameter of each element of
the triangulation and the inner one is bounded—see [24]. Then we introduce a couple
of finite dimensional spaces, Vh,f ⊂ H1

∂Ωf\Γ and Vh,w ⊂ H1
∂Ωw\Γ, and denote by Nf

the dimension of Vh,f and by Nw the dimension of Vh,w. Let {φi,f} (i = 1, 2, . . . , Nf )
be a basis for Vh,f and similarly {φi,w} (i = 1, 2, . . . , Nw) be a basis for Vh,w. In what
follows, the subscript h will identify the space discrete solution (i.e., Chf stands for
the discrete counterpart of Cf , and so on).

Then, the fully discrete form of the (4.5) and (4.6) reads (the dependence on the
time index n+ 1 is still understood) as follows.

Problem 4.2. Given Chw,0, for k = 0, 1, . . . , find Chf,k+1 ∈ Vh,f and Chw,k+1 ∈
Vh,w such that for all φi,f ∈ Vh,f and φi,w ∈ Vh,w

âf (Chf,k+1, φi,f ) + (Chf,k+1, φi,f )ζ = χ
(
Cn

f , φi,f

)
+ (Chw,k, φi,f )ζ + (ff , φi,f ) ,

âw (Chw,k+1, φi,w) + (Chw,k+1, φi,w)ζ = χ (Cn
w, φi,w) + (Chf,k+1, φi,w)ζ + (fw, φi,w) .

Owing to the inclusions Vh,f ⊂ H1
∂Ωf\Γ(Ωf ) and Vh,w ⊂ H1

∂Ωw\Γ(Ωw), the con-

vergence proof of the iterative method can be applied as well to the space discretized
counterpart. Moreover, for any given solution u of the Navier–Stokes problem, such
that ζ and µf are specified, the constant K, introduced in Lemma 4.1 and represent-
ing the error reduction at each iteration, does not depend on Vh,f and Vh,w; i.e., it
does not depend on the mesh size h. Numerical results, indeed, confirm that the rate
of convergence of the iterative scheme is essentially independent of h (see Table 4.1).

Table 4.1
Comparison of the number of iterations to reach convergence, defined by test (4.4) with ε = 10−8

for different grids. For these tests Ωf = (0, 4)×(0, 1), Ωw = (0, 4)×(−1, 0), ux = 4u0(1−y)y, uy = 0,
µf = µw = 1.0cm2s−1 and ζ = 10−1cm s−1 (A) (values ∗ denotes the pure Galerkin method)
µf = µw = 10−3cm2s−1 and ζ = 10−1cm s−1 (B) µf = µw = 10−3cm2s−1 and ζ = 10−4cm s−1

(C-physiologically relevant range). Finer grids are obtained by means of a uniform refinement and
a regularization, thus we can say that N = O(h−2). For large values of ζ the coupled problem is
severely ill-conditioned, yet the number of iterations is asymptotically independent of h.

h N num.iter.(A) num.iter.(B) num.iter.(C)
0.1 4000 2∗ 3 1
0.05 16000 2∗ 4 1
0.025 60000 2∗ 5 2

0.01875 106000 2∗ 5 2
0.012 260000 2∗ 6 - 6∗ 2

Introduction of a relaxation technique. In order to accelerate the convergence
of the iterative method (4.5)–(4.6) it is possible to introduce an interface relaxation
parameter θ ∈ R

+, leading to a relaxed Robin–Robin iterative method. Its convergence
analysis is a straightforward generalization of the one that we have carried out in
section 4.3. A suitable strategy to make an optimal choice of θ will be addressed in a
forthcoming paper (see [23]).

We just point out that for the test cases considered here the number of iterations
necessary for the convergence of the unrelaxed Robin–Robin scheme is already small
even without relaxation (see Table 4.1).
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Convergence of the stabilized scheme. As previously pointed out, the adoption of
stabilization techniques is often mandatory in the fluid domain. In a very general
framework, this amounts to replace the bilinear form âf (·, ·) introduced in (4.1) by
(we omit the specification f on the unknown C for the sake of simplicity)

âf,stab (C, φ) = âf (C, φ) + af,h (C, φ) ,(4.24)

where af,h (C, φ) depends on the specific stabilization method at hand.
Let us assume for simplicity that µf is symmetric and denote by

LsC = −∇ · µf∇C, LssC =
1

2
(∇ · u)C +

1

2
u · ∇C

the symmetric and the skew-symmetric parts of the fluid differential operator Lf (note
that Lf = Ls + Lss). Then a common strongly consistent stabilization approach
resorts to set

af,h (C, φ) =
∑

K∈Th

δ

(
LC,

hK

|u| (Lss + κLs)φ

)
K

,

where K is the current element of the triangulation Th, hK is its diameter, (·, ·)K
denotes the L2(K) scalar product, and δ is a positive parameter.

