
ÉC OLE POL Y T EC H NIQU E
FÉDÉRA LE D E LA USAN NE

Faculté des Sciences de Base (FSB)

Institut de Mathématiques (IMA)
Chaire de Recherche Opérationnelle

Station 8
CH-1015 LAUSANNE

Tel +41.21.693.2566
Fax +41.21.693.5840

Online Coloring of
Comparability Graphs:

some results

M. Demange & B. Leroy-Beaulieu

ORWP 07/01
April 2007

Online Coloring of Comparability Graphs:

Some Results

Marc Demange1, Benjamin Leroy-Beaulieu2

1 Département SID, ESSEC, Cergy Pontoise, France
2 IMA-ROSE, Ecole Polytechnique Fédérale de Lausanne, Switzerland

April 4, 2007

Abstract. We study online partitioning of posets from a graph theo-
retical point of view, which is coloring and cocoloring in comparability
graphs. For the coloring problem, we analyse the First-Fit algorithm
and show a ratio of O(

√
n); furthermore, we devise an algorithm with a

competitivity ratio of χ+1
2

. For the cocoloring problem, we point out a
tight bound of n

4
+ 1

2
and we give better bounds in some more restricted

cocoloring problems.

1 Introduction

Graph coloring is one of the most studied topics in operations research. It consists
in assigning a color to every vertex of a graph in such a way that two adjacent
vertices have different colors. Graph coloring with a minimum number of colors
is known to be NP-hard in general graphs.

Coloring problems have many applications in areas like logistics, scheduling,
telecommunications and robotics. Such industrial applications make it natural
to look at online versions of the problem, for which decisions must be taken while
the full data are not known yet. In an online problem, the instance is presented
step by step. Whenever a new part is presented, the solution dealing with this
part is irrevocably decided by an online algorithm. In this context, we refer to
the usual version of the problem, where the instance is fully known in advance,
as the “offline” version.

Online graph coloring has been widely studied in general graphs [11, 13, 16].
The results obtained so far point out that only very loose bounds can be achieved.
It is thus natural to look at particular classes of graphs for which coloring is
known to be easy (polynomial) in the offline case. Some classes have already
been studied in online cases [1, 3, 9, 17]. In this paper, we consider two classes of
graphs, namely comparability graphs (graph representation of partially ordered
sets)3 and permutation graphs (graphs of inversions in permutations).

Furthermore, we also study a generalization of the coloring problem, called
cocoloring. Both online coloring and cocoloring in these two classes of graphs
have applications in industrial contexts [6, 19, 20].

3 All notions will be formally defined in section 1.1

2

This work can be seen as online partitioning posets into antichains (or into
chains and antichains). Several online problems have been studied on posets (See
for instance [4]). In particular, online partitioning posets into chains has been
widely studied [7, 12, 13]. From a graph theoretical point of view, it consists in
online coloring cocomparability graphs. To our knowledge, online coloring of
comparability graphs has been essentially studied in the case of permutation
graphs [18, 21].

1.1 Definitions and notations

A graph (directed graph, also called digraph) G consists of a finite set V and
an irreflexive binary relation on V . V is called the set of vertices. The binary
relation is represented by a collection E of ordered pairs, called arcs or directed
edges. We then denote G = (V, E). If (v, w) ∈ E, then v and w are said to be
adjacent.

Let G = (V, E) be a graph. The graph G−1 = (V, E−1) is said to be the rever-
sal of G, where E−1 = {(v, w)|(w, v) ∈ E}. Given V ′ ⊆ V , the subgraph induced
by V ′ in G is G[V ′] = (V ′, E′), where E′ = {(v, w) ∈ E|v 6= w and {v, w} ⊆ V ′}.

If the relation is symmetric (E = E−1), then the graph is called undirected.
In this case, arcs are usually called edges and are represented by an unordered
pair of vertices. If the relation is asymmetric (E ∩ E−1 = ∅) then the graph is
called oriented.

Given an undirected graph G = (V, E), a partial subgraph H = (V, F) with
F ⊆ E is called an orientation of G if H is oriented (F ∩ F−1 = ∅) and if F ∪
F−1 = E. Moreover, if the relation associated to F is transitive, then H is called
a transitive orientation of G. The graph G = (V, E) is called the complement of
G, where E = {(v, w) ∈ V × V |v 6= w and (v, w) /∈ E}.

A stable set4 of a given graph G = (V, E) is a set S ⊆ V such that ∀(v, w) ∈
S2, (v, w) /∈ (E∪E−1). A clique4 is a set K ⊆ V such that ∀(v, w) ∈ K2, (v, w) ∈
(E ∪ E−1).

A proper coloring4 of a graph, sometimes simply called a coloring, consists
in a partition of V into stable sets. Each stable set is associated to a color.
The stable sets in a coloring are often called color classes or simply colors. A
k-coloring is a coloring that uses at most k stable sets. The chromatic number
χ(G) of a graph G is the smallest number k such that G admits a k-coloring.

The clique-size4 of a graph G = (V, E) is the size of a largest clique K ⊆ V
and is denoted ω(G). For convenience, if there is no ambiguity, we will note χ
and ω instead of χ(G) and ω(G).

Clearly, for every graph G, χ(G) ≥ ω(G). G is a perfect graph4 if, for all
V ′ ⊆ V , χ(G[V ′]) = ω(G[V ′]) [2].

Cocoloring a graph G = (V, E) is partitioning V into cliques and stable sets.
The cochromatic number of a graph G, denoted by z(G), is the smallest number
of such sets needed to cover all vertices. A k-cochromatic graph is a graph G

4 This notion is usually known for undirected graphs. We give this definition for con-
venience to use it in directed graphs.

3

such that z(G) = k and a k-cocolorable graph is a graph G such that z(G) ≤ 2.
Cocoloring was introduced in [15].

A comparability graph4 is an undirected graph which admits a transitive ori-
entation. Every transitive orientation of a comparability graph can be seen as
the graph representation of some partially ordered set (poset), where the ver-
tices represent the elements of the set and there is an arc from a to b if a < b
and no arc between a and b if these elements are not comparable. Clearly, in
comparability graphs, a clique of order n corresponds to a path5 of length n. It
corresponds in the related poset to a chain. Moreover, a stable set in a compa-
rability graph corresponds to an antichain in the related poset. Consequently,
coloring (resp. partitioning into cliques) a comparability graph is equivalent to
partitioning a poset into antichains (resp. chains). Cocoloring a comparability
graph is equivalent to partitioning a poset into chains and antichains.

