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Abstract

We show that we can e�ectively �t arbitrarily complex animation models to noisy

image data. Our approach is based on the use a set of progressively �ner control trian-

gulations and takes advantage of two complementary sources of information: stereo

data and silhouette edges.

1 Introduction

In this paper, we show that we can automatically �t a complex facial animation model to
image data obtained using regular video cameras as opposed to sophisticated sensors such
as laser range �nders.

In recent years much work has been devoted to the modelling of faces from image and
range data. Automated approaches can be roughly classi�ed into the following two catego-
ries:

� Some concentrate on tracking the head motion and some features. They typically use
a fairly coarse face model that is too simple for realistic face animation (e.g. [2]).

� Others use sophisticated face models with large numbers of degrees of freedom that

are suitable for animation purposes but require very clean data{such as a Cyberwaretm

scanner|to instantiate them (e.g. [6]).

Our approach aims at bridging the gap between these two kinds of approaches by �tting

a detailed face model that has successfully been used to animate virtual actors to actual
image data.

We typically start with a set of stereo image pairs or a video sequence. In this work,

we assume that the monochrome images we use are registered and that precise camera
models are available. This assumption is reasonable because there are well established

photogrammetric techniques, such as bundle-adjustment, that allow the computation of

these models as needed. We then go through the following three steps:
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� We compute disparity maps for each stereo pair or each consecutive pair in the video

sequences, �t local surface patches to the corresponding 3{D points, and use these

patches to compute a central 3{D point and a normal vector.

� We attach a coarse control mesh to the animation model and perform a least squares

adjustment of this control mesh so that the model matches the previously computed

stereo data. We weigh the data points according to the closeness of their normals to

that of the model and use an iterative reweighting technique to eliminate the outliers.

We then subdivide the control mesh and repeat the procedure to re�ne the result.

� We use the original images to compute an optimal facet albedo for each facet of the

model to achieve the closest possible resemblance to those images.

In this way, we can generate with very limited manual intervention a physical model

of the surface|that is, one that includes both geometry and re
ectance properties|that

can then be used to animate the face. Because we use robust �tting techniques and take
advantage of our rough knowledge of a face's shape, we obtain reliable results even from
noisy data acquired with a cheap and entirely passive technique.

2 Least Squares Framework

In this work, we use the facial animation model that has been developed at MIRALab and
LIG [5]. It can produce the di�erent facial expressions arising from speech and emotions. Its

multilevel con�guration reduces complexity and provides independent control for each level.
At the lowest level, a deformation controller simulates muscle actions using rational free form
deformations. At a higher level, the controller produces animations given corresponding to
abstract entities such as sentences and emotions.

The corresponding skin surface is shown in its rest position in Figure 1(a). We will refer
to it as the surface triangulation. From a �tting point of view, this model embodies a rough

knowledge about the face's shape and can be used to constrain the search space. Our goal

is to deform the surface|without changing its topology|so that if conforms to the image
data. In standard least-squares fashion, we will use this data to write nobs observation
equations of the form

fi(P ) = obsi + �i ; 1 � i � nobs ; (1)

where P is a parameter vector that de�nes the shape of the surface. We will then minimize

X
1�i�nobs

wi�
2

i ; (2)

where wi is a weight associated to each observation.

In theory we could take the parameter vector P to be the vector of all x; y, and z

coordinates of the surface triangulation. However, because the image data is very noisy, we
would have to impose a very strong regularization constraint. For example, we have tried

to treat the surface triangulation as �nite element mesh. Due to its great irregularity and
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(a) (b) (c) (d)
Figure 1: Face models. (a) The model used to animate faces. (b,c,d) Increasingly re�ned

control triangulations.

its large number of vertices, we have found the �tting process to be very brittle and the

smoothing coe�cients di�cult to adjust.

For increased robustness, we have therefore implemented the following scheme. Instead

of directly modifying the vertex positions during the minimization, we introduce control

triangulations such as the ones shown in Figure 1(b,c,d). The vertices of the surface trian-
gulation are \attached" to the control triangulation and the range of allowable deformations
of the surface triangulation is de�ned in terms of weighted averages of displacements of the

vertices of the control triangulation.

More speci�cally, we project each vertex of the surface triangulation onto the control
triangulation. If this projection falls in the middle of a control facet, we \attach" the
vertex to the three vertices of the control facets and compute the corresponding barycentric
coordinates. If this projection falls between two facets, we \attach" the vertex to the vertices
of the corresponding edge. In e�ect, we take one of the barycentric coordinates to be zero.

Given these attachments, we de�ne the shape of the surface triangulation in terms of
displacements of the vertices of the control triangulation. The 3{D position Pi of vertex i

of the surface triangulation is taken to be

Pi = P 0

i + li
1
�ij1 + li

2
�ij2 + li

3
�ij3 ; (3)

where P 0

i is its initial position, �j1; �j2; �j3 are the deformation vectors associated to the
control triangulation vertices to which vertex i is attached, and li

1
; li

2
; li

3
are the precomputed

barycentric coordinates.

