
Modeling Human-Agent Interaction with Active Ontologies

Didier Guzzoni and Charles Baur
Robotics Systems Laboratory

Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

didier.guzzoni@epfl.ch, charles.baur@epfl.ch

Adam Cheyer
Artificial Intelligence Center

SRI International
Menlo Park, California 94025

adam.cheyer@sri.com

Abstract

As computer systems continue to grow in power and
access more networked content and services, we be-
lieve there will be an increasing need to provide more
user-centric systems that act as intelligent assistants,
able to interact naturally with human users and with
the information environment. Building such systems
is a difficult task that requires expertise in many AI
fields, ranging from reasoning, planning, scheduling,
natural language and multimodal user interfaces. In
contrast to many approaches to building agent assistants
where diverse AI components are stitched together at
a surface level, we propose an approach, called ”Ac-
tive Ontologies”, and a toolset, called ”Active”, where
a developer can model all aspects of an intelligent as-
sistant: ontology-based knowledge structures, service-
based primitive actions, composite processes and pro-
cedures, and natural language and dialog structures. We
demonstrate this approach through an example proto-
type of an intelligent meeting scheduling assistant that
communicates using instant messages and emails.

Introduction
According to conservative estimates of Moore’s Law, com-
puter hardware will surpass the processing power of the hu-
man brain sometime in the next fifteen to thirty years. In-
creased processing will improve today’s CPU-bound com-
ponents such as speech recognition and synthesis, real time
vision systems, statistical machine learning, activity recog-
nition and action planning systems. These technologies,
coupled with the massive amounts of data and services ac-
cessible via the Internet, will allow the design and imple-
mentation of user-centric systems that act as ”intelligent as-
sistants”, able to interact naturally with human users and
with the information environment (Maes 1995).

Building software assistants is a difficult task that requires
expertise in numerous Artificial Intelligence (AI) and engi-
neering disciplines (Winikoff, Padgham, & Harland 2001).
Perception of human activities is typically based on tech-
niques such as computer vision or speech recognition. Nat-
ural language processors and dialog systems often require
advanced knowledge of linguistics. Activity recognition

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

approaches are frequently implemented using Bayesian or
other statistical models. Decision making strategies and
complex task execution are the responsibility of planning
and scheduling systems, each potentially bringing a new
programming language to learn. Finally, as planning un-
folds, various actions are taken by the system to produce
relevant behavior, often across a wide range of modalities
and environments. Substantial integration challenges arise
as these actions communicate with humans, gather and pro-
duce information content, or physically change the world
through robotics. Testing and debugging an environment
of such heterogeneous intricacy requires strong technical
knowledge and a diverse set of tools.

To ease development and performance of intelligent assis-
tant systems, we propose a technique where user interaction
and core reasoning are deeply intertwined into a coherent
and unified system, through a modeling and programming
process we call Active Ontologies. Many intelligent assis-
tant systems are built around powerful processing cores (rea-
soning, learning, scheduling and planning) connected with
separate components in charge user interaction (language
processing, dialog management, user interface rendering).
It is often a significant challenge to perform the integration
and mapping of a user-model of a problem domain to the
background reasoning components and structures as signif-
icant information must flow back and forth during process-
ing and dialog. Additionally, maintenance is a challenge, as
improvements and new features require work on both front
and backend layers, as well as to the inter-layer communi-
cation interface. By contrast, our approach is to provide a
unified platform where core processing and user interaction
come together in a seamless way. Our platform, Active, is
a toolset and methodology to create intelligent applications
featuring core reasoning, user interaction and web services
integration within a single unified framework. To leverage
Active Ontologies, where data structures and programming
concepts are defined in ontological terms, software devel-
opers can rapidly model a domain to incorporate many of
the best AI techniques and web-accessible data and services
through a visual, drag-and-drop interface, easy-to-use wiz-
ards, and a familiar programming language. This is the vi-
sion we are pursuing through the development of the Active
framework.