A permutation graph is an undirected graph for which there exists a per-
mutation such that every vertex of the graph corresponds to an element in the
permutation and two vertices are adjacent if and only if the corresponding ele-
ments appear in reverse order in the permutation. Note that permutation graphs
are comparability graphs. More precisely, a permutation graph is a comparability
graph, the complement of which is also a comparability graph (cocomparability
graph) [8]. Consequently, every hardness result stated for permutation graphs
also holds for comparability graphs; conversely, every competitive analysis on
comparability graphs also holds for permutation graphs. Coloring a permutation
graph is equivalent to partitioning a permutation into increasing subsequences.
Cocoloring a permutation graph is equivalent to partitioning a permutation into
monotone subsequences; in some works, cocoloring a permutation is called mono-
tone partitioning [21].

Both permutation graphs and comparability graphs are perfect graphs. Color-
ing such graphs offline can be done optimally in polynomial time [8]. On the other
hand, cocoloring permutation graphs (and consequently comparability graphs)
is NP-hard [22].

In this work, we consider online versions of the problems of coloring and cocol-
oring comparability graphs. An online problem can be seen as a two player game
involving an adversary and an algorithm. The adversary presents the instance
and the algorithm gives the solution. The online problem is generally charac-
terized by the underlying offline problem and two sets of rules that have to be
respected by the adversary and the algorithm, respectively. In our online model,
the graph is presented together with a transitive orientation; consequently, this
work can be seen as online partitioning of posets into antichains (or into chains
and antichains). The vertices are presented one by one, together with the arcs
connecting them to the vertices already presented. In some cases, we will specify
further rules to define a particular case of the problem. At each step, one has to
irrevocably assign a color to the new vertex.

5 In graph theory, arcs of a chain are not necessarily all oriented in the same direction.
To avoid ambiguity with chains in posets, we will use the graph terminology “path”
instead of “directed chain”.

4

Online algorithms are traditionally evaluated according to their performance
ratio. Let A be an online graph-coloring algorithm. Then χA(G) denotes the
maximum number of colors A uses to color G over all online presentations
of G respecting the given rules. An online algorithm is said to guarantee a
performance ratio of ρ(G) (or to be ρ(G)-competitive) if, for every graph G,
χA(G) ≤ ρ(G)χ(G). An online algorithm is called exact (or solves the problem
exactly) if it computes the optimal offline solution for any online instance (it
has a competitivity ratio of 1). It is called optimal if its competitivity ratio can
not be improved by any other online algorithm. Some authors [14] also use an
alternative way to characterize the performance of an online algorithm: a class
of graphs Γ is said to be χ-bounded if the performance ratio for Γ only de-
pends on χ. It means that there exists a function f such that for all G ∈ Γ ,
χA(G) ≤ f(χ(G)).

Throughout this paper, we will use a very common representation for permu-
tation graphs, called the lattice representation. The permutation is represented
in a two-dimensional plane: the y-axis represents the values of the elements of
the permutation and the x-axis represents the position of these elements. A point
(x, y) on the plan means that an element of value y is at position x in the permu-
tation. Usually, x-axis and y-axis are discrete axes, with values going from 1 to
n, where n is the size of the permutation. In this paper, we mostly consider the
relaxation where the axes are continuous, called the continuous latticial model.
This means that, whenever a new point is presented, we are given its position
relatively to points previously presented along each axis but not its absolute
position in the permutation. It is equivalent to present a permutation graph G
together with a transitive orientation and also a transitive orientation of G or to
present a sequence of numbers one has to decompose into monotone sequences.
The related permutation can be computed when all elements are known.

In the last section, we mention the discrete latticial model, where the latticial
representation is drawn in {1, . . . , n}2, n being the order of the graph. Given the
lattice representation, for each point v, we define four regions of the plane, which
are inspired from the four cardinal points: NW (v), which is its upper-left corner,
NE(v), which is the upper-right corner, SW (v), which is the lower-left corner
and SE(v), which is the lower-right corner. It is immediate to see that (v, w) is
an arc if and only if w ∈ SE(v) ⇔ v ∈ NW (w). We will also use this terminology
to specify directions on the plane.

2 Coloring

2.1 Preliminaries

A very common algorithm for coloring graphs is the greedy algorithm First-Fit,
denoted by FF. It considers the vertices one after the other and attributes to
each one the smallest possible color. It is very popular for its simplicity and
since, for some classes of graphs, it is easy to find an ordering which makes
First-Fit exact. When dealing with First-Fit, one often refers to the graph
P4 = ({a; b; c; d}, {(a, b); (b, c); (c, d)}). It is the only minimal configuration for

5

which First-Fit may find a non-optimal coloring. More precisely, if the adver-
sary presents the vertices in the order (a, d, b, c), then, First-Fit uses three colors
while two are sufficient. On the other hand, the class of graphs without induced
P4, called cographs, is known to be characterized by the fact that First-Fit will
find an optimal coloring no matter the order in which it takes the vertices [5].
It is simple to see that P4 is a permutation graph. Thus, permutation graphs
do not have the nice property that any order is suitable for First-Fit. However,
for some classes of perfect graphs, including comparability graphs (and conse-
quently permutation graphs) and interval graphs (intersection graph of a set of
intervals), such a suitable ordering is easy to compute offline [8].

In an online framework, First-Fit is also a very natural algorithm, but its
behavior depends on the order of presentation of the vertices. While it is ex-
act for some classes of graphs, like cographs [5], independently of the order of
presentation of the vertices, it can be very bad for other classes of graphs and
in particular for permutation graphs [18]. In this last paper it is indeed shown
that First-Fit is not χ-bounded since for any integers χ > 0 and k, there exists a
permutation graph G such that χ(G) = χ and χFF(G) ≥ 1

2 ((χ2+χ)+k(χ2−χ)).

Remark 1. First-Fit can trivially be adapted to partitioning a graph into cliques
(we denote by FFk the adapted algorithm) and also to cocoloring (FFz).

In this section, we define a way to present a permutation graph in a given
direction and characterize the directions making First-Fit optimal. Then, in
section 2.2, we propose an analysis of First-Fit for bipartite permutation graphs.

Given the lattice representation of a permutation graph G, it is well known
that it can be colored optimally if the vertices are presented from west to east,
since First-Fit colors G exactly using this order [8]. This order of presentation
corresponds to presenting the permutation from left to right. Considering this,
one may wonder whether it is easy to color online a permutation graph if the
vertices are presented in some other direction. It can be presented, for instance,
from west to east, from south-west to north-east and so on. More precisely, given
a fixed direction −→u ∈ R

2, the graph is said to be presented in the direction −→u if

−→
OA · −→u <

−−→
OB · −→u ⇒ A is presented before B

If
−→
OA · −→u =

−−→
OB · −→u , then A may be presented before or after B.

