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Abstract
Commercial Java virtual machines are designed to maximize the
performance of applications at the expense of predictability. High
throughput garbage collection algorithms, for example, can intro-
duce pauses of 100 milliseconds or more. We are interested in sup-
porting applications with response times in the tens of microsec-
onds and their integration with larger timing-oblivious applica-
tions in the same Java virtual machine. We propose Reflexes, a new
abstraction for writing highly responsive systems in Java and inves-
tigate the virtual machine support needed to add Reflexes to a Java
environment. Our implementation of Reflexes was evaluated on sev-
eral programs including an audio-processing application. We were
able to run a Reflex at 22.05KHz with less than 0.2% missed dead-
lines over 10 million observations, a result that compares favorably
to an implementation written in C.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—interpreters, run-time environments; D.3.3
[Programming Languages]: Language Constructs and Features—
classes and objects; D.4.7 [Operating Systems]: Organization and
Design—real-time systems and embedded systems.

General Terms Languages, Experimentation.

Keywords Real-time systems, Java virtual machine, Memory
management, Ownership types.

1. Introduction
The nature and role of real-time processing is evolving. The com-
plexity of embedded real-time systems has increased to the point
that, today, code bases in the million lines of code are common
place in avionics and shipboard computing [12]. At the same time,
systems with strong timeliness requirements in finance and banking
have created a market for real-time application servers [7]. What
these applications have in common is that they do not look like tra-
ditional real-time systems– they are large, often in the million lines,
and complex, yet they place stringent predictability requirements
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on the execution environment and language implementation. The
majority of these systems can be written in Java, the real-time re-
quirements are limited to a small number of subsystems. Using Java
is attractive from a software engineering point of view, it brings
the benefits of a high-level, type-safe, language with large library
of standard components. But Java does not come with support for
real-time programming, this leaves developers with the challenge
of interfacing hard real-time subsystems with the main body of the
application.

Our goal is to facilitate the development of such systems by
integrating abstractions for highly responsive systems into main-
stream Java virtual machines. As real-time applications may have
very different constraints, different approaches can provide the re-
quired bounds on latency and response time. At one end of the spec-
trum, standard JVMs trade throughput for predictability. Memory
management related jitter on a JVM can be in the hundreds of mil-
liseconds. This can be reduced by advances in real-time garbage
collection algorithms to approximately 1 millisecond [5, 22].1 We
focus on applications that are clearly beyond the reach of state-
of-the-art real-time garbage collection techniques. For applications
with latency requirements in the tens of microseconds, any syn-
chronous interaction between the real-time code and the virtual
machine or another non-real-time task will cause a high-frequency
task to miss its deadline. Our goal is to design language constructs
that permit mixed mode execution between hard real-time and non-
real-time tasks. We also want to identify the minimal set of features
that must be supported by the underlying virtual machine for this
to be possible. Some of our inspiration comes from our experience
implementing the Real-time Specification for Java (RTSJ) which
required profound changes to the virtual machine [3, 6] and, to a
lesser extent, the semantics of Java [8]. In our experience, most of
the problems with Real-time Java came from its region-based mem-
ory model which is error-prone and requires expensive run-time
checks [21, 19, 14, 17, 11]. Yet avoiding garbage collection pauses
is crucial to achieve submillisecond latencies. Eventrons [23] pro-
pose a different solution to the problem. They provide a much sim-
pler programming model than Real-time Java and one that is both
efficient and provably safe. These benefits come at the expense
of expressive power and require a powerful interprocedural static
analysis to be carried at run-time, or more precisely at application
startup time.

1 Garbage collection pause times in the hundreds of microseconds have
been reported by Henriksson [15] for C programs running with small heaps.
There are no published results for a Java implementation of his algorithm.



Reflexes are a new programming abstraction for highly-respon-
sive computing in Java. They provide a simple, statically type-safe
programming model that makes it easy to integrate hard real-time
tasks into larger Java applications. A Reflex consists of (1) a thread
that is scheduled by a real-time scheduler and (2) a partition of
the memory that is not touched by the garbage collector. To avoid
priority inversion when interacting with non-real-time threads, the
Reflex API provides a limited form of software transactional mem-
ory [18]. Finally, safety of memory operations is enforced by a type
system based on our previous work for Real-time Java [2, 24]. The
design of the Reflex API was driven by the following forces:

• Safety: Real-time programs should not experience run-time
errors. With the RTSJ, any operation on a reference variable can
result in an exception. Reflexes and Eventrons provide stronger
memory safety guarantees. If a program is successfully verified,
no memory error will ever occur.

• Expressivity: Static safety often comes at the expense of ex-
pressive power. The RTSJ has a rich API which supports many
different real-time programming styles. In contrast, Eventrons
are rather restrictive as they preclude allocation and mutation
of references. Reflexes fall in between; they are strictly more
expressive than Eventrons but clearly less so than RTSJ.

• Simplicity: Correctness is often correlated with simplicity. In
that respect both Eventrons and Reflexes provide an API that is
simpler and easier use than the RTSJ. The Reflex approach to
static safety is arguably better as it relies on a small extension
to the Java type system. An invalid Reflex results in compiler
errors. Correctness for Eventrons is only ascertained after de-
ployment and it may be harder for end-users to interpret error
messages produced by a sophisticated static program analysis.

• Efficiency: Eventrons and Reflexes can be expected to outper-
form implementations of the RTSJ as they do not need run-time
checks on reads/writes of references. Reflexes do not have to
support priority inversion avoidance and have simpler memory
region semantics. They improve on Eventrons in term of startup
times and JVM footprint as Eventrons must perform data flow
analysis and compilation of the bytecode at startup.

