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Abstract

    This paper presents a simple method for creating and animating deformable surfaces using

physically-based modeling. We represent a deformable surface as particle systems. Simple

methods, such as, analytical solutions of the motion equations, discretization and time-step

method, are used to solve the simulation equations. So, the surfaces have better stability and

much faster speed of calculation. This method can be combined with the surfaces of arbitrary

topology and the results are as realistic as that of continuous systems. The surfaces can be

elastic, elastoplastic or plastic. This method can be widely and easily used in all kinds of

deformable surfaces with good results.
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1.  Introduction

    The use of physically-based models for animating deformable surfaces is an important field

in computer graphics. There are two successful approaches to this problem: particle systems

and continuous systems.



    Particle systems consist of a large number of single particle, all of which move under the

influence of the forces, such as gravity and external forces, etc.. The particle systems [1, 2]

were originally used to model fire, fireworks, waterfall, ocean, spray trees, grass and other

nature phenomena. More recently, particle systems have been used to model deformable

surfaces. An interesting work in this area is the description of cloth draping behavior by D.

E. Breen [3, 4]. In this field, the interacting-particle methods have been used to develop a

theoretical model of woven cloth and predicate the drape of woven cloth, such as cotton wool

and etc.. T. L. Hilton and P. K. Egbert [8] also propose the use of vector fields for 3D

particle systems. R. Szeliski and D. Tonnesen [10] define a model of surfaces with oriented

particle systems which are a function of direction. The surface modeling can be used to split,

join, or extend deformable surfaces without needing manual intervention and knowing the

topology of the surfaces. The mass-spring systems are essentially particle systems with a

fixed topology, each particle of which is connected with a finite number of neighboring

particles by spring forces. The method is easy to be used, but the major problem of traditional

particle systems is that the results are not as realistic as that of continuous systems. Another

problem of particle-systems surface is that it is harder to achieve exact control over the shape

of the surfaces[10]. Witkin and Heckbert [11] also proposed the use of particles systems to

sample and control implicit surfaces.

    The typical continuous systems of physically-based modeling is the elastically deformable

models developed by Terzopoulos et al. This method has been successfully used in the

animation of cloth [5] and other kinds of elastic surfaces [9]. The basic equation of this model

can be written in Lagrange's form. For the convenience of discussion, we extract a part as

following [6]:
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where, r(a,t) is the position of the particle a at time t. m is the mass density of the body at a.

γ is the damping density, and f(r,t)  represents the net externally applied forces. ε(r) is a

functional which measures the net instantaneous potential energy of the elastic deformation of

the body.

    In order to solve these equations, discretization and the numerical solution of the

equations, such as finite difference discretization techniques, are used. The discretization

seems to change the continuous system into the mass-spring systems. In fact, by choosing

certain types of non-linear springs, a mass-spring system can be made equivalent to a

continuous model. But, the stability is one of the major problems of continuous systems,



although adaptive time-step control can improve the stability [6]. The increased complexity is

another problem, especially during the design and development of systems. As a result, the

speed of the calculation is limited. All of these problems limit the application of this

approach. For example, it is difficult to create and animate a complex character. On the other

hand, there are also some problems to split, join or extend the deformable surfaces of

continuous systems.

    The present paper proposes the use of particle systems and a series of simple methods for

creating and animating a deformable surface which has similar result as the continuous

systems, but with a better stability and much faster speed of calculation. The shape of the

surfaces is easily controlled.

2. The Equations and Solutions of the Deformable
Surface

    We assume that the deformable surface consists of many particles. When the particles

move away from their rest positions in any direction under the external forces, the elastic

forces will exert on the particles to pull them towards their original position. At the same

time, the damping forces which are functions of the velocity also exert on the particles of the

deformable surfaces.

    We can obtain the motion equations of the particles on the surface from a general form of

Lagrange's equation for a system of particles.
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where, n is the degree of freedom for a system, q1, ... ,qn  are the generalized coordinates, T

is the kinetic energy of the system, Qi  is the generalized forces corresponding to qi .

    Because a particle has three degrees of freedom (n=3), we can obtain three equations of

motion for each particle.