The following sections of this paper present the Active



framework in more detail, illustrating how user interaction
and agent-based processing are simultaneously developed in
an integrated way. We first look at related work on building
intelligent software. Then, we outline the Active framework,
tools, and methodologies. The next section presents how
Active is used to implement a simple intelligent assistant
able to organize meetings. Finally, a conclusion summarizes
our results and outlines future directions of our work.

Related work
There are numerous examples of specialized applications
aimed at creating intelligent user interfaces to assist humans
in specific domains (Middleton 2002). Some projects focus
on Internet assistance, were intelligent assistants can lever-
age a vast amount of information and services to help users
with complex tasks (Morris, Ree, & Maes 2000). Schedul-
ing meetings, managing an agenda and communicating also
represent applications where intelligent assistants are rele-
vant. Intelligent assistants are also used in the domain of
smart spaces (Addlesee et al. 2001), where instrumented
rooms are able to sense their environment and act upon
events and conditions. Ubiquitous mobile computing is an-
other domain for intelligent assistants. They allow users to
access remote information and make use of a dynamic envi-
ronment. In this field, generic rule based processing engines
have been used as the core component of intelligent assis-
tant frameworks. Projects are dealing with ubiquitous mo-
bile applications (Biegel & Cahill 2004) provide powerful
middleware platforms but lack natural language processing
or multimodal fusion.

In contrast to these more narrowly focused AI appli-
cations, DARPA’s recent PAL (Perceptive Assistant that
Learns) program has funded two very ambitious projects
that attempt to integrate many AI technologies (e.g. ma-
chine vision, speech recognition, natural dialog, machine
learning, planning, reasoning) into a single system. The
CALO project (Calo 2006) aims at designing and deploying
a personal assistant that learns and helps users with com-
plex tasks. CALO is an extremely heterogeneous system,
involving components written in eleven different program-
ming languages. CALO meets the requirements for which
it was designed, but because of its diversity and complex-
ity, is not a cognitive architecture suitable for use by any
single developer. Similarly, the RADAR project (Modi et
al. 2004) is a learning-based intelligent assistant designed
to help users deal with crisis management. Its flexibility and
sound design have allowed the system to be effectively de-
ployed and tested by users in realistic situations. However,
again, its complexity prevents a programmer to leverage its
capabilities and approaches to other domains.

The design of user-centric systems often involves reason-
ing systems connected to language processing and user in-
terfaces. To design intelligent applications, user interaction
components have been layered on top of core AI compo-
nents such as constraint solvers (Berry et al. 2005), BDI
reactive planners (Morley & Myers 2004) or machine learn-
ing (Segal & Kephart 2000). Instead of a layered application
design, we propose a more unified approach where user in-
teraction, language processing and core reasoning are deeply

Active ConsoleActive Editor

Active Ontology

Data (fact) store

Active Ontology
Active Ontology

Active Server

Communication Extension

Edit
Deploy
Debug

Inspect
Monitor

Service 1

Service 2 Service 3

Service NService 3

Figure 1: Active application design

integrated in a unified framework. Core processing of our
applications may not be as sophisticated and advanced, and
we rather focus on ease of design, implementation and de-
ployment of intelligent assistants. In addition, deep integra-
tion of reasoning, language processing and user interaction
components allows for easier dynamic multimodal fusion
and more reactive user dialog.

Perhaps the closest work to Active is the SOAR
project (Laird, Newell, & Rosenbloom 1987). In develop-
ment since 1983, SOAR offers an open, unified framework
for building intelligent ”cognitive” systems using a founda-
tion based on production rules. It incorporates planning and
reasoning technologies, truth maintenance, machine learn-
ing, and has been integrated with natural language sys-
tems (Lehman, Lewis, & Newell 1991). The Active Ontol-
ogy approach offers some advantages in rapidly modeling
an application, but in many ways, Active can be thought of
as a lighter-weight, developer-friendly version of SOAR that
works well in an Internet and web-services environment.