This paper validates our claims by reporting on an implementa-
tion of Reflexes. Safety is achieved by a conservative extension of
the Java type system integrated in the Java 5.0 compiler. The type
system is such that any valid Reflex program is also a valid Java
program, but the converse is not necessarily the case. Expressiv-
ity of a programming model can only be measured on a large base
of successful applications. Unfortunately, there are only a hand-
ful of RTSJ programs available in open source form and, exactly
one Eventron application [23]. We have refactored the Eventron
code and use it as one of our benchmarks. As another measure of
expressivity we refactored the standard Java collection classes so
that they can be used in Reflexes. To evaluate efficiency, we im-
plemented Reflexes on top of the Ovm open source Real-time Java
virtual machine [3]. As Ovm is a highly configurable virtual ma-
chine, we were able to start from a plain Java configuration and,
with little effort add only the features needed for supporting Re-
flexes. Efficiency was evaluated with respect to our implementa-
tion of Real-time Java and to a C implementation of the benchmark
programs.

2. Prior Work
The Real-time Specification for Java (RTSJ) is designed to extend
Java for real-time processing. To do so, significant changes to the
Java virtual machine are needed in the areas of scheduling, syn-
chronization and memory management. These changes affect the
internals of the JVM, its performance and the semantics of Java

programs (see [3] for a description of one particular implementa-
tion). The most controversial feature of the RTSJ is its memory
model which allows programmers to side-step garbage collection
by using nested regions, or scopes, that are de-allocated in constant
time. The challenge of programming with scopes is that a simple
statement such as:

this.str = (String) x.str;
may throw two different memory exceptions: MemoryAccess-
Error if the object pointed to by x lies in the garbage collected
heap, and IllegalAssignmentError if the object that is the tar-
get of the assignment could outlive the string x.str. The virtual
machine must insert non-trivial read and write barriers around all
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(a) Latency of a JVM with a copying collector.
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(b) Latency of a JVM with RTGC.
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(c) Latency of a RTSJVM with Scoped Memory.

Figure 1. Comparing approaches to memory management in Java
virtual machines. We compare a standard JVM, (a), with a real-
time collector, (b), and an implementation of the RTSJ, (c), on
a benchmark performing collision detection. The x-axis represent
the number of iterations (input frames) and the y-axis the time to
process a frame in milliseconds.



reference operations to detect such unsafe accesses. In our experi-
ence, this model is error-prone and leads to brittle code [21].

An alternative to region-based memory is to use a real-time
garbage collection algorithms that enforce deterministic bounds on
pause time. Recent work on time-based real-time garbage collec-
tion (RTGC) [5] has shown that it is possible to guarantee pause
times around 1 millisecond in a high-performance Java virtual ma-
chine. RTGC has the advantage that the semantics of programs is
not affected, but it (1) reduces throughput, and (2) requires pro-
grammers to estimate the maximum allocation rate of all threads in
order to compute the time quantas allocated to the GC.

Eventrons [23], much like Reflexes, circumvent interference
from the garbage collector by using only objects that will not be
moved or modified during collection. This allows for an Eventron
to be scheduled periodically and even preempt the garbage collec-
tor. To ensure safety Eventrons impose restrictions on the program-
ming model; an Eventron must not access objects that are in the
garbage collected heap as these may be in an inconsistent state,
there can be no allocation within an Eventron, an Eventron is not
allowed to store into a reference field as this may invalidate the re-
sult of the static analysis, and finally it is not allowed to perform
blocking operations. The constraints are enforced by a startup-time
data-sensitive inter-procedural analysis. So the statement:

this.str = (String) x.str;
is not valid in an Eventron as it performs reference assignment.
Reflexes attempt to lift the restrictions on allocation and assignment
and provide compile-time error messages instead of startup-time
messages. They also reduce the footprint as the static analysis
infrastructure does not need to be included in the virtual machine.

Fig. 1 illustrates some of the tradeoffs between the different ap-
proaches to memory management. The figure, from [21], shows the
latency of processing one frame of input data in an airplane col-
lision detection algorithm. We ran the same code with Java-GC,
RTGC and RTSJ scoped memory. The mutator thread performs
around 8 ms of useful work in each iteration (the exact number de-
pends on the relative positions of the planes). Java-GC causes some
iterations to take up to 114 ms causing multiple deadline misses.
With a real-time collector, Fig. 1(b), the worst case observed time
is 18 ms. This is interesting because, even if the bound on any
individual pause is 1 ms, the mutator thread takes twice as long
to complete because it is interrupted multiple times. This clearly
shows that pause times are only part of the cost of RTGC, one has
to account for the overhead of barriers and the frequency of pauses.
With the RTSJ, there are no GC pauses as shown by Fig. 1(c). But
scoped memory still has an overhead due to read/write barriers. In
this example, we measured a 20% run time overhead for barriers. A
deeper analysis of this benchmark and of the differences between
the approaches can be found in [21].

3. Programming with Reflexes
Reflexes target small time-critical tasks that must execute free of in-
terference from the execution environment. Examples of such tasks
include data acquisition or communication with external devices.
In their design, Reflexes emphasize simplicity and ease of use. The
Reflex class is a subclass of Thread that is treated specially by
the virtual machine, it runs at a priority higher than any other Java
thread, including the garbage collector, and is scheduled in a prior-
ity preemptive manner. Thus, when a Reflex starts running, it will
run to completion without interruption – with the possible excep-
tion of preemption by a higher priority Reflex.

Reflexes avoid interference from the garbage collector through
a combination of runtime support and static constraints. All data
allocated within a Reflex, and the Reflex object itself, is placed
in a part of memory that is not subject to garbage collection. Fur-
thermore, the Reflex type system enforces constraints that prevent

Reflexes from referring to heap allocated data. The Reflex thread
can thus preempt the garbage collector without having to worry
about observing objects in an inconsistent state. Furthermore, since
a Reflex does not allocate on the heap it cannot trigger a garbage
collection on its own.