    T = 1
2 mq̇i

2                                                                                                i=1,2,3

    δ (W.D.) = −K(qi − qi0)δqi − cq̇iδqi + (Fi + Pi )δqi        i=1,2,3



Where, δ (W.D.) is the virtual work. W.D means Work Done. δqi  is the virtual

displacement which is an assumed infinitesimal displacement of a particle. m is the mass of a

particle, c is the damping parameter, K  is the stiffness parameter.

The result is:

     m˙̇qi + cq̇i + K(qi − qi0) = Fi + Pi                                          i=1,2,3            (3)

or  m˙̇qi + cq̇i + Kqi = Fi + Pi + Kqi0                                         i=1,2,3            (4)

    The first term on the left of equation (3) is the inertial force of the particle. The second term

is the damping force. The third is the elastic force due to the particle moving away from its
original position q0 , which is important for the integrity of the surface. When the external

forces exert on it, the surface will be deformed until the elastic forces balance the external
forces. The first term Fi  on the right of equation (3) is the sum of external forces which exert

on the particle. The second term Pi  is the sum of internal forces among the particles. Of

course, the equations (3) and (4) are also expressed by the vectors.

    We also can obtain the equation (3) from (1) if suitable δε(r) and discretization are used.

    If m, c and K  are supposed to be constant and are not equal to zero, the equation (4) is a

linear and non-homogeneous difference equation of second order with constant coefficients.

If forces on the right of equation are constant, which means the direction and magnitude of

the forces are constant, the analytical solutions may be obtained. We shall discuss the case

with variable forces and variable coefficients later. For the time being, the problem become

easy. Using the roots r1 and r2 of the auxiliary equation, we may find two independent

solutions of corresponding homogeneous equations. The general solutions of it are:

   1.    r1 ≠ r2;                                  qi = C1e
r1t + C2e

r2 t                             i=1,2,3

   2.    r1 = r2 = r ;                            qi = (C1 + C2t)e
rt                             i=1,2,3

   3.    r1 = a + bi ,  r2 = a − bi ;        qi = eat (C1 cos bt + C2 sin bt)         i=1,2,3

    It is easy to find the particular solution of the given non-homogeneous equation(4), while

the general solution of the non-homogeneous equation(4) is the sum of the particular solution

and the general solution of corresponding homogeneous equations. If the surface is isotropic



all of the particles have same mass m, same damping parameter c and same stiffness

parameter K. The problem is to find the initial value and the particular solution for forces.

    How about the features of this motion equation? Fig. 1 shows the features of the motion

equation under different conditions. From the figures we can know several features of the

particles on surfaces. Firstly, all the functions of position, velocity and acceleration of the

particle have continuous second derivative on (0, +∞). Secondly, if the external forces do
not exert on the particle, the particle has high ability to go back to its rest position Z0  (original

position). Then, if the external forces exert on the particle, the particle can smoothly move to

the position which depend on the forces and at which the elastic forces balance the external

forces. Finally, the time and behavior of movement depend on the damping parameter c,

stiffness parameter K and the mass m of the particle. On other words, the features of

movement depend on the properties of the surfaces. As a result, the particle systems with

such features are suitable to create and animate deformable surfaces.

          

           



            

Fig. 1.  The features of the motion equation

3. Using Discretization and Time-step Method

        Because of using the analytical solution, discretization and time-step method, our

approach is flexible for creating and animating the surface. In this section, we shall discuss

several problems we often meet when the method is applied.

3.1 The external and internal forces
    In our method, the important forces are the forces which control the shape evolution of the

surfaces. The force F in the equation (3) is the external force which exert on the particle. For

the surfaces, the force field should be defined or calculated, such as gravity field, external

force field etc.. External forces are directly controlled by the user.

    The force P is the sum of the internal forces which exert among the particles. The

interparticle forces P can be determined by the property of the surface. They may have a lot

of forms depending on the application. In some situations, we don’t need to consider the

forces among the particles at all, namely P = 0. For example, the application of the skin in

section 4. In the example of deformable head in section 4, we only calculate the radial forces

approximately according to the change of the volume and do not consider the forces between

the particles. In this situation, the elastic forces balance the external forces, and the elastic

forces of the particles guarantee the integrity of the surface. In some other situation, such as

the membrane shrinking around a jack, the forces between the particles should be considered

in order to obtain more realistic results. For this example, the forces among the particles are

supposed to be the elastic forces. In fact, we have a lot of methods to define the forces among

the particles. Using discretization, the elastic forces with variable stiffness can be obtained.

