000102917 001__ 102917
000102917 005__ 20180317092444.0
000102917 0247_ $$2doi$$a10.1016/S0168-9274(99)00059-8
000102917 037__ $$aARTICLE
000102917 245__ $$aFunction approximation on triangular grids: some numerical results using adaptive techniques
000102917 269__ $$a2000
000102917 260__ $$c2000
000102917 336__ $$aJournal Articles
000102917 520__ $$aApplications of mesh adaptation techniques could be found in the numerical solution of PDE's or in the optimal triangulation of surfaces for shape representation or graphic display. The scope of this work is to verify through numerical experiments the effectiveness of some algorithms for the control of the L^2 error norm for piecewise linear approximation on 2D unstructured triangular meshes. The analysis could be extended to parametric surfaces and to the 3D case.
000102917 6531_ $$aMesh adaptation; Approximation theory
000102917 700__ $$aManzi, Cristina
000102917 700__ $$aRapetti, Francesca
000102917 700__ $$0241668$$aFormaggia, Luca$$g117182
000102917 773__ $$j32$$k4$$q389-399$$tApplied Numerical Mathematics
000102917 909CO $$ooai:infoscience.tind.io:102917$$particle$$pSB
000102917 909C0 $$0252102$$pCMCS$$xU10797
000102917 937__ $$aCMCS-ARTICLE-2000-002
000102917 970__ $$aManzi2000/CMCS
000102917 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000102917 980__ $$aARTICLE