The SUPG method corresponds to set κ = 0, while the Galerkin least squares
(GaLS) method to κ = 1. In both cases, if δ is suitably chosen, the stabilized bilinear
form âf,stab (·, ·) is coercive, the coercivity constant being independent of h (see [24,
Proposition 8.4.1]). Observe, however, that since we are using piecewise linear finite
elements, the two methods actually coincide, since Ls is null on linear functions.

On the ground of these properties we are going to prove that the rate of conver-
gence of the iterative subdomain method remains independent of the mesh size h also
in the stabilized case.

First of all, let us reformulate the stabilized problem in the framework introduced
in (4.10) and (4.11). Let Rf,stab : Λ → Λ be the following operator: Rf,stabψ = γfuf ,
where uf ∈ H1

∂Ωf\Γ(Ωf ) satisfies

âf,stab (uf , φf ) + (uf , φf )ζ = (ψ, φf )ζ ∀ φf ∈ H1
∂Ωf\Γ(Ωf ).(4.25)

The operator Rw is unchanged.
We have the following result, which is the counterpart of Lemma 4.1.
Lemma 4.2. There exists a constant Kstab < 1 depending on Ωf , Ωw, and ζ, but

independent of h, such that

‖Tψ‖ζ ≤ Kstab‖ψ‖ζ ∀ ψ ∈ Λ.(4.26)

Proof. The proof can be carried along the same line of the proof of Lemma 4.1,
provided we replace Rf by Rf,stab. In particular, instead of (4.14) we find that

‖Rf,stabψ‖ζ ≤ Kf,stab‖ψ‖ζ ∀ ψ ∈ Λ,(4.27)

with

Kf,stab =
K2

K2 + α̂f,stab
,(4.28)
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and α̂f,stab is the coercivity constant of the stabilized bilinear form âf,stab (·, ·). The
constant Kf,stab is independent of h, as both K2 and α̂f,stab are independent of h.

The proof can now be completed by repeating exactly the subsequent steps of the
proof of Lemma 4.1, obtaining eventually

Kstab =
K4

K4 + α̂w
Kf,stab.

The limit (4.21) therefore holds also in the stabilized case; hence we can conclude
with the following counterpart of Corollary 4.1.

Corollary 4.2. The stabilized scheme is convergent, and its rate of convergence
is independent of h.

As in the proof of Corollary 4.1, the constants K5 and K6 are independent of h,
which ensures the independence of the rate of convergence of the mesh size.

A similar result can be also proved for the relaxed method (see [23]).
Stopping criterion. For Problem 4.1, a suitable test to verify whether the solution

has converged is based on the (normalized) difference between the last two iterations
in the fluid and the wall domain Ωf and Ωw. Precisely, the stopping criterion reads

‖Cn+1
f,k+1 − Cn+1

f,k ‖L2(Ωf )

‖Cn+1
f,k+1‖L2(Ωf )

+
‖Cn+1

w,k+1 − Cn+1
w,k ‖L2(Ωw)

‖Cn+1
w,k+1‖L2(Ωw)

≤ ε,

where ε is the desired tolerance.

5. Test cases of physiological interest. In this section we apply the described
models to a physiologically relevant test case. For this reason we consider a stenosed
part of a large artery, that is, a vessel whose section has a narrowing restriction due to
a disease of the arterial wall, such as atherosclerosis. The solute that we consider in
this case is oxygen (O2). A crucial issue is how to choose the functional dependence of
ζ from σ(u) in Problems 2.2 and 2.3, in order to catch the mean oxygen flow through
Γ under a mean value of the shear stress. Following the suggestion of [27], we propose
a linear relation of the form ζ = K1 +K2|σ(u)|. At this stage, the issue is how to fix
the constants K1 and K2. The mean oxygen flow through Γ is defined by

φmean =
1

meas(Γ)

∫
Γ

ζ(σ(u))(Cf − qw)dγ,(5.1)

where qw = kw in the wall-free model and qw = Cw in the free-wall model. A
plausible value for φmean, proposed in [27], is 4.82 · 10−6ml cm−2s−1. On the other
hand, again in [27], the mean oxygen concentration in the lumen can be set C0 =
2.58 · 10−3ml cm−3. Next we approximate, under integration in (5.1), σ(u) by σ0 =
1.98dyn cm−2 (calculated from the Poiseuille flow in a channel with the same diameter
and the same inflow conditions as the ones considered in Ωf ) and obtain φmean �
(K1 +K2σ0) · 0.3C0, where we have made the approximation