Proposition 1. If a permutation graph G is presented from north-west to south-
east or from south-east to north-west (−→u = (x, y) such that x ·y ≤ 0 and (x, y) 6=
(0, 0)) on a latticial model, then First-Fit colors G optimally.

Proof. This proof is inspired from Chvátal’s proof [5]. Let us suppose x ≥ 0, y ≤
0 and (x, y) 6= (0, 0). Then, for all vertices M and M ′ such that M ′ ∈ NW (M))
and M 6= M ′, M ′ is presented before M .

Let us suppose that the color k is attributed to Mk. Then, there exists a
point Mk−1 with color (k − 1) such that Mk−1 is presented before Mk and the
related vertices in G are linked. Thus, Mk−1 ∈ NW (Mk).

6

By the same argument, we show that there exist Mi, 1 ≤ i ≤ k − 1, where
Mi is of color i and Mi ∈ NW (Mi+1).

Then {Mi}, i ∈ {1, . . . , k} constitute a clique of order k, which concludes the
proof. �

Proposition 2. If a permutation graph G is presented from south-west to north-
east or from north-east to south-west (x · y > 0) on a latticial model, then
no algorithm can guarantee an optimal coloring for any arbitrary comparability
graph G, even if G is a P4.

Proof. Let us suppose x = 1 and y = 1. The proof is similar for other cases. Let
us present M1 = (1, 3) and M2 = (4, 1). M1 is colored with color 1 and M2 with
color 2. M3 = (5, 4) is presented. We consider three cases.

1. If M3 is colored with color 3 then three colors are used already.
2. If M3 is colored with color 1 then M4 = (3, 8). It must be colored with 3.
3. If M3 is colored with color 2 then M4 = (9, 2). It will also be colored with 3.

In all cases, the graph presented is a bipartite P4 and is colored with at least 3
colors. �

Corollary 1. (proposition 1) If the graph is presented from west to east, from
east to west, from south to north or from north to south, then First-Fit solves it
exactly.

Let us conclude the preliminaries with some remarks about symmetries. Con-
sider two permutation graphs G = (V, E) and G′ = (V ′, E′), where the latticial
representations of G and G′ are symmetric to each other with respect to the
x-axis (or y-axis). For any vertex v of G, let v′ be its symmetric vertex in G′.
Clearly, (u, v) ∈ E ⇔ (u′, v′) /∈ E′. Thus, G′ is the complement of G.

Consider now a permutation graph G′′ = (V ′′, E′′) obtained from G by sym-
metry respectively to the axis given by the vector −→u = (1, 1). Clearly, G′′ is
isomorphic to G.

Thus, we can deduce proposition 3.

Proposition 3. Any algorithm for coloring permutation graphs presented in di-
rection −→u = (x, y) is equivalent to an algorithm for partitioning permutation
graphs presented in direction −→u ′ = (−x, y) (or (x,−y)) into cliques. It is also
equivalent to an algorithm for coloring permutation graphs presented in direction−→u ′′ = (−x,−y).

We then deduce from propositions 1, 2 and 3:

Corollary 2. A permutation graph presented from south-west to north-east or
from north-east to south-west (−→u = (x, y) with xy ≥ 0 and (x, y) 6= (0, 0))
can be partitioned into cliques exactly by FFk while no online algorithm can
partition exactly permutation graphs presented from south-east to north-west or
from north-west to south-east.

7

2.2 Competitive analysis of First-Fit

In this section, we focus on the competitivity ratio of First-Fit. We first note
that it achieves a competitivity ratio of n

4 + 1
2 for general graphs and that this

bound is tight even for bipartite graphs. We then focus on bipartite permutation
graphs and show that First-Fit is O(

√
n)-competitive for this class.

First-Fit is known to guarantee a ratio close to n
4 for general graphs. Indeed,

Miller [17] shows that a ratio lower than n
4 can not be achieved even for bipartite

graphs and the n
4 -competitiveness is mentioned by Lovász et al. [16]. Since we

did not find a proof for this claim in the literature, we give it here, and take this
opportunity to slightly precise this result.

Proposition 4. (See [16, 17]) First-Fit guarantees a competitivity ratio of n
4 + 1

2
for every graph of order n and this bound is tight even for bipartite graphs.

Proof. Let us first note that a deep reading of Miller’s proof [17] shows that the
performance ratio of First-Fit can be as bad as n

4 + 1
2 for bipartite graphs.

We prove now that the claimed competitivity ratio is guaranteed. Let us
consider an online instance consisting in a graph G of order n presented vertex
by vertex in an arbitrary order.

Note first that if χ(G) = 1, then First-Fit is exact. So we can assume that
χ(G) ≥ 2.

Let k be the number of colors containing only one vertex. First-Fit is con-
ceived in such a way that the related vertices constitute a clique of order k and
consequently χ(G) ≥ k.

On the other hand, the number of colors used by First-Fit is at most k +
n−k

2 ≤ n
2 + k

2 . Consequently, ρ(G) ≤ n
2χ(G) + k

2χ(G) ≤ n
4 + 1

2 , where ρ(G) is the

competitivity ratio of First-Fit. �

Since the negative result already holds for bipartite graphs, we focus in our
next analysis on bipartite permutation graphs.

Theorem 1. The competitivity ratio of First-Fit for the online coloring of a
bipartite permutation graph is O(

√
n) and this bound is tight, even if we impose

a direction of presentation −→u = (x, y), xy > 0.

Proof. We start by proving that O(
√

n) is an upper bound for the competitivity
ratio of First-Fit using lemma 1. We then prove that the given bound is tight
using an adversary called FFAD.

Let us first analyze the competitivity ratio of First-Fit for bipartite permuta-
tion graphs. Consider a bipartite permutation, that is a permutation which can
be partitioned into two increasing subsequences. Let S1 and S2 be the two colors
obtained by applying First-Fit in the direction −→u = (1, 0) on this permutation.
Recall that in this case, S1 and S2 represent an optimal coloring of this graph.
Thus, for every arc (x, y) of the associated permutation graph, we have x ∈ S1

and y ∈ S2.
An increasing subsequence (xi)i is alternating with respect to S1 and S2 if

[(x2i)i ∈ S1 and (x2i+1)i ∈ S2] or [(x2i)i ∈ S2 and (x2i+1)i ∈ S1].

