
The Weight-Watcher Service and its

Lightweight Implementation

Benoı̂t Garbinato∗, Rachid Guerraoui∗∗, Jarle Hulaas∗∗,

Alexei Kounine∗∗, Maxime Monod∗∗ and Jesper H. Spring∗∗

∗Ecole des HEC

Université de Lausanne

CH-1015 Lausanne, Switzerland
∗∗School of Computer & Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract—This paper presents the Weight-Watcher service.
This service aims at providing resource consumption mea-
surements and estimations for software executing on resource-
constrained devices. By using the Weight-Watcher, software
components can continuously adapt and optimize their quality of
service with respect to resource availability. The interface of the
service is composed of a Profiler and a Predictor. We present an
implementation that is lightweight in terms of CPU and memory.
We also performed various experiments that convey (a) the trade-
off between the memory consumption of the service and the
accuracy of the prediction, as well as (b) a maximum overhead
of 10% on the execution speed of the VM for the Profiler to
provide accurate measurements.

I. INTRODUCTION

Weight-Watcher diet programs have been very popular the

last decade as presumably effective ways of losing weight.

Diets restrict the amount of food or give advice on how to

choose the right type of food that a human should ingest.

To this end, the weight-watcher usually relies on the foods’

nutritional facts labels, which give information on the different

nutrients included and the corresponding human daily needs.

The listed nutrients are calories, fat, carbohydrates, proteins,

maybe vitamins and so on. Based on this information, the

consumer can decide whether or not to eat this or that aliment.

This kind of declaration does normally not exist for software

components. That is why we developed the present Weight-

Watcher service, whose role is to dynamically elaborate the

same kind of nutritional facts labels for pieces of code in the

context of resource-constrained devices.

Consider a mobile device (the provider) streaming audio to

several other devices (the receivers) at some predefined quality.

As the number of receivers grows, the provider will gradually

become more prone to resource availability problems: its

hunger for processing power and network bandwidth will

reach a level where concurrency with other services and ap-

plications will cause intermittent, but intolerable interruptions

of the audio stream. In dedicated server environments, some

of these issues may be addressed by proper ahead-of-time

dimensioning and planning of priorities; this cautious approach

The work presented in this paper was sponsored by the European IST
PALCOM project (Swiss OFES No 03.0495-1)

is however rather unlikely in the world of mobile consumer

devices that we address here. Moreover, exogenous factors

like network congestion will anyway have to be dealt with at

run-time. Other resource types on which there typically will

be a high contention are CPU and memory: in our example

scenario, if the user of the provider device additionally wants

to activate interactive applications like an agenda or a game,

he should be able to designate to which ones the system

should allocate resources first. A desirable behaviour – that

the Weight-Watcher approach enables – would then be that

the system and the various applications automatically adjust

to yield the best overall resource distribution.

If the provider’s policy is not to limit, but to maximize the

number of receivers, it must adapt gracefully,1 by degrading

its quality of service (or application fidelity [12], [13], [16]),

i.e., by increasingly compressing the stream. But first of all,

in order to implement its resource-aware behaviour through

timely adaptations to the fluctuations of its resource envi-

ronment, the software running on the provider’s device must

be informed on the amount of resources currently available,

as well as the amount of resources required by the piece

of code that is currently to be executed (from here on, the

piece of code on which the Weight-Watcher gives a prediction

in terms of resource consumption will be named an action).

The problem we address is thus to detect when a given

software component should adapt itself. The Weight-Watcher

service provides resource consumption predictions that can be

compared to the current levels of resource availability. The

comparison is thus the base information on which decisions

can be made, be it by a system-level scheduler or by resource-

aware applications.

One tricky aspect of the Weight-Watcher service is that it

must itself consume the least possible amount of resources,

especially CPU and Memory. Moreover, our Weight-Watcher

service itself shall also adapt its own resource requirements at

runtime, which results in a change of quality of service, i.e.,

in its prediction accuracy. Using the Weight-Watcher service,

1Depending on the communication protocol and the audio format, the
receivers may also have to adapt explicitly; in the present example, we
consider that this is not necessary.

programmers can turn their applications into resource-aware

services and the Weight-Watcher itself, if configured so, can

also behave in a resource-aware manner.

The principle of the Weight-Watcher is to provide history-

based resource consumption predictions, meaning that the

predictions rely on resource consumption measurements fol-

lowing the execution of any action. All kinds of actions,

e.g., methods or event handlers, can be profiled as long as

they are executed more than once (as in any history-based

learning approach, e.g., [12], [13], [19]). In this paper, we

handle the following Memory, CPU, Network, Energy,

and Time resources, even though the techniques presented

are not limited to these specific resources. Two sub-services

provide the resource consumption informations: measurements

are output from the Profiler, and predictions are output from

the Predictor.

In order to provide resource consumption measurements fol-

lowing the execution of an action, we implemented a dynamic

Profiler (by modifying the KVM [17] Java virtual machine)

which gives perfect measurements, at the VM level,2 for CPU,

Memory, Network and Time, resulting in a slowdown as

low as 6.46% – 9.86% (see Section VI-A). In comparison,

the slowdown induced by Java bytecode instrumentation tech-

niques [1], lies on average around 20% [1] to 40% [10]. On the

other hand, the accuracy of the Predictor is a function of the

resources it is allowed to use, as explained in Section VI-B.

This can be entirely automatic, or tuned programmatically (by

an application), depending on the resources left in the system

(see Section IV-A).

II. THE WEIGHT-WATCHER SERVICE

The Weight-Watcher service is composed of two subser-

vices, the Profiler and the Predictor:

1) The Profiler provides measurements about the amount

of resources an action has consumed during its last

execution, after the execution. It can be viewed as

resource accounting, with the restriction that it should

itself require a very low amount of resources.

2) The Predictor provides estimation about the amount of

resources an action will consume, before its execution.

The Predictor remembers the execution history of the

action (depending on the state of the system and the

parameters of the action at execution time), combines

the measurements together and builds an estimation of

the amount of resources an action will require for its

execution. The Predictor can be tuned in many ways to

change its accuracy, as exposed in Section IV.

