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Introduction, motivation, and aims 2

Probability theory: the science of plausible reasoning

[L]a théorie de la probabilité n’est au fond que le bon sens réduit au 

calcul: elle fait apprécier avec exactitude, ce que les esprits justes 

sentent par une sorte d’instinct, sans qu’il puissent souvent s’en rendre 

compte.

Pierre-Simon Laplace, 1812

Probability theory is nothing but common sense reduced to calculation…
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The example problem

Estimate and compare the rate of success r of two evolutionary 
methods M1 and M2 applied to a given problem (in short, the 
rate of success r of two experiments E1 and E2), given the 
observation of the result of two series of runs

E1 E2
13 runs 12 runs
4 successes 7 successes
9 failures 5 failures

What kind of problem is this?

Intuitively (“instinctively”), experiment E2 has a greater rate of success. 
We would like to express more precisely (“exactly”) the significance of 

the observed results

Definition of direct and inverse problems 4

Direct problems (sampling, deductive, …) 

We know the system (its state, its parameters…) and we want 
to tell what we can expect from observing it

S O

Examples
• Outcome of draws from an urn of know composition
• Outcome of tosses of a fair coin
• Value of optical flow given plane pitch 
• Outcome of runs of evolutionary experiment given rate of success
• …

Direct problems are conceptually “easy” (counting, geometry, 
elementary physics) although they can be technically challenging
(combinatorial theory…)
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Inverse problems (estimation, inductive, …) 

We know the outcome of a series of observations of the system 
and we want to estimate its properties (state, parameters…) 

S O

Examples
• Composition of urn from observation of outcome of draws
• Fairness of coin from observation of outcome of tosses
• Plane pitch from observation of optic flow 
• Rate of success of evolutionary experiment from observation of outcome of runs
• …

Inverse problems are conceptually “difficult” (we sometimes 
guess some properties of the system but the complete solution is
typically not intuitive) but they are also the most relevant in 
science and technology

Probability theory 6

Probability theory

A probability is a numerical value representing our degree of 
belief (plausibility) in the truth of a proposition

Examples of propositions
• The urn contains four blue balls and six green balls
• The plane pitch is five degrees nose up 
• The rate of success of experiment E is 0.7 

•This definition is subjective (probability depends on our state 
of information)

•Subjective does not mean arbitrary
•The main requisite is consistency

• Two persons with the same information must obtain to the same 
numerical value

• Using the same information in different ways (e.g., updating 
progressively our belief or using all the information at the end…) must 
give the same result
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Cox rules for consistent reasoning

R.T. Cox [American Journal of Physics (1946), 14(1)1-13] derived the 
quantitative rules for consistent manipulation of degrees of 
belief (plausible reasoning). 

Consequences:
• There do not exist “new kinds of logic” for expert systems and similar AI 

systems

• Evolution should lead to the “implementation” of plausible reasoning in living 
beings, possibly  in approximated form due to the computational complexity of 
the exact solution of problems with a lot of information (information paradox)

• Either the methods of orthodox statistics reduce to these rules, or they are 
wrong

• …

There is (up to isomorphisms)
a unique calculus of plausible reasoning

The rules found by Cox correspond to Laplace’s assumptions

Probability theory 8

Conditional probability P(A|B)

P(A|B) is the plausibility that the proposition A is true, given that B is true

• The link between A and B is logical, not causal (beware of the mind 
projection fallacy! [Jaynes])

• Example: A is a proposition about the color of a first ball drawn form an urn 
without looking at it, B is about a second ball drawn from the same urn 

• Example: the game of the three doors

• A probability should always be written as P(A|I), where I is the 
background information: probability is always relative, never absolute.

• We can define independence of propositions: given I, A is independent 
from B if the knowledge of B does not influence our assessment of the 
probability of A, i.e., P(A|B,I) = P(A|I): once again it is a logical
(informational) notion

• The hypothesis of independence means simply that we are not using the 
information carried by B, if any, in making our estimates for A. 

• We can use the hypothesis of independence when we know that B carries 
information about A but for some reason we don’t want to use it (we just 
obtain a worse estimate than we could have)
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Rules of consistent reasoning

0 ≤ P(A|I) ≤ 1
• Range of P(A|I), value for certainty of truth and falsity

• Sum rule 
P(A|I) + P(A|I) = 1

• Product rule
P(A,B|I) = P(A|B,I) · P(B|I)

(P(A|I) is our degree of belief in the falsity of the proposition A)

( A,B means “A and B”)

Probability theory 10

Some consequences of the rules 

a a+Δa

• Set of mutually exclusive (alternative) propositions

• Exhaustive set of alternative propositions

• Bayes’ theorem

∑i P(Ai|I) ∫ p(A|I) dA
A+ΔA

A

∑i P(Ai|I) = 1 ∫ p(A|I) dA = 1
+∞

-∞

• Marginalization

∑i P(A,Bi|I) = P(A|I) ∫ p(A,B|I) dB = p(A|I) 
+∞

-∞

( p(A) is a probability density function)

P(A|B,I) = P(B|A,I) · P(A|I)
P(B|I)
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Solving our inverse problem via Bayes’ theorem

P(S|O,I) P(O|S, I) ·
P(O|I)

In general: we know the outcome of a series of observations of the 
system and we want to estimate its properties (state, parameters…) 

S O

prior probability
“a priori” probability
“the prior”

likelihood
sampling probability

direct probability

evidenceposterior probability
“a posteriori” probability
inverse probability

P(S|I)
=

p( r |{Oi}, I) = p({Oi}| r, I) · p(r|I)
p({Oi}|I)

