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Chapter 1

Introduction

This work addresses the problem of tracking, in real video sequences, the global

motion of an infant face as well as the local motion of its inner features. This is

a challenging task in Computer Vision field, because of the variability of facial

appearance within a video sequence, most notably due to changes in head pose,

expressions, lighting or occlusions. Thus, much research has been devoted to the

problem of face tracking, as a specially difficult case of non-rigid object tracking.

This task requires, by definition, the use of a model which describes the expected

structure of the face. The advantage of explaining image data in terms of model

parameters is to provide a natural basis for further interpretation, and it can

be exploited by Human-Machine Interaction applications. (Actually this work is

currently used in the facial expression recognition project at EPFL1).

In figure 1.1, some example images show inherent difficulties when dealing

with real video sequences of infants. There are two major elements, which add

complexity to the tracking task:

1. Infants move continuously and in an unpredictable way, producing face self

occlusions as most undesirable effect.

2. External objects (an hand in figure 1.1) may occlude the target face either

partially or totally.

1 http://itswww.epfl.ch/~sorci
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Chapter 1

Partial occlusion Total occlusion Total self occlusion

Figure 1.1: Example images from input video sequences.

The main objective of this thesis work is then to provide a theoretical frame-

work and a practical implementation for a robust tracker, with the following

characteristics:

1. Tracking of a single face in a video sequence.

2. High responsiveness: the tracker must follow the target face even if sudden

movements occur.

3. Robustness to partial occlusions: the tracker must recognize a face in pres-

ence of limited partial occlusions.

4. Robustness to total occlusions: the tracker must recover the face after dis-

traction by a total occlusion.

1.1 Approach

In this thesis, a model-based tracking approach is taken. Active Appearance

Models (AAMs) were proposed by Cootes et al. [1] in 1998, as one of the more

sophisticated deformable template models, a family of methods to represent real

objects characterized by high variability. Since its introduction it has been suc-

cessfully applied to face interpretation. When compared to other models, it has

the main property to provide a complete and compact target representation.

2



1.1. APPROACH Chapter 1

Complete means that AAMs are photo-realistic generative models of appearance;

thus, for instance, an AAM-face can generate convincing images of any individ-

ual, changing their expression, and so on. The compactness is due to an effective

combination of statistical techniques used to learn plausible structure variations

of the target. Furthermore, it comes with a fast and effective algorithm, named

AAM search, to match the model to the image data.

Thus, an AAM has been a natural choice in this work for face representation.

A more detailed description of AAMs is given in section 2.2.

Tracking can be formulated as a state estimation problem, based on obser-

vations in image sequences. Bayesian methods are attractive, as they provide a

principled means of encoding uncertainty about parameter estimates. In proba-

bilistic formulation, the system dynamics is described by a state transition dis-

tribution, and an observation model specifies the likelihood of an hypothesised

state, i.e. the probability that the considered state might generate the observed

data (a review on Bayesian filtering is given in Chapter 3).

Particle Filtering is a technique for the implementation of a recursive tem-

poral Bayesian filter, by means of Monte Carlo simulations: compared to the

well-known parametric filters, such as the Kalman filter, it does not assume a

functional form of the posterior state distribution, and it is particularly suited

for visual tracking, where occlusions and cluttered background encourage the

distribution to be multi-modal.

For visual tracking, the Condensation is a well known particle filtering algo-

rithm, which consists in approximating the posterior state distribution by a set of

random weighted samples (particles), and in propagating this sample set through

time using the system dynamics.

The state transition model, which dominates the propagation of particles,

plays a very important role in the particle filter implementation. For our track-

ing problem, a single motion model results insufficient to predict accurately the

position of the target. The stochastic framework offers rich modeling possibilities,

and so we propose a mixed state Condensation scheme which includes multiple

3



1.2. THESIS OVERVIEW Chapter 1

models to better describe the target dynamics and to manage the occurrence of

large occlusions.

1.2 Thesis Overview

Chapter 2 This chapter presents a literature review of visual tracking, where

different approaches are presented and discussed. Then, Active Appearance Mod-

els are described together with the AAM search.

Chapter 3 This chapter first formulates the task of tracking as a Bayesian

inference problem. Particle Filters methods are then introduced as a recursive

solution to implement a Bayesian Filter. The final stress is upon Condensation,

a general particle filtering algorithm used for visual tracking.

Chapter 4 This chapter describes the main contributions of this work. A

new Condensation based algorithm is obtained by integrating Active Appearance

Models in a Bayesian framework and using a mixed-state model representation

of the target dynamics.

Chapter 5 The proposed algorithm is compared with other common approaches

found in literature, to assess its performance.

Chapter 6 Conclusion and future work.
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Chapter 2

Related Work

In this chapter, we first give an overview of the the current state-of-the-art in

visual tracking. We will focus on face tracking with Active Appearance Models,

highlighting strengths and limits of existing approaches.

Then, we describe how to construct a face Active Appearance Model and how

to use it to detect a face in an image.

2.1 Visual tracking

In the object tracking literature, the following formulation of the tracking problem

is conveniently used: at each time step k, the goal is to infer the unobserved state

of the object, denoted xk, given all the observed data until time k, denoted y1:k =

{y1, ..,yk}. When tracking a face, the unobserved state xk includes motion or pose

parameters like the position, scale and orientation of the face; when facial features

are also tracked, the unobserved state should contain parameters describing the

face inner motion. The observed data yk consists of measurements derived from

the current video frame, such as greylevel patches, edges, or color histograms

[2][3]. In order to evaluate a hypothesized state, the measurements are actually

only considered in the image area corresponding to the hypothesized location.

For instance, the most natural measurement consists of the pixel greylevel values

themselves.

5



2.1. VISUAL TRACKING Chapter 2

The tracking task, then, essentially consists in searching the current state xk,

which matches at best the measurements yk in the current image. The tracking

history x̂1:k−1 is mainly used as a prior knowledge in order to search only a

small subset of the state space. More specifically, for a hypothesized state xk,

measurements g(xk) are extracted from the image patch at the hypothesized

location, and those measurements are matched against some model of the object.

The various tracking methods can be categorized according to the considered

class of measurements, joint model of state and measurements, induced matching

criterion (error functional to minimize or probability to maximize), and inference

technique (deterministic or stochastic). According to this classification, a brief

and non-exhaustive survey of tracking approaches is given below.

Roughly speaking, previous work on visual tracking can be divided into two

groups: deterministic tracking and stochastic tracking.

Deterministic approaches usually reduce to an optimization problem, where

the state xk is usually seeked so as to minimize an error functional d[g(xk);gmodel],

where gmodel indicates a greylevel template face patch; the error function can be,

for example, an euclidean distance. In a tracking setting, the state is supposed

to evolve slowly between consecutive time steps. The solution is thus searched

as a small displacement from the previous frame estimation: x̂k = x̂k−1 + ∆̂xk.

The optimal displacement is then typically obtained by a gradient-like descent

method. The well-known Lucas-Kanade algorithm [4] is a particular case of such a

formulation. Instead of being specified by a single face greylevel template gmodel,

the face model can span a subspace of greylevel patches, learnt by principal

component analysis [5] from a face training set. The error functional is then a

distance from the image patch g(xk) to the face subspace, usually taken to be

the distance to the projection in face subspace. The subspace modeling allows

to account for some variability of the global face appearance. Using principal

component analysis, the Active Appearance Models encode the variations of face

appearance by learning the shape and texture variations (see section 2.2). Thus,

they enable the tracking of both global motion and inner features. The Active

6



2.1. VISUAL TRACKING Chapter 2

Appearance Algorithm, being essentially a deterministic search, gives a fast and

effective way to match the model to the current image. However it seems to work

well only when lighting conditions remain stable and only small occlusions are

present.

Differently, stochastic tracking approaches often reduce to an estimation prob-

lem. The hidden state and the observations are linked by a joint distribution.

A Markovian dynamic model describes how the state evolves through time. An

observation model specifies the likelihood of each hypothesised state, i.e. the

probability that the considered state may generate the observed data. Stochastic

tracking improves robustness over its deterministic counterpart, by its capability

for escaping local minimum, since the search directions are for the most part

random even though they are governed by a deterministic state transition model.

Bayesian filtering methods recursively evaluate the posterior density of the target

state at each time step, conditionally to the history of observations until the cur-

rent time. Stochastic implementations of Bayesian filtering are generally based

on sequential Monte Carlo estimation, also known as particle filtering (see chap-

ter 3). When compared with the analytical solution provided by the well-known

Kalman filter, particle filtering has two advantages: it is not restricted to the case

of linear and Gaussian models, and it can maintain multiple hypotheses of the

current state, a desirable property when the background is complex and contains

distracting clutter.

For video tracking, the Condensation algorithm (see section 3.3) was first

proposed in conjunction with edge measurements produced by an edge detector

[6]. Since then, this algorithm has attracted much interest, and other kinds of

measurements have given valuable variants. For instance, tracking based on color

histograms has gained recent interest, due to the development of efficient search

techniques [7]. In the case of particle filtering, motion is used as an additional

information in order to remove ambiguities due to the color used alone. However,

since color histograms are global, they do not allow to track the motion of internal

facial features (which is one of the goals in this work).

7



2.2. ACTIVE APPEARANCE MODELS Chapter 2

Regarding existing works on face tracking with AAM, in most cases [8] [3][9]

the tracking itself uses the AAM search frame-by-frame, with no temporal dy-

namics and without provision for occlusion handling.

In [10] S. Hamlaoui and F. Davoine combine AAM with temporal dynamics

and use a filtering scheme based on Condensation, where the dynamics are guided

by an AAM search. Although the stochastic approach permits to augment robust-

ness, they rely too much on the deterministic search and the resulting algorithm

performs poorly in case of heavy occlusions.