The Active framework
Active introduces the original concept of Active Ontolo-
gies as the foundation for creating intelligent applications.
Whereas a conventional ontology is a data structure, de-
fined as a formal representation for domain knowledge, with
distinct classes, attributes, and relations among classes, an
Active Ontology is a processing formalism where distinct
processing elements are arranged according to ontology no-
tions; it is an execution environment. Active Ontologies are
made up of a relational network of concepts, where concepts
serve to define both data structures in the domain (e.g. a
meeting has a time, a location, a topic and a list of attendees)
as well as associated rule sets that perform actions within
and among concepts. An Active-based application consists



of a set of loosely coupled services working with one or
more Active Ontologies (see figure 1). Using loosely cou-
pled services eases integration of sensors (e.g. speech recog-
nition, vision systems, mobile or remote user interfaces), ef-
fectors (e.g. speech synthesis, user interfaces, robotics) and
processing services (e.g. remote data sources, processing
components).

Active Tools
Active consists of three component tools, the Active Editor,
the Active Server and the Active Console.

• The Active Editor (see figures 2 and 3) is a design en-
vironment used by developers to model, deploy and test
Active applications. Within Active Editor, developers can
graphically create and relate concept nodes; select Wiz-
ards that automatically generate rule sets within a concept
to perform actions like interpret natural language, model
executable processes, or connect to third-party web ser-
vices; and then developers can test or modify the rule sets
as needed.

• The Active Server is a scalable runtime engine that hosts
and executes one or more Active programs. It can either
be run as a standalone application or deployed on a J2EE
compliant application server. The Active server exposes a
remote API (via SOAP or RMI) allowing external sensors
component to report their results by reporting events, thus
triggering actions within the deployed Active Ontologies.

• The Active Console permits observation and maintenance
of a running Active Server.

The Active framework implementation is a Java-based
software suite designed to be extensible and open. For both
the Active Editor and Active Server, a plug-in mechanism
enables researchers to package AI functionality to allow de-
velopers to apply and combine the concepts quickly and eas-
ily. A growing set of Active extensions is available for lan-
guage parsing, multimodal fusion, dialog and context man-
agement, and web services integration. To ensure ease of
integration and extensibility, all three components of the Ac-
tive platform communicate through web service (SOAP) in-
terfaces.

Active Fundamentals
At the core of Active is a specialized rule engine, where data
and events stored in a fact base are manipulated by rules
written using JavaScript augmented by a light-layer of first-
order logic. JavaScript was chosen for its robustness, clean
syntax, popularity in the developer community, and smooth
interoperability with Java. First-order logic was chosen for
its rich matching capabilities (unification) so often used in
production rule systems.

An Active Ontology is made up of interconnected pro-
cessing elements called concepts, graphically arranged to
represent the domain objects, events, actions, and processes
that make up an application. The logic of an Active appli-
cation is represented by rule sets attached to concepts. Rule
sets are collections of rules where each rule consists of a
condition and an action. When the contents of the fact store

changes, an execution cycle is triggered and conditions eval-
uated. When a rule condition is validated, the associated ac-
tion is executed. Rule conditions are represented by a com-
bination of fact patterns, compared with the content of the
fact store using a unification mechanism. Unification is es-
sentially a boolean operation to compare two facts. If two
facts unify, they are considered as equivalents. Variables
play an important role in the process of unification, where
they can be seen as wild cards that always unify with their
counter parts. When a variable unifies with a fact, it is in-
stantiated with the matching fact and, for the rest of the uni-
fication process, is not considered as a variable anymore but
as a known bound value. In the process of Active rule eval-
uation, instantiated variables of the condition can be used in
the action code of the rule.