8

L1

L2

1

1

2

2

3

1

3

12

4

u = (1,1)

Fig. 1. This figure illustrates the principle of FFAD, presented on page 9. The vertices
are presented from South-West to North-East (u = (1, 1)). The numbers close to them
represent their colors attributed by First-Fit. The dotted lines are level-lines represent-
ing the x or y coordinates of the vertex they cross. The only purpose of these lines on
this figure is helping to see whether a given vertex is to the left or the to right of some
other vertex. The dashed lines show that each group of vertices with k =constant is
presented after the group of vertices with k − 1 in the direction of u.

Lemma 1. Suppose that First-Fit, applied online to the permutation, colors with
the color k ≥ 3 an alternating increasing subsequence of size P . Then First-Fit
must have colored with color (k−1) an alternating increasing subsequence of size
P and with color (k − 2) an alternating increasing subsequence of size P + 1.

Proof. Without loss of generality, we can suppose k = 3. Suppose P = 2p (The
case P = 2p + 1 is similar) and let x1, . . . , x2p be the increasing alternating
subsequence of size P colored with color 3. Without loss of generality, we can
suppose x2i+1 ∈ S1, i = 0, . . . , p−1 and x2i ∈ S2, i = 1, . . . , p (in the other case,
the proof is identical).

Let SE(x) be the south-eastern part of the plan associated to x, that is the
set of successors of the vertex x in the permutation graph associated to the
permutation, and NW (x) be the north-western part of the plan associated to x,
that is the set of predecessors of the vertex x in the permutation graph associated

9

Algorithm 1 FFAD

1: Draw two parallel imaginary lines on a plane, call them L1 and L2, such that L1

is above L2 and their direction vector has two positive components. These lines
represent the colors of the vertices in an optimal offline coloring.

2: k := 1
3: j := 1
4: Present a vertex v(k,j) on L2. It will be colored with color 1.
5: for k := 2..K do

6: j := k

7: if v(k−1,j−1) is on L2 then

8: Present v(k,j) on L1 such that vx
(k,j) = vx

(k−1,j−1) − ε

9: else /*v(k−1,j−1) is on L1*/
10: Present v(k,j) on L2 such that v

y

(k,j)
= v

y

(k−1,j−1)
− ε

11: end if

12: for j := (k − 1)..2 do

13: if v(k−1,j−1) is on L2 then

14: Present v(k,j) on L1 such that vx
(k−1,j) < vx

(k,j) < vx
(k−1,j−1)

15: else /*v(k−1,j−1) is on L1*/
16: Present v(k,j) on L2 such that v

y

(k−1,j)
< v

y

(k,j)
< v

y

(k−1,j−1)

17: end if

18: end for

19: j := 1
20: if v(k−1,j) is on L2 then

21: Present v(k,j) on L1 such that vx
(k,j) = vx

(k−1,j) + ε

22: else /*v(k−1,j) is on L1*/
23: Present v(k,j) on L2 such that v

y

(k,j) = v
y

(k−1,j) + ε

24: end if

25: end for

to the permutation. We have that

∀i ∃y2i+1 ∈ SE(x2i+1), y2i+1 colored 2, y2i+1 ∈ S2

∀i ∃y2i ∈ NW (x2i), y2i colored 2, y2i ∈ S1

Thus,
y2i+1 <(a) x2i+1 <(b) x2i+2 <(c) y2i+2 <(d) y2i+3

(a) Because y2i+1 ∈ SE(x2i+1).
(b) Because (xi) is increasing.
(c) Because y2i+2 ∈ NW (x2i+2).
(d) Because y2i+3 is on the right of x2i+3, thus to the right of y2i+2; and (yi) is

increasing, since all its elements have the same color.

Thus, the (yj)j are all different and form an increasing alternating subsequence
colored with color 2, y2i ∈ S1 and y2i+1 ∈ S2.

Similarly, the existence of the subsequence (xi) proves the existence of an
increasing alternating subsequence (zk) of size P and of color 1 with z2i ∈ S1

and z2i+1 ∈ S2.

10

Similarly again, the existence of the subsequence (yj) proves the existence of
an increasing alternating subsequence (z′k) of size P and of color 1 with z′2i ∈ S2

and z′2i+1 ∈ S1.

In addition, z1 6= z′1 because z1 ∈ S2 and z′1 ∈ S1.

If z1 < z′1, the subsequence z1, z
′

1, . . . z
′

2p is increasing, alternating and of size
P + 1. If z′1 < z1, then the subsequence z′1, z1, . . . z2p is increasing, alternating
and of size P + 1.

This ends the proof of lemma 1 for the case P = 2p + 1. The proof is similar
if P = 2p. ut

To conclude the competitive analysis, we distinguish two cases:

1. If First-Fit colors the permutation with two colors, the competitivity ratio
is one.

2. If First-Fit uses k ≥ 3 colors, then by an iterative application of lemma 1,
the number n of vertices is such that n ≥ dk

2 e
(

dk
2 e + 1

)

≥ (k
2)2.

Thus k ≤ 2
√

n. This inequality still holds for k = 2. This proves that the
competitivity ratio of

√
n is guaranteed.

In order to conclude the proof of theorem 1, let us use the adversary FFAD,
illustrated in figure 1 and presented on page 9, to prove that the bound is tight.
In this algorithm vx and vy represent the x-coordinate (resp. the y-coordinate)
of a vertex v, while the index (k, j) is a numbering of the vertices. This proof is
given here for the direction −→u = (1, 1); by a simple rotation, one can easily see
that it holds for any −→u = (x, y), x > 0, y > 0.

For any k and any j, the vertex v(k,j) is colored with color j because it is
the smallest color that is admissible in this region. Thus, at each step k, one
new color is used. Let ck be the total number of colors used when the step k is
reached. We have ck = k.

Also, at each step k we add k vertices, the number nk of vertices used is thus

nk = nk−1 + k, which induces that nk = k(k+1)
2 . So, if ck is the number of colors

used at step k, we have ck = O(
√

nk). This is true in particular at the last step:
let the total number of colors used be C and the total number of vertices be n,
we have C = O(

√
n) and this concludes the proof of theorem 1. �

By remark 1 and proposition 3, we get:

Corollary 3. The competitivity ratio of FFk for online partitioning a co-bipartite
(partitionable into two cliques) permutation graph is O(

√
n) and this bound is

tight, even if we impose a direction of presentation −→u = (x, y), xy < 0.

Remark 2. For the bipartite case, the result of Nikolopoulos and Papadopou-
los [18] states that online coloring does not admit a constant competitive ratio.
Our result improves it to O(

√
n).