The Reflex programming model allows for a bimodal distribu-
tion of object lifetimes. An object allocated within a Reflex can be
either stable, in which case the lifetime of the object is equal to that
of the Reflex, or it can be transient in which case the virtual ma-
chine will reclaim it before the next invocation of the Reflex. Spec-
ifying whether an object is stable or transient is done at the class
level, the programmer annotates classes which are to be allocated in
stable memory with @stable meta-data tag. By default, data allo-
cated by a Reflex thread is transient, only objects of classes marked
@stable will persist between invocations. Stable objects must be
managed carefully by the programmer as the size of the stable area
is fixed and the area is not garbage collected.

class HighFreqReader extends Reflex {
private State state;
private Channel channel;
int idx;

public void initialize(int sz) {
state = new State(sz); }

void periodic() {
Vector data = new Vector();
for(int i=0;i<state.size();i++)

data.put(channel.read());
state.update(data);
state.current = state.channels[idx++ % 4];

}
}

@stable class State {
Channel current;
Channel[] channels = new Channel[4];
void update(Vector v) {...}

}

@stable class Channel {}

STABLE

TRANSIENT

HighFreqReader

State
Channel

Vector

Figure 2. HighFreqReader is a Reflex which periodically pro-
cesses data. Transient data (e.g. the Vector instance) is reclaimed
automatically at the end of each period. Dangling pointers to tran-
sient objects from stable storage are prevented statically by the type
system. Stable classes are explicitly annotated. The type system en-
forces the following three properties on the object graph: (a) objects
allocated by a Reflex do not point into the heap, (b) object allocated
outside of a Reflex can only point to the Reflex object and not its
internal state, and (c) stable objects do not point to transient ones
through instance fields. The type system and Reflex runtime sup-
port only affects objects allocated within a Reflex.



Fig. 2 illustrates the use of Reflexes. The programmer defines
class HighFreqReader as a subclass of Reflex. It is a normal
Java class with instance variables and methods. It must implement
the periodic() method which is invoked every time the Reflex
is scheduled. In this example, the body of the method allocates a
Vector, reads data from a channel and finally updates the internal
state of the Reflex.

Vector data = new Vector();
...
state.current = state.channels[idx++ % 4];

When periodic() is invoked, the VM automatically switches the
allocation area to that of the Reflex’s transient memory. Thus, the
Vector instance, an instance of a standard Java class, is transient
and will be reclaimed as soon as the method returns. An instance
of this Reflex is created and started as follows:

Reflex rflx = Reflex.make(HighFreqReader.class,
stableSize, transientSize, 45000);

rflx.initialize(100);
rflx.start();

The call to make() takes a class name, sizes for the stable and
transient areas, and a period2. The virtual machine will invoke the
Reflex’s periodic() method every 45 µs from the time the Reflex
is started. The initialize() method can be invoked from plain
Java code and will cause allocation of an instance of class State
in the Reflex’s stable area. The in-memory graphical representation
for the Reflex in Fig. 2 shows that the Reflex object can be referred
to from Java code, but all objects allocated by the Reflex are under
the Reflex’s ownership – no external reference to them is allowed
and, conversely, they cannot refer to any object allocated in the
heap.

4. The Reflex Type System
We present a type system that ensures memory safety by preventing
dangling pointers and preventing a Reflex from observing objects
in an inconsistent state as they are, for example, when being copied
by a garbage collector. The presentation is informal, we refer in-
terested readers to [24] where we formalized an ownership type
system for a variant of the FeatherweightJava object calculus and
proved its type soundness. The Reflex type system is an extension
of that work with the novel notion of implicit ownership.

The Reflex type system is an ownership type system. As in other
ownership type systems [13, 9] there is a notion of a dominator
that encapsulates access to a subgraph of objects – in our case
every Reflex instance encapsulates all objects allocated within its
stable and transient memory regions. The type system we present
here ensures that: (1) references to objects owned by a Reflex are
never accessed from outside the Reflex; (2) a Reflex will not refer
to objects subject to garbage collection; and finally, (3) a Reflex
prevents dangling pointer errors caused by references to transient
objects from stable ones.

Reflex ownership is implicit because, unlike e.g. [13, 9], no
ownership parameters are needed on class declarations. This re-
duces the annotation burden and increases opportunities for reuse.
Previous systems with explicit ownership have the significant draw-
back that no existing code can be reused without refactoring, for in-
stance the Vector class would have to be refactored to something
like Vector<owner> in order to record the owner of each vector.

We implemented a type checker for Reflexes by extending the
Java 5.0 compiler. No changes to the Java syntax were required and

2 The full Reflex creation API is richer as it allows to set parameters such
as start time and priority, but these are not essential for this discussion.

all error messages are returned by the javac compiler in a format
programmers can easily understand.

4.1 Partially Closed-world Assumption
A key requirement for type-checking a Reflex is that all classes
that will be used within it must be verified. We refer to this as a
partially closed-world assumption, as we place no constraints on
code that is outside of a Reflex. The type checker thus takes as
input a collection of class files. Classes used within a Reflex fall in
one of two categories: those whose instances are allocated in stable
and those in transient memory. We use W to denote the union of
these categories for a given Reflex. The first task of the checker is
to ensure that no class outside of W can be instantiated within the
Reflex. This can be done in a straightforward fashion by inspecting
the methods of the classes in W and checking that new objects are
instances of classes in W .

R0: Any class annotated with the meta-data tag @stable is in W .
Any subclass of Reflex is in W .

R1: Given a class instance creation expression new C(...) oc-
curring in class C’, if C’ or a subclass of C’ is in W then C must
be in W . 2

The type checker will validate all classes in W and their parent
classes. Classes that are not in W need not be type checked, the
rules are purely local to the Reflex. Thus our type system does
not prevent dynamic loading – it only ensures that no dynamically
loaded class will be used within a Reflex. The type checker will
also ensure that static methods invoked within a Reflex belong to
classes in W . Taken together rule R1 and R2 ensure that no object
of a class that is not in W will ever be created while evaluating
code in W .

R2: Any invocation of a static method C.m() occurring in class
C’, if C’ or a subclass of C’ is in W then C must be in W . 2

Reflective invocation and reflective instantiation are restricted. The
Reflex API lets the virtual machine know if the current thread is
within a Reflex and grants access to W , so that it is possible to
check that the method being invoked or the object being created
are allowed in that particular Reflex. Native methods are currently
allowed on a case by case basis as they must be validated by hand.

4.2 Implicit Ownership
A Reflex instance acts as an owner for all objects allocated within
it. The type system ensures that code running outside of a Reflex
cannot acquire a reference to an object allocated within it. The
simplest way to achieve this without having to check all client code
is to leverage the visibility rules of Java to enforce confinement.