2.2 Active Appearance Models

This section provides a brief treatment of how an Active Appearance Model build

its statistical models of shape and texture, and how these are combined into one

unified model.

We first start by giving a definition of shape and texture [11]:

• Shape is all the geometrical information that remains when location, scale

and rotational effects are filtered out from an object. The term shape is, in

other words, invariant to Euclidean transformations.

• Texture is the pixel intensities across the object in question (if necessary

after a suitable normalization).

The construction of the model involves three major steps. The first step is the

data acquisition. Then a suitable normalization follows, after which the data are

ready to be analyzed and described in terms of statistical models. The process

setup is given as a flow chart, in figure 2.1.

37

Chapter 3

Introduction

This part provides an in-depth treatment and discussion of how Active
Appearance Models build its statistical models of shape and texture and
how these are combined into one unified model.

The notation, treatment and even some parts of the algorithms is occa-
sionally somewhat different from the treatment by the inventors of AAMs
[10, 14]. However, the overall ideas are the same.

Figure 3.1: The three steps of handling shape and texture in AAMs.

The handling of shape and texture can be viewed as dual processes.1 The
setup of these processes is quite similar to other data handling processes
though the composition of techniques is quite unique.

The first step is the data acquisition. Hereafter follows a suitable normal-
ization after which the data are ready to be analyzed and described in terms
of statistical models. The process setup is given as a flow chart on figure 3.1.

1Though the texture mode in reality is defined in terms of the shape model.

38 Chapter 3. Introduction

To stress the coherence between shape and texture handling the steps are
specified below.

Capture
Shape Captured by defining a finite number of points on the contour

of the object in question.
Texture Captured by sampling in a suitable image warping function

(e.g. a piece-wise affine, thin-plate or another warp function).

Normalization
Shape Brought into a normalized frame by aligning shapes w.r.t.

position, scale and orientation using a Procrustes analysis.
Texture Removing global linear illumination effects by standardiza-

tion.

Statistical Analysis
Shape & Texture Principal Component Analysis is performed to

achieve a constrained and compact description.

The level of detail in the following chapters is adjusted so that the current
implementation can be understood and/or redone solely upon this descrip-
tion.

Figure 2.1: The three steps of handling shape and texture in AAMs.

8



2.2. ACTIVE APPEARANCE MODELS Chapter 2

To stress the coherence between shape and texture handling, the steps are

specified below.

Capture

• Shape Captured by defining a finite number of points on the contour of

the object in question.

• Texture Captured by sampling in a suitable image warping function (e.g.

a piece-wise affine, thin-plate or another warp function).

Normalization

• Shape Brought into a normalized frame by aligning shapes with respect to

position, scale and orientation using a Procrustes analysis.

• Texture Removing global linear illumination effects by standardization.

Statistical Analysis

• Shape and Texture Principal Component Analysis is performed to achieve

a constrained and compact description.

2.2.1 Statistical Shape Model

One way to describe a shape is by locating a finite number of points, called

landmarks, on the outline (see fig 2.2).

A mathematical representation of an n-point shape in k dimensions could

concatenate each dimension into a kn-vector. In the following only 2D shapes

are considered, hence k = 2. The vector representation for planar shapes would

then be:

s = [x1, x2, ..., xn, y1, y2, ..., yn]T

Although the concept of landmarks conceptually is very useful, their acqui-

sition can be very cumbersome and usually involves manually placing hundreds

9



2.2. ACTIVE APPEARANCE MODELS Chapter 2

Figure 2.2: Two faces annotated using 44 landmarks.

of points, including constantly comparison to other annotations to ensure corre-

spondence.

To obtain a true shape representation, according to our definition, location,

scale and rotational effects need to be filtered out. This is carried out by es-

tablishing a coordinate reference, w.r.t. position, scale and rotation, commonly

known as pose, to which all shapes are aligned.

An alignment procedure for obtaining such a coordinate reference is commonly

known as Procrustes analysis [12], but it is not treated here.

Now we show how intra-class shape variation can be described consistently and

efficiently. The fact alone that equivalence classes of shapes can be established,

hint us in the direction that there must exist a sort of inter-point correlation.

This is the only degree of freedom left to constitute the perception of a shape,

since, according to the definition of shape, all position, scale and rotational effects

are filtered out. A classical statistical method of dealing with such redundancy in

multivariate data is the linear orthogonal transformation called Principal Com-

ponent Analysis (PCA).

Conceptually, the PCA performs a variance maximizing rotation of the orig-

inal variable space. Furthermore, it delivers the new axes ordered according to

their variance. This is most easily understood graphically. In figure 2.3, the two

principal axes of a two dimensional data set are plotted and scaled according to

the amount of variation that each axis explains.

10



2.2. ACTIVE APPEARANCE MODELS Chapter 2

4.5 Modelling Shape Variation 51

that there must be some sort of inter-point correlation present. Naturally,
as this actually is the only degrees of freedom left to constitute the percep-
tion of a shape, since – according to the definition of shape – all position,
scale and rotational effects are filtered out.

A classical statistical method of dealing with such redundancy in multi-
variate data is the linear orthogonal transformation; principal component
analysis (PCA). Based on work by Karl Pearson the principal component
analysis method was introduced by Harold Hotelling in 1933 [54]. The prin-
cipal component analysis is also known as the Karhunen-Loeve transform.

Figure 4.7: Principal axis. 2D example.

Conceptually the PCA performs a a variance maximizing rotation of the
original variable space. Furthermore, it delivers the new axes ordered ac-
cording to their variance. This is most easily understood graphically. In
figure 4.7 the two principal axes of a two dimensional data set is plotted
and scaled according to the amount of variation that each axis explains.

Hence, the PCA can be used as a dimensionality reduction method by pro-
ducing a projection of a set of multivariate samples into a subspace con-
strained to explain a certain amount of the variation in the original samples.
One application of this is visualization of multidimensional data.9 In con-
nection to the example in figure 4.7 one could choose to discard the second

9However – one should also consider the multidimensional scaling – MDS technique
for this special purpose.

52 Chapter 4. Shape Model Formulation

principal axis, and visualize the samples by the orthogonal projection of
the point upon the first (and largest) axis.

Another application of PCA is to determine any underlying variables or to
identify intra-class clustering or outliers.

In our application of describing shape variation by using PCA a shape of
n points is considered a data point in a 2nth dimensional space. But as
stated above it is assumed that this space is populated more sparsely than
the original 2n dimensions. It has been seen in eq. (4.2) that the reduction
should be at least k − 1− 1

2k(k − 1) due to the alignment process.

In practice the PCA is performed as an eigenanalysis of the covariance
matrix of the aligned shapes. The latter is also denoted the dispersion
matrix.

It is assumed that the set of shapes constitute some ellipsoid structure of
which the centroid can be estimated10:

x =
1
N

N∑

i=1

xi (4.10)

The maximum likelihood (ML) estimate of the covariance matrix can thus
be given as:

Σs =
1
N

N∑

i=1

(xi − x)(xi − x)T (4.11)

To prove the assumption of point correlation right, the correlation matrix
of the training set of 24 metacarpal-2 bones is shown in figure 4.8. In the
case of completely uncorrelated variables, the matrix would be uniformly
gray except along its diagonal. Clearly, this is not the case.

The point correlation effect can be emphasized by normalizing the covari-
ance matrix by the variance. Hence the correlation matrix, Γ, is obtained.

V = diag(
1√

diag(Σ)
) =




1
σ1

· · · 0
...

. . .
...

0 · · · 1
σn


 (4.12)

10Notice that this estimate naturally equals the mean shape.

Figure 2.3: Principal axis. 2D example.

Hence, the PCA can be used as a dimensionality reduction method, by pro-

ducing a projection of a set of multivariate samples into a subspace constrained

to explain a certain amount of the variation in the original samples. One ap-

plication of this is the visualization of multidimensional data. In connection to

the example in figure 2.3, one could choose to discard the second principal axis,

and visualize the samples by the orthogonal projection of the point upon the first

(and largest) axis.

To describe shape variation, PCA is performed as an eigenanalysis of the

covariance matrix of the aligned shapes. It is assumed that the set of shapes

constitute some ellipsoid structure of which the centroid, that we call mean shape,

can be estimated:

s̄ =
1

N

N∑
i=1

si (2.1)

The maximum likelihood estimate of the covariance matrix can thus be given

as:

Σs =
1

N

N∑
i=1

(si − s̄)(si − s̄)T (2.2)

The principal axes of the 2nth dimensional shape ellipsoid are now given as

the eigenvectors, Φs, of the covariance matrix:

ΣsΦs = ΦsΛs (2.3)

11
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where Λs denotes a diagonal matrix of eigenvalues Λs = diag(λ1, ...λ2n).

A shape instance can then be generated by deforming the mean shape by a

linear combination of eigenvectors:

s = s̄ + Φsbs (2.4)

where bs are the shape model parameters. Essentially, the point or nodal rep-

resentation of shape has now been transformed into a modal representation, where

modes are ordered according to their deformation energy, i.e. the percentage of

variation that they explain.

We need to determine how many modes to retain. This leads to a trade-off

between the accuracy and the compactness of the model. However, it is safe to

consider small-scale variations as noise. It can be shown that the variance along

the axis corresponding to the ith eigenvalue equals the eigenvalue itself, λi. Thus,

to retain p percent of the variation in the training set, t modes can be chosen,

satisfying the relationship:

t∑
i=1

λi ≥
p

100

2n∑
i=1

λi (2.5)

In our face model, 98% of the shape variation can be modeled using 28 pa-

rameters. A rather substantial reduction since the shape space originally had a

dimensionality of 2n = 2 × 44 = 88. To give an idea of the decay rate of the

eigenvalues a percentage plot is shown in figure 2.4.