11

2.3 Competitive ratio of online coloring of comparability graphs

Given a comparability graph, it is well known that an optimal k-coloring S1, . . . , Sk

can be found such that, for every arc (v, w), v ∈ Si and w ∈ Sj with i < j [8].
We call such a coloring an increasing coloring. This notion will be useful to
understand the algorithm used in the proof of the following theorem.

Theorem 2. There exists an online algorithm for coloring comparability graphs
(presented with a transitive orientation) guaranteeing a competitivity ratio of χ+1

2
and this bound is tight, even for permutation graphs presented in a continuous
latticial model.

Proof. Let us consider the algorithm OCC that computes a proper coloring for
a comparability graph presented vertex by vertex together with a transitive
orientation.

Colors used by OCC are named by ascending sequences of consecutive inte-
gers. If C(v) is the color of a particular vertex v, we will call Cr(v) the right-most
integer of C(v) and Cl(v) the left-most integer of C(v). Sometimes, when there
is no ambiguity on the vertex, we might just note C, Cl and Cr. Note that C
is a color, while Cl and Cr are integers. The principle of the algorithm is the
following: at each online step, the color assigned to the vertex presented is the
sequence of integers corresponding to the possible colors the vertex can be as-
signed in every optimal increasing coloring in the already presented graph. The
current coloring is also renamed in such a way that the sequence used to color
every vertex always contains the possible colors in an optimal increasing coloring
of the current graph.

Algorithm 2 Online Comparability Graph Coloring (OCC)

Input: A comparability graph G delivered online, vertex by vertex.
Output: A χ(χ+1)

2
-coloring of G, where χ is the chromatic number of G. χ is unknown

before the end of the algorithm.
1: while G is not completely presented do

2: Let G′ be the subgraph of G induced by the currently presented vertices. Define
k := χ(G′) and accept a new vertex v∗.

3: In the graph defined by G′ ∪ {v∗}, consider a longest path K containing v∗. Let
l = |K|.

4: If l > k rename all the currently attributed colors as indicated here: for each
vertex v, rename its color by concatenating the name C(v) of its color with
Cr(v) + 1 on the right. Increment k by 1.

5: Let p be the rank of v∗ in K. Attribute to v∗ the color p . . . (k − l + p).
6: end while

Note that, at each step, OCC has to compute a longest path containing v∗

in a comparability graph. This can be done in polynomial time by computing a
maximum clique in the neighborhood of v∗. The complexity of steps 2 and 3 is

12

O(|V ′| + |E′|) each [8]. Thus, the whole complexity of OCC at each online step
is also O(|V ′| + |E′|).

The proof of theorem 2 is based on three lemmas.

Lemma 2. If any vertex v in the comparability graph is part of two different
paths, both of maximum length, then v will hold the same rank in both paths.

Proof. Assume v has not the same rank in both paths. Let K1 be the path where
v has the smallest rank and K2 be the other path. We can make a new path
consisting of all elements of K2 preceding v, v and all elements of K1 with a
rank larger than v. This path will be longer than both K1 and K2, which is in
contradiction. ut
Lemma 3. For every vertex v with color C, there exists a path with length
χ(G′) + Cl − Cr, where v is exactly at rank Cl.

Proof. This is obviously true when v is first assigned a color. Afterwards, every
time χ(G′) increases by one, Cr also increases by one by step 4 of the algorithm.
So the sequence which was used in step 3 will always verify this property. ut
Lemma 4. OCC computes a proper coloring.

Proof. Let v∗ be the last introduced vertex. Let v be a vertex with the same
color as v∗; we have to show that v and v∗ are not in a same path.

Else, let us first suppose that v is before v∗ on some path K. By lemma 3, v
and v∗ both belong to a path (Kv, Kv∗ respectively) of length χ(G′) + Cl(v

∗)−
Cr(v

∗) at position Cl(v
∗). Moreover, Kv∗ is a path containing v∗ of maximum

length in the already presented instance.
The path consisting of the elements of Kv preceding v, v, v∗ and the ele-

ments of Kv∗ with a rank larger than v∗ would be longer than Kv∗ , which is a
contradiction.

A similar argument holds if v is after v∗ on K. ut
To conclude the competitivity analysis of OCC, we have to note that the

number of colors produced by OCC is at most χ(χ+1)
2 . Indeed, the colors used

by the algorithm are all subintervals of [1, . . . , χ]. There are exactly χ(χ + 1)/2
such subintervals.

Next, we show that the bound is tight, even for permutation graphs. We
prove this by building an adversary called OCCAD, illustrated in figure 2.

OCCAD presents a graph G in a continuous latticial model, such that χ(G) =
K and OCC will use all subintervals of [1..K] as colors. This ends the proof of
theorem 2. �

Corollary 4. (Theorem 2, by proposition 3) There exists an online algorithm
for partitioning cocomparability graphs (presented with a transitive orientation
of a complementary graph) into cliques guaranteeing a competitivity ratio of k+1

2
(where k is the offline optimum) and this bound is tight, even for permutation
graphs. In particular, it gives an algorithm for partitioning permutations into
decreasing sequences.

13

1234

123

12

1

234

23

2

34

3

4

Fig. 2. Illustration of the algorithm OCCAD. Vertices are inserted in the order south-
west to north-east, and on each line in the order given by the arrow.

Algorithm 3 OCCAD

1: for k := 1..K do

2: for x := k..0 do

3: y := k − x

4: Put a vertex at coordinate (x + εy, y − εx), where

εy :=

{

0 if y = 0,

εy−1 < εy < εy−1 + 1
K

if y 6= 0.

εx :=

{

0 if x = 0,

εx−1 < εx < εx−1 + 1
K

if x 6= 0.

5: end for

6: end for

14

Remark 3. Note that the class of cocomparability graphs is also known to be
χ-bounded with an exponential binding function [12, 13]. Moreover, polynomial
binding functions for cocomparability graphs is given in [7] with some restrictions
on the order of presentation of the vertices. For the case of permutation graphs,
which are comparability and cocomparability graphs, we achieve a polynomial
binding function for a general quite online model.

Remark 4. Theorem 2 tells us that the class of comparability graphs is χ-bounded

by the binding function χ(χ+1)
2 . For comparability graphs with a bounded chro-

matic number, it leads to a constant competitivity ratio. In particular, OCC
guarantees 3 colors for bipartite graphs, which is optimal by proposition 2, and
6 colors for 3-colorable comparability graphs. It is worth noting that the class of
bipartite graphs (and thus also the class of comparability graphs) is known to
be not χ-bounded [10] if the transitive orientation is not given. This hypothesis
on the online model allows us to reduce the best known bound [17] for online
coloring of bipartite graphs from 2 log2 n to 3.