To help model time based constraints, fact stores manage
the life cycle of facts. When a fact is inserted into the fact
store, additional optional information can be specified to de-
fine when the fact should actually be asserted and when it
should be removed. Both a controlled life cycle manage-
ment of facts and modeling of events in rule conditions pro-
vide Active with a time dimension that allows Active pro-
grammers to model complex time-based behaviors. Finally,
relationships among concepts define additional knowledge
about the domain. Depending on the application modeled
with Active, relationships carry attributes such as cardinal-
ity, weight or priorities.

AI Methodologies in Active
On top of the basic language elements and techniques de-
scribed in the previous section, we have been encoding a
number of AI approaches using Active, making them avail-
able as reusable Active Ontologies or Concept wizards for
rapid assembly by developers.

Language processing
The goal of a language processing component is to gather in-
put utterances, understand their meaning, and to finally gen-
erate a command to be delegated for execution. In Active,
we currently offer two componentized approaches to natural
language parsing (NLP):

1. Chart parsing (Earley 1970), where we use a bottom-up,
unification based grammar approach to model the target
language (e.g. Sentence ⇒ NounPhrase, VerbPhrase) us-
ing Active concepts;

2. Pattern recognition, where we use Active concepts to
model the domain in question and then add a light layer of
language (words and patterns) inside each concept. This
approach is often very natural for developers, produces
good results and the domain model is portable across lan-
guages.

We will describe the pattern recognition approach in more
detail, as it is a less-standard approach to NLP with some
practical benefits. To implement the pattern recognition ap-
proach for a domain, the first step consists of using concepts
and relationships to specify the model of the application (see
figure 2). A tree like structure is built, defining the structure



of a valid command. For instance, in our example a meeting
is made of a set of persons, a topic , a location and a date.

Once the domain has been defined using concepts and re-
lationships, a layer of language processing is applied, by as-
sociating rule sets directly on the domain concepts. Active’s
unique design allows programmers to model the domain of
an application and the associated language processing com-
ponent in a single unified workspace.

The domain tree has two types of processing concepts:
sensor concepts (leaves) and node concepts (non-leaves).
Sensor concepts are specialized filters to sense and rate in-
coming words about their possible meaning. A rating de-
fines the degree of confidence about the possible meaning
of the corresponding sensed signal. Typically sensor con-
cepts generate ratings by testing values of word sequences.
For instance, the topic leaf is in charge of detecting meeting
topics and is therefore instrumented with the following rule
: if two consecutive words are received and the first one is
”about”, then rate the second one as a topic. Therefore, if
the user provides, anywhere in a sentence, the combination
”about XXX”, then XXX will be reported as the topic of the
meeting. Word values can also be tested using regular ex-
pression pattern matching or a known vocabulary set. For
instance, the date concept has a set of specialized rules able
to convert utterances such as ”next Monday at 2 am” or ”to-
morrow morning” into date objects of the form: date(DAY,
MONTH, YEAR, HOURS, MINUTES). When detected, date
objects are created and reported to the meeting concept. Sen-
sors use communication channels to report their results to
their parents, the node concepts. There are two types of node
concepts: gathering nodes and selection nodes. Gathering
nodes, e.g. the meeting node in our example, create and rate
a structured object made of information coming from their
children. Selection nodes pick the single best rating coming
from their children. Node concepts are also part of the hi-
erarchy and report to their own parent nodes. Through this
bottom up execution, input signals are incrementally assem-
bled up the domain tree to produce a structured command
and its global rating at the root node. To simplify the task of
building Active based language processing, this technique
has been encapsulated into a set of Active extensions and
wizards. The Active Editor provides wizards allowing pro-
grammers to interactively define rules to apply to both sen-
sors and node concepts. At the end of a sequence of simple
interactive steps, wizards automatically generate processing
rules and attach them to associated concepts.