R3: A reference type cannot appear in the signature of a non-
private member (method or field) of any subclass of Reflex. 2

The rule ensures that the methods and fields visible to clients
of a Reflex will not leak references across the Reflex boundary.
Likewise, as we saw previously, the rules R1 and R2 ensure that
the Reflex cannot acquire a reference to an object outside of W .
Dangling pointers to transient objects are prevented by segregating
stable references from transients ones. This is done at the class
granularity. If a class is declared stable, then it can only refer to
other stable classes.

R4: The type T of an instance field declaration in a @stable class
or a parent of a @stable class is legal if T is a primitive type, a



@stable class or an array of T’ where T’ is @stable. 2

Since the type system tracks classes, it is critical to prevent in-
stances of transient classes from masquerading as stable objects.
This is achieved by mandating that descendents of stable classes
are stable.

R5: Any subclass of a @stable must be annotated @stable. 2

4.3 Static Reference Isolation
The rules introduced so far are only part of what is needed. En-
forcing encapsulation also requires that communication through
static variables be controlled. Without any limitations, static
variables can be used for unrestricted sharing of references across
Reflex boundaries and can thus provide opportunities for all kinds
of programming errors. A drastic solution is simply to prevent code
in W from reading or writing static reference variables.

R6: Let C be a class in W or a parent of a class in W . A field
access expression occurring in C is illegal if the field is a static
reference type. An assignment statement occurring in C is illegal if
the left-hand side of the assignment is a static field of reference
type. 2

This is clearly sufficient as the only static variables that a Reflex
is allowed to use are ones of primitive types. But it is a bit too
restrictive in practice. We can loosen the type system a little bit
with reference-immutable classes. Recall that what we are trying
to prevent is that a Reflex attempts to read from or write to an
object that is being moved or whose fields are being updated by
the garbage collector. With some help from the VM, it is possible
to make sure that designated immutable objects are never moved
– and thus can be used safely from within a Reflex. We say that
a class is reference-immutable if it is transitively immutable in its
reference fields. The following two rules are use to determine if a
class is reference-immutable.3

R7: A class is reference-immutable if all non-primitive instance
fields in the class and parent classes are declared final and are of
reference-immutable types. 2

R8: Any class in W can read a static reference variable of
reference-immutable type. 2

Rule R6 is thus relaxed by allowing Reflexes to access static
reference-immutable variables.

4.4 Encapsulating Arrays
Arrays and especially arrays of primitive types are needed in vir-
tually all applications of Reflexes (communicating with devices,
signal processing, etc). For performance reasons, it is crucial to be
able to exchange arrays without copying. The rules as stated above
allow use of arrays without restrictions in transient memory, but
not in stable memory. We extend the type system to support the
common case of primitive arrays.

R9: A field of a uni-dimensional array type is allowed in a stable
class if it is declared private final and is assigned to a freshly
allocated array in all constructors. 2

R10: An instance field of array type in a stable class can be used

3 Interestingly, the restriction enforced by data flow analysis in Eventrons
are similar. The difference is that an Eventron can manipulate objects with
some mutable state, as long as it does not read/write the mutuable parts.

only in array read and array write expressions. 2

This rules codifies the idiom of Fig. 3. This allows the allocation
and use of arrays provided that they are wrapped in a stable class.
For multi-dimensional arrays, each dimension must be wrapped
independently.

@stable class ImmutableIntArray {
private final int[] data;
ImmutableIntArray(int sz) { data = new int[sz]; }
void set(int p,int v) { data[p]=v; }
int get(int p) { return data[p]; }

}

Figure 3. Encapsulated Arrays. Primitive arrays can be allocated
in a stable class as long as they are encapsulated, e.g. data holds a
reference to the encapsulated array.

In order to achieve zero-copy communication, the type system
supports the notion of borrowed array references. A borrowed ref-
erence is a reference that can be used to read or write but that cannot
be stored. Thus, a primitive array can be passed in as argument to
a method without fear that the reference will be stored within the
method.

R11: A primitive array parameter annotated with @borrow can be
used in array read and array write expressions and as argument of
a method if the corresponding parameter is annotated as @borrow.
2

Borrowing could be made less restrictive, for example to allow
user-defined types, at the price of additional rules. In our appli-
cation domains, the restrictive version appears sufficient for most
needs.

4.5 Checking Java Collections
The reader may rightly wonder how restrictive the type system
is, and in particular, how it compares with the data flow analysis
approach adopted by [23]. In an Eventron all data must be reference
immutable. It is thus generally not possible to reuse standard Java
classes. Does the same hold for Reflexes?

As an experiment, we tried to type-check the collection classes,
such as Vector and HashMap in the java.util package for Java
1.4 (the GNUClasspath open source implementation). When inner
classes are counted, there are 126 classes and about 22,000 lines
of code. We decided to treat the collection classes as transient and
ran the type checker. The first set of errors were due to the use of
classes such as String, StringBuffer and Random. We declared
them as intrinsics – special types that are treated as transient by the
type checker but not validated. After declaring these classes safe,
there were still over 200 type errors due to the use of static refer-
ence variables. The collection classes have a total of 66 static fields,
out of which only 10 fields are of reference type. They hold vari-
ous singletons used to represent empty collections, empty slots and
empty keys. The key observation is that these statics are not danger-
ous as they are never modified and they are never reclaimed. This
suggested extending the type system with the notion of reference-
immutable types. Adding rules R7 and R8 eliminated all but a
handful of errors.

Rooting out the last errors would require some refactoring of
the collection classes. The problem arises from the fact that some
of the singletons, while they are in practice immutable, have non-
final fields. One can take care of those errors by refactoring some
of the collection classes to introduce immutable singleton classes.
There is only one class that we did not attempt to include in the
experiment, WeakHashMap, as it drags in extra libraries and has



no use within a Reflex since transient objects are not garbage
collected.

In conclusion, we found that the majority of Java collection
classes can be used without any changes within a Reflex and a small
number of classes require small modifications to be usable.