A. Definitions

Resources. In this paper, we consider resources as being

the number of bytes that the code has dynamically allocated

(Memory), the number of CPU cycles or bytecodes executed

(CPU), the energy, in micro Joules, consumed during the

execution (Energy) and the time spent executing the action

2Meaning that resources consumed by native code are not accounted.

(Time). In our system, predictions depend on measurements,

therefore the prediction values will only concern the list of

resources that were chosen to be profiled.

Resource Profiles. A resource profile measurement (rpm)

is the set of resource amounts that an action has consumed,

known after its execution. If the Profiler is configured to

measure Energy and Memory consumption of the action A,

a possible resource profile measurement of A after its first

execution is rpmA,1 = {442.6 mJ, 2048 bytes}.

A resource profile prediction is an estimation of the resource

amounts the action will require upon its next execution, it is

the output of the Predictor, and a possible prediction for the

execution of action A for its (i + 1)th execution is pA,i+1 =
{522.3 mJ, 4096 bytes}. The Predictor outputs resource

amounts of chosen resources, corresponding to the resource

profile measurements. It accepts parameters, as exposed in

Section IV to make it aware of variables that change the

resource consumption of the action to predict.

Therefore, a resource profile (rp) represents the set of

resources in which the application programmer is interested

for a particular action, e.g., rpA = {Energy, Memory}.

The resource profile contains a list of resources (names),

whereas both resource profile measurements and predictions

contain lists of corresponding resource amounts (values).

Prediction Errors. The prediction error is defined as

the difference between the resource profile prediction (pi+1)

and the actual resource profile measurement after the

execution (rpmi+1): perr,i+1 = |pi+1 − rpmi+1|, and thus

the relative error is defined as perr,i+1/rpmi+1.

B. Interfaces

Via two interfaces (the Profiler and the Predictor), the

Weight-Watcher outputs resource profile measurements of

past executions and resource profile predictions for upcoming

executions. The usage of the interface is illustrated in Figure 1.

The interface of the Profiler contains the following operations:

• Profiler.reset(resource_profile rp) sets

the resource accounting counter of each resource in the

resource profile back to 0.

• Profiler.getCount(resource_profile rp)

outputs the amount of each resource in the resource

profile consumed since the last Profiler.reset().

For instance, Profiler.getCount({Memory})

outputs the exact amount of bytes allocated since the

last reset().

For illustration (Figure 1), consider the resource

profile measurement of action A with a resource

profile rp = {CPU, Memory}. First, the profiling

counters are reset for each resource in rp:

Profiler.reset({CPU, Memory}). Second, the

action A gets executed if the Scheduler accepts to execute it

(e.g., if enough resources are available), and third, the rpm
is assigned to the values given by the profiler, containing

measurements for each resource in the resource profile:

// the action A is identified by its id: aid

// the action resource profile is rp={CPU, Memory}

. . .

try {
p = Predictor.query(aid); // gets the prediction

Scheduler.canExecute(p); // can throw exception

Profiler.reset(rp); // resets the Profiler

. . .

. . . // the actual action A execution

. . .

rpm = Profiler.getCount(rp); // gets the measurements

Predictor.update(aid, rpm); // updates the prediction

}
catch (. . .) { // an exception raised by the

// Scheduler.canExecute() method

. . . // here is the callback that can implement

. . . // a strategy for reacting to the scheduler

. . . // notifications

}

Fig. 1. Use of the interfaces of the Profiler and Predictor

rpm=Profiler.getCount({CPU, Memory}). The

rpm, if used as exposed when encapsulating the execution of

an action, is then taken as input for the Predictor.

The interface of the Predictor contains the following oper-

ations:

• Predictor.query(actionID aid) outputs a pre-

diction for a given action,

• Predictor.update(actionID aid,

resource_profile_measurement rpm) updates

the prediction of a given action with the output of the

Profiler (rpm).

For a given action, the Predictor gets first setup with different

combining strategies (i.e., the way the Predictor takes into

account past measurements to provide predictions, see Sec-

tion IV-B) and parameters values (i.e., the state in which the

system is before executing the action, see Section IV). The

method Predictor.query() is the main entry point of

the Predictor. It is used to know the amount of resources an

action A will require for its execution, before its execution.

With this prediction, a decision making process can be run

to decide if this particular action should be executed or

not (Scheduler.canExecute(p)). If yes, the Profiler

resets, then the action gets executed, and a rpm is output

from the Profiler. Now that a new measure is available, the

predictions for an upcoming execution can be refined via

Predictor.update() as shown in Figure 1.

The Scheduler can thus base scheduling decisions by com-

paring the prediction and the actual amount of resources

available on the device. If the resource demand is greater than

what is currently left in the system or if the resources left

are detected to be shrinking (e.g., using threshold values) the

Scheduler can (1) postpone execution (until required resources

are available), (2) trigger resource shortage notification (so that

resource related errors can be avoided), or (3) pick an alter-

native implementation (e.g., downgrade the level of service).

The alternative implementations might be downloaded from

the network, already loaded in main memory (i.e., ready to

execute) or on stable storage (i.e., ready to be loaded). This

issue is out of scope of the paper and is not further discussed.

III. HISTORY-BASED PREDICTION

The role of the Predictor is to estimate, before the execution

of the action, its upcoming resource consumption. In [2], the

estimation of the memory consumption of a method is given by

a parametric function, where the parameters of the function are

the actual method parameters. Let us formalize this function

as fMemory({x1, . . . , xn},m), where the xi are all the pa-

rameters of the method m and f provides an estimation of the

Memory allocated for an execution of m. In [2], the fMemory
function is created out of offline code analysis, whereas we

numerically approximate the same function, at runtime, for

every resource in the rp, i.e., not only Memory, by basing

our prediction on actual measurements (the resource profile

measurements, or rpms) output by the Profiler. Thus the

estimation function f that we approximate is a generalization

of fMemory such that f∀r∈rp({x1, . . . , xn},m).