Remark 5.

Proposition 5. No online algorithm guaranteeing 1 color on stable sets and 3
colors on bipartite permutation graphs (given with a transitive orientation) can
guarantee less than 6 colors for 3-colorable permutation graphs.

a 1

d

c 2

2

e 3

f 3

g 4

h 5

i 6

e’

b 1

Fig. 3. Graph delivered to force any admissible algorithm to use at least 3(χ − 1)
colors on a χ-colorable graph G. The letters near the vertices represent their order of
appearance. The numbers represent their colors. The proof of proposition 5 explains
why vertex d cannot be colored with color 3. The dotted lines are a help to visualize
the placement of vertices relatively to each-other.

15

Proof. If χ(G) = 3, we devise an adversary that presents the vertices as shown
on figure 3. The letters near the vertices represent their order of delivery and
the numbers represent the colors that any admissible algorithm, in the sense of
proposition 5, would have to attribute to these vertices. Vertex e′ is not actually
delivered and is only used for the proof. We explain for each vertex why it can
get only one color below.

– vertex a is the first vertex. It must be colored with 1.
– When vertex b is delivered, G is still 1-colorable. So, in order to respect the

1-bound, we must color it with color 1.
– vertex c is adjacent to vertex a. We must use a new color, call it 2.
– vertex d could not be colored with color 3, because if it was, an adversary

could deliver the vertex e′, which would then have to be colored with 4, thus
not respecting the 3-bound on bipartite graphs.

– vertex f must be colored with color 3.
– vertices g, h and i can be colored only with one color each.

3 Cocoloring

In the offline case, cocoloring is known to be more difficult than coloring in
comparability graphs (NP-hard) [22]. A natural question is whether it is also
more difficult in the online case. Indeed, in the next section, we will point out
that online cocoloring is as difficult in permutation graphs than in general graphs.
For this reason, we will restrict us to permutation graphs and we will consider
some relaxations of the online model allowing interesting results. We restrict
ourselves to 2-cochromatic graphs. We first consider restrictions on the way the
adversary may present the graph: we adopt the discrete latticial model and the
permutation graph is presented from west to east. The second relaxation gives
more freedom to the algorithm: we allow it a bounded delay before deciding the
color of the presented vertices.

Of course, competitive analysis devised in the most general model remain
valid for the relaxations.

3.1 A dramatic bound in the continuous latticial model

Di Stefano et al. [21] have shown that two natural greedy algorithms can guar-
antee a performance ratio of n

4 + 1
2 for the problem of online cocoloring a per-

mutation graph. One can very simply note that this result also holds for general
graphs. In what follows, we point out that no algorithm can guarantee a better
ratio, even for split permutation graphs. We recall that a graph is called split if
its vertices can be covered with one clique and one stable set.

Proposition 6.

i. FFz guarantees a performance ratio of n
4 + 1

2 for online cocoloring general
graphs.

16

ii. No algorithm for online cocoloring graphs can guarantee a performance ratio
better than n

4 + 1
2 even for split permutation graphs presented from west to

east (in the continuous latticial model).

Proof.
i. The proof is very similar to the proof given in [21]. It is straightforward

to verify that FFz cocolors exactly graphs with cochromatic number 1. So, we
can assume that the cochromatic number is at least 2. Then, it is very simple
to see that FFz leaves at most one vertex alone in its color-class, since any two
vertices form either a clique or a stable set. Thus, the ratio n

4 + 1
2 immediately

follows (n
4 if n is even).

ii. We devise an adversary which presents a split permutation graph and
forces dn

2 e colors.
The adversary delivers the latticial representation of the permutation from

west to east. While the algorithm makes color-classes of size one, the elements
can be presented with any value. As soon as the algorithm makes a color-class of
size two (increasing or decreasing), all the upcoming elements must be presented
strictly within the interval of the two elements of this color-class, thus making it
impossible to put any upcoming element in this color-class. Thus, no color-class
has a cardinality larger than 2, and the number of color-classes used is bigger or
equal to dn

2 e. �

Remark 6. Note that proposition 6 holds even if the graph representing the
permutation is a threshold graph (which means that the highest element of the
stable set is lower than the lowest element of the clique).

3.2 Split permutation graphs in a discrete latticial model

Let us now consider the discrete latticial model, where the vertices have coor-
dinates in {1, 2, . . . , n}, n being the order of the graph. Moreover, the vertices
are presented along the direction from west to east. In other words, the corre-
sponding permutation, seen as a sequence of {1, . . . , n}, is revealed from left to
right.

Di Stefano et al. [21] prove that one can force
log2 n

2 colors on a 3-cocolorable

permutation graph, thus achieving a lower bound of log2 n
6 . Let us note that a

slight modification of their proof allows to force log2 n
2 colors on a 2-cocolorable

permutation graph, thus achieving a better lower bound of log2 n
4 . To make this

paper self-contained, we give a sketch of proof that is the “discrete counterpart”
of the proof of proposition 6.

We consider an adversary called SPLAD that presents split permutation
graph of order n = 2p from west to east.

It is straightforward to see that at most log2 n = p vertices are presented
before step 12 is executed. Moreover, these log2 n first vertices are colored with

at least log2 n
2 color-classes. To complete the proof, we just have to note that it

is always possible for the adversary to correctly execute step 12 by filling the

17

Algorithm 4 SPLAD

1: Let R be the range of integer values that the vertices can take.
2: Let l = min(R) and h = max(R).
3: repeat

4: Let m = round
(

l+h

2

)

.
5: Introduce a vertex with value m.
6: if vertex m is colored with a clique-color then

7: h := m − 1
8: else /*vertex m is colored with a stable-color or with a new color*/
9: l := m + 1

10: end if

11: until (l = m or h = m)
12: Fill the positions that have no vertex in such a way that the complete graph is a

split graph.

remaining positions with a stable set above m and a clique below m. Since the
complete graph is 2-cochromatic, we have the competitive ratio of

log2 n
4 .

Next, we present an algorithm, called Closest-Fit, which guarantees a com-
petitive ratio of 2 log2(n) if the permutation is presented from west to east.

Theorem 3. Closest-Fit is an online algorithm for cocoloring split permutation
graphs in the discrete latticial model, where the graph is presented from west to
east. It guarantees at most 3+2 log2 n color-classes, which leads to a competitivity
ratio of log2(n) + 3

2 .