1

meas(Γ)

∫
Γ

(Cf − qw)dγ � 0.3C0

(which is plausible at equilibrium). Finally it is assumed that K1 = K2σ0/2, and
henceforth we obtain φmean = 3

2K2σ0 · 0.3C0; thus K2 = 1.57 · 10−4cm3dyn−1s−1

and K1 = 3.11 · 10−3cm s−1. For other kind of solutes, such as macromolecules, e.g.,
lipoproteins, in vivo measurements suggest that a nonlinear dependence of ζ from
σ(u) should be introduced (see [26]).
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5.1. Description of the domain and of the data. Figure 5.1 shows a sketch
of the domain Ωf and Ωw. Domain Ωf is symmetric with respect to its longitudinal
axis. The interface Γ and the lower side Γ5 are defined by the following functions:

Γ :


0 ≤ x < l1, y = 0,
l1 ≤ x < l2, y = (T/2)(1 + cos 2π(x− (l1 + l/2)/l)),
l2 ≤ x < L, y = 0,

(5.2)

Γ5 :


0 ≤ x < l1, y = yΓ − w1,
l1 ≤ x < l1 + l/2, y = yΓ − [w1 + 2(w2 − w1)(x− l1)/l],
l1 + l/2 ≤ x < l2, y = yΓ − [w1 + 2(w2 − w1)(1− (x− l1)/l)],
l2 ≤ x < L, y = yΓ − w1,

(5.3)

where L = 10cm is the total length of the domain; R = 0.5cm is the radius of the
lumen; l1 = 4cm and l2 = 5cm are the abscissa defining the stenosed region, l = l2−l1;
T = R/2 defines the narrowing rate; and yΓ stands for the corresponding value on Γ.
Finally the minimal and maximal wall thicknesses are equal to 8% and 12% of the
radius of the lumen, respectively. The domain Ωf is discretized by 18728 nodes and
Ωw by 6100 nodes. For the time discretization we consider ∆t = 0.01s.
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Fig. 5.1. Simplified scheme of the domains Ωf and Ωw.

We choose the following data for the Navier–Stokes equations (see Figure 5.1 for
the boundary definition):

ux = u0(1− ((y −R)/R)2) on Γ1,
uy = 0 on Γ1,

(−ν∇u + P I) · n = 0 on Γ4,
u = 0 on Γ and on Γ6,

(5.4)

where u0 = 15cm s−1 is the maximal inlet velocity and the kinematic viscosity is
ν = 0.033cm2s−1. Moreover, we consider a null velocity field on Ωf \Γ1 at time t = 0.
For the wall-free model we define a normalized concentration Cf = C ′

f/C0, where C ′
f

is the concentration of oxygen in the vessel and C0 = 2.58 ·10−3ml cm−3 is a reference
concentration. For the concentration Cf we consider the following data: Cf = 1.0
on Γ1, (µf∇Cf ) · nf = 0 on Γ4, condition (2.2a) on Γ with κw = 0.5. Moreover
we consider a diffusivity µf independent of d. Indeed, for the sake of simplicity we
choose D = 0 in (2.3), and thus µf = µf,0I with µf,0 = 5 · 10−5cm2s−1. Nevertheless,
some tests made in order to evaluate the dependence of Cf on the shear rate through
the diffusivity µf show that nonnull values of D, taken, for instance, from [12], may
induce changes on Cf up to 7% with respect to the case D = 0, where the shear rate
and the concentration gradients are high. Finally we set initial condition Cf = 1.0
in Ωf . For the fluid-wall model in Ωf we consider the same data except from the
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condition on Γ that is represented by (2.7). For the diffusion problem in Ωw we
consider a normalized concentration Cw = C ′

w/C0 and the following boundary and
initial data: Cw = 0.5 on Γ2 and µw∇Cw · nw = 0 on Γ3, and µw∇Cw · nw = 0 or
Cw = 0.5 on Γ5, interface condition (2.6) on Γ, initial condition Cw = 0.5 in Ωw.
Finally, because oxygen is a very little molecule, it is reasonable to choose µw = µf,0.