Relationships play an important role in our approach.
Two types of relationships can be used: structural and clas-
sification. Structural relationships (arrow-ended links on
figure 2) represent structures by binding elements together,
they relate to a ”has a” ontological notion. For instance,
topic, eventdate, location and person are members of a meet-
ing. Structural relationships also carry cardinality informa-
tion and record whether children nodes are optional, manda-
tory, unique or multiple. For instance, the relationship be-
tween person and meeting is multiple and mandatory . This
information is used by Active to provide the user with con-
textual information. For instance, if a user initiates a dialog
with ”schedule a meeting with john doe”, if the location

Figure 2: Language processing Active Ontology in the Ac-
tive Editor

node is linked as mandatory , the user will be asked to pro-
vide a location. Through this mechanism, the parsing tree
not only generates a structured command but also builds dy-
namic information to interactively assist the user. Relation-
ship can also represent types of nodes to link children to a
selection node. They relate to a ”is a” ontological notion.
For instance, let us imagine a more complex assistant able to
not only organize meetings but also organize trips. Based on
the user’s input a root node command would have to choose
between scheduling a meeting or organizing a trip.

The Active network of concepts holds the context of the
conversation. Nodes and leaves remember their current
state, allowing the user to use partial sentences, or incom-
plete information when necessary. One can say ”schedule a
meeting with john doe about hiring”and provide a second ut-
terance later as ”tomorrow morning in room 302” to set the
meeting’s location or ”and john smith”to add a participant.
This type of dialogue is well suited for natural interaction
where incomplete sentences are generated by the user.

Changes to language domain definition and processing are
easily and graphically done through the Active Editor. There



is no code to edit, system to shutdown nor program to recom-
pile. For instance, to add a new attribute phone number to a
person, a user uses the Add Leaf wizard to define parameters
and rules that control how leaf nodes rate incoming words.
The wizard automatically generates a new concept and its
processing rules. The next step consists of graphically con-
necting the new leaf with the person node with a structural
relationship and specifying its attributes (mandatory, cardi-
nality). The final step is to redeploy the modified Active
Ontology onto the Active Server.

Dynamic service brokering
At the heart of many multi-agent systems, such as SRI’s
Open Agent Architecture (OAA) (Cheyer & Martin 2001)
or CMU’s Retsina (Sycara et al. 2001), is a dynamic ser-
vice broker which reasons about how to deal with dynamic
selection of service providers. In such systems, a broker-
ing mechanism is used to select on the fly relevant providers
on behalf of the caller. Service providers are chosen based
on a service class and a set of selection attributes, which
typically include properties such as service availability, user
preferences, quality of service, or cost. Meta-agents can ad-
ditionally provide third party recommendations about spe-
cific service providers. In such delegated model, callers do
not specify which service provider to call, but rather the type
of service to call.

To implement this technique, we have created a special-
ized Active Ontology to work as a service registry and dy-
namic service broker. Service providers register their capa-
bilities and attributes by asserting a set of facts. This data
set represents a simple service registry where providers can
register their capabilities to later be discovered and invoked.

When a caller requests usage of a service, the broker se-
lects which providers can be called based on the caller’s at-
tributes and current context. Once a list of suitable providers
have been selected, the broker invokes them using one of two
policies:

• Sequential: Providers are called in sequence, until one of
them successfully responds. This would for instance be
used to send a notification message to a user. If several
service providers can send email, the message should be
delivered only once.

• Parallel: Providers are concurrently invoked, and their re-
sponses are aggregated into a result set. This technique
is used when a caller needs to retrieve information from
multiple sources.

In addition to implementing the processing part of the del-
egation mechanism through facts and rules, Active is also
used to model service categories. Concepts and relationships
are used to define input and output parameters of service cat-
egories. Such a unified approach allows Active developers
to graphically model an application domain and encoding its
processing elements in a unified environment. The Active
Editor provides a wizard allowing programmers to easily in-
tegrate and register any SOAP-enabled service as an Active
service provider, mapping the SOAP inputs and outputs di-
rectly to Active domain models.