We conclude this section by remarking that the use of PCA as a statistical

reparameterisation of the shape space, provides a compact and convenient way

to deform a mean shape in a controlled manner, similar to what is observed in a

set of training shapes. Hence, the shape variation has been modeled by obtaining

a compact shape representation.

2.2.2 Statistical Texture Model

To form a complete model of appearance, one must not only consider shape. To

stress this point, we observe that shape is well defined only by inferring from

12
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Figure 2.4: Shape eigenvalues in descending order.

knowledge of the pixel neighborhood.

In the shape case, the data acquisition is straightforward, because the land-

marks in the shape vector constitute the data itself. In the texture case, one

needs a consistent method for collecting the texture information between the

landmarks, i.e. an image warping function needs to be established. This can be

done in several ways. The most common choice is a piece-wise affine warp, based

on the Delaunay triangulation of the mean shape. Thus to obtain texture infor-

mation from the training set, each shape is warped to a reference shape (usually

the mean shape) and sampled. Hereafter, a photometric normalization of the

obtained textures is done to remove influence from global linear changes in pixel

intensities. Then, the analysis is identical to that of the shapes. A compact PCA

representation is derived to deform the texture in a manner similar to what is

observed in the training set.

For further details on image warping and photometric normalization we refer

13
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to [11]. In the following we will only show the statistical analysis.

As a starting point for the texture variation modeling, the term “digital im-

age” needs a discussion. The core of digital images is a set of spatial samples. In

this thesis, raster images are considered. This merely means that the samples are

arranged in a uniformly spaced spatial grid. The term spatial outlines that the

ordering of the samples is crucial. This suggests some sort of spatial correlation

between samples, leading to data redundancy as in the case of shapes. Hence, it

is natural to adapt the PCA approach for the texture variation also.

The maximum-likelihood estimate of the mean texture of N normalized tex-

ture vectors is given as:

gs =
1

N

N∑
i=1

gi (2.6)

The maximum-likelihood estimate of the covariance matrix can then be writ-

ten as:

Σg =
1

N

N∑
i=1

(gi − ḡ)(gi − ḡ)T . (2.7)

The principal axes of the m-dimensional point cloud of textures are now given

as the eigenvectors, Φg, of the covariance matrix:

ΣgΦg = ΦgΛg (2.8)

where Λg is a diagonal matrix of eigenvalues. A texture instance can then be

generated by deforming the mean texture by a linear combination of eigenvectors:

g = ḡ + Φgbg, (2.9)

where bg are the texture model parameters.

The effect of varying the first three texture modes can be seen in figure 2.5.

2.2.3 Combined Model Formulation

We show now how to unify the presented shape and texture models into one

complete, compact appearance model.
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First Mode

Second Mode

Third Mode

Figure 2.5: Mean texture deformation using 1st, 2nd and 3rd principal mode.

It was shown that an object instance can be constructed using the two set of

model parameters of shape, bs, and texture, bg.

To remove correlation between shape and texture model parameters, and to

make the model representation more compact, a 3rd PCA is performed on the

concatenated shape and texture parameters, b, of the training set, to obtain the

combined model parameters, c:

b = Φcc (2.10)

where Φc denotes a set of eigenvectors. The concatenated shape and texture

parameters are easily obtained due to the linear nature of the model:

b =

 Wsbs

bg

 =

 WsΦ
T
s (x− x̄)

ΦT
g (g− ḡ)

 (2.11)

where Ws is a diagonal matrix providing a suitable weighting between pixel

distances and pixel intensities.

Now, a complete model instance including shape s and texture g, can be
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generated using the model parameters c.

s = s̄ + ΦsW
−1
s Φc,sc (2.12)

g = ḡ + ΦgΦc,gc (2.13)

where

Φc =

 Φc,s

Φc,g

 (2.14)

Regarding the compression of the model parameters, one should notice that

the rank of Φc will never exceed the number of examples in the training set.

As in the shape PCA case, we can compress the combined model representa-

tion further, by removing the smallest eigenmodes. Again, it is safe to consider

small-scale variation as noise. Thus, to retain p percent of the combined variation

in the training set, t modes can be chosen satisfying:

t∑
i=1

λi ≥
p

100

Nc∑
i=1

λi (2.15)

where Nc s the number of original modes.

2.2.4 AAM search

One of the attractive properties of the statistical models of shape and texture, is

that it is possible to use these ones to search images for new instances of the class

of objects that they represent, by means of an optimized algorithm called AAM

search. Actually the combined model together with the AAM Search is what is

called the Active Appearance Models.

The foundation of the AAM search is to treat the search as an optimization

problem, in which the difference between the synthesized object delivered by the

AAM and an actual image, is to be minimized. Formally this can be written as

the difference vector δI:

δI = Iimage − Imodel (2.16)
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In this way, the fitting can be enhanced by adjusting the model and pose param-

eters to fit the image in the best possible way. Since the following discussion will

be based on normalized texture vectors, δI will be denoted as δg.

Though we have seen that the parameterization of the object class to be

analyzed (a face in our case) can be dramatically compacted by the principal

component analysis, the resulting system is still high-dimensional, and thus op-

timization is far from being an easy task. This is not only computationally cum-

bersome but also theoretically challenging since we are by no means guaranteed

that the hyperspace sought in is smooth.

Methods for solving the optimization problem of deformable models, include

general optimization techniques such as gradient based methods, like steepest

descent.

AAMs circumvent these potential problems in a rather untraditional fashion.

It is proposed that the spatial pattern in δg can predict the needed adjust-

ments in the model and pose parameters to minimize δg. The simplest model

one can use constitutes a linear relationship:

δc = Rδg (2.17)

Cootes et al. show that this crude approximation suffices to produce good

results in their work with AAMs [13][1][8][14][12].

To determine a suitable R in equation (2.17), a set of experiments are con-

ducted, each experiment consisting of displacing both pose parameters p and

model parameters c by a known amount, and measuring the difference between

the model and the part of the image below the model. All results are eventually

fed into a multivariate linear regression framework, to learn the linear relationship

[11].

Given a method for predicting the correction which needs to be made in the

model parameters, we can construct the AAM search as an iterative method for

solving the optimization problem.

Given the current estimate of model parameters c0, and the normalized image
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sample at the current estimate, gi, one step of the iterative procedure is as follows:

• Evaluate the error vector δg0 = gi − gm.

• Evaluate the error E0 = |δg0|2.

• Compute the predicted displacement, δc = Rδg0.

• Set k = 1.

• Let c1 = c0 − kδc

• Sample the image at this new prediction, and calculate a new error vector,

δg1.

• If |δg1|2 < E0 then accept the new estimate, c1, otherwise try for different

value of k.

This procedure is repeated until no furhter reduction is observed in the error,

|δg|2, and convergence is declared.

An example of an AAM optimization is given in figure 2.6. In this example,

the model converged after 12 iterations.
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Figure 2.6: An AAM search example. On the top the original image. Below,

from the upper left to the lower right, the optimization sequence (the algorithm

converges after 12 iterations).
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Chapter 3

Bayesian Filtering

Many problems in science require estimation of the state of a system that changes

over time, using a sequence of noisy measurements made on the system. In order

to analyze and make inference about a dynamic system we require to define and

describe two models:

• A transition model describing the evolution of the state {xk, k ∈ N} with

time.

• An observation model relating the noisy measurements {yk, k ∈ N} to

the state.

Within a Bayesian framework, all relevant information about {x0,x1, ..,xk}

given observations up to and including time k, can be obtained from the posterior

distribution p(x0:k|y1:k). In many applications we are interested in estimating

recursively in time this distribution, and particularly one of its marginals, the

so-called filtering distribution p(xk|y1:k). This problem is known as the Bayesian

filtering problem or the optimal filtering problem [15]. Except for few special

cases, including linear Gaussian state space models (Kalman filter) and hidden

finite-state space Markov chains, it is impossible to evaluate these distributions

analytically.

A recursive filtering approach means that received data can be processed

sequentially rather than as a batch, so that it is neither necessary to store the
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complete data set nor to reprocess existing data if a new measurement becomes

available. Such a filter consists of essentially two stages: prediction and update.

The prediction stage uses the transition model to predict the state distribution

forward from one measurement time to the next. Since the state is usually subject

to unknown disturbances (modeled as random noise), the prediction generally

translates, deforms, and spreads the state distribution. The update operation uses

the latest measurement to modify the prediction distribution. This is achieved

using Bayes theorem, which is the mechanism for updating knowledge about the

target state in the light of extra information from new data.

In the following we first give a description of the nonlinear tracking problem

and its optimal solution. When certain constraints hold, this optimal solution is

tractable.

More often the solution is intractable so we describe particle filters, which

constitute an approximation strategy to the optimal solution.

3.1 Nonlinear Bayesian tracking

To define the problem of tracking, consider the evolution of the state sequence

{xk, k ∈ N} of a target given by

xk = f(xk−1,vk−1), (3.1)

where f(.) is a possibly nonlinear function of the state xk−1 and {vk, k ∈ N}

is an i.i.d. process noise sequence. The objective of tracking is to recursively

estimate the posterior distribution from measurements:

yk = h(xk,nk), (3.2)

where h(.) is a possibly nonlinear function, {vk, k ∈ N} is an i.i.d. measure-

ment noise sequence. In particular, we seek filtered estimates of the posterior

based on the set of all available measurements y1:k = {yi, i = 1, ..., k}, up to

time k. From a Bayesian perspective, the tracking problem is that of recursively
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calculating some degree of belief in the state xk at time k, given the data y1:k

up to time k. Thus, it is required to determine the probability density function

(pdf) p(xk|y1:k). It is assumed that the initial pdf p(x0|y0) ≡ p(x0) of the state

vector, which is also known as the prior, is available. Then, in principle, the

pdf p(xk|y1:k) may be obtained recursively in two stages: prediction and update.