4.6 Design Choices
The type system is affected by several fundamental design choices.
First, by choosing class granularity for distinguishing between sta-
ble and transient objects, we relinquish using the same class in both
contexts. The alternative would be to have per-object annotations.
So one could write code like @stable HashMap = @stable new
HashMap(). But unfortunately that is not enough, as the code
within HashMap may need to allocate, it is necessary to treat the
annotation as a type parameter, e.g. new HashMap<@stable>().
While object granularity allows a greater degree of reuse, it is
more heavyweight and requires retrofitting all library classes with
generic parameters. The added effort and complexity does not seem
warranted. One distinct benefit of avoiding annotations on stable
(or transient for that matter) classes is that the same classes can
be used within different Reflexes as either stable or transient, and
outside of any Reflex.

Another choice is that transient is the default case. Unlike for
stable classes, transients have no restrictions on the types of their
fields. This choice reflects the hypothesis that stable code is the
smaller part of a Reflex and that it is less likely that we need to
reuse legacy libraries in stable classes (part of the reason is that the
allocation behavior of many library classes is not appropriate for an
environment where objects are not reclaimed).

Borrowing has been discussed before [10]. We considered al-
lowing borrowing of objects but this adds two issues: a reference
retrieved from a borrowed object must be treated as borrowed (bor-
rowing is ’sticky’) and calling a method of a borrowed object is al-
lowed only if the method does not leak a reference to the receiver.
Once again we chose to go with the simpler solution: Borrowing
only allows the exchange of arrays. Since most examples of Re-
flexes that we have been able to identify only deal with primitive
values and arrays this is a sensible choice. Another possible ap-
proach for communication between plain Java and Reflexes would
be to pass objects by deep copy. This is safe but the cost of copying
is too high for many applications.

5. Virtual Machine Support
Reflexes have been implemented on top of the Ovm Java virtual
machine. We leveraged real-time support in the VM to implement
some of the key features of the API. The virtual machine con-
figuration described here uses an optimizing ahead-of-time com-
piler to achieve performance competitive to commercial virtual ma-
chines [21]. The VM was designed for resource constrained unipro-
cessor embedded devices and has been successfully deployed on a
ScanEagle Unmanned Aerial Vehicle in collaboration with the Boe-
ing Company [3].

Scheduling. Scheduling is implemented in the VM. Priority-
preemptive scheduling is available for real-time threads. The com-
plete priority range is from 1-42, where the subrange 12-39 are
real-time priorities used by Reflexes and the remaining are used for
Java threads. The VM’s mostly-copying collector is run in a Java
thread. In a priority preemptive scheduled system, real-time threads
must yield explicitly (i.e. the periodic() method must return).

The abstract Reflex class is implemented as a thread with real-
time priorities. The thread is started as a result of an invocation of
start(). This causes the thread to be scheduled at a start time that
may either be the current time, or a user defined future time. The
ability to set the start time is essential to prevent the Reflex from

being released at times that are out of phase with the rest of the
system.

Memory hierarchy. For each Reflex instance, the implementation
allocates a fixed size continuous memory region for the Reflex’s
stable area and another region for its transient area. Furthermore, a
buffer is set aside for the transactional log. The size of each of the
above is set programmatically in the Reflex API. The Reflex object,
its thread and all other implementation specific data structures are
allocated in the Reflex’s stable area. These regions have the key
property that they are not garbage collected. The collector does
trace the stable area because it contains implementation specific
objects that may have references into the heap.

Each thread in the VM has a default allocation area. This area
is the heap for all Java threads and the respective transient area for
all Reflex threads. The VM exposes low-level functionality for set-
ting allocation areas through the class ReflexSupport. The static
method setCurrentArea() allows the Reflex implementation to
change the allocation area for the current thread. Regions are refer-
ence counted, each call to setCurrentArea() increases the count
of active threads by one. The static method reclaimArea() de-
creases the counter by one for that area, if the counter is zero
all objects in the area are reclaimed. The method reclaimArea-
AndWait() is a blocking version of the above. Essentially, the al-
location pointer is reset to the start of the area. Thus the behavior
of a Reflex’s start() method can be expressed abstractly as:

start() {
while(this.waitForNextPeriod()) {

ReflexSupport.setCurrentArea(transient);
this.periodic();
ReflexSupport.reclaimAreaAndWait(transient);

}
}

We use bytecode rewriting to bracket all invocations of Reflex
methods from Java code with setCurrentArea/reclaimArea
pairs to ensure that when a Reflex method is called from Java code
the allocation area is set to the transient region.

The VM exposes another method, setAllocKind(reflex,
class) for identifying stable classes. Whenever an instance of
class is created by a thread running in reflex (which is obtained
from the thread’s allocation context), the stable region is used
instead to allocate the object. setAllocKind() is invoked at the
creation of each Reflex for each class annotated @stable. The
allocation of arrays encapsulated within the constructor of a stable
class is rewritten to add code that checks if the thread is running
within a Reflex and, if yes, allocates the array in stable memory.

The Ovm virtual machine also supports allocation policies for
meta-data. In particular, we rely on a policy for lock inflation that
ensures that a monitor is always allocated in the same area as
the object with which it is associated, regardless of the current
allocation area.

Pinning. The garbage collector supports pinning for objects.
Pinned objects are guaranteed not to move during a garbage collec-
tion. Thus they can safely be accessed from a Reflex. The allocation
policy for classes and static initializers ensures that all objects al-
located at initialization are pinned (in the current implementation
the class objects and static fields are actually allocated in a non-
GCed immortal region). There is one other case where pinning is
required. Borrowed variables may be heap-allocated objects, so
these are pinned before invoking a Reflex method from plain Java
and unpinned when the method returns.

Calls from Java. Invoking a method of an instance of a Reflex
from plain Java requires changing the allocation context from the



heap to that of the Reflex. Furthermore, if one or more of the
arguments to the call are annotated @borrow, the VM will try to
acquire the monitor for each of them. This has two goals, it forces
lock-inflation before entering the Reflex and ensures that the Reflex
will not have to block for a Java thread if it tries to synchronize on
a borrowed object.4

Reclaiming Reflexes. A Reflex and its memory can be reclaimed
if the Reflex thread is not active and the Reflex object is unreach-
able. The current implementation does not garbage collect Re-
flexes. This is not a problem as Reflexes are not created dynami-
cally in any of the applications that we have considered so far.