Figure 3: Process modeling in the Active Editor

Process modeling and execution
An Active methodology to model execution processes has
been designed and implemented. Using concepts and rules
it is possible to model generic processes, hence using the
Active environment as a basic business process engine. Typ-
ically, processes model user dialog execution and sequences
of actions to be undertaken by Active. As other Active
methodologies, this technique has been encapsulated into a
set of interactive Active Editor wizards allowing program-
mers to model complex processes without writing any code.

Processes consist of nodes and transitions. Nodes are rep-
resented as Active concepts and transitions as Active rela-
tionships. Processes have conditional start nodes in charge
of triggering the execution of a process instance. Process
nodes are activated upon reception of a execution token,
passed among nodes through process transitions. The execu-



tion status of running processes and their instance variables
are persisted as Active facts in Active data stores. Finally,
when an end node is reached, the process instance termi-
nates. A collection of functional building blocks are avail-
able to model various types of process nodes:

• Start nodes define entry points that trigger process execu-
tions. A start node has a condition based on the content
of the Active fact store. Whenever the condition is valid,
a unique process instance is created and its execution is
started.

• End nodes terminate a process execution. They clean up
all variables and data associated with the process to ter-
minate.

• Conditional Fork nodes allow to model conditional
branches (sub processes to be executed in parallel).

• Execution nodes contain Javascript code to be executed.

• Wait nodes have a condition based on the content of the
Active fact store. Whenever the condition is valid, the
flow will resume its activity. A timeout can be specified
to undertake action when an awaited event does not occur.

• Delegation nodes perform delegated invocation of ser-
vices (see section Dynamic service brokering). A time-
out can be specified to resume the process activity when
no response is generated by the Active delegation mecha-
nism.

A simple Active based meeting assistant
To illustrate how Active can be used as the backbone of an
intelligent assistant application, we present a simple system
able to organize a meeting for a group of attendees. The
assistant interacts in a natural way (plain English) with the
meeting organizer and attendees through instant messages
and email.

Scenario
The organizer uses an instant messenger client (Yahoo! In-
stant Messenger TMin our example) to interact with the in-
telligent assistant (See figure 4). The organizer can express
her needs in plain English by sending sentences like: ”orga-
nize a meeting with john doe and mary smith tomorrow at 2
pm about funding”. The assistant initially responds with a
summary of what was understood. If any mandatory piece
of information is missing (i.e. a location), this is communi-
cated to the user. Specific details about the meeting can be
updated or added by the organizer using partial utterances
such as ”tomorrow at 7 am” to adjust the time or ”with
bob” to add an attendee. After each user input, the assistant
will also provide suggestions about what can be specified.
Through this iterative process the organizer can define all
details regarding the meeting to organize. When everything
has been decided, the organizer triggers the task of actually
organizing the meeting by sending ”do it”or an equivalent
utterance.

Then, the assistant uses web services to access public cal-
endars (Google Calendar TMin our case) of all attendees to
find a list of suitable slots for the meeting. Starting from

the meeting time, each one-hour slot is checked against all
attendees calendars. For each slot, if all attendees are avail-
able the slot is kept as a candidate for the meeting. Once
the list of possible time slots for the meeting is gathered,
the assistant sends an email to all participants asking if the
first slot of the list is suitable for the meeting. If all atten-
dees respond positively, the meeting is scheduled. If one
attendee responds negatively, the next candidate time slot is
selected and a new email message is sent to all attendees
asking for approval. This process continues until a suitable
date and time are found. If no date can be agreed on within
the day of the attempted meeting, the process is aborted
and the organizer is notified. If a date suits all attendees,
the assistant will actually schedule the meeting by automat-
ically adding an entry into all attendees calendars. Although
this example proposes a fairly simplistic modeling of the
scheduling process, it is sufficient to illustrate natural lan-
guage interpretation and dialog, long running asynchronous
processes, web-service delegation, and multimodal user in-
teraction. We shall now look at the approach for developing
this example application.

Core Application
The core of the application consists of three Active Ontolo-
gies implementing the overall behavior of the intelligent as-
sistant: language processing, plan execution and service bro-
kering. The rest of the application consists of SOAP enabled
web services providing access to calendar information and
two Active Server extensions providing email and instant
messenger communications.