Suppose that the required pdf p(xk−1|y1:k−1) at time k− 1 is available. The pre-

diction stage involves using the transition model (3.1) to obtain the prior pdf of

the state at time k via the Chapman-Kolmogorov equation [16]:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3.3)

The reader should note that in the previous equation the first order marcovian

hypothesis:

p(xk|xk−1,y1:k−1) = p(xk|xk−1)

has been used.

At time step k, a measurement yk becomes available, and this may be used

to update the prior (update stage) via Bayes rule

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.4)

where the normalizing constant

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1) (3.5)

depends on the likelihood function p(yk|xk) defined by the measurement model

(3.2) and the known statistics of nk. In the update stage, the measurement is

used to modify the prior density to obtain the required posterior density of the

current state. The recurrence relations (3.3) and (3.4) form the basis for the

optimal Bayesian solution. This recursive propagation of the posterior density is

only a conceptual solution in that, generally, it cannot be analytically determined.

However, solutions do exist for a limited number of cases, including the Kalman

filter.
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3.1.1 Optimal Algorithms - Kalman Filter

The Kalman filter assumes that the posterior density at every time step is Gaus-

sian distributed and, hence, represented by a mean and covariance. If p(xk−1|y1:k−1)

is Gaussian, it can be shown that p(xk|y1:k) is also Gaussian, provided that some

assumptions hold:

• vk−1 and nk are drawn from Gaussian distributions of known parameters.

• f(xk−1,vk−1) is known, and is a linear function of xk−1 and vk−1.

• h(xk,nk) is a known linear function of xk and nk.

That is, system equations can be rewritten as:

xk = Fxk−1 + vk−1 (3.6a)

yk = Hxk + nk (3.6b)

where F and H are the matrices that define the linear functions.

Thus, an optimal analytical solution is provided to the tracking problem, if

the (highly restrictive) assumptions hold. The implication is that no algorithm

can ever perform better than a Kalman filter in this linear Gaussian environment.

3.1.2 Suboptimal algorithms - Extended Kalman Filter

(EKF)

If (3.1) and (3.2) cannot be rewritten in the form of (3.6), because of the non-

linear functions, then a local linearization of the equations may be a sufficient

description of the nonlinearity. The EKF is based on this approximation. The

EKF utilizes the first term in a Taylor series expansion of the nonlinear function.

A higher order EKF that retains further terms in the Taylor expansion exists,

but the additional complexity has prohibited its widespread use. Recently, the

unscented transform [17] has been used in an EKF framework [18]. The resulting
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filter, which is known as the unscented Kalman filter, considers a set of points that

are deterministically selected from the Gaussian approximation to p(xk|y1:k). All

these points are propagated through the true nonlinearity, and the parameters of

the Gaussian approximation are then re-estimated. For some problems, this filter

has been shown to give better performance than a standard EKF, since it better

approximates the nonlinearity; the parameters of the Gaussian approximation are

improved. However, the EKF always approximates p(xk|y1:k) to be Gaussian. If

the true density is non Gaussian (e.g., if it is bimodal or heavily skewed), then a

Gaussian curve can never describe it well. In such cases, particle filters will yield

a performance improvement when compared to that of an EKF, as we will see in

the next paragraph.

3.2 Particle Filtering methods

3.2.1 Sequential Importance Sampling (SIS)

The Sequential Importance Sampling (SIS) particle filter algorithm is a Monte

Carlo (MC) method that forms the basis for most sequential MC filters developed

over the past decades [15]. This sequential MC (SMC) is a technique for imple-

menting a recursive Bayesian filter by mean of MC simulations. The key idea is

to represent the required posterior density function by a set of random samples

with associated weights and to compute estimates based on these samples and

weights. As the number of samples becomes very large, this MC characterization

becomes an equivalent representation to the usual functional description of the

posterior pdf, and the SIS filter approaches the optimal Bayesian estimate. In

order to develop the details of the algorithm, let {xi
0:k, w

i
k} denote a random mea-

sure that characterizes the posterior pdf p(x0:k|y1:k), where {xi
0:k, i = 1, ..., Ns}

is a set of support points with associated weights {wi
k, i = 1, ..., Ns}, and x0:k =

{x0,x1, ...,xk}, is the set of all states up to time k. The weights are normalized

such that
∑Ns

i=1 wi
k = 1. Then, the posterior density at time k can be approxi-
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mated as:

p(x0:k|y1:k) ≈
Ns∑
i=1

wi
kδ(x0:k − xi

0:k). (3.7)

Therefore, we have a discrete weighted approximation to the true posterior,

p(x0:k|y1:k).

The weights are chosen using the principle of Importance Sampling [15].

This principle relies on the following assumptions. Suppose that p(x) ∝ π(x) is

a probability density from which it is difficult to draw samples, but for which

π(x) can be evaluated (as well as p(x) up to proportionality). In addition, let xi

be samples that are easily generated from a proposal q(.) called an importance

density. Then, a weighted approximation to the density p(.) is given by

p(x) ≈
Ns∑
i=1

wiδ(x− xi) (3.8)

where

wi ∝ π(xi)

q(xi)
(3.9)

is the normalized weight of the ith particle.

Therefore, if the samples xi
0:k were drawn from an importance density q(x0:k|y0:k),

then the weights are defined to be:

wi
k ∝

p(xi
0:k|y1:k)

q(xi
0:k|y0:k)

. (3.10)

Returning to the sequential case, at each iteration, one could have samples

constituting an approximation to p(x0:k−1|y1:k−1) and it is required to approxi-

mate p(x0:k|y1:k) with a new set of samples. If the importance density is chosen

to factorize such way that

q(x0:k|y1:k) = q(xk|x0:k−1,y1:k)q(x0:k−1|y1:k−1), (3.11)

then one can obtain samples xi
0:k, drawing from q(x0:k|y1:k), by augment-

ing each of the existing samples xi
0:k−1 with the new sample xi

k. To derive the
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weight update equation, p(x0:k|y1:k) is first expressed in terms of p(x0:k−1|y1:k−1),

p(yk|xk), and p(xk|xk−1):

p(x0:k−1|y1:k−1) ∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1). (3.12)

By substituting, the weight update equation becomes

wi
k ∝ wi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1,y1:k)
. (3.13)

Furthermore, if q(xk|x0:k−1,y1:k) = q(xk|xk−1,yk), then the importance den-

sity becomes only dependent on xk−1 and yk. This is useful in the common case

when only a filtered estimate of the posterior distribution is required at each time

step. In such scenarios, only xi
k need to be stored; therefore, one can discard the

path xi
0:k and the history of observations. The modified weight becomes then

wi
k ∝ wi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1,yk)
, (3.14)

and the posterior filtered density p(xk|y1:k) can be approximated as:

p(xk|y1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (3.15)

where the weights are defined in (3.14). It can be shown that as Ns −→ ∞

the approximation approaches the true posterior density, p(xk|y1:k) [19]. The

SIS algorithm thus consists of recursive propagation of the weights and support

points, as each measurement is sequentially received.

Degeneracy Problem

A common problem with the SIS particle filter is the degeneracy phenomenon,

where after a few iterations, all but one particle have negligible weight. It has

been shown that the variance of the importance weights can only increase over

time and, thus, it is impossible to avoid the degeneracy phenomenon. This de-

generacy implies that a large computational effort is devoted to update particles
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whose contribution to the approximation is almost zero. A suitable measure of

degeneracy of the algorithm is the effective sample size Neff defined as

Neff =
Ns

1 + V ar(w∗i
k )

(3.16)

where w∗i
k = p(xi

k|y1:k)/q(x
i
k|xi

1:k−1,yk), is referred to as the “true weight”.

This cannot be evaluated exactly, but an estimate ˆNeff of Neff can be obtained

by

ˆNeff =
1∑Ns

i=1(w
i
k)

2
(3.17)

where wi
k is the normalized weight obtained using (3.14). Notice that Neff ≤

Ns, and a small Neff indicates severe degeneracy. Clearly, the degeneracy problem

is an undesirable effect in particle filters. The brute force approach to reducing its

effect, is to use a very large value for Ns. Since this is often impractical, usually

one relies on a technique called Resampling.

3.2.2 Resampling

The basic idea of resampling is to eliminate particles that have small weights

and to concentrate on particles with large weights. The resampling step involves

generating a new set {xi∗
k }

Ns
i=1 by resampling (with replacement) Ns times from

an approximate discrete representation of p(xk|y1:k) given by

p(xk|y1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k).

The resulting sample is in fact an i.i.d. sample from the discrete density above;

therefore, the weights are now reset to wi
k = 1/Ns. Although the resampling

step reduces the effects of the degeneracy problem, it introduces other practical

problems. First, it limits the opportunity to parallelize since all the particles

must be combined. Second, the particles that have high weights are, statistically,

selected many times. This leads to a loss of diversity among the particles as

the resultant sample will contain many repeated points. This problem, which is
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known as sample impoverishment, is severe in the case of small process noise. In

fact, for the case of very small process noise, all particles will collapse to a single

point within a few iterations.

The sequential importance sampling algorithm forms the basis for most par-

ticle filters that have been developed so far. The various versions of particle

filters proposed in the literature can be regarded as special cases of this gen-

eral SIS algorithm. These special cases can be derived from the SIS algorithm

by an appropriate choice of importance sampling density and/or modification of

the resampling step. Below, we present one of these approach, proposed in the

literature, and mostly used in visual tracking.

3.2.3 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) Filter is an MC method that can be

applied to recursive Bayesian filtering problems. The assumptions required to use

the SIR filter are very weak. The state dynamics f(., .) and measurement functions

h(., .) need to be known, and it is required to be able to sample realizations from

the process noise distribution of vk−1 and from the prior distribution p(xk|y1k−1).