5.2. Numerical results. The aim of this numerical investigation is to compare
the predictions given by the wall-free and the fluid-wall models on the oxygenation of
the wall. For this reason we compare the two models under very simple flow conditions,
such as stationary blood flow. Consequently, we compute at first the stationary flow
in the stenosed domain. This calculation includes the computation at each time step
tn of the rate of deformation tensor d = 1/2(∇u + ∇uT ) as well as the local stress
tensor T = 2νd and the shear stress σ(u) = τ · T · n on Γ. These quantities are
computed by means of a variational recovering technique, through an H1-projection
of d (and consequently T) on the subspace of piecewise linear finite elements in Ωf .
The shear stress σ(u) is then computed on the nodes lying on Γ. Then, given u, P
on Ωf , and σ(u) on Γ, we can solve the advection-diffusion problem.

5.2.1. Solution of the Navier–Stokes equations. The blood flow in this test
case features a Reynolds number Re = 2R|u||Γ1/ν small enough (= 300) to allow a
stationary solution of the Navier–Stokes equations. The stationary state (defined
by the test ‖un − un−1‖L2/‖un‖L2 < 10−4) is satisfied, starting from null initial
velocity, after 9s. The steady flow field shows thin boundary layers upstream the
minimal section point and a large recirculation zone downstream it. As it will be
clear later, these phenomena have a direct effect on the concentration of solute in the
lumen and in the arterial wall.

5.2.2. Solution of the advection-diffusion equations. Figures 5.2, 5.3, and
5.4 show the results of some simulations concerning the wall-free and the fluid-wall
models. First of all, we observe that these models give similar results about the
solute dynamics in the blood. In particular we notice that, according to (2.7) the
difference in the initial concentrations ((C0,f − kw) > 0 or (C0,f − C0,w) > 0) causes
a flux of solute leaving Ωf , consequently the concentration near the arterial wall is
slightly lower than the mean value Cf = 1. Moreover, the solute flux across the
arterial wall is higher in the upstream side of the stenosis because of two phenomena:
in the upstream part of the stenosis the blood pushes the solute towards the wall;
consequently a greater amount of solute passes from the blood to the arterial wall.
These phenomena are magnified by the dependence of the wall permeability ζ on the
shear stress induced in the arterial wall. In fact in the upstream side of the stenosis
the shear stress, and consequently the wall permeability, is high; thus the solute flux
towards the arterial wall is increased. On the other hand, downstream the minimal
span of the vessel the blood flow detaches from the wall and a wide recirculation
zone is generated (see Figures 5.5 and 5.2). In the recirculation the blood velocity
is highly reduced; consequently the fluid layers with low solute concentration next to
the arterial wall are hardly removed. Moreover, the shear stress induced on the wall
is low and so is the wall permeability. For these reasons the solute flux leaving the
vessel in the downstream side of the stenosis is sensibly lower than the one in the
upstream side.

5.2.3. Comparison of the wall-free and fluid-wall model. Although giving
the same qualitative results on the solute dynamics in blood, the wall-free and the
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Fig. 5.2. Concentration field in the lumen and in the arterial wall at the stationary state (after
54.21s), computed with the fluid-wall model with Dirichlet boundary conditions on Γ5. Domains Ωf

and Ωw are not represented as contiguous, in order to put the interface Γ into evidence.
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Fig. 5.3. Comparison of solute concentration on the wall boundary for wall-free model (dashed-
dotted line) and fluid-wall model (solid and dashed lines) at time t = 10s (left) and t = 100s (right).
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Fig. 5.4. Total flux of solute across Γ (cm2s−1) for the wall-free (WF) and the fluid-wall model,
with Dirichlet boundary conditions (FW Dir) and homogeneous Neumann boundary conditions (WF
Neu) on Γ5. The wall-free model reaches stationary state after 47.65s while the fluid-wall model
with Dirichlet boundary conditions reaches stationary state after 54.21s. The fluid wall model with
Neumann boundary conditions doesn’t reach stationary state after 100s.
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Fig. 5.5. Shear stress on Γ (dyn cm−2) (top-left); arterial wall permeability (cm s−1) (top-
right); a detail of |u| at the stationary state (middle); a detail of the discretization of Ωf and Ωw

into triangles (bottom).