To achieve the history-based prediction, the action first gets

executed and profiled. The Predictor remembers this rpm1, by

storing it in memory. When the piece of code is about to be

reexecuted the prediction is in fact the first stored measurement

given by the profiler (rpm1). After the second execution a new

rpm2 is generated by the Profiler. Both measurements (rpm1

and rpm2) can thus be combined to refine the prediction (see

Section IV-B).

An action that has a constant behavior in terms of

resource consumption is for example a method that

computes a Celsius temperature out of Fahrenheit

(float fToCelsius(float fVal)). In this case

the estimation function and therefore the predicted

value, is constant for each resource r for any execution:

fr({fVal},fToCelsius) = rpmfToCelsius,i =
pfToCelsius,i+1{r} = cr. More generally, for constant

actions (m is a constant action), the following holds:

∀xi∀i, fr({x1, . . . , xn},m) = rpmm,i+1 = pm,i+1{r} = cr.

In theory, for such a simple behavior the memory cost for

recording the profiled value is equivalent to one int per

resource (resp. float according to the resource unit).

In contrast, the execution of some other action can be

influenced by a set of parameters. In such a case two dif-

ferent executions of the same portion of code might not be

the same in terms of resource consumption, which suggests

that these parameters should be taken into account in the

prediction. Figure 2 presents two actions for which the re-

source consumption depends on parameters. Specifically, The

action convertToCelsius in Figure 2(a) has a resource

consumption that is directly proportional to the parameter

temp.length. On the other hand, the memory consumption

of the action getAudioChunk presented in Figure 2(b)

depends on several parameters. In case data was not lost, the

memory consumption is proportional to 2 ·dSize if the chunk

is stereo and to dSize if the chunk is mono.

This same action could be split into smaller ones, that

would have a close to constant execution pattern: an ac-

tion for the isLost==true behavior and another one for

isLost!=true. The latter action could again be split into

void convertToCelsius(int[] temp) {
for (int i=0; i<temp.length; i++) {

temp[i]=fToCelsius(temp[i]);

}
// The CPU consumption of the action depends

// on the array size (temp.length)

}

(a) Single parameter: nbTemp

void getAudioChunk(Data d) {
Header h = d.getHeader();

boolean s = h.isStereo();

int id = h.getId();

boolean isLost = (id != (currentId +1));

if (isLost) {
// Detection of lost data -> Dedicated handling

}
else {

int dSize = h.getDataLength();

if (s) {
int [][] buf = new int[dSize][2];

// processing of bi-channel audio signal

}
else {

int [] buf = new int[dSize];

// processing of mono channel audio signal

}
}

}

(b) Several parameters: isLost, id and s

Fig. 2. Actions from which the execution patterns depend on input variables
and which thus have non-empty sets of parameters.

two actions, one for the treatment of the stereo-channel signal

and another one for treatment of the mono-channel signal, and

so on. Of course it is cumbersome for a developer to unfold

loops manually or even split an action into smaller ones, which

is the main reason why the Predictor needs to take parameters

(e.g., isLost, id, s) into account for storing and building

predictions.

IV. LIGHTWEIGHT WEIGHT-WATCHER IMPLEMENTATION

For obvious memory reasons, the Predictor does not keep

track of every past parameter value and corresponding resource

consumptions. Thus, it must sample continuous parameters to

remember past executions, i.e., parameter values that come

close are considered equal and will get the same prediction.

Taking the example from Figure 2 (a) two executions of

convertToCelsius() with arrays of different sizes (the

parameter of the action being temp.length) might return

the exact same prediction. How close two parameter values are

is defined by: (1) the parameter bounds, and (2) the sampling

precisions.

The simplest data structure and the one that has the small-

est overhead for storing samples of one single continuous

parameter is an array. The size of this array depends on

three factors: the minimum value of the parameter (min), its

maximum value (max), the number of intervals (k) between

the min and the max and the number of resources (r)

in the resource profile taken into consideration. If measures

are stored as integers, for a continuous parameter having a

min = 0, max = 500, and k = 50, the width of each interval

(∆ = (max−min)/k) is 10 and the size of the array is then

50 ·sizeOf(int) ·r. ∆ is further refered to as the precision

of a certain parameter. This means that every action executing

with parameter values in range [10..19] are considered the

same, in other words, the prediction for an upcoming execution

in this particular interval will be the same.

For one parameter, the size of the array is defined by k ·r ·t,
and is generalized as

∏nbPar
p=1 kp · r · t for multiple parameters,

where r is the number of resources, NbPar the number of

parameters, kp their corresponding intervals and t the size of

the type of data stored.

An analysis of this function trivially shows that the memory

used for storage is mostly influenced by the number of pa-

rameters (nbPar) and the desired precision for the prediction

of values of each parameter (kp). Both t and the number of

resources r are relatively small, meaning that it is not by

modifying t and r that the array memory consumption will

be influenced. Thus, if the service must dynamically adapt its

resource consumption (the memory consumption of the array

in that case), it must be able to tune the kp service parameters

to still be able to take a constant nbPar number of parameters

into account.

A. Adaptive Array

A programmer might not always be able to know a priori

the exact range of values that a parameter might take during

all executions of a certain action. Cases can happen when a

parameter takes a value which is outside its initial range. If

in a particular execution the parameter value v falls outside

of its [min..max] range, two possibilities arise for storing the

value:

1) Extending the size of the array and keeping the precision

(∆) constant.

2) Keeping the same array size and decreasing the precision

∆.

Keeping the precision (∆) constant. In the first case, the

range of a parameter is increased while ∆ stays constant,

resulting in an increase in the array size (ki ր). Considering

the example from last section where a parameter is initialized

with the values min = 0, max = 500 and k = 50 (∆ = 10).

The action is now executed with v = 512 /∈ [0..500]. The

range is therefore forced to grow to [0..520] to include the new

v (two intervals of size ∆ = 10 are added) and the number of

intervals reaches k = 12. This strategy results in an increase

of the memory taken by the resource profile (directly related to

k as exposed in Section IV) especially when the out of range

value is very far from the min (resp. max). The number of

additional intervals kadd is defined as ⌈(v−max) / ∆⌉ (resp.