Forces can be also defined to be pull or push forces proportional to the distance between two



particles. Also, the forces with very large stiffness can be defined so that the distance

between the particles is almost fixed, and so on.

      We can get all kinds of effect of woven cloth by defining the internal forces between the

particles and using the suitable topology of the surfaces. For example, we use the

quadrilateral polygons and define that one direction is warp and the other direction is weft,

and the forces on the warp and the forces on the weft are defined to be different. For

instance, the forces on the warp are a little larger than those on the weft because the warp is

usually wider than the weft. We can get the effect of the plain weave. If we change the

topology of surface and the internal forces between the particles, we can get another kind of

woven cloth.

    The external forces F and the internal forces P control the movement and shape of the

surface. The forces only have influence on the particular solution of the given non-

homogeneous equation(4) and do not have influence on the general solution of it. So, the

shape of surfaces can be easily controlled by controlling the forces.

3.2 The variable forces and variable coefficients
    In the last section, the forces were supposed constant on the right of equation(3).

Generally, the forces are not constant, but functions of the position and time. If the forces are

not constant, we also can find the analytical solution in some situations. In fact, this is

difficult and often useless because discretization and time-step method have been used to

solve the problems. Consider, for example, the variable force in Fig. 2, discretization can be

used as shown in Fig. 3.  In this case, the force is constant during each interval of the time.

And, the discretization guarantees the analytical solutions of the motion equations (4) and

thus changes the problem from a variable force to finding particular solutions.
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          Fig. 2. Variable force              Fig. 3. Variable force (discretization)



    Similarly, we can also use the discretization to extend the motion equation (3) to an

equation with variable coefficients. First, the discretization of variable coefficients is

performed with the coefficients constant during time interval. Then, motion equations may be

solved as equations with constant coefficients. For a new time interval, the coefficients are

changed using new discrete values, and the analytical solutions can be determined again. By

repeating the process step by step, the problem with variable coefficients is transformed into

the problem with constant coefficients.

3.3 The elastoplastic model in graphics
    Because the method is flexible, we can make the deformable surface to be elastic or

elastoplastic, even plastic as required.

    For the sake of clearness, we briefly discuss the idea of elastoplastic by means of a stress-

strain diagram. A stress-strain diagram correspond to the relationship between load and

deformation, which usually depends on the material [7]. Different materials have different

stress-strain diagrams. Fig. 4 shows an typical engineering stress-strain diagram in tension.

The diagram shown in Fig. 4 defines two ranges of material behavior, the elastic and the

plastic (or inelastic) ranges. In general, the elastic range is the part of a linear relation between

the stress and the strain, which is represented by segment OB in Fig. 4. If the load is

removed within the range, the material will regain its original dimensions and is said to

behave elastically. Beyond the range the material dose not regain its original dimensions and

the permanent deformation appears. This is the plastic or inelastic range which the segment

BF represents in Fig. 4. the plastic range shows a nonlinear relation between the stress and

the strain. The dash line which parallels the segment OA in Fig. 4 represents the behavior of

the material in unload after the material are loaded up to G, which means the material is

elastoplastic.



                        
Fig. 4. Behavior of material

    The permanent strain should be determined by the stress. But, we do not exactly calculate

the stress and strain on the surface and do not consider the state of stress and strain for any

point. This means that we just use the idea of elastoplastic of mechanics in the graphics rather

than the strict method of elastoplastic theory. From Equation (3), we know, when the forces
are removed the particles will go back to original positions q0 . For each step the deformation

of the surface is calculated. If the deformation is large enough over the elastic limit, the

permanent deformation is calculated by all kinds of the approximate method. Then, the
permanent deformation is used instead of the original position q0 . So, when the forces are

removed the permanent deformation appears on the surface.