Proof. We denote by vx and vy the coordinates of a vertex in the latticial rep-
resentation of a graph.

Lemma 5. If Sm > Cm, then no vertex will be presented between Sm and Cm

(Cm ≤ vy ≤ Sm). Moreover, all vertices that will be presented in the future above
Sm (respectively below Cm) constitute a stable set (respectively a clique) and will
be colored as such by Closest-Fit.

Proof. Let sm (respectively cm) be the vertex at height Sm (respectively Cm).
Suppose Sm > Cm. Thus, ∃vs ∈ NE(sm) and ∃vc ∈ SE(cm). Since G is split,
one of the vertices vs and sm is stable and one of the vertices vc and cm is clique.
Thus, one vertex between Sm and Cm would lead to a contradiction.

∀v ∈ NE(sm) not yet presented, v ∈ NE(cm) ∩ NE(vc). Thus, v must be
stable in all possible split decomposition of G. A similar reasoning shows that
∀v ∈ SE(cm) must be clique in all possible split decompositions of G. ut

Since Sm increases and Cm decreases along the execution of the algorithm,
as soon as step 13 is executed once, the rest of the graph is cocolored with at
most 2 new colors. Let us now calculate the number of colors used before step 13
is executed.

Remark 7. As long as Sm < Cm, SE(sm) ∩ NE(cm) contains exactly 1 vertex.

18

Algorithm 5 Closest-Fit

Input: A permutation over n elements delivered online in the order of the permutation.
Output: A partition of this permutation into at most log2 n cliques and stable sets.
1: Introduce a dummy vertex at coordinate (−1,−1) and color it with color s1.
2: Introduce a dummy vertex at coordinate (−1, h), where h is the height of the

interval, and color it with color c2

3: for each new vertex v with value m do

4: Sm := maxv {vy |∃v′ : v′ ∈ NE(v)}
5: Cm := minv {vy |∃v′ : v′ ∈ SE(v)}
6: if Sm < Cm then

7: if v is closer to Cm than to Sm then

8: Color v with the first available color ci.
9: else

10: Color v with the first available color si.
11: end if

12: else /*Sm > Cm, so the point where the stable set crosses the clique has passed*/
13: if vy > Sm then

14: Color v with the first available color si.
15: else /*vy < Cm*/
16: Color v with the first available color ci.
17: end if

18: end if

19: end for

Lemma 6. If the color si is used, we note ∆s
i the difference (Cmi −Smi) at the

time when si was used for the first time. We define ∆c
j similarly for the color cj.

Then, if si, i ≥ 2 is used, ∆s
i ≤ 1

2∆s
i−1 and if cj, j ≥ 2 is used, ∆c

j ≤ 1
2∆c

j−1.

Proof. We will prove lemma 6 for ∆s
i . The proof for ∆c

j is similar.
At the time when a first vertex vi gets the color si, there exist vi−1 colored

with si−1, with vi−1 ∈ NW (vi). Let S′

mi−1
and C′

mi−1
be the values of Sm and

Cm when vi−1 was presented. ∆s
i−1 ≥ |C′

mi−1
− S′

mi−1
|. Since vi−1 was colored

si−1, |vy
i−1 − S′

mi−1
| ≤ |C′

mi−1
− vy

i−1|. Now, vy
i < vy

i−1 and vx
i > vx

i−1.

Let ci and si be the vertices such that Smi = sy
i and Cmi = cy

i . According to
remark 7, cmi ≤ vy

i−1. Thus, ∆s
i ≤ |vy

i−1 − S′

mi−1
| ≤ 1

2 |S′

mi−1
−C′

mi−1
| ≤ 1

2∆s
i−1.
ut

Suppose now that the algorithm uses t colors before the execution of step 13,
and that these colors appeared in the order k1, k2, . . . , kt. ∀i, ki ∈ S (Stable
colors) or ki ∈ C (Clique colors). We note ∆i the difference Cm1 − Smi at the
time when ki was used for the first time. ∆1 ≥ ∆2 ≥ . . . ∆t.

Since, out of 3 colors, two at least are of the same type, lemma 6 tells us
that ∆2k+1 ≤ 1

2∆2k−1. Now, ∆1 ≤ n. Thus, ∆2k+1 ≤ 1
2k n and ∆2k+2 ≤ 1

2k n.

So ∆t ≤ 1
2(t/2)−1 n. Since ∆t ≥ 1, 2(t/2)−1 ≤ n and t

2 − 1 ≤ log2 n. Thus,
t ≤ 2 log2 n + 1.

Altogether, Closest-Fit has used at most 3 + 2 log2 n colors. �

19

Corollary 5. It is easy to transform Closest-Fit into an online algorithm for
cocoloring 2-cochromatic graphs with at most 7 + 2 log2 n color-classes, leading
to a competitivity ratio of 7

2 + log2 n.

Proof. The modified algorithm begins as FF until it needs a third color, then it
switches to FFk until it needs 5 colors and finally it turns to Closest-Fit by using
the 5th color as a first color of Closest-Fit. Since the graph is revealed along the
direction (1, 0), FF and FFk are exact. If the graph is bipartite it will be colored
exactly; if it is cobipartite, it will be colored with 4 color-classes and if it is a
split graph, it will be colored with at most 7 + 2 log2 n color-classes. �

3.3 Delayed cocoloring

Next, we look at two relaxations of the cocoloring problem where the algorithm is
allowed a bounded delay before deciding the color-class of the presented vertices.
We consider that one vertex is delivered at each time unit.

We start with a case where the graph presented is a split permutation graph,
presented from west to east. The algorithm is allowed to wait for at most one
time unit before deciding the color-class of each vertex presented.

Theorem 4. A split permutation graph G delivered online from west to east on
a latticial model can be cocolored exactly if the algorithm is allowed a delay of
one time unit before deciding the color-class of each vertex presented.

Algorithm 6 1-Late-Coloring

Proof. Input: A permutation graph G presented online from west to east on a con-
tinuous latticial model.

Output: An exact cocoloring of G.
1: for each new vertex v do

2: if v can be colored only with s, respectively c then

3: Color v with s, respectively with c /*The next test is for the case of a split-
ordered graph and we have reached the end of the permutation*/

4: else if v is the last vertex of the permutation then

5: Color v with s or with c

6: else

7: Wait for the next vertex v′ to be delivered
8: if v′ ∈ NE(v) then

9: Color v with color s

10: else /*v′ ∈ SE(v)*/
11: Color v with color c

12: end if

13: end if

14: end for

The algorithm 1-Late-Coloring cocolors a split permutation graph G deliv-
ered online from west to east on a latticial model exactly. We prove this by
induction on v.

