000102918 001__ 102918
000102918 005__ 20180317092444.0
000102918 0247_ $$2doi$$a10.1002/(SICI)1098-2426(200003)16:2<214::AID-NUM5>3.0.CO;2-9
000102918 02470 $$2DAR$$a2452
000102918 02470 $$2ISI$$a000085300200005
000102918 037__ $$aARTICLE
000102918 245__ $$aAdaptive finite element methods for Boussinesq equations
000102918 269__ $$a2000
000102918 260__ $$c2000
000102918 336__ $$aJournal Articles
000102918 520__ $$aAn a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work.
000102918 700__ $$0(EPFLAUTH)0$$aPerotto, Simona$$g0
000102918 700__ $$aSaleri, Fausto
000102918 773__ $$j16$$k2$$q214-236$$tNumerical Methods for Partial Differential Equations
000102918 909CO $$ooai:infoscience.tind.io:102918$$particle$$pSB
000102918 909C0 $$0252102$$pCMCS$$xU10797
000102918 937__ $$aCMCS-ARTICLE-2000-003
000102918 970__ $$aPerotto2000/CMCS
000102918 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000102918 980__ $$aARTICLE