Finally, the likelihood function needs to be available for pointwise evaluation (at

least up to proportionality). The SIR algorithm can be easily derived from the

SIS algorithm by an appropriate choice of

i) the importance density, where q(xk|xk−1 = xi
k−1,yk) is chosen to be the density

p(xk|xk−1 = xi
k−1),

ii) the resampling step, which is to be applied at every time index.

The above choice of importance density implies that we need samples from

p(xk|xk−1 = xi
k−1). A sample xi

k from p(xk|xk−1 = xi
k−1) can be created by first

generating a process noise sample vi
k−1, and setting xi

k = f(xi
k−1,v

i
k−1). For this

particular choice of importance density, it is evident that the weights are given
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by:

wi
k ∝ wi

k−1p(yk|xi
k). (3.18)

However, noting that resampling is applied at every time index, we have wi
k−1 =

1/N ∀ i; therefore

wi
k ∝ p(yk|xi

k). (3.19)

As the importance sampling density for the SIR filter is independent of measure-

ment yk, the state space is explored without any knowledge of the observations.

Therefore, this filter can be inefficient and is sensitive to outliers1. Furthermore,

as resampling is applied at every iteration, this can result in rapid loss of diversity

in particles, since the resultant samples will contain many repeated points. This

problem, which is known as sample impoverishment, is severe in the case of small

process noise. In fact, for the case of very small process noise, all particles will

collapse to a single point within a few iterations. However, the SIR method does

have the advantage that the importance weights are easily evaluated, and that

the importance density can be easily sampled.

3.3 Condensation

Sequential Monte Carlo algorithms have gained prevalence in the visual tracking

literature due in part to the Condensation (Conditional Density propagation)

algorithm [20], which belongs to the class of SIR filters.

Spatio-temporal estimation has been dealt with thoroughly by Kalman fil-

tering in the relatively clutter-free case, in which p(xk|y1:k) can be modeled as

Gaussian. These solutions work poorly in clutter that causes the posterior density

to be multi-modal and, therefore, non-Gaussian. The Kalman filter as a recursive

linear estimator is a special case, applying only to Gaussian densities, of a more

general probability density propagation process. In the simple Gaussian case,

the density function evolves as a Gaussian pulse that translates, spreads and is

1In statistics, an outlier is a single observation ”far away” from the rest of the data.

29



3.3. CONDENSATION Chapter 3

reinforced, remaining throughout Gaussian, as in figure 3.1a.

The random component of the dynamical model leads to spreading, increasing

uncertainty, while the deterministic component causes the density function to

drift bodily. The effect of an external observation yk is to superimpose a reactive

effect and, consequently, the density tends to peak in the vicinity of observations.

In clutter there are typically several competing observations, and these tend to

encourage a non-Gaussian state density (fig 3.1b).

In Condensation the output of an iteration will be a weighted, time-stamped

sample-set, denoted {s(i)
k , i = 1, .., Ns}, with weights wi

k approximately repre-

senting the conditional state-density p(xk|y1:k) at time k. Clearly the process

must begin with a prior density and the effective prior for time step k should be

p(xk|y1:k−1). This prior is, of course, multi-modal in general and no functional

representation of it is available. It is derived from the sample set representation

{s(i)
k−1, π

(i)
k−1, i = 1, 2, .., Ns} of p(xk−1|y1:k−1) the output from the previous time

step, to which the prediction

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

must then be applied. The iterative process, as applied to sample sets, is depicted

in figure 3.2 and mirrors the continuous diffusion process in figure 3.1b. At the

top of the diagram, the output from time step k − 1 is the weighted sample set

{s(i)
k−1, w

(i)
k−1, i = 1, .., Ns}.

The first operation, therefore, is to sample from the set, with replacement,

NS times, choosing a given element with probability wi
k−1.

Some elements, especially those with high weights, may be chosen several

times, leading to identical copies of elements in the new set. Others with relatively

low weights, may not be chosen at all. Each element chosen from the new set

is now subjected to the predictive steps. The predictive step is random and

identical elements now split because each one undergoes its own independent

Brownian motion step. At this stage, the sample set {sk
i } for the new time step

has been generated, but without its weights. Finally, the observation step is
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Figure �
 Kalman �lter as density propagation� In the case of Gaussian prior� process and

observation densities� and assuming linear dynamics� the propagation process of �gure � reduces

to a di�using Gaussian state density� represented completely by its evolving �multivariate� mean

and variance � precisely what a Kalman �lter computes	

��� Stochastic dynamics

A somewhat general assumption is made for the probabilistic framework that the object dynam�
ics form a temporal Markov chain so that

p
xtjXt��� � p
xtjxt��� 
��

� the new state is conditioned directly only on the immediately preceding state� independent
of the earlier history� This still allows quite general dynamics� including stochastic di�erence
equations of arbitrary order� we use second order models and details are given later� The
dynamics are entirely determined therefore by the form of the conditional density p
xtjxt����
For instance�

p
xtjxt��� � exp��
�

xt � xt�� � ���

represents a one�dimensional random walk 
discrete di�usion� whose step length is a standard
normal variate� superimposed on a rightward drift at unit speed� Of course� for realistic problems�
the state x is multi�dimensional and the density is more complex 
and� in the applications
presented later� learned from training sequences��

(a) Gaussian case
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Figure �
 Probability density propagation� Propagation is depicted here as it occurs over

a discrete time
step	 There are three phases� drift due to the deterministic component of object

dynamics� di�usion due to the random component� reactive reinforcement due to observations	

��� Measurement

Observations zt are assumed to be independent� both mutually and with respect to the dynamical
process� This is expressed probabilistically as follows


p
Zt���xtjXt��� � p
xtjXt���
t��Y
i��

p
zijxi�� 
��

Note that integrating over xt implies the mutual conditional independence of observations


p
ZtjXt� �
tY

i��

p
zijxi�� 
��

The observation process is therefore de�ned by specifying the conditional density p
ztjxt� at each
time t� and later� in computational examples� we take this to be a time�independent function
p
zjx�� Su�ce it to say for now that� in clutter� the observation density is multi�modal� Details
will be given in section �

(b) Non-Gaussian case

Figure 3.1: Probability density propagation.

31



3.3. CONDENSATION Chapter 3
Isard and Blake� IJCV� in press� ������� �

sample

predict

measure

(n)     (n)ω

(n)
s

ωs     ,
(n)        (n)

k

s  ,

observation
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Figure �
 One time�step in the Condensation algorithm� Each of the three steps � drift


di�use
measure � of the probabilistic propagation process of �gure � is represented by steps in

the Condensation algorithm	

Figure 3.2: Condensation Steps. One time-step in the Condensation algorithm.
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applied, generating weights from the observation density to obtain the sample set

representation of state density for time k.

Figure 3.3 gives a synopsis of the algorithm in its original formulation [6].

3.3.1 ICondensation

Condensation can be extended to incorporate the statistical technique of Impor-

tance Sampling. Importance sampling offers a mathematically principled way of

directing search combining prediction information based on the previous object

position and motion with any additional knowledge available. In the standard

formulation of the Condensation algorithm (see fig 3.3) positions of samples s
(n)
k

are fixed in the prediction stage using only the previous approximation of the

state density {s(n)
k , w

(n)
k } and the motion model p(xk|xk−1). The portions of state

space which are to be examined in the measurement stage are therefore deter-

mined before any measurements are made. This is appropriate when the sample

set approximation to the state density is accurate. In principle as the state density

evolves over time the random nature of the motion model induces some non-zero

probability everywhere in state space that the object is present at that point.

With a sufficiently good sample set approximation this would tend to cause all

areas of state space to lie near some samples so even motions which were extremely

unlikely given the model would be detected and could therefore be tracked. In

practice however the finite nature of the sample set approximation means that all

of the samples will be concentrated near the most likely object positions. There

may be several such clusters corresponding to multiple hypotheses but in gen-

eral each cluster will be fairly localised, which is precisely the behaviour which

permits an efficient discrete representation of high dimensional state spaces. The

result is that large areas of state space contain no samples at all. In order to

robustly track sudden movements the process noise of the motion model must

be artificially high thus increasing the extent of each predicted cluster in state

space. To populate these larger clusters with enough samples to permit effective
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Iterate

From the �old� sample�set fs�n�t��� �
�n�
t��� c

�n�
t��� n � �� � � � � Ng at time�step t��� construct

a �new� sample�set fs�n�t � �
�n�
t � c

�n�
t g� n � �� � � � � N for time t�

Construct the nth of N new samples as follows


�� Select a sample s�t
�n� as follows



a� generate a random number r � ��� ��� uniformly distributed�

b� �nd� by binary subdivision� the smallest j for which c

�j�
t�� 	 r


c� set s�t
�n� � s

�j�
t��

�� Predict by sampling from

p
xtjxt�� � s�
�n�
t �

to choose each s
�n�
t � For instance� in the case that the dynamics are governed by

a linear stochastic di�erential equation� the new sample value may be generated

as
 s
�n�
t � As�

�n�
t  Bw

�n�
t where w

�n�
t is a vector of standard normal random

variates� and BBT is the process noise covariance � see section ��

�� Measure and weight the new position in terms of the measured features zt


�
�n�
t � p
ztjxt � s

�n�
t �

then normalise so that
P

n �
�n�
t � � and store together with cumulative probab�

ility as 
s
�n�
t � �

�n�
t � c

�n�
t � where

c
���
t � ��

c
�n�
t � c

�n���
t  �

�n�
t 
n � �� � � � � N��

Once the N samples have been constructed
 estimate� if desired� moments of the
tracked position at time�step t as

E �f
xt�� �
NX
n��

�
�n�
t f

�
s
�n�
t

�

obtaining� for instance� a mean position using f
x� � x�

Figure �
 The Condensation algorithm�Figure 3.3: Condensation Algorithm in its original formulation.
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tracking the sample set size must be increased and the algorithm therefore runs

more slowly. Various techniques have been proposed to improve the efficiency

of the representation in random sampling filters [21]. Importance Sampling ap-

plies when auxiliary knowledge is available in the form of an importance function

q(x) describing which areas of state-space contain most information about the

posterior. Importance sampling can be applied in the context of Condensation

sampling and this extension is called Icondensation [22]. The idea is to concen-

trate samples in those areas of state space by generating sample positions s
(n)
k

from an importance function q(xk). The desired effect is to avoid as far as pos-

sible generating any samples which have low weights, since they are “wasted” as

they provide a negligible contribution to the posterior. A correction term f/q

must be added to the sample weights giving:

w
(n)
k =

f(s
(n)
k )

q(x
(n)
k )

p(yk|xk = s
(n)
k ) where f(s

(n)
k ) = p(xk = s

(n)
k |y1k−1) (3.20)

to compensate for the uneven distribution of sample positions. This correc-

tion term ensures that, for large NS, importance sampling has no effect on the

consistency of the approximation.The effect of the correction ratio is to preserve

the information about motion coherence which is present in the dynamical model.