In our case: Estimate the rate of success r of an 
evolutionary given the observation of the outcomes {Oi} of 
a series of runs

p({Oi}| r, I) · p(r|I)

the evidence does not depend on r

we estimate up to 
a multiplicative 
constant: we 

normalize 
afterwards

∝

Solving the problem 12

Updating our prior after the observation of a success

p(r|I) = const
• The prior distribution

(this kind of information typically follows from 
symmetry considerations, maximum entropy…)

• The likelihood of the observ. {O1 = success}

p(O1| r, I) = p( success | r, I) = r

(it’s the probability of success assuming 
that the success ratio is r)

0 0.2 0.4 0.6 0.8 1

p(
r|I

)

r

0

• The posterior distribution P( r |{O1},I)

p( r |O1, I) ∝ p(O1| r, I) · p(r|I) ∝ r

we observed a success: constant 
failure is no longer conceivable 0 0.2 0.4 0.6 0.8 1

p(
 r 

| O
1, 

I )

r

0
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Further updating our posterior distribution…

• {O1 = success,O2 = failure}

p( r |O2, O1, I) ∝
p(O2| r, O1, I) · p(r|O1, I){

new background 
information after 
observing {O1}

we get no information on 
{O2} from {O1} if we 
know r: independence

p( r |O2, O1, I) ∝ r · (1-r)

p( r |O2,O1, I) ∝
p(O2| r, I) · p(r|O1,I) 

p(O2| r, I) = p( failure | r, I) = 1- r

r
0 1/2 1

p(
 r 

| O
2,O

1, 
I )

we observed a 
failure: constant 
success is no 

longer 
conceivable

maximum “a 
posteriori”

(MAP) 
corresponds to 

the observed 
rate of success

0

Solving the problem 14

… to obtain the final posterior distributions

0 2/3 1

• {O1 = success, O2 = failure, O3 = success}

p( r |O3, O2, O1, I) ∝ r2 · (1-r)

r

p(
 r 

| O
3,O

2,O
1, 

I )

p({Oi}| r, I) ∝ rm · (1-r)(n-m)

We could have used all the observation at once 
considering them as the outcome of a Bernoulli trial 
(Cox’s consistency requirement) 

0

0 4/13 ≈ 0.31 7/12 ≈ 0.58 1

• Experiment E1 {4 successes, 9 failures}; Experiment E2 {7 successes, 5 failures}

p( r  |{Oi}E1 , I) ∝ r4 · (1-r  )9

p( r  |{Oi}E2 , I) ∝ r7 · (1-r  )5

r

E1 E2

p(
 r 

| {
O

i}
, I

 )

0

E1

E2

E1 E1

E2 E2
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The solution of the inverse problem

0 1

Experiment E1 {4 successes, 9 failures}; Experiment E2 {7 successes, 5 failures}; 

p( r  |{Oi}E1 , I) = r4 · (1-r  )9

p( r  |{Oi}E2 , I) = r7 · (1-r  )5

r

E1 E2

p(
 r 

| {
O

i}
, I

 ) 14!
4! 9! 
13!

7! 5! 

These probability density functions contain all the information 
conveyed by our observations (combined with our prior information)

WARNING: No probability concepts introduced beyond this point!

0

We can still process the pdfs to make the solution more perspicuous

By normalizing we obtain:

E2 E2 E2

E1E1E1

Manipulating the solution 16

Treatment of the solution 

Determine P(rE2
> rE1

|{Oi}E1,{Oj}E2,I) and, more generally P(rE2
> α rE1

|…)

P(rE2
> α rE1

|{Oi}E1,{Oj}E2,I) = ∫ p(rE1
|{Oi}E1,I) ∫ p(rE2

|{Oj}E2,I) drE2
drE1

1

0 min(αr
E1

,1)

1

0 rE1 αrE1 1

E1 E2

p(
 r 

| {
O

i}
, I

 )

1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

0.9

1

p(
 rE

E 1
>

r E
2

| …
)

α

P(rE2
> rE1

|…) ≈ 0.91
P(rE2

> 1.1 rE1
|…) ≈ 0.87

P(rE2
> 1.2 rE1

|…) ≈ 0.81

P(rE2
> 1.74 rE1

|…) ≈ 0.5

…
…

Note that probability theory does 
not (and cannot) say if the result is 
“significant”. You need additional 
criteria for that. 
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Summarizing the posterior distribution

To define a “best” estimate you need to define the cost of being 
wrong. It’s an issue that pertains to decision theory. Different cost 
functions give different point estimates (median, mean, MAP…)

• Point estimates

The posterior distribution is not necessarily a Gaussian 
function. By approximating it with a Gaussian at the 
(unique!) maximum you obtain an error bar…

• Error bars

Given an percentage of the total probability (95%, 
99%, …), you can determine the shortest interval 
that “contains” this amount of  posterior probability…

• Confidence intervals

Once again, probability theory does not tell you how to summarize

Conclusions 22

Conclusion

[L]a théorie de la probabilité n’est au fond que le bon sens réduit au 
calcul: elle fait apprécier avec exactitude, ce que les esprits justes 
sentent par une sorte d’instinct, sans qu’il puissent souvent s’en 
rendre compte. […] Par là, elle devient le supplément le plus heureux 
à l’ignorance et à la faiblesse de l’esprit humain. Si l’on considère 
[…] la vérité des principes qui lui servent de base […] on verra qu’il 
n’est point de science plus digne de nos méditations, et qu’il soit plus 
utile de faire entrer dans le système de l’instruction publique.

Pierre-Simon Laplace, 1812
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