In this fashion, the shape of the surface triangulation becomes a function of the �j and

the parameter vector P of Equation 1 is taken to be the vector of the x; y and z components

of these �j. Because the control triangulations have fewer vertices that are more regularly
spaced than the surface triangulation, the least-squares optimization has better convergence

properties. Of course the �ner the control triangulation, the less smoothing it provides. By
using increasingly re�ned control triangulations, we implement a hierarchical �tting scheme

that has proved very useful when dealing with noisy data, as discussed in Section 3.

Because there may be gaps in the image data, it is necessary to add a small sti�ness
term into the optimization to ensure that the �j of control vertices located where there is

little or no data are consistent with their neighbors. If the surface was continuous, we could
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However, because our control triangulation is discrete, we can treat its facets as C0 �nite

elements and write our sti�ness term as

ES = �t
xK�x +�t

yK�y +�t
zK�z (4)

whereK is a sti�ness matrix and �x;�y and �z are the vectors of the x; y and z coordinates

of the displacements �. The term we actually optimize becomes

E =
X

1�i�nobs

wi�
2

i + �SES ; (5)

where �S is a small positive constant. This is achieved very simply in the least squares

framework by incrementing the appropriate elements of the matrix that appears in the
normal equations by those of the sti�ness matrix K.

3 From Image Data to Observations

In this section we focus on stereo range data and silhouettes because they can be readily
acquired from image sequences and form two complementary sources of information: Stereo
can be expected to give good results where the surface more or less faces the cameras while

silhouettes appear where the surfaces slopes away from the camera planes.

3.1 Stereo Data

We use several sets of stereo pairs or triplets of a given face as our input data such as those of

Figure 2. We assume that the images are monochrome and registered so that their relative
camera models are known a priori. Since we are interested in reconstructing surfaces, we

start the process by using a simple correlation-based algorithm [3] to compute a disparity

map for each pair or triplet and by turning each valid disparity value into a 3{D point. If
other sources of range data were available, they could be used in a similar fashion. Because,

these 3{D points typically form an extremely noisy and irregular sampling of the underlying
global 3{D surface, we begin by robustly �tting surface patches to the raw 3{D points. This

�rst step eliminates some of the outliers and generates meaningful local surface information
for arbitrary surface orientation and topology. For additional details on this procedure, we

refer the interested reader to an earlier publication [4].

Note however, that because it is extremely di�cult to design a stereo algorithm that

never produces correlated artifacts, we cannot expect any robust �tting technique to exclude

all erroneous 3{D points. Furthermore, �tting local surfaces to the initial data amounts to
smoothing and may result in spurious patches that appear to line up with legitimate ones.

The center of each patch is treated as an attractor. The easiest way to handle it is to

model it as a spring attached to the mesh vertex closest to it. This, however, is inadequate if
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2: Modeling a head from a video sequence of forty images (Courtesy of IGP, ETHZ).

(a,b) Consecutive images treated as a stereo pair. (c) Corresponding disparity map.

Black indicates that no disparity value was computed; lighter areas are further away

than darker ones. Note that the disparities around the occluding contour on both

the left and right sides of the head are erroneous. (d) Image taken from di�erent

viewpoint. (e) Shaded view of the reconstructed model. (f,g) Shaded views using

the facet re
ectances derived from the images. (h) Adding synthetic hair and using

the animation model to generate a new facial expression.

one wishes to use facets that are large enough so that attracting the vertices, as opposed to
the surface point closest to the attractor, would cause unwarranted deformations of the mesh.
This is especially important when using a sparse set of attractors. In our implementation,

this is achieved by writing the observation equation as

dai = 0 + �i ; (6)

where da is the orthogonal distance of the attractor to the closest facet and can be computed

as a function of the x,y, and z coordinates of the vertices of the facet closest to the attractor.

Finding this \closest facet" is computationally expensive if we exhaustively search the list
of facets for the one that initially minimizes the observation error of Equation 6. However,

the search can be made e�cient and fast if we assume that the 3{D points can be identi�ed

by their projection in an image, as is the case with stereo data. For each image, we compute

what we call a \Facet-ID image:" We encode the index i of each facet fi as a unique color,

and project the surface into the image plane, using a standard hidden-surface algorithm.
We can then trivially look up the facet that projects at the same place as a given point.