4.  Simulation Examples

    In this section, we describe a few  examples that can be animated in near-real-time on SGI

Indigo-2.

4.1 The skin with wrinkles
    This  method is  suitable to create and  animate the skin with the wrinkles because the

surface developed by the method has the high ability to go back to original position. In fact,

the real skin appears smooth under the pressure of the blood and the muscle, and most of

wrinkles on the skin always appear at same place. Fig. 5 show a piece of skin of a forehead.

At first, the skin with wrinkles is made, which is easy to be done. The user can design



various wrinkles on the skin. Then, put it on the frontal bone by the forces, and let it smooth

as (a). when the forces are released (the eyebrow move upward), the wrinkles appear on the

forehead. (b) - (d) show the different wrinkles. Finally, the forces exert on the skin again (the

eyebrow move downward), the skin become smooth again.

4.2 The head
    Fig. 6 illustrate another application of the method using our Marylin's polygonal head.

Every vertex of the polygon is used as a particle with mechanical properties attached.

Therefore, the geometrical surfaces are changed into the elastic surfaces of physically based

modeling. In fact, this method can be combined with surfaces of arbitrary topology. At the

beginning, no forces are exerted on the head as (a). When the forces exert on the top of the

head, the head are deformed as (b) - (d). When the forces are removed, the deformed head

recovers to its original shape as (e) and the top of head can vibrates several times around the

original position, which can be controlled by the damping parameter c.

4.3 The membrane shrinking around a jack
    A shrink wrap effect is shown in Fig. 7. Fig.7(a) shows the model of the jack which

consist of six balls on the cross rods. Fig.7(b) shows the membrane surround the jack before

shrinking. When the external forces exert on it, the membrane will shrink until the elastic

forces balance the external forces. Fig.7(c) shows the shrinking result under small forces.

Fig.7(d) shows the shrinking result under large forces.

4.4 The elastoplastic surface
    Fig. 8 show a simple test of the elastoplastic surface on shell. The slider can control the

permanent deformation on the shell. Fig.8(a) shows the shell which the force is exerting on.

The other images show the different permanent deformation on the shell when the force is

removed, from 100% elastic surface (plasticity = 0) to 100% plastic surface (plasticity =

100%).

5.  Discussion

    In this paper, we have shown that deformable surfaces based on particle systems may be

as realistic as that using continuous systems. These particle-based surfaces have also many

advantages as stated above. From a mathematical point-of-view, we have used a series of

simple methods in this paper, such as analytical solution, discretization and time-step method.

All the methods can approximately change the mathematical problems to solve differential



equations which don't have analytical solution into elementary mathematics. Therefore, we

can make use of a lot of methods of elementary mathematics to define the internal forces, to

calculate the position and so on. We also use approximate methods to calculate the stress and

strain on the elastoplastic model in graphics. Of course, we can calculate the exact value of

the stress and strain field using elastoplastic theory, but this is not necessary. The methods

we use are simple, but they satisfy the requirements for good visual results.

The method proposed has many advantages:

• Good stability and convenience: Because the analytical solutions are used, there is no

problem of convergence. The deformable surface is very stable even under very large

deformations. The calculation is very easy to implement, and the visual result is realistic.

• Efficiency: Because the calculation is more simple and more effective, the result can be

obtained quickly. Using the method, interactive animation can be obtained. For example,

for Marilyn’s head deformation, 60 frames were obtained on SGI Indigo-2 in 20 seconds

(3 frame / second). For the example of membrane shrinking around a jack, 60 frames

were produced in 25 seconds to 40 seconds (1.5 - 2.4 frame / second). Time is dependent

on the condition of the surface, such as forces, stiffness and so on.

• Wide application: The method may be easily applied to any kind of deformable surface

without topology limitation, from small deformations to very large deformations, from a

movement with small damping, even no damping, to a movement with very large

damping, etc. So, the method can be used to create and animate the skin with or without

wrinkles, cloth, paper, rubber, plastic and other surfaces etc..
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Color Figure Captions

Fig. 5. Skin of a forehead with wrinkles

Fig.6. Head with elastic surfaces

Fig.7. Membrane shrinking around a jack

Fig. 8. Test of elastoplastic surface