⌈(min − v) / ∆⌉).

Keeping the array size constant. In order to keep the size

of the array constant, the range of a parameter is modified by

decreasing the array precision (∆ ց). Looking at the previous

example, when the action is executed with v = 512, several

solutions can be followed:

• Keeping the ∆ of every cell but the last one constant,

∆0..48 = 10 and increase the ∆ of the last cell to take

the parameter value into account, ∆49 = 22. The last

cell of the array of the concerned parameter has a worse

precision than the other cells (because it is larger) and

the total range of values is changed to [0..512], allowing

the new value to be stored in the array.

• Increase the ∆ of every cell: ∀i,∆i = 11, in which case

the total range is changed to [0..550]. In order to do this,

the values for each new cell need to be recomputed. As

a cell in the new array will be a linear combination of

cells spanning the same range in the old array, dedicated

calculation for computing the values must be executed to

repopulate the array.

These reactions to a parameter value that is out of range

of the prediction array can be issued by (1) the system in

situations where the need of either precision on measurements

or available resources is predominent (automatic adaptivity) or

(2) by the programmer in order to have control over the content

of the resource profile.

B. Combining Strategies

A combining strategy is represented by the function pi+1 =
g(p1..i, rpm1..i) meaning the prediction for the upcoming

(i + 1)th execution can be computed with the prediction of

the last executions p1..i = {p1, . . . , pi} and/or the resource

profile measurements rpm1..i = {rpm1, . . . , rpmi} of the

past executions. To have an optimal prediction, the strategies

should minimize the prediction error under the constraint

that the combining strategies must be as frugal as possible,

i.e., being the least consuming in terms of CPU and Memory

usage.

Overwriting Strategy (OS). The first and simplest strategy

to update its prediction pi+1 is to state that the (i + 1)th

execution will have the exact same resource need as the ith

output from the Profiler. In other words, the resource profiler

measurement rpmi is used as is in order to predict the next

execution, see (1) in Figure 3.

(1) Overwriting Strategy (OS):
{

pi+1=rpmi (i ≥ 1)

(2) Adapting Strategy (AS):

{

p2=rpm1

pi+1=
pi+rpmi

2 (i ≥ 2)

(3) Low-Pass Filter (LPF):

{

p2=rpm1

pi+1=
8×pi+2×rpmi

10 (i ≥ 2)

(4) Global Average (GA):

{

p2=rpm1

pi+1=

∑i
j=1 rpmj

i
=

pi·(i−1)+rpmi
i

(i ≥ 2)

Fig. 3. Combining strategies

Overwriting the prediction with the rpm at every execution

states that an action stabilizes completely over time, or that the

action does not depend on any parameter. It is the most frugal,

in the sense that no memory on the history of measurements

is kept and that the actual computation is simply a value

replacement in the prediction array.

Adapting Strategy (AS). The second strategy is to do an

average of the last (ith) prediction pi with the corresponding

measure rpmi. The strategy is defined by (2) in Figure 3.

The last rpm influences the prediction twice as less as in the

overwriting strategy, adding an addition and a division to the

complexity.

Low-Pass Filter (LPF). The low-pass filter gives predefined

weight to both the prediction (80%) and the actual measure-

ment (20%) as (3) in Figure 3. It adds two multiplications

to the complexity of the adapting strategy. Note that for every

strategy until now, a variable containing the measurement from

the profiler rpmi and the prediction itself pi was enough to

compute the new prediction pi+1 (pi and pi+1 correspond to

the same slot in the array).

Global Average (GA). A global average is also proposed

as (4) in Figure 3. Note that every past resource profiles do not

need to be stored, as the last prediction pi and i are enough to

reconstruct the sum from 1 to i−1. This basically means that

not only the last prediction must be kept but also i, the number

of measurements the profiler has output for that particular

prediction. In fact, an array for storing the prediction and an

additional array (of same size) must be used for storing the

corresponding number of iterations, i.e., doubling the memory

usage of the combining strategy. In number of mathematical

operations, it has one multiplication less, and adds only one

subtraction (i − 1) to the low-pass filter, but in practice, the

strategy is more expensive as more accesses in memory must

be made (for getting i) instead of using constants as in the

low-pass filter.

The prediction errors of each combining strategy are sum-

marized in Figure 4 and will be exposed as a performance

metric in Section VI.

(1) OS: perr,i+1 = |rpmi − rpmi+1| (i ≥ 1)

(2) AS: perr,i+1 =
∣

∣

∣

∑ i
j=1

rpm(i+1−j)
2x − rpmi+1

∣

∣

∣
(i ≥ 2)

(3) LPF: perr,i+1 =
∣

∣

∣

∑ i
j=1

2×8j−1

10j rpm(i+1−j) − rpmi+1

∣

∣

∣
(i ≥ 2)

(4) GA: perr,i+1 =

∣

∣

∣

∣

∑i
j=1 rpmj

i
− rpmi+1

∣

∣

∣

∣

(i ≥ 2)

Fig. 4. Prediction errors

C. First execution issue or sharing resource profile as initial

data

It is only after the first execution of the action that an

rpm is output and thus a prediction can be created3. We

consider the following solutions to this problem of having

initial predictions:

• Share resource profile: even though resource units are

not completely portable (e.g., heterogenous VM, CPUs,

devices can lead to different rpm for the same action),

they can be used as an initial resource profile measure-

ment rpm0 for the first prediction p1 = rpm0 and then

refined by the different combining strategies.

• Use existing solutions, as exposed in [12] by first ex-

ecuting a training phase, that consists in executing the

action various times to get first measurements, then

optionally run an offline learning phase and finally use

the predictions at runtime.

3To be exact, for a predefined parameter range R, there exists only an rpm

thus a prediction after an execution of the action in the same condition, i.e.,
with a parameter value v ∈ R.