We recompute these attachments at each stage of the hierarchical �tting scheme of

Section 2, that is each time we introduce a new control triangulation. Because a number of

the patches derived from stereo may be spurious, we use a variant of the Iterative Reweighted

5



Least Squares [1] technique. Each time we recompute the attachments, we also recompute

the weight wi of observation i and take it to be inversely proportional to the initial distance

dai of the data point to the surface triangulation. More speci�cally we compute wi as

wi = exp(
�dai

da
) for 1 � i � n (7)

where da is the median value of the di. We use da as an estimate of the noise variance and

we discount the in
uence of points that are more than a few standard deviations away.

Its robustness can be further increased by multiplying the wi by the dot product of the

normal of the surface patches used to derive the attractors by the current estimate of the

normal vector of the facet to which the facet is attached. In this manner, the in
uence of

patches whose orientation is very di�erent from that of the attached facet are discounted.

3.2 Silhouette Data

Contrary to 3{D edges, silhouette edges are typically 2{D features since they depend on
the viewpoint and cannot be matched across images. However, they constrain the surface
tangent. Each point of the silhouette edge de�nes a line that goes through the optical center
of the camera and is tangent to the surface at its point of contact with the surface. The
points of a silhouette edge therefore de�ne a ruled surface that is tangent to the surface. In

terms of our facetized representation, this can be expressed as follows. Given a silhouette
point (us; vs) in an image, there must be a facet with vertices (xi; yi; zi)1�i�3 whose image
projections (ui; vi)1�i�3, as well as (us; vs), all lie on a single line. This can be enforced by
writing for each silhouette point three observation equations:�������

ui uj us
vi vj vs
1 1 1

������� = 0 + �ij ; 1 � i � 3 ; i � j � 3 (8)

where the (ui; vi) are derived from the (xi; yi; zi) using the camera model.

As with the 3{D attractors of Section 3.1, we can use the iterative reweighting scheme
described above and the main problem is to �nd the \silhouette facet" to which the constra-

int applies. As before, we can either exhaustively search the facets of the surface triangu-

lation for those that initially minimize the observations errors of Equation 8 or use the
Facet-ID image to speed up the process: Since the silhouette point (us; vs) can lie outside

the projection of the current estimate of the surface, we search the Facet-ID image in a
direction normal to the silhouette edge for a facet that minimizes es and that is therefore

the most likely to produce the silhouette edge. This, in conjunction with our coarse-to-�ne

optimization scheme, has proved a robust way of determining which facets correspond to
silhouette points.

3.3 Re
ectance Data

To estimate the re
ectance of the facets of the model, we project them into the images

and compute the mean gray-level of the pixels belonging to these projections. Here again
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we take advantage of the Z-bu�ering capability of our machines to perform this operation

quickly while taking occlusions into account.

4 Results

We �rst illustrate the e�ectiveness of the �tting technique using surface patches computed

from good-quality stereo data as described in Section 3.1.

Figure 2 depicts a sequence of forty 512x512 images that were acquired with a video

camera over a period of a few seconds by turning around the subject who was trying to stand

still. Camera models were later computed using standard photogrammetric techniques at

the Institute for Geodesy and Photogrammetry, ETH-Z�urich. We ran our correlation-based

algorithm [3]|once for each consecutive pair of images in the sequence| stored the resulting

3{D points in a 80x80x80 set of voxels and instantiated patches in all voxels containing at

least 200 points. Fitting the animation model of Figure 1 to these patches produced the
results depicted by the second row of Figure 2.

Similarly, we can model the face of the character of Figure 3 using a stereo pair taken at
close range. Because we use the same models for the two faces, it becomes trivial to morph
one into the other as shown in Figure 4.

(a) (b) (c)
Figure 3: High quality stereo pair (Courtesy of INRIA). (a,b) Left and right images (c) Shaded

view of the reconstructed model

Figure 4: Morphing one face into the other

The image of Figure 5 is of much lower resolution that the ones shown above. As a result,
our correlation-based stereo information does not provide any meaningful information for the

side of the face and chin. However, by outlining the silhouette of the chin using snakes and

treating these silhouette points as observations, we were able to reconstruct the complete

face in a way that is consistent with those silhouettes.
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(a) (b) (c) (d)
Figure 5: Using Silhouettes. (a) One image of a triplet. The silhouette of the chin is outlined in

white (Courtesy of INRIA). (b,c,d) Shaded views of the reconstructed model shown

in the same perspective as the original images with overlaid silhouettes.

5 Conclusion

We have presented a technique that allows us to �t a complex animation model to noisy
image data with very limited manual intervention. As a result, these models can be pro-
duced cheaply and fast. Furthermore, because our approach relies on the use of a coarse
to �ne control triangulations, it can be used to �t arbitrarily complex models whose to-

pology is designed for animation purposes and are not necessarily well suited for surface
reconstruction.

In future work, we intend to extend the approach to the modelling of dynamic faces and
more importantly to the estimation not only of the parameters that control the shape of
the surface but also of those that control the various facial expressions.
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