20

Suppose the already attributed cocolors correspond to an admissible split-
representation of G. v has been presented, but not yet cocolored, and v′ is being
presented.

If v is above the lowest vertex cocolored with c or below the highest vertex
cocolored with s, then we are in the case of line 2, and the cocoloring of v is still
admissible.

Suppose v is above the highest vertex cocolored with s and below the lowest
vertex cocolored with c. Suppose v′ is above v (the proof is similar in the op-
posite case). If there exist a representation for which cocolor(v)=c, necessarily,
cocolor(v′) will be s (because v′ is higher than a vertex cocolored with c). But
in this case, one could change the cocolor of v into s and still have an admissible
cocoloring. Thus, coloring v with s is never wrong.

Initialization of the induction: the same reasoning holds for the first two
vertices. We can consider that there is a vertex with color s at −∞ and a vertex
with color c at +∞. �

Given this pleasant result, we look now at a less relaxed model, where the
presented graph G may have a cochromatic number z(G) higher than two.

Theorem 5. Even if an algorithm is allowed to wait for n− 4 time units before
coloring a vertex, it is not possible to cocolor exactly a 3-cocolorable graph online.

Proof. The proof uses figure 4. The vertices without label represent a stable set
of size n − 5. The vertices are presented from west to east. a is colored 1. Once
the vertices of the stable set are presented, b must be colored. If a and b are
colored with the same color, the adversary will present vertices c, d and e. Else,
the adversary will present f , g and h. In any case, the algorithm will have to
use at least four color-classes to cocolor the graph, while three would have been
sufficient. �

4 Conclusion

This work gives a tight analysis of First-Fit for the problem of online coloring
comparability and permutation graphs and shows that its performance ratio is
O(

√
n). It also presents an algorithm which dramatically improves the perfor-

mance ratio of this problem to χ+1
2 , and gives a tight analysis of it. Furthermore,

some variations of coloring problems are analyzed on the same type of graphs:
The exact performance ratio (n

4 + 1
2) of the problem of online cocoloring com-

parability graphs is given and online cocoloring split-graphs is analyzed.

Some questions remain open, such as the exact performance ratio of the
problem of online coloring comparability graphs, as well as the performance
ratio of online coloring these graphs while respecting bounds on the size of the
colors.

21

b

d

e

f

g

a

c

h

Fig. 4. This figure proves Theorem 5. The vertices without label represent a stable set
of size n − 5. The vertices are presented from west to east. a is colored 1. Once the
vertices of the stable set are presented, b must be colored. If a and b are colored with
the same color-class, the adversary will present vertices c, d and e. Else, the adversary
will present f , g and h.

5 Acknowledgment

The authors would like to thank Jack Edmonds and Dominique de Werra for
fruitful comments on this work, as well as Bernard Monjardet for constructive
criticisms on its presentation.

This work was partially financed by the ESSEC Business School and the
ADONET grant MRTN-CT-2003-504438.

22

References

1. Eric Bach, Joan Boyar, Leah Epstein, Lene M. Favrholdt, Tao Jiang, Kim S.
Larsen, Guo-Hui Lin, and Rob van Stee. Tight bounds on the competitive ra-
tio on accommodating sequences for the seat reservation problem. J. Scheduling,
6(2):131–147, 2003.

2. Claude Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1976.
3. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 2nd edition, 2005.
4. Vincent Bouchitté and Jean-Xavier Rampon. On-line algorithms for orders. Theor.

Comput. Sci., 175(2):225–238, 1997.
5. Vašek Chvátal. Perfectly ordered graphs. In Topics on perfect graphs, volume 88

of North-Holland Math. Stud., pages 63–65. North-Holland, Amsterdam, 1984.
6. Marc Demange, Tinaz Ekim, and Dominique de Werra. Variations of split-coloring

in permutation graphs. Technical report, École Polytechnique Fédérale de Lau-
sanne, 2006.

7. Stefan Felsner. On-line chain partitions of orders. Theor. Comput. Sci., 175(2):283–
292, 1997.

8. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals
of discrete mathematics. Elsevier, 2nd edition, 2004.

9. András Gyárfás, Zoltán Király, and Jenö Lehel. On-line 3-chromatic graphs I.
triangle-free graphs. SIAM J. Discrete Math., 12(3):385–411, 1999.

10. András Gyárfás and Jenö Lehel. On-line and first-fit colorings of graphs. Journal
of Graph Theory, 12(2):217–227, 1988.

11. Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph col-
oring. Theor. Comput. Sci., 130(1):163–174, 1994.

12. Henry A. Kierstead. An effective version of dilworth’s theorem. Trans. Amer.
Math. Soc., 268(1):63–77, 1981.

13. Henry A. Kierstead, Stephen G. Penrice, and William T. Trotter. On-line coloring
and recursive graph theory. SIAM J. Discret. Math., 7(1):72–89, 1994.

14. Henry A. Kierstead, Stephen G. Penrice, and William T. Trotter. On-line and first-
fit coloring of graphs that do not induce p5. SIAM J. Discret. Math., 8(4):485–498,
1995.

15. Linda Lesniak and H. Joseph Straight. The cochromatic number of a graph. Ars
Combinatoria, 3:39–46, 1977.

16. László Lovász, Michael E. Saks, and William T. Trotter. An online graph coloring
algorithm with sublinear performance ratio. Discrete Math, 75:319–325, 1989.

17. Avery Miller. Online graph colouring. Canadian Undergraduate Mathematics
Conference http://www.cumc.math.ca/2005/papers/miller.pdf, 2004.

18. Stavros D. Nikolopoulos and Charis Papadopoulos. On the performance of the first-
fit coloring algorithm on permutation graphs. Inf. Process. Lett., 75(6):265–273,
2000.

19. Frits Spieksma and Linda Moonen. Partitioning a permutation graph: algorithms
and an application. In Operations Research 2004, International Conference, Tilburg
University (The Netherlands), pages 150–150, September 2004.

20. Frits Spieksma and Linda Moonen. Partitioning a weighted partial order. Technical
report, K.U.Leuven, 2005. DTEW Research Report 0538, 15 pp.

21. Gabriele Di Stefano, Stefan Krause, Marco E. Lübbecke, and Uwe T. Zimmermann.
On minimum -modal partitions of permutations. In LATIN, pages 374–385, 2006.

22. Klaus Wagner. Monotonic coverings of finite sets. Elektronische Informationsver-
arbeitung und Kybernetik, 20(12):633–639, 1984.