Exceptions. When an exception is thrown within a Reflex, the
object is created with normal Java semantics. By default the excep-
tion object and its stack trace are created in transient memory. If
the exception propagates out of the periodic() method, the stack
trace is printed and the thread is terminated. If an exception escapes
from a call to a Reflex method from plain Java, the exception object
is translated into a ReflexException that is allocated in the heap
and rethrown.

Synchronization. Synchronization and wait/notify protocols
can be used within a Reflex. We do not guarantee priority inheri-
tance semantics for locks, thus if users want to avoid priority in-
version they are encouraged to use @atomic. The implementation
of wait/notify does not require allocation and thus can be safely
used in a Reflex. If a Reflex notifies a lower priority Java thread, the
priority preemptive scheduler ensures that the Reflex thread contin-
ues until its explicit yield point before scheduling the Java thread.

Finalization. The VM does not invoke finalizers of objects allo-
cated in a Reflex. While this may seem harsh, observe that since ob-
jects in a Reflex have no reference to operating system’s resources
and have a very predictable lifetime, the value of finalization is
quite low.

5.1 Priority Inversion and Atomicity
Communication between Java thread and Reflexes must be man-
aged carefully as it may cause blocking in the Reflex. The only
way for Reflexes and Java to interact is through public methods of
the Reflex class. A Java thread can call any one of these methods,
in which case it executes within the Reflex. The semantics is that
any allocation performed within that invocation is done in transient
and allocated objects will be cleared before the next invocation of
the periodic() method. There can thus be multiple threads active
within a Reflex and they may need to regulate access to resources.

There are two issues here. First, if a plain Java thread grabs a
lock on an object and the Reflex thread tries to acquire the same
lock, the Reflex will have to wait for the Java thread to release
it. Second, as long as the Java thread is active within the Reflex,
the Reflex’s transient memory cannot be reclaimed. This, again,
may cause the Reflex to block. Priority inversion may occur in
either scenario if the Java thread is preempted by another thread
(that thread may be further preempted or, worse, trigger a garbage
collection).

We avoid some of the most egregious cases of priority inversion
by increasing the priority of any Java thread entering a Reflex to a
priority that is higher than all normal Java threads but lower than all
Reflexes for the duration of the call. This has the effect of ensuring
that the Java thread will not be preempted by a heap-allocating
thread. (Note that since all threads that are at the same priority level
or higher are running within Reflexes, none of them will trigger a
GC).

4 A preferable solution would be to ignore any use of the synchronized
within a Reflex.

It remains that we need to provide synchronization support that
reduces blocking between Java and Reflexes. We supplement Java
monitors with a simple transactional facility inspired by the pre-
emptible atomic regions of [18]. We allow users to annotate meth-
ods as @atomic. The semantics is simple: the method will execute
atomically, unless another thread in the same Reflex is released.
If another thread starts executing within the Reflex, all changes
performed within the atomic method are undone and the method
will be automatically re-executed. The implementation follows [18]
with one difference, there is one transactional log per Reflex instead
of a single global log. For each write within an atomic the VM
records the original value and address of field in the log. An abort
boils down to replaying the log in reverse order. No conflict detec-
tion is needed as aborts are performed eagerly at context switches.
Enters and commits are constant time, aborts are proportional in
the number of writes performed in the atomic section.

5.1.1 Implementing Channels
We illustrate atomicity and some of the features of the Reflex
type system with a simplified version of the AudioPlayer bench-
mark used in the evaluation section. Fig. 4 shows two classes
AudioPlayer and Channel, the latter declared stable. The player
has a periodic() method that sends data to an audio device. It
also has a public write() method which allows a Java synthesizer
thread to send it audio data.

The AudioPlayer also has an instance of class Channel in its
stable state. The type system forces us to declare the variable
private. For the outside to be able to write into the channel, it is
necessary to add a public write() method to the AudioPlayer.
This method takes an array of shorts and calls the channel’s write
method. The channel copies the data into its buffer. There are two
noteworthy things about this implementation. The array of notes
is passed by reference from the synthesizer to the player. We use
a @borrow annotation to ensure that the player does not retain a
reference to the object. Secondly the channel’s write() method is

class AudioPlayer extends Reflex {
private Channel chan;

public AudioPlayer(...) {
super(...);
chan = new Channel();

}
public void periodic() { ... }
public void write(@borrow short[] samples) {

chan.write(samples);
}

}

@stable class Channel {
final private short[] data;

Channel(int size) {
data = new short[size];

}
@atomic public int write(@borrow short[] b) {

for (int i=0;i<b.length;i++)
data[i]=b[i];

}
}

Figure 4. An AudioPlayer Reflex containing a Channel. Both
AudioPlayer and Channel are stable. An external synthesizer
thread communicates with the AudioPlayer by calling its write()
method. The channel’s write() is declared @atomic.



declared @atomic. This means that if the Reflex’s thread is released
while the plain Java thread is writing to the channel, the changes
performed by the writer will be undone. Once the periodic method
returns, the plain Java thread is automatically restarted.

6. Evaluation
We conducted a number of experiments to evaluate the extent
to which Reflexes achieve the response times needed by highly-
responsive applications. All experiments were performed on an
AMD Athlon 64 X2 Dual Core processor 4400+ with 2GB of phys-
ical memory running Linux. The kernel version used was 2.6.17
extended with high resolution timer (HRT) patches [1] configured
with a tick period of 1 µs. We used an Ovm build with support
for POSIX high resolution timers, and configured it with an inter-
rupt rate of 1 µs. In addition, we disabled the run-time checks of
violations of memory region integrity (read/write barriers) and con-
figured it with a heap size of 512MB. The time-critical Reflex tasks
were scheduled to run at a 45 µs period (equivalent to frequency of
22.05KHz, a standard audio frequency) and were executed over 10
million periods.