Although the samples are positioned according to q(xk) the distribution approx-

imated by {s(n)
k , w

(n)
k } still generates p(xk|yk). Importance sampling is again

intended to improve the efficiency of the sample set representation but does not

change the probabilistic model.
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Tracking Baby Faces

The problem of tracking faces in dense visual clutter and in presence of heavy

occlusions is a challenging task.

As mentioned in chapter 2, in our work we have decided to describe faces by

means of the Active Appearance Models (AAMs). By construction the AAMs

encode the variations of face appearance by learning shape and texture variations,

enabling the tracking of both global motion and inner features. In practice,

tracking using the deterministic AAM search, appears to work well while the

lighting conditions remain stable and only small occlusions are present. However,

large occlusions often make the AAM search converge to incorrect positions and

loose track of the face.

It is common in literature to deal with these kind of tracking problems adopt-

ing a probabilistic formulation, since it permits to model motion uncertainty.

In this chapter we propose a solution for the tracking problem integrating

AAMs in the Bayesian framework described in chapter 3.

Kalman filter approaches rely on the strong assumptions of linearity of the

transition model, and on the gaussian nature of the posterior density (see section

3.1). The hypotheses are too restrictive and do not hold in presence of a complex

and cluttered background. A stochastic implementation of the filter seems to be

the right choice since it does not rely on the restrictive Kalman filter assumptions
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and it can maintain multiple hypotheses of the current state, thus improving the

robustness of the tracker.

A number of different approaches, found in literature, for the tracking are

presented and discussed before proposing our solution. The final algorithm, based

on Condensation, integrates in a Bayesian mixed-state framework multiple motion

models, allowing to cope with the limitations of previous approaches.

In chapter 5 all the algorithms will be compared in terms of performance and

accuracy.

4.1 State Space Formulation

Using Active Appearance Models, we can represent the shape and texture of a

face in terms of a vector c of parameters, obtained by projecting the image in a

subspace learned by PCA in a initial training phase. To complete the description

of the face, the four pose parameters are also needed, namely p = (α, ϑ, tx, ty),

representing scale, orientation and position, respectively. The state vector x,

which contains the parameters used to infer about the object (the face) is thus

composed by the concatenation of the vector c of combined parameters and vector

p of pose. It should be noted that x is a high dimensional state vector (about

60-dimensional), and some considerations are necessary, therefore, in order to

stochastically span such a huge state space.

For a Bayesian formulation of the tracking problem, accordingly on what we

said in chapter 3, we need to specify a state transition model and an observation

model.

The observed data yk consist of measurements derived from the current video

frame and, specifically, pixel graylevel patches. In order to evaluate a hypoth-

esized state, actually the measurements are only considered in the image area

corresponding to the hypothesized location. Basically, a given state xk (motion

parameters) is then evaluated by comparing the motion-compensated graylevel

image patch g(xk) with a graylevel template face patch gmodel. In this context,
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a proper choice of the texture distance is a crucial point. Partial occlusion can

be managed by choosing an appropriate error function, robust to outliers. This

problem has already been tackled by [11]; here, some other considerations will be

made.

4.1.1 Choosing a Metric Space

Both the AAM search and the observation model in the probabilistic framework

are driven by a texture difference, which is used to compute the distance between

the face model and the true face image. In order to guarantee a robust texture

distance is necessary to improve the insensitivity to outliers.

To formalize the model fitting problem, a set of parameters, c = [c1, .., cp]
T ,

are adjusted to fit a set of measurements (e.g. an image), g = [g1, ..., gm]T . This

is done by minimizing the residuals [23]:

E =
m∑

i=1

ρ(gi − u(i, c), σs) =
m∑

i=1

ρ(ei, σs) (4.1)

where u is a function that returns the model reconstruction of the ith mea-

surement and σs is the scale parameter that determines what should be deemed

outliers. The ρ-function determines the weighting of the residuals, and it is also

called the error norm. Basic AAMs, as seen in section 2.2.4, use the quadratic

norm (or simply the 2-norm) without any normalization:

E =
m∑

i=1

(gi
model − gi

image)
2. (4.2)

However, that the quadratic norm is notoriously sensitive to outliers, since

these will highly contribute to the overall solution, due the rapid growth of the

x2 function. In the following work, two other norms will be considered that give

experimentally better results.
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Lorenzian Norm

It is a smooth norm which falls off quickly:

ρ(ei, σs) = log(1 +
e2

i

2σ2
s

) (4.3)

The logarithmic function compresses the error dynamic range, improving ro-

bustness but at the same time reducing the accuracy.

Mahalanobis Distance

This similarity measure is closely related to the Mahalanobis distance. They

both take into account the variance of the training set, resulting in similarity

measure less sensitive to large residuals in areas of high variance (as observed in

the training set):

ρ(ei) =
e2

i

2σ2
i

(4.4)

where σi is the maximum likelihood estimate of the variance of the ith pixel.

Notice however, that this is not the Mahalanobis distance since in that case σi

should be the variance of the difference. This norm can be slightly modified to

gain robustness [10]:

ρ(ei) =


e2
i

2σ2
i

if | ei

σi
| ≤ h

h| ei

σi
| − h2 if | ei

σi
| > h

(4.5)

where h is a fixed threshold, above which | ei

σi
| is considered to be an outlier.

This error function behave well in most cases and is the one used during the

experiments.

To prove the utility of the robust error norm, some experiments have been done.

In figure 4.1 are shown the results of an AAM search on still images: in the

upper part the euclidean norm is used while in the lower part the robust norm

described above. The examples reported are typical cases where the classical
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AAM norm does not work, while the robust norm performs well. This improve-

ment is crucial for tracking purpose since all the approaches presented rely on a

good initialization.

Figure 4.1: Comparison Between Euclidean and Robust Norm. Four still images

are searched with AAM: a)in the upper part the euclidean norm is used b)in the

lower part the robust norm is used.

4.1.2 Observation Model

The Observation Model is based on the difference between sampled pixel gray

level patch of the current image and that generated by the AAM built model.

The likelihood function p(yk|xk) indicates the probability that a hypothesized

state xk = (ck,pk) gives rise to the observed data. Since the observed data

consist of pixel graylevel values, it is straightforward to look for a function with

the following form:

p(yk|xk) = p(yk|ck,pk) = C exp−d[gmodel(ck),gimage(ck,pk)] (4.6)

where gimage(ck,pk) is the image patch sampled at the hypothesized pose and

shape, gmodel(ck) is the model texture representing the hypothesized appearance

of the face, and C is a normalizing constant. The texture distance d[; ] is an error

measure, summed over all L pixels of both textures:
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d[gmodel,gimage] =
L∑

l=1

ρ(
gl

model − gl
image

σl

) (4.7)

and can be chosen among those presented in the previous section.

4.1.3 State Transition Model

The state transition model characterizes the dynamics between frames. In a

visual tracking problem, it is ideal to have an exact motion model governing the

kinematics of the object. Motion models are used as predictors to increase the

robustness and accuracy of visual trackers. As already seen in section 2.2.4, AAM

search can predict motion accurately if some condition hold. To add robustness

to the deterministic search, we add a noise contribution modeling uncertainty in

prediction.

The state space equation can therefore be written in its general form as :

xk = f(xk−1) + Sku. (4.8)

In this equation, f(xk−1) represent a deterministic function of the previous

state vector; the second term is an additive random contribution:

• u is a vector of independent normal random variates with zero mean and

unit variance;

• Sk is a diagonal matrix

Sk = diag(σc1
k , ..., σcm

k , σα
k , .., σ

ty
k )

which specifies the standard deviation of the random draw for each appear-

ance/pose parameter.

Whereas the choice of gaussian noise is expected when accurate model uncer-

tainty cannot be provided, choosing an appropriate function f(.) is not an easy

task, and depends on the particular situation. The role of the deterministic func-

tion is that to predict the pose and appearance parameters using data available
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from the previous time step. Even if deterministic AAM search should dominate

the system dynamics, in some situation a fixed constant-velocity model with fixed

noise variance can give better results: this is the case when total occlusions occur,

for example.

Summarizing, there are two possible choices for the state equation that can

be used:

1. a fixed constant-velocity model with fixed noise variance

xk = xk−1 + Sku; (4.9)

2. an adaptive dynamical model, guided by a deterministic AAM search:

xk = xk−1 + ∂xk + Sku (4.10)

where ∂xk is the predicted shift of the tracked parameters.

The dynamical model can then be expressed, in probabilistic form, as follows:

p(xk|xk−1) ∝ exp−1

2

∥∥S−1
k [xk − f(xk−1)]

∥∥2
. (4.11)

The (4.11) clearly shows the Markov nature of the dynamical model.