The first stage of the application performs language pro-
cessing. Incoming utterances from the meeting organizer
are gathered by Active server extensions from either the in-
telligent assistant’s email account or its instant messenger
client impersonation. Utterances are then asserted as facts to
trigger an Active Ontology in charge of language processing
based on the method described in section Language process-
ing.

A second processing stage carries out the sequence of ac-
tions required to execute incoming user requests. Once a
command has been generated by the language processing
Active Ontology, it is asserted into the fact store of the Ac-
tive Ontology implementing the logic of our scenario. The
plan to execute has been modeled as an Active Ontology
(see figure 3) using the process technique defined in section
Process modeling and execution. Following a top down ex-
ecution, the start node Start-ScheduleMeeting triggers the
execution of the process. First, the organizer is notified
through the execution of the NotifyOrganizer node that con-
tains Javascript code to format user messages. Then, the
GetPossibleDate node invokes an external SOAP service
to get a list of possible meeting dates. The AskAttendees
node then formats and sends email messages to all meet-
ing attendees. The Wait-Confirmation node waits for in-
coming emails (deposited as facts by the Active email Ex-
tension) and passes control to the Test-IfAllAgree node. As
a switch node , the Test-IfAllAgree node conditionally con-
trols which node should execute next. Three possible situ-
ations are possible: If one of the attendees has rejected the



Figure 4: Example of user interaction

proposed date, control is passed to the AlternateDate node
that picks the next possible date and resumes the notifica-
tion process through the AskAttendees node. If more an-
swers are expected from attendees, the systems loops back
through the NeedsMoreAnswers node. If all attendees have
positively responded, the execution control is passed to the
Invoke-BookMeeting to actually schedule the meeting. Fi-
nally the End-ScheduleMeeting node terminates the process
and cleans up all its instance data.

As the plan to execute unfolds, a third Active Ontology is
used to dynamically pick and invoke external services. To
perform its task, our meeting assistant requires external ser-
vices to access the personal calendars of attendees, notify
them (by email) and converse with the organizer (instant
messages). All interactions with these external resources
are ran through the delegation mechanism described in sec-
tion Dynamic service brokering. The decoupling between
the caller and service providers allows the caller to specify
what is needed, not who nor how tasks should be performed.
It allows for dynamic swapping of service providers without
changing anything on the caller side. Service providers can
be dynamically picked based on the user’s preferences, its
location or current availability of providers.

External services
Following the Active design pattern, our application is made
out of one or more Active Ontologies and a set of loosely
coupled services (see figure 1). In our case, the backend is
based on the Google calendar API’s to read and modify the

personal calendars of meeting attendees who are supposed
to have a Google calendar account. Google public API’s
have been exposed as SOAP web services for easy integra-
tion with the Active Ontology in charge of service broker-
ing. The meeting organizer uses Yahoo! Instant Messenger
TMwhose public API has been integrated as an Active Server
extension. Finally, an Active Server extension uses the POP
protocol to regularly check its email account. Each incom-
ing email is converted into an Active fact for processing. For
instance, the Wait-Confirmation node (see figure 3) waits for
incoming email messages asserted as Active facts.

Conclusion
In this paper we present an innovative architecture to de-
velop intelligent assistants. The Active framework provides
a unified tool and approach for rapidly developing appli-
cations incorporating language interpretation, dialog man-
agement, plan execution and brokering of web services. In
contrast to related efforts, Active combines core reasoning
and user interaction in a unified design to provide flexibil-
ity and dynamic user dialog. In a broader way, Active aims
to unleash the potential of intelligent software by making
required technologies more easily accessible. This paper
shows how a simple assistant able to schedule meetings has
been designed and successfully implemented based on Ac-
tive.