We evaluated Reflexes based on two metrics of predictability:
precision of inter-arrival time, i.e., time between two successive ex-
ecutions of a Reflex, and number of missed deadlines when running
Reflexes in isolation and in a mixed environment. It is important to
properly characterize a deadline miss. A missed deadline occurs
for the i’th firing of a Reflex with a period p if the actual comple-
tion time, αi, comes after its expected completion time, εi, where
εi = p(d(αi−1/p)e + 1). When counting missed deadlines, we
will be conservative and consider both real deadline misses as well
as absolute deadline misses; the difference being that for a given
period p, a single absolute deadline miss might cover i ∗ p real
deadlines, where i > 1. (So we will in this case count i deadline
misses.)

Time

Missed
Deadline

 θ i-1  ε i-1

α i-1

 θ i  ε i

p p
cur

p

Inter-Arrival Time

Periodic
Execution i-1

Periodic
Execution i

+1-1

Figure 5. Timeline showing how a missed deadline can cause an
inter-arrival time between two consecutive periodic executions to
be larger than twice the period.

Note also that an inter-arrival time larger than twice the period
p (but strictly less than three times the period) does not necessarily
imply more than a single deadline miss. Fig. 5 shows that in the
event of a deadline miss (when actual completion time, αi−1, lies
after the expected completion time, εi−1) of a i − 1’th firing,
the expected completion time, εi, of the subsequent i’th firing is
set to be the end of the first-coming complete period, i.e., any
time remaining in the current period is skipped. If the start of the
subsequent periodic execution, i, is delayed (reflected in the actual
start time, θi, lying after the period start) it can cause the inter-
arrival time between the two consecutive periodic executions, i− 1
and i, to be larger than twice the period p.

The results of the evaluation are encouraging when comparing
Reflexes to equivalent implementations in native C running at 45
µs periods, both in terms of base performance as well as when
running under significant workload. In both cases, Reflexes showed

a comparable behavior to native C, though in the latter case with a
small overhead; however, this is not unexpected when running with
the extra layers of complexity that Java brings.

6.1 Virtual Machine Benchmarks
Working on a research virtual machine always raises questions
about applicability of the results in the context of ’real’ systems. We
report on the raw performance of Ovm on the SpecJVM98 bench-
mark suite and compare it with Hotspot 1.5 and GCJ 4.0.2. We eval-
uate two Ovm configurations: the plain Java configuration and the
RTSJ configuration which includes scoped memory access checks.
Fig. 6 shows that Ovm outperforms GCJ and fares surprisingly well
when compared to a production virtual machine.

The figure also illustrates the costs of RTSJ read/write barriers
(up to 50%). SpecJVM is by no means representative of a real-time
application, but it gives an estimate of the cost of memory access
checks.

6.2 Base Performance
To evaluate the base performance of Reflexes, we implemented a
single no-operation Reflex (and a similar C program), scheduled it
for a 45 µs period, and let it execute over 10 million periods.

As depicted in Fig. 7 nearly all interesting observations centered
around the 45 µs period, though the Reflexes appear to be slightly
less timely than the C variant, because the spread in inter-arrival
time is wider. Also note the observations clustered around 200-250
µs for both variants, which we attribute to perturbations in the un-
derlying operating system. Similar observations for an equivalent
base performance benchmark are reported in [23].

Fig. 8 depicts missed deadlines for both Reflexes and their C
variant. More precisely, with Reflexes 99.996% of the periods are
completed in time with no absolute deadline miss (99.993% in the
case of real deadline misses). On the other hand, the equivalent
for C is 99.997% (real: 99.993%). Interestingly, Fig. 8 indicates
some pattern in deadline misses around 100-200 µs for both the
Reflex and C, though for C there seems to more consistency in that
pattern. Also, it appears that both versions experience an equivalent
amount of deadline misses, but the Reflexes have more variation in
the actual sizes of the misses than the C variant. In both cases, given
the similar patterns in the missed deadlines lead us to believe that
these must be caused by the underlying operating system.
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Figure 7. Histograms of inter-arrival time for Reflexes (top) and C
(bottom) with a no-operation task scheduled for 45 µs periods. The
x-axis shows the logarithm of the inter-arrival time in µs and the
y-axis shows the logarithm of its frequency.

6.3 Mixed Environment Performance
Having compared the base performance of Reflexes and corre-
sponding C code, we next measured the performance of Reflexes
under a workload stemming from a mixed environment with a plain
Java thread and a (time-critical) Reflex task executed concurrently.
We considered here a music synthesizer application, developed at
IBM for Eventrons [23], which we modified to make use of Re-
flexes, including the lock-free transactional channel.5 In short, the
scenario involves a plain Java thread that generates music samples,
and writes these to a channel. These are then periodically read by an
audio player Reflex scheduled with 45 µs periods and which then
writes the samples individually to the sound device for playing. For
the sake of comparison, we implemented a corresponding C variant
of the music synthesizer.

Fig. 9 depicts the inter-arrival time of the highly responsive
audio player thread for both the Reflex and C variants. As already
noted in Fig. 7, outlier clusters around the 200-300 µs range can
also be seen in Fig. 9 for both Reflexes and its C variant. However,
in Fig. 9 these outliers appear to have been enhanced, which we

5 Eventrons have been released under the name Expedited Real-Time
Threads and is available from www.alphaworks.ibm.com.
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Figure 8. Missed deadlines over time for respectively Reflexes
(top) and C (bottom) with a no-operation task scheduled for 45 µs
periods. The x-axis shows the executions (only 1 million iterations
shown) of the periodic task and the y-axis shows the logarithm of
the size of the deadline misses.

attribute to the effects of buffering congestion in the sound device
to which the time-critical task is writing (twice per execution)6.

The outlier clusters seen in Fig. 9 also seem to have a direct
impact on the missed deadlines as seen in Fig. 10. Specifically,
for Reflexes 99.869% (real: 99.698%) of them complete in time
and do not cause deadline misses. For the C variant, this is the
case in 99.949% (real: 99.799%) of the time. Of particular inter-
est in Fig. 10 is to see how the perturbation causes regular deadline
misses around 180 µs. We consider these anomalies to most likely
be caused by buffering on the sound device or to stem from other
interactions with the underlying operating system, and we have
learned (through private conversations) from the Eventrons project
that they experienced equivalent behavior when running at these
frequencies. With Reflexes, however, there seems to be further fre-
quent deadline misses in the ranges 2-3 µs, 5-6 µs and around 110-
120 µs. These we attribute to the jitter in timeliness as described
earlier and depicted in Fig. 7 and which also appears to cause sim-
ilar missed deadlines as seen in Fig. 8.