To complete the description of the model, we need to specify the initial dis-

tribution p(x0|y0) = p(x0) (y0 being the set of no measurements). At time k = 0

we do not know about the object to be tracked. The problem of find a proper

function thus corresponds to the problem of initializing the tracking.

A Hierarchical Search Algorithm as been proposed in [25] as an efficient solu-

tion for initialization with AAMs, which basically consists in an exhaustive search

of the target in the image, obtained performing normal AAM searches sparsely

over the image, using perturbations of the pose parameters. A solution to provide

the initial distribution could be, therefore, to use the result of such AAM initial-

ization to be the mean of a gaussian distribution with covariance S0. In this case,

however, a wrong initialization would cause the tracking to fail since the resulting
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distribution only covers a limited portion of the state space. If the target is too

far from the estimated initial position (the quantification of far being related to

the value of covariance matrix S0) the tracker will hardly find it again.

Since we are in a Bayesian framework we can exploit the advantages of the

stochastic approach to give robustness to the initialization. A substantial im-

provement is thus gained formulating Active Appearance Models in a Bayesian

setting as in [11], specifying a prior and a likelihood probability distribution:

• Prior. p(x|θ) where x denotes the model parameters c and the pose pa-

rameters p, and θ denotes the mean shape, mean texture and their corre-

sponding covariance structure. θ is obtained from the training set.

• Likelihood. p(y|x) where y denotes the image being searched in, so the

first frame in the video sequence. This likelihood is the same as in (4.6).

Regarding the prior distribution, since Active Appearance Models do not have

an explicit prior model, it is chosen to be uniform. The limits of this distribution

are implicit in the AAM since in the training phase, as said in section 2.2, shape

and texture are constrained by PCA. The initial distribution thus is chosen as

the prior distribution deriving from posing AAMs in the bayesian framework:

p(x0) = p(x|θ).

Adaptive Dynamics

According to the state transition model, pose/appearance parameters are drawn

around the predicted state f(xk−1) with dispersions (standard deviations) given

by Sk. Following the idea from Zhou et al [24], we consider adaptive dispersion

given by:

(σc1
k , ..., σcm

k , σα
k , .., σ

ty
k ) = Rk(σ

c1
0 , ..., σcm

0 , σα
0 , .., σ

ty
0 ) (4.12)

where diag(σc1
0 , ..., σ

ty
0 ) are the fixed reference standard deviations, and the

scaling factor Rk is proportional to the square root of εk, which is a measure
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of variance corresponding to a texture error averaged over the L pixels of the

texture:

εk =
2

L

L∑
i=1

ρ(ei, σs). (4.13)

The value of Rk can then be bounded using a maximum and a minimum value

to constrain it in the interval [Rmin, Rmax]:

Rk = max(min(Rmin,
√

εk), Rmax). (4.14)

The meaning of such a choice is easily explained: if the error augments, the

variance increase proportionally in order to explore a larger area of the state

space subregion, covered by the predicted distribution. This must be followed,

however, by a corresponding increase in the number of particles used to explore

it; thus, an adaptive number of particle is proposed as well:

Nk = N0Rk, (4.15)

where N0 is a fixed number of particles. The use of adaptive dispersion permits

to improve temporal performance with respect to the fixed variance/number of

particles, a case that implies an overestimate of these quantities.

In figure 4.2 is shown how the number of particles, Nk, varies in a video

sequence: Nk remains approximatively constant in normal condition; when an

external hand occludes the face (upper image) it increase proportionally to the

error.

4.2 Condensation based tracking

Once the elements for bayesian filtering are given, an algorithm for sequential

estimation of the filtered posterior density p(xk|y1:k) must be specified.

Condensation is a very general algorithm and has been successfully applied in

many visual tracking problems. This is the reason for which we decided to use it

as a basis for our solution.
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Figure 4.2: Adaptive Number of Particles.

The main aim of Condensation (and of particle filters in general) is to provide

an accurate, discrete representation of the posterior density using the minimum

possible number of particles, to keep computational costs low. Although asymp-

totic convergence of particle filters has been demonstrated [19], it is difficult to

prove any general result for a finite number of particles. Likewise, it is difficult to

make any precise, provable statement on the crucial question of how many par-

ticles are required to give a satisfactory representation of the densities for filter

operation. What we can state is that the required number of particles depends

on:

• the dimension of the state vector: in [26] is shown how “curse of dimension-

ality” affect in general particle filtering;

• the precision of the deterministic dynamics: when the deterministic pre-

diction gives a solution far from the real system state, the random part of

the motion model must be capable of correcting the error by extensively

exploring the state space. This results in a larger samples set or , in other

words, in an increased number of particles.
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An AAM-Condensation approach, using either (4.9) or (4.10) as motion model,

has three main problems:

1. AAMs describe faces with high-dimensional vectors;

2. the deterministic AAM search is highly sensitive to large occlusion so ro-

bustness is achieved only by increasing the noise variance;

3. accuracy is only accomplished at the cost of unacceptable time performance.

Common solutions found in literature, in order to solve those problems, trade

off speed with robustness, following two kind of approaches:

1. A zero velocity model is used with a reduced state vector, obtained, for

example, by retaining only the most representative components.

2. The search is carried out only in those regions of the image where the object

is predicted to be. This can be achieved combining Importance Sampling

and the Condensation algorithm (see section 3.3.1).

In figure 4.3 a general flow chart of the Condensation based tracker is pre-

sented. In every approach presented in the following the filtering scheme consists

in propagating a Sample Set {s(n)
k , w

(n)
k } through time. At each time step k, a

new Sample Set is generated resampling the previous sample set and propagating

each particle according to the dynamical model. Each particle is weighted then

by the likelihood function and the state estimate at time k, x̂k, is chosen as the

Maximum a Posteriori (MAP) of the approximated filtered posterior distribution:

x̂k = arg max
xk

p(xk|y1:k). (4.16)

In the following we propose two tracking solutions: in the first we track only

head pose with a classic Condensation scheme. In the second we use ICondensa-

tion (see section [2]) to improve time performance.

In the next section 4.3 we will show how to integrate them to improve overall

performances.
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Figure 4.3: Block Diagram of the generic Condensation-based tracker.
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4.2.1 Condensation Based Pose Tracking

Condensation can be used to track global motion of face or, in other words, pose

parameters, as in [27].

When tracking the 4 pose parameters, (4.9) is a convenient form for the dy-

namical model. This low-level approach permits to overcome the aforementioned

difficulties, but as counterpart the vector of combined parameters c is not tracked

since we artificially pose it to zero: c = 0.

The state transition model can be written as:

pk = pk−1 + Sku (4.17)

basically a random walk1 on the pose parameters p = (σ, ϑ, tx, ty). The pre-

dicted state is simply the previous state, to which a random noise with fixed

variance is added. If the variance is very small, it is difficult to model rapid

movements; if the variance is large, it is computationally inefficient, since many

more particles are needed to accommodate for such noise variance. At each time

step a Sample Set is found as in 3.3 with likelihood function (4.6) rewritten as:

p(yk|pk) = p(yk|pk) = C exp−d[gmodel(c),gimage(c,pk)] , where c = 0 (4.18)

This approach offers a great robustness, thanks to the ability of Condensation

to recover from heavy occlusions. Obviously, the accuracy of the algorithm,

intended as the ability to generate a photo realistic synthetic replica of the face,

cannot be guaranteed since the appearance parameters (c) are not tracked.

4.2.2 Directing Search Using Importance Sampling

To track the entire state vector x = (c,p) and keep computational time low, we

use the AAM search as deterministic state predictor and an importance function

in the ICondensation framework to restrict the width of the search.

1In Mathematics a random walk is a series of sequential movements in which the direction

and size of each move is randomly determined.
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The dynamics are modelled as:

xk = xk−1 + ∂xk + Sku. (4.19)

In the above equation, ∂xk = (∂ck, ∂pk) indicates the predicted shift in pose

and appearance parameters, obtained by an automatic AAM search in the current

frame.

Assuming a successful tracking at time step k − 1, we know that the face at

step k must lye in the “neighborhood” of the previous state estimate x̂k−1. Thus

the importance function is chosen to be:

q(xk) = p(xk|xk−1 = x̂k−1). (4.20)

Each particle, constituting the sample set, is drawn from the importance

function, and can be obtained by randomly perturbing a shifted version of the

previous state estimate (the shift being determined by an AAM search). Then,

each weight is calculated using (3.20). In figure 4.4 the flow chart has been

modified to describe this approach.

It should be clear that the main feature of Condensation (maintaining multiple

hypothesis) is lost: we just consider the best candidate of the previous sample

set in the prediction stage, leaving out all the others.

The accuracy of this algorithm strictly depends, therefore, on the validity of

the AAM search.

Exploration of a small region, that most likely contains good candidates, per-

mits a better refining of the deterministic search, with respect to random sampling

the state space thoroughly. On the other hand, in case of occlusions, an erroneous

prediction will cause the tracking to fail. When we can rely on a good estimate

at previous time step, the algorithm works well and permits a fast tracking. But

if heavy or total occlusions occur the tracker will loose the position and hardly

will recover it.

To summarize we expect the best results, both in terms of speed and accuracy,
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from this approach if only partial occlusions occur.
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Figure 4.4: Block Diagram for the ICondensation-based tracker
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4.3 A Mixed-State Condensation Approach

Two kind of approaches have been presented in the previous section, which seem

to be compensatory in terms of accuracy and robustness.

In occlusion-free situations, the ICondensation with dynamics guided by AAM

search behaves well, allowing fast and accurate tracking. The use of a robust error

function in the observation model allows, furthermore, to improve the robustness

to partial occlusions. However, when heavy or total occlusion occur the tracker

is easily distracted.