More work remains to be done on application, imple-
mentation and methodology aspects of Active. First on the
application side, in addition to the meeting assistant pre-



sented here, Active is used in different intelligent assistants
systems. For instance, Active is used as the backbone of
an application that helps mobile users access data and ser-
vices through a natural email or short messages based di-
alog. In a different field, an Active-based intelligent oper-
ating room helps surgeons interact, through a multimodal
approach mixing voice and hand gestures, with computer
based equipments during surgery. For these applications, we
plan to gather feedback and experience from users to help us
improve and validate the flexibility and robustness of our ap-
proach.

On the implementation side, we are working on scala-
bility and robustness of the Active Server. We are plan-
ning on building clusters of Active Servers, able to balance
large workloads to host multiple personal assistants serving
a large number of users. In parallel, the evaluation algo-
rithm of the Active rule engine is being further optimized to
improve scalability and performances.

For Active-based methodologies, we are exploring inno-
vative AI techniques for activity representation and recogni-
tion. Our goal is to unify plan execution and activity recog-
nition, so that an Active-powered assistant could look at the
activities of a user, understand what is being attempted to
proactively provide relevant assistance and even take over
the execution of the task as appropriate.

Acknowledgments
This research is supported by SRI International and the
NCCR Co-Me of the Swiss National Science Foundation.

References
Addlesee, M.; Curwen, R.; Hodges, S.; Newman, J.;
Steggles, P.; Ward, A.; and Hopper, A. 2001. Implement-
ing a sentient computing system. Computer 34(8):50–56.
Berry, P.; Myers, K.; Uribe, T.; and Yorke-Smith, N. 2005.
Constraint solving experience with the calo project. In Pro-
ceedings of CP05 Workshop on Constraint Solving under
Change and Uncertainty, 4–8.
Biegel, G., and Cahill, V. 2004. A framework for de-
veloping mobile, context-aware applications. In PER-
COM ’04: Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications
(PerCom’04), 361. Washington, DC, USA: IEEE Com-
puter Society.
Calo, C. 2006. http://www.calosystem.org/.
Cheyer, A., and Martin, D. 2001. The open agent archi-
tecture. Journal of Autonomous Agents and Multi-Agent
Systems 4(1):143–148. OAA.
Earley, J. 1970. An efficient context-free parsing algo-
rithm. Commun. ACM 13(2):94–102.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artif. Intell.
33(1):1–64.
Lehman, J. F.; Lewis, R. L.; and Newell, A. 1991. In-
tegrating knowledge sources in language comprehension.
In Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society, 461–466.

Maes, P. 1995. Agents that reduce work and information
overload. In Communications of the ACM, volume 38.
Middleton, S. E. 2002. Interface agents: A review of the
field. CoRR cs.MA/0203012.
Modi, P. J.; Veloso, M.; Smith, S.; and Oh, J. 2004. Cm-
radar: A personal assistant agent for calendar management.
In Agent Oriented Information Systems, (AOIS) 2004.
Morley, D., and Myers, K. 2004. The spark agent frame-
work. In AAMAS ’04: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Mul-
tiagent Systems, 714–721. Washington, DC, USA: IEEE
Computer Society.
Morris, J.; Ree, P.; and Maes, P. 2000. Sardine: dynamic
seller strategies in an auction marketplace. In ACM Con-
ference on Electronic Commerce, 128–134.
Segal, R. B., and Kephart, J. O. 2000. Incremental learning
in swiftFile. In Proc. 17th International Conf. on Machine
Learning, 863–870. Morgan Kaufmann, San Francisco,
CA.
Sycara, K.; Paolucci, M.; van Velsen, M.; and Giampapa,
J. 2001. The RETSINA MAS infrastructure. Technical Re-
port CMU-RI-TR-01-05, Robotics Institute Technical Re-
port, Carnegie Mellon.
Winikoff, M.; Padgham, L.; and Harland, J. 2001. Simpli-
fying the development of intelligent agents. In Australian
Joint Conference on Artificial Intelligence, 557–568.