V. IMPLEMENTATION

The Weight-Watcher service is composed of (1) modifica-

tions to the KVM in order to implement the Profiler and (2)

Java classes implementing the Predictor.

A. Profiler

We propose generic modifications to a VM that implement

the Profiler. The dynamic Profiler accounts for Memory (in

bytes), CPU (in number of bytecodes), Time (in µs) and

Network (in bytes/s) while the program is actually running.

For doing so, counters are added to the VM threads, that are

incremented while the bytecodes are executed by the virtual

machine. The CPU counter must be incremented as many

times as bytecodes are executed in the current thread (easily

achieved in an interpreted VM as KVM [17]), whereas the

Memory counter is incremented by the size of the data that

is allocated by the current thread (modifications to the VM

memory management of KVM).

For CPU, a counter (an array of 256 ints) keeps track

of which bytecodes are executed and how many times, so

that it is summed up when Profiler.getCount({CPU})

is called, providing the actual number of bytecodes executed

since the last Profiler.resetCount(). It is also pos-

sible to output the CPU counter array (which bytecode was

executed how many times, and not only the total number of

bytecodes executed) to get a more fine-grained measurement

of the execution and could be used as a time analysis factor

if a per-bytecode time consumption model is available.

Energy (in µJ) is deduced from a per-bytecode energy con-

sumption model [11], i.e., a table containing for each bytecode

a corresponding energy cost (aggregating CPU instructions and

memory energy costs). An array of 256 floats contains the

per-bytecode energy consumption which is multiplied with the

internal CPU counter array to get an estimation of the action

Energy consumption.

Time is the time spent in the given piece of code ex-

cluding the time executing higher priority tasks that could

have preempted the current action. The implementation of the

Time counter incrementation is slightly more difficult than

CPU accounting as threads can be preempted in the VM.

The Network resource is not profiled in the VM itself,

but at the library level; it basically adds up the number of

bytes sent out by the action, in concordance with the Time

consumption. This resource will e.g. help to detect network

congestion, as exposed in the introductory example, when used

with blocking protocols as HTTP or TCP.

In KVM, memory usage for primitive types is given as 1

byte for a byte, 2 bytes for a char, 4 bytes for an int

or a float and 8 bytes for a double or a long. These

primitive types can be encapsulated in Objects or contained

in arrays. An Object in KVM has an overhead of 12 bytes

and an array (arrayStruct) 16 bytes.

Memory usage of simple data structures can therefore be

deduced from the primitive types and overheads and are sum-

marized in Table I. Note that the ceiling part of sizeof(T[x])

is due to data alignment on a 32-bit architecture.

T[x] sizeof(T[x]) (in bytes)

byte[x] 16 + 4 · ⌈x/4⌉
char[x] 16 + 4 · ⌈x/2⌉
int[x] 16 + 4 · x
float[x] 16 + 4 · x
Object[x] 16 + 4 · x
double[x] 16 + 8 · x
long[x] 16 + 8 · x
StringBuffer() 72 = StringBuffer(16)

StringBuffer(x) 40 + 4 · ⌈x/2⌉
String(charArray) 40 + 4 · ⌈charArray.length/2⌉

TABLE I
SIZE (IN BYTES) OF SOME SIMPLE STRUCTURES

B. Predictor

The implementation of the predictor was entirely done in

Java. It takes as inputs the rpm from the Profiler which is

built into the KVM (C code exposing hooks in Java). The

main implementation issue was to create an adequate data

structure for the prediction array, that could efficiently simulate

an array of N dimensions, where N = NbPar + r, with the

constraint that any dimension, i.e., parameter, must be able

to grow and shrink (i.e., changing the minimum, respectively

maximum value or increasing, respectively decreasing k) at

runtime (see Section IV-A). In fact, the multidimensional array

has NbPar dimensions for indexing on every parameter (the

size of each parameter array is kp) and storing r different

values for each resource to predict. The implementation of the

combining strategies, and their corresponding memory costs

are summarized in Table II. The results of the two first columns

of this table were generated taking the example of a resource

profile with one single parameter having one single interval

(k = 1) spanning the range [10..20]. The numbers given

correspond to the whole updating procedure, which consists of

finding a cell in the multidimensional array and updating the

previous value with a new one using one of the four combining

strategies. In this process, the most expensive operation is the

localization of the value to change, however since it is the

same for all four situations, the only visible differences are

related to the costs of the combining strategies themselves.

The values in parentheses convey the relative cost compared

to the most frugal strategy (OS).

Strategy Bytecodes Time [µs] Memory cost (array)

OS 273 (1) 9.348 (1) O(NbPar + 4r
∏nbP ar

p=1 kp) (1)

AS 279 (1.02) 9.473 (1.01) O(NbPar + 4r
∏nbP ar

p=1 kp) (1)

LPF 283 (1.03) 9.597 (1.02) O(NbPar + 4r
∏nbP ar

p=1 kp) (1)

GA 332 (1.21) 11.565 (1.23) O(NbPar + 8r
∏nbP ar

p=1 kp) (>2)

TABLE II
COMBINING STRATEGIES COSTS (BYTECODES, CPU TIME AND MEMORY)

It is obvious that querying and updating the resource profile

before and after the execution of every action has a cost. How-

ever the resource overhead added by these operations is not

significant compared to the resources exploited while running

a typical action. Figure 5 shows the total costs (in bytecodes)

for querying and updating the resource profile using the two

extreme combining strategies overwrite and global average.

These results are issued by recording CPU consumption for

the following three steps: querying the resource profile for

a prediction, executing an action and updating the resource

profile after the action is executed. The action taken in the

example is the Minimal Spanning Tree (MST) computation

algorithm of the JOlden package [3]. The only parameter on

which the execution depends is the number of vertices of

the graph. This parameter is initialized with the range [1..50]
and k = 10. Three series of 10 executions are performed

with 10, 20 and 30 vertices for each series. The cost implied

by a prediction query is around 200 bytecodes whereas the

updates are between 320 and 440 bytecodes. The variation in

the costs of the updates is due to the selection of different cells

(k = 10 possible cases) in the array: for each cell, the cost

for computing its index is slightly different. Figure 5 clearly

shows that the overhead for querying and refining a prediction

is much lower than the execution of the action itself.

