Abstract

We present a new, parallel version of the numerical electromagnetics code (NEC). The parallelization is based on a bidimensional block-cyclic distribution of matrices on a rectangular processor grid, assuring a theoretically optimal load balance among the processors. The code is portable to any platform supporting message passing parallel environments such as message passing interface and parallel virtual machine, where it could even be executed on heterogeneous clusters of computers running on different operating systems. The developed parallel NEC was successfully implemented on two parallel supercomputers featuring different architectures to test portability. Large structures containing up to 24000 segments, which exceeds currently available computer resources were successfully executed and timing and memory results are presented. The code is applied to analyze the penetration of electromagnetic fields inside a vehicle. The computed results are validated using other numerical methods and experimental data obtained using a simplified model of a vehicle (consisting essentially of the body shell) illuminated by an electromagnetic pulse (EMP) simulator.

Details

Actions