6 First the upper 8 most significant bits of the short value are written to the
sound device followed by the 8 least significant.
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Figure 9. Histograms of inter-arrival time for respectively Re-
flexes (top) and C (bottom) with an audio player task scheduled
for 45 µs periods. The x-axis shows the inter-arrival time in µs and
the y-axis shows the logarithm of its frequency.

7. Conclusion
We presented a new programming abstraction, Reflexes, for pro-
gramming highly-responsive systems in Java. Reflexes combine
control and data to provide high-frequency and predictable real-
time tasks. They avoid garbage collection pauses with a region-
based memory model that is both simple and statically type safe. A
Reflex can thus be scheduled periodically by a priority preemptive
scheduler running at higher priority than any other thread in a Java
virtual machine including the garbage collection thread. While Re-
flexes are protected from interference they are not completed iso-
lated, they can communicate with standard Java threads through a
transactional memory abstractions that prevents priority inversion
by preemption and roll-back of non-real-time tasks.

Our experimental evaluation demonstrated that the predictabil-
ity of a Java virtual machine extended with support for Reflexes
is competitive with that of a comparable C program. In a mixed
environment, where Java threads and Reflexes had to interact, the
number of deadline misses was 0.1% higher for Reflexes than for a
comparable C program, a number which is not entirely unexpected
as Java has some inherent overheads.

The Reflex approach can be extended in several ways. The own-
ership type system used to enforce memory safety could be ex-
tended with generics and thus allow more programs to be veri-
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Figure 10. Missed deadlines over time for respectively Reflexes
(top) and C (bottom) with an audio processing task scheduled for
45 µs periods. The x-axis shows the periodic executions (only 1
million iterations shown) of the time-critical task and the y-axis
shows the logarithm of the size of the deadline misses.

fied. Another exciting direction is would be to replace region-based
memory with Reflex-local real-time garbage collection. One way
to approach the problem would be to integrate the hierarchical
real-time garbage collection technique of [20] to collect each re-
flex independently. Exotasks [4] go one step further, they aim to
provide time-portability. Like reflexes, they are real-time compo-
nents executing without interference from plain Java threads (and
their garbage collector), instead they have a per-exotask real-time
garbage collector. Furthermore Exotasks strive to stamp out non-
determinism by adopting the notion of logical execution time [16].
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Kirsch, V.T. Rajan, Harald Röck, and Rainer Trummer. Java takes
flight: Time-portable real-time programming with exotasks. In in
the Proceeedings of ACM SIGPLAN/SIGBED 2007 Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
2007.

[5] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In ACM
Symposium on Principles of Programming Languages (POPL), pages
285–298, January 2003.

[6] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek
Prochazka, Jan Vitek, Austin Armbuster, Edward Pla, and David
Holmes. A real-time Java virtual machine for avionics. In
Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2006). IEEE Computer Society,
2006.

[7] BEA. Weblogic real time. www.bea.com., 2006.

[8] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve
Furr, and Mark Turnbull. The Real-Time Specification for Java.
Addison-Wesley, June 2000.

[9] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, November 2002.

[10] John Tang Boyland. Alias killing: Unique variables without
destructive reads. In IWAOOS, 1999.

[11] Benjamin M. Brosgol, Scott Robbins, and Ricardo J. Hassan II.
Asynchronous transfer of control in the Real-Time Specification for
Java. In Proceedings of the Fifth International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’02), 2002.

[12] Jeff Child. DD(X) program leads navy’s voyage toward cost-efficient
computing. COTS Journal, June 2006.

[13] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In OOPSLA ’98 Conference Proceedings,
volume 33(10) of ACM SIGPLAN Notices, pages 48–64. ACM,
October 1998.

[14] Angelo Corsaro and Ron K. Cytron. Efficient memory reference
checks for real-time Java. In Proceedings of Languages, Compilers,
and Tools for Embedded Systems (LCTES’03), 2003.

[15] Roger Henriksson. Scheduling Garbage Colection in Embedded
Systems. PhD thesis, Lund University, July 1998.

[16] Tom Henzinger, Christoph M. Kirsch, and T. Z. Horowitz. Giotto: A
time-triggered language for embedded programming. Proceedings of
the IEEE, 91(1):84–99, January 2003.

[17] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java:
A high integrity profile for real-time Java. In Joint ACM Java
Grande/ISCOPE Conference, November 2002.

[18] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, and Jan Vitek. Preemptible atomic
regions for real-time Java. In Proceedings of the 26th IEEE Real-
Time Systems Symposium (RTSS). IEEE Computer Society, December
2005.

[19] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java
scoped memory: design patterns and semantics. In Proceedings of
the IEEE International Symposium on Object-oriented Real-Time
Distributed Computing (ISORC’04), Vienna, Austria, May 2004.

[20] Filip Pizlo, Athony L. Hosking, and Jan Vitek. Hiearchical real-time
garbage collection. In Proceeedings of ACM SIGPLAN/SIGBED
2007 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES), 2007.

[21] Filip Pizlo and Jan Vitek. An empirical evalutation of memory
management alternatives for Real-time Java. In Proceedings of the
27th IEEE Real-Time Systems Symposium (RTSS), December 2006.

[22] Fridtjof Siebert. Real-time garbage collection in multi-threaded
systems on a single processor. In 20th IEEE Real-Time Systems
Symposium (RTSS’99), Phoenix, Arizona, 1999.

[23] Daniel Spoonhower, Joshua Auerbach, David F. Bacon, Perry Cheng,
and David Grove. Eventrons: a safe programming construct for
high-frequency hard real-time applications. In Proceedings of the
conference on Programming language design and implementation
(PLDI), pages 283–294, 2006.

[24] Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time
Java. In Proceedings of the 25th IEEE International Real-Time
Systems Symposium (RTSS04), Lisbon, Portugal, December 2004.