 100

 250

 500

 750
 1000

 2500

 5000

 7500
 10000

 25000

 50000

 75000
 100000

 250000

1 10 1 10 1 10

211

358
417

20000

80000

182000

N
u

m
b

e
r

o
f

b
y
te

c
o

d
e

s
 (

lo
g

 s
c
a

le
)

Comparing profiling/predicting using the MST.doAction() (JOlden)

Number of iterations
 with 10 vertices

Number of iterations
 with 20 vertices

Number of iterations
 with 30 vertices

Action Execution
Prediction Query

update (Overwrite)
update (Global Average)

Fig. 5. Costs of operations on the resource profile depending on the
combining strategy used.

C. Cost of array adaptation

The previous example is only valid under the assumption

that the parameter value of all executions falls into the range

initially defined for the parameter. In case the parameter value

falls outside this range, strategies for adapting the parameter

range need to be used as already discussed in Section IV-A. A

similar example as the one presented in the previous section

is taken: the resource profile contains one parameter with the

range [1..50] but this time k = 50 (array with 50 cells for

the initial range), thus with ∆ = 1. This time, the number

of vertices is uniformly distributed in the range [20..30] for

the first 20 executions after which max changes to 200. This

is done to demonstrate the situation where the parameter

value (200) is out of the parameter range [1..50] and thus

the array must be adapted. Keeping a precision (∆ = 1) that

is constant the array gets extended to 4 times its initial size

to have a new range of [1..200]. The total cost, in CPU of

the operation is 5813 bytecodes which thus becomes non-

negligible comparatively to the action itself. Other strategies

could be used to perform such operations, however either

the resource consumption of the system or the quality of

the predictions need to be traded-off against one another.

Therefore, the adaptation of the parameter range should ideally

not occur: parameters should be initialized with reasonable

values by the programmer.

D. Memory Footprint Cost of the Weight-Watcher

The modifications done to the KVM, to implement the

Weight-Watcher accounts for 16 kilobytes. The modifications

in the VM, for adding low-level counters and implementing

the energy consumption model [11], i.e., the Profiler, accounts

for 2 kilobytes whereas the rest of the addition implementing

the Predictor represent 14 kilobytes of Java classes.

VI. PERFORMANCE

Performance of the Weight-Watcher service is twofold: how

slower is the execution of Java programs on top of the modified

KVM (adding the native dynamic Profiler) and how accurate

are the predictions?

A. Profiler

Using CaffeineMark 3.0 [15] benchmark for embedded

devices, the KVM speed decrease caused by the dynamic

profiling is going from an overall score of 1159.27 points to

an overall score of 1052.27 points, that is a 9.23% decrease

in speed. The detail of each test is exposed in Figure 6. Using

JGrande 2.0 benchmark [6], the KVM speed slowdown is

6.46% as illustrated in Figure 7(a) for JGrande simple section

1 tests, and Figure 7(b) for JGrande section 2 tests.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

 3500

Sieve Loop Logic String Float Method Average

CaffeineMark 3.0 Benchmarks

-9
.4

0
%

-9
.1

1
%

-9
.0

0
%

-8
.2

0
%

-7
.9

9
% -1

1
.6

4
%

-9
.2

3
%

Original KVM
Modified KVM

Fig. 6. CaffeineMark 3.0 benchmarks showing relative performance decrease
(in points) of the modified KVM compared to the original KVM.

The JOlden [3] benchmark shows a time execution increase

of 9.86% as illustrated in Figure 8. For comparison, the

averaged performance slowdown introduced by bytecode self-

accounting [1], that is for accounting bytecodes only, is

centered around 20% [1] and 40% [10], depending on the

publication.

 0

 2.5e+06

 5e+06

 7.5e+06

 1e+07

 1.25e+07

Arith:Add:*

(adds/s)

Arith:M
ult:*

(m
ultiplies/s)

Arith:D
iv:*

(divides/s)

Assign:*

(assignm
ents/s)

C
ast:*

(casts/s)

C
reate:Array:*

(arrays/s)

C
reate:O

bject:*

(objects/s)

Exception:*

(exceptions/s)

Loop:*
(iterations/s)

M
ethod:*

(calls/s)

JGrande 2.0 Benchmarks (Section 1: Low Level Operations)

-2
.7

7
%

-4
.1

4
%

-3
.5

7
%

-3
.4

9
%

+
2

.0
7

%

-1
8

.1
0

%

-1
6

.2
8

%

-9
.7

3
%

-1
1

.2
2

%

-4
.1

1
%

Original KVM
Modified KVM

(a) Section 1: Low Level Operations

 0

 10

 20

 30

 40

 50

LU
Fact

(M
flop/s)

H
eapSort

(Kitem
s/s)

C
rypt

(10Kbyte/s)

FFT(KSam
ples/s)

SO
R(Iterations/s)

SparseM
atm

ult

(Iterations/s)

JGrande 2.0 Benchmarks (Section 2: Kernels - SizeA)

-4
.9

1
%

-5
.8

4
%

-4
.6

2
%

-5
.8

9
%

+
4

.0
9

% -4
.6

6
%

Original KVM
Modified KVM

(b) Section 2: Kernels

Fig. 7. JGrande 2.0 benchmarks showing relative performance decrease of the modified KVM compared to the original KVM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

bh(1024)

bisort(250000)

em
3d(2000)

health(500)

m
st(1024)

perim
eter(16)

pow
er

treeadd(20)

tsp(10000)

voronoi(2000)

A
verage

JOlden Benchmarks (time in seconds)

+
1

3
.2

1
%

+
8

.6
2

%

+
5

.9
6

% +
1

9
.9

3
%

+
1

8
.2

5
%

+
3

.1
3

%

+
8

.7
2

%

-3
.0

0
%

+
5

.6
1

%

+
4

.4
7

%

+
9

.8
7

%

Original KVM
Modified KVM

Fig. 8. JOlden benchmarks showing relative time execution increase between
the modified KVM and the original KVM.