fluid-wall models show some relevant differences, in particular concerning the dynam-
ics of the wall absorption. This is mainly due to the fact that the fluid-wall model
takes into account the accumulation of solute in the arterial wall. For example, ac-
cording to (2.7), the solute flux towards the arterial wall decreases as far as the wall
concentration increases. For this reason, the profile of the concentration Cf along the
arterial wall for the fluid-wall case is slightly higher than the wall-free one. Conse-
quently, we point out that the difference between the blood concentration profiles for
these two models becomes larger in the later time steps because the wall concentration
is gradually increasing. Finally, let us compare the predictions of the two models on
the total solute flux leaving Ωf across Γ, that corresponds, when the considered solute
is oxygen, to the oxygenation of the wall. To this aim, we refer to Figure 5.4, where

we plot the function φ(t) =
∫ Γ

0
ζ(Cf − qw) (where qw = kw in the wall-free model and

qw = Cw in the free-wall model) for different boundary conditions. We notice that
the two models yield different asymptotic value of the flux. More precisely, the wall
oxygenation is higher for the wall-free model, and it quickly reaches a steady-state
constant value. On the other hand, taking into account the saturation of the concen-
tration in the wall, the fluid-wall model predicts a lower flux, and a much longer time
is necessary to reach the steady state for the solute exchanges between lumen and
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wall. We also point out that the results of the fluid-wall model are influenced by the
boundary conditions chosen on Γ5. Homogeneous Neumann conditions will induce a
relevant accumulation of solute in Ωw; on the other hand, Dirichlet conditions will
reduce this phenomenon, providing a solute flux outgoing Γ5. Consequently, the dy-
namics of solute exchanges between Ωf and Ωw are directly influenced by boundary
conditions on Γ5. A detailed discussion of the choice of these conditions, based on an
experimental validation would be worthwhile to justify the physiological relevance of
the results given by the fluid-wall model. In any case, we can assert that no matter
which coefficients (µf , µw, ζ) are used, the wall-free and the fluid-wall models show
a different dynamical behavior with respect to time. Actually, the interpretation of
Figure 5.4 in a quantitative sense is not particularly significant, since it is influenced
by the specific choice of the dependence of ζ on the shear rate. In this respect, more
refined experimental estimates of K1 and K2 (and, in general, of ζ) are required to
allow precise physiological evaluations. However, even from their merely qualitative
interpretation, these results show that a more sophisticated model for the arterial wall
may substantially affect the analysis of absorption dynamics of solutes. In the case of
oxygen, this may be quite relevant in the investigation of pathologies of the arterial
tree, such as hypoxia.
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Paris, 1968.

[17] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdo-
mains, in Third International Symposium on Domain Decomposition Methods for Partial
Differential Equations, Houston, 1989, SIAM, Philadelphia, 1990, pp. 202–223.

[18] J.A. Moore and C.R. Ethier, Oxygen mass transfer calculations in large arteries, J. Biomech.
Engrg., 119 (1997), pp. 469–475.

[19] W. Nichols and M. O’Rourke, eds., McDonald’s Blood Flow in Arteries, 3rd ed., Edward
Arnold, London, 1990.

[20] A. Quarteroni, F. Saleri, and A. Veneziani, Analysis of the Yosida method for the incom-
pressible Navier-Stokes equations, J. Math. Pures Appl. (9), 78 (1999), pp. 473–503.

[21] A. Quarteroni, F. Saleri, and A. Veneziani, Factorization methods for the numerical ap-
proximation of the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech.
Engrg., 188 (2000), pp. 505–526.

[22] A. Quarteroni, M. Tuveri, and A. Veneziani, Computational vascular fluid dynamics:
Problems, models and methods, Comput. Visualisation Sci., 2 (2000), pp. 163–197.

[23] A. Quarteroni, A. Veneziani, and P. Zunino, A domain decomposition method for advection-
diffusion processes with application to blood solutes, SIAM J. Sci. Comput., to appear.

[24] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
Springer-Verlag, Berlin, 1994.

[25] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford University Press, Oxford, 1999.

[26] G. Rappitsch and K. Perktold, Pulsatile albumin transport in large arteries: A numerical
simulation study, J. Biomech. Engrg., 118 (1996), pp. 511–519.

[27] G. Rappitsch, K. Perktold, and E. Pernkopf, Numerical modelling of shear-dependent
mass transfer in large arteries, Internat. J. Numer. Methods Fluids, 25 (1997), pp. 847–
857.

[28] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 3rd ed., North-Holland,
Amsterdam, 1984.

[29] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia,
1983.

[30] N.L. Wang and K.H. Keller, Solute transport induced by erythrocyte motions in shear flow,
Trans. Amer. Soc. Artif. Intern. Organs, 25 (1979), pp. 14–17.

[31] N.L. Wang and K.H. Keller, Augmented transport of extracellular solutes in concentrated
erythrocyte suspensions in Couette flow, J. Colloid Inter. Sci., 103 (1985), pp. 210–225.