The overhead of profiling, i.e., keeping track of several

integers and incrementing them while the program is executing

is relatively low for the following reasons: (a) the cost of

accounting is paid in native code (as opposed to [1] where

the accounting is done at the bytecode level, after having

rewritten the bytecodes), (b) the accounting itself is kept

simple (the integers to increment are attached to the running

thread, supporting data locality, thus data caching).

B. Prediction Errors

In order to compare the prediction errors exposed in Fig-

ure 4 (Section IV-B) and related to the four different com-

bining strategies presented above, a concrete example is done

using the Minimal Spanning Tree computation algorithm from

the JOlden package [3] as the action. The only parameter

used in the resource profile is again the number of vertices

(n) of the graph. This parameter is initialized with the range

[10..20] and k = 5 (∆ = 2). Thirty iterations of the algorithm

are done in which n is taken uniformly at random in the

range [10..15] and the error is computed at each iteration as

ǫ = 100 · |pi+1−rpmi+1|
rpmi+1

.The result is presented in Figure 9,

showing that each of the combining strategies has a learning

phase induced by the number of intervals k of the parameter:

there is no prediction ready (p1 undefined) at the beginning

producing a prediction error of 100%. However, as this stage

is passed, the different combining strategies can be compared.

The overwrite strategy is the one producing the highest error

peaks since the prediction only depends on the last iteration

whereas the error corresponding to the global average strategy

gives the best results since all of the previous predictions

have an influence on the current one. The low-pass filter and

average strategies give similar results.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

%
 E

rr
o

r
(C

P
U

)

Number of iterations

Prediction errors (MST.doAction())

Overwrite (OS)
Average (AS)

Low-Pass Filter (LPF)
Global Average (GA)

Fig. 9. Predictions are made based on the MST algorithm (k = 5, ∆ = 2).

Figure 10 compares the prediction errors of the overwrite

and global average strategies in different setups, k = 1
(Figure 10(a)) and k = 10 (Figure 10(a)) during 25 iterations

for the example described in the previous paragraph. The

average prediction error is illustrated in Figure 11 for all four

strategies. In this case, as k = 1, (∆ = 10) there is only

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 E

rr
o

r
(C

P
U

)

Overwrite (OS)
Global Average (GA)

(a) k = 1, ∆ = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

%
 E

rr
o

r
(C

P
U

)

Overwrite (OS)
Global Average (GA)

(b) k = 10, ∆ = 1

Fig. 10. Different prediction errors depending on k (thus ∆) for overwrite and global average strategies.

 0

 5

 10

 15

 20

 25

 30

 35

k=1, ∆ = 10 k=10, ∆ = 1

P
re

d
ic

ti
o

n
 E

rr
o

r
(%

)

Average Prediction errors (MST.doAction())

2
7

.2
4

%

2
3

.1
9

%

2
1

.7
5

%

2
1

.1
3

%

4
.7

7
%

4
.3

8
%

4
.3

5
%

4
.3

2
%

Overwrite
Adaptive

Low-Pass Filter
Global Average

Fig. 11. Average prediction errors (10’000 iterations) depending on k (thus
∆) for different combining strategies.

one integer to store in the prediction array, i.e., a memory

cost of 4 bytes. It is also the only value which can be used

in next iterations to predict the resource consumption of the

system. With this very simple prediction setup, the overwrite

combining strategy gives errors going up to 70%. In fact, the

very worst case, for this strategy is when an execution with

n = 10 is directly followed by an execution with n = 15.

The graphs show that the complexity of the combining tasks

is proportional to their accuracy, as summarized in Figure 11.

Figure 10(b) shows the prediction errors of the same action,

with k = 10 intervals of size ∆ = 1 ([min..max] = [10..20]).
A prediction array of size 10 must be kept in memory, which

represents 40 bytes. The graph clearly shows that sampling the

parameter increases the precision of the prediction drastically.

In fact, the only drawback (apart from the increased memory

consumption) is that 5 executions were needed to initialize

the array (recalling that n is chosen uniformly at random in

the range [10..15]) for which the error equals 100%, which

explains the 5 peaks at the beginning of the graph. An

interesting aspect to notice is that one can naturally think that

the error should be 0 after the five first steps used for setting

the values in the array. However the MST algorithm is not

totally deterministic since it uses random numbers to compute

distances between edges. Therefore even if two executions are

done with the same parameter, their CPU consumption will be

close, but not precisely the same, leading to the errors observed

even when ∆ = 1.

The prediction errors are averaged, for each combining

strategy, with 10’000 iterations (Figure 11). The histogram

shows (1) that the overall accuracy of combining strategies

are proportional to their complexity, and (2), that with a very

small ∆, all combining strategies behave comparably.

Global average, in general, is superior in terms of accuracy,

which seems somehow negligible when its complexity, both

in terms of memory and CPU consumption (see Table II), is

compared to the second best combining strategy: Low-Pass

Filter.

VII. RELATED WORK

Predicting resource consumption of code is hard (in some

cases undecidable [2]), and typically requires a lot of re-

sources for its own purpose, thus making it a real challenge

on resource-constrained devices. Moreover, the estimations

predicted for a piece of code are typically not portable from

one device to another and thus can typically not be computed

in advance and shared amongst devices: internal object layout

and header size are implementation specific, and, above all,

battery and CPU consumption of a piece of code are device

specific. It is shown, for instance in [4] that there is a strong

correlation between the number of bytecodes executed and

the elapsed CPU time, but this correlation is application-

specific and obviously depends on the given VM/OS/hardware

combination. However, in [9], an attempt is made to define

a set of portable resource metrics which are converted to

platform-specific values thanks to statically computed conver-

sion factors.

Static analysis of memory [2], [5], [8], [18] and time [7],

[14] can provide upper bounds of memory, respectively time

usage of a given piece of code, providing strong guarantees

that the code will never exceed the estimation. Determining

memory upper bounds may improve memory management,

e.g., for stack-based allocation of dynamic objects, or for

creating parametric memory-allocation certificates [2]. Worst-

case execution times are key in computing scheduling schemes

that satisfy all timing constraints [7]. However, static load-

time code analysis is itself very demanding in terms of

resources, and is therefore not an ideal candidate for resource-

constrained devices, as it may cause significant latencies (i.e.,

service downtime). In [2] most of the static analysis includ-

ing the execution of the core components (finding creation

sites, computing control-state invariants, inductive variables

and Ehrhart polynomials) took close to 30 seconds on an

Intel Pentium IV 3GHz CPU. In contrast, the approach we

consider here consists in loading and executing the code on

the fly and performing the analysis at runtime (during the first

executions), giving resource consumption approximations after

a few executions.

In [1], [2], the amount of memory that is allocated by native

code or by the virtual machine itself cannot be measured,

respectively estimated. Section V-A shows that applying modi-

fications at the VM level allows to quantify the memory that is

allocated by the VM itself, e.g., the overhead of data structures.

The work in [13] is close to ours since the goal also is

to make programs change behavior depending on resource

predictions. Nevertheless, their predictions are based on (1)

desktop linux kernel outputs and (2) history of executions. The

first is not targetting embedded devices and the second relies

on log files (stable storage) and statistical machine learning,

which are both way too resource demanding for the embedded

devices we target.

VIII. CONCLUDING REMARKS

This paper introduces the Weight-Watcher service. This

service aims at providing resource consumption measurements

and estimations for software executing on resource-constrained

devices. As a consequence, the service enables software com-

ponents to continuously adapt and optimize their quality of

service according to resource availability. We presented an

implementation of the service that includes a Profiler (in

the KVM) as well a library of Java classes encapsulating

resource prediction. The evaluation shows that there is still

room for improvement on the implementation of the Profiler.

In particular, it could be interesting to include preparation

sequences in order to reduce the cost of profiling in interpreted

virtual machines. It would also be interesting to precisely

capture the trade-off between the memory consumption of the

Predictor and the accuracy of the predictions.

REFERENCES

[1] W. Binder and J. Hulaas. A portable cpu-management framework for
java. IEEE Internet Computing, 8(5):74–83, 2004.

[2] V. Braberman, D. Garbervetsky, and S. Yovine. A static analysis for
synthesizing parametric specifications of dynamic memory consumption.
Journal of Object Technology, 5(5):31–58, June 2006.

[3] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in java. In PACT ’01: Proceedings of

the International Conference on Parallel Architectures and Compilation

Techniques, pages 280–291, Barcelona, September 2001.
[4] A. Camesi, J. Hulaas, and W. Binder. Continuous Bytecode Instruction

Counting for CPU Consumption Estimation. In QEST ’06: (3rd

International Conference on the Quantitative Evaluation of SysTems).
IEEE Computer Society Press, 2006.

[5] W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory usage
verification for oo programs. In SAS ’05: Proceedings of the 12th Static

Analysis Symposium, pages 70–86, 2005.
[6] C. Daly, J. Horgan, J. Power, and J. Waldron. Platform independent

dynamic java virtual machine analysis: the java grande forum bench-
marking suite. In Proceedings of the joint ACM-ISCOPE conference on

Java Grande, pages 106–115, Palo Alto, 2001.
[7] C. Ferdinand. Worst case execution time prediction by static program

analysis. IPDPS ’03: Proceedings of the 17th International Parallel &

Distributed Processing Symposium, 03:125a, 2004.
[8] M. Hofmann and S. Jost. Static prediction of heap space usage for first-

order functional programs. In POPL ’03: Proceedings of the 30th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 185–197, New York, NY, USA, 2003. ACM Press.

[9] E.-N. Huh, L. Welch, B. Shirazi, and C. Cavanaugh. Heterogeneous
resource management for dynamic real-time systems. In HCW 2000:

9th Heterogeneous Computing Workshop, page 287, 2000.
[10] J. Hulaas and W. Binder. Program transformations for portable cpu

accounting and control in java. In PEPM ’04: Proceedings of the 2004

ACM SIGPLAN symposium on Partial evaluation and semantics-based

program manipulation, pages 169–177, New York, NY, USA, 2004.
ACM Press.

[11] S. Lafond and J. Lilius. An energy consumption model for an embedded
java virtual machine. In ARCS ’06: Proceedings of the 19th International

Conference on Architecture of Computing Systems, pages 311–325,
Frankfurt, March 2006.

[12] D. Narayanan, J. Flinn, and M. Satyanarayanan. Using history to
improve mobile application adaptation. In WMCSA ’00: Proceedings of

the 3rd IEEE Workshop on Mobile Computing Systems and Applications,
pages 31–. IEEE Computer Society, 2000.

[13] D. Narayanan and M. Satyanarayanan. Predictive resource management
for wearable computing. In MobiSys ’03: Proceedings of the 1st

international conference on Mobile systems, applications and services,
pages 113–128, New York, NY, USA, 2003. ACM Press.

[14] C. Y. Park. Predicting program execution times by analyzing static and
dynamic program paths. Real-Time Syst., 5(1):31–62, 1993.

[15] Pendragon Software Corporation. CaffeineMark 3.0 for Embedded

Devices. http://www.benchmarkhq.ru/cm30/info.html.
[16] M. Satyanarayanan and D. Narayanan. Multi-fidelity algorithms for

interactive mobile applications. Wireless Networks, 7(6):601–607, 2001.
[17] Sun Microsystems. J2ME Building Blocks for Mobile Devices, White

Paper on KVM and the Connected, Limited Device Configuration

(CLDC), May 2000. http://java.sun.com/products/cldc/wp/KVMwp.pdf.
[18] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized live heap

bound analysis. In VMCAI ’03: Proceedings of the 4th International

Conference on Verification, Model Checking, and Abstract Interpreta-

tion, pages 70–85, London, UK, 2003. Springer-Verlag.
[19] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a

distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5-6):757–768, 1999.