When the pose is tracked with a classic Condensation scheme and zero order

dynamics, accuracy is sacrificed for robustness. In particular the tracker allows

for automatic reinitialization, as intrinsic property of Condensation, after total

occlusion.

As should be clear, what emerges from this qualitative analysis of the problem,

is that more then one dynamical model should be integrated into the tracker, to

allow a wider range of motion to be supported without losing the advantages of

an accurate prediction.

To summarize we can say that in case of limited occlusion the deterministic

AAM search should be reasonably trusted, leaving to the importance sampling the

task to improve the accuracy of the detection. In the second scenario, scenes with

strong occlusions, a tracker less accurate, but more robust to occlusions should

be preferred. In our framework the Condensation based tracker will accomplish

this task.

Our solution then consists in merging the solutions presented in the above

section by means of an automatic model switching procedure.

The tracker diagram is shown in figure 4.5. With respect to the general scheme

of figure 4.3 a new block has been added, whose output is used in the resampling

stage: a weighted average of the state estimates is used for state prediction,

constituting in all respects a third motion model, which results particularly useful

for tracking reinitialization.
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In the following we will first show how to manage a mixed continuous-discrete

representation of the state that supports multiple motion models. Then we will

describe the new motion model and, finally, formulate our final algorithm.

4.3.1 Mixed-State Condensation Framework

The purpose in this section is to extend the Condensation framework to permit

a mixed-state object representation, combining continuous-valued shape param-

eters with a discrete label encoding which one, among a discrete set of motion

models, is in force. A joint pdf for the mixed-state model is derived, and due to

the structure of the algorithm, model switching is performed jointly with track-

ing. The fact that the process density p(xk|xk−1) can have a somewhat general

form can be exploited to allow the Condensation algorithm to support, and auto-

matically switch between, multiple motion models. The extended state is defined

as

X = (x, θ), θ ∈ 1, .., Nm (4.21)

where θ is a discrete variable labelling the current model. The process density

can then be decomposed as follows [28]:

p(Xk|Xk−1) = p(xk|xk−1, θk)P (θk|θk−1,xk−1)

P (θk|θk−1,xk−1) : P (θk = j|θk−1 = i,xk−1) = Tij(xk−1)

where the Tij are state transition probabilities. The continuous motion models

for each transition are given by the sub-process densities pθj
(xk|xk−1)

p(xk|xk−1, θk) : p(xk|xk−1, θk = j) = pθj
(xk|xk−1). (4.22)

The algorithm for the mixed-state Condensation is shown in table 4.1. When

tracking with a model of this form, discrete state transitions can be expected to

occur automatically when appropriate. Each discrete state transition with non

zero probability, contributes some samples to the state distribution. As soon as

one model predicts significantly more accurately than the others, that model will

dominate.
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Figure 4.5: Block Diagram for the proposed Mixed-State Condensation tracker
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We will assume in the following that Tij(xk) ≡ Tij, and these transition prob-

ability will be specified by hand in the form of a transition matrix T.

From the “old” sample set {s(n)
k−1, w

(n)
k−1, n = 1, .., Nk−1} at timestep k −

1, construct a “new” sample set {s(n)
k , w

(n)
k , n = 1, .., Nk} for time k.

Construct the new sample set as follow:

1. Resample. Select a sample s
∗(n)
k = (x∗(n), i) as follows:

• Generate a random number j with probability proportional to

w
(j)
k−1.This can be done by binary subdivision using cumulative

probabilities.

• Set s
∗(n)
k = s

(j)
k−1

2. Predict. Sample from p(Xk|Xk−1 = s
∗(n)
k ) to choose

s
(n)
k = (x

(n)
k , θ

(n)
k ):

• Sample transition probabilities:

P (θk|θk−1 = i)

to find θ
(n)
k .

• Sample sub-process density p
θ
(n)
k

(xk|x∗(n)
k ) to find x

(n)
k .

3. Measure. Assign a weight to the new position in terms of the

image data yk: w
(n)
k = p(yk|Xk = s

(n)
k )

Normalize the weights so that
∑

w
(n)
k = 1

Table 4.1: The Mixed-State Condensation algorithm.

4.3.2 A Third Motion Model from data averaging

When considering the face motion in a real video sequence, there is not a clear

trajectory of the face that one can model. In fact, we basically consider motion
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as random from frame to frame, and use the AAM search for prediction if certain

conditions hold.

Here, we want to model a kind of a priori knowledge on the face motion,

closely related to the considered sequences. We can describe it, informally, as

follows: in each video sequence the infants are sitting, thus their movements are

somehow constrained around a point in the scene. In other words, we can assume

that there is a point in the scene, where is more probable to find the target;

furthermore, we can assume that the face lies in a neighborhood of such point,

with probability that decreases with the distance.

To formalize the problem, the above assumption is translated in the mathe-

matical hypothesis of unimodality of the pdf p(xk). If, for sake of simplicity, we

consider a gaussian distribution, we can write:

p(xk) = N(x̄,Ck) (4.23)

where x̄ is the (fixed) mean vector and Ck is the covariance matrix of the distri-

bution at time k; both quantities are, of course, unknown.

Then, the basic idea is to use the information from all the state vector tra-

jectory in order to estimate the mean vector. If {(x̂1, w1), .., (x̂k, wk)} is the

estimated trajectory of the state vector up to time k, then a simple (unbiased)

estimator x̄k of x̄, is the weighted sum [29]:

x̄k =

∑k
i=1 wixi∑k
i=1 wi

. (4.24)

In the above equation, weights are used to give more importance to plausible

candidates, thus reducing the variance of the estimate: wi are the unit normal-

ized weights used to approximate the posterior. This means that wi becomes

larger as the posterior reveals a predominant peak, which should happen when

measurements are unambiguous.

The mean vector has an interesting interpretation, when referred to the infant

face tracking. It represents, in fact, both the mean spatial position of the target in

the image, and the mean face in the sense of mean expression of the baby. Images
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taken from a video sequences and shown in figure 4.6, give visual feedback of the

estimation process. As it can be seen, the mean face is always in a neighborhood

of the true face.

Figure 4.6: Position of the mean face x̄ in a long video sequence, represented by

the (unnormalized) synthetic face.

Thus, a new motion model is defined by:

xk = x̄k + Sku (4.25a)

p(xk) = N(x̄k−1,Sk) (4.25b)

Note that the used covariance matrix for the distribution is Sk, the same as

in (4.8), and not Ck, since we consider it as design parameter in the context of

particle filtering.

The above equations can be used to include some probability of tracking

reinitialization: at each time step k, some particles can be generated by sampling

from p(xk). Since this distribution is a kind of a priori, particles generated in such

a way are specially useful after distraction due, for example, to total occlusions.
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From an algorithmic point of view, it should be noted that this filtering op-

eration does not alter the complexity of the algorithm, neither temporally nor

spatially. In fact, an efficient recursive implementation can be used:

Mk = Mk−1 + xkwk,

Sk = Sk−1 + wk,

x̄k = Mk/Sk,

so that only the vector Mk and the scalar Sk must be stored at time k.

4.3.3 Final Algorithm

The Mixed-State Condensation algorithm given in table 4.1, allows to take ad-

vantage of the three motion models described by (4.17), (4.19) and (4.25). The

integration of different motion models is governed by the state transition distri-

bution P (θk|θk−1) specified in matrix form T.

A useful, graphical way to represent the mixed state tracker is by means of

the state transition diagram in figure 4.7. Such a representation suggests that

the system is made up of two different interacting processes: a Markov chain

(continuous state) {x0,x1, ..,xk} representing the target face, and a Markov chain

{θ0, θ1, .., θk}, with finite state space, describing the evolution of the motion model

with time. The possible values of θk are: R (Reinitialization), I (Importance

Sampling), P (Pose).

In other contexts, the Interacting Multiple Model algorithm [30] is used to

address this situation [31][32].

Since a particle filter is used as the tracker, each particle can be simply ex-

panded to contain the motion model estimate. The particle is propagated forward

in time according to the dynamics implied by the motion model, and transitions

between models happen according to the transition matrix T. This matrix is a

design parameter and is very important for tracking success.

We propose two different forms for the transition matrix:
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Figure 4.7: State Transition Diagram for the mixed-state Tracker.

1.

T =


TRR TRI TRP

TIR TII TIP

TPR TPI TPP

 =


α 1− α− δ δ

α 1− α− δ δ

α δ 1− α− δ

 (4.26)

2.

T =


TRR TRI TRP

TIR TII TIP

TPR TPI TPP

 =


α 1− α− δ δ

α 1− α− δ δ

α 1− α− δ δ

 (4.27)

The matrix T has been parameterized by α and δ to make its interpretation

easier:

• α is, in both cases, a reinitialization parameter, since, at each time step, a

number of particles proportional to α is generated from model (4.25).

• The meaning of δ changes, instead, between the first and the second repre-

sentation [33]: in the first case it represents an adaption speed parameter,
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that is controls how rapidly the probability flows from the model I to the

model P . Thus, we can say that it trades off adaptation rate and steady

state behavior. In the second case, we give it the meaning of robustness pa-

rameter, controlling how promptly the tracker switches into (robust) pose

tracking.

In our experiments, the second form of the matrix has been chosen, since it

gives an easy way to control the robustness of the tracker.

Summarizing, at each time step k the proposed algorithm chooses a particle

from the previous sample set proportionally to its weight. The particle is then

propagated through one of the three dynamical models in accordance with the

current motion label. If, for example, a particle is chosen with label I, then with

probability TII a particle is drawn from the importance function q(x̂k−1), with

probability TIR it is drawn from (4.25), and with probability TIP it is propagated

through (4.17). Finally, the particle is weighted in accordance to observation,

and the multiplicative factor f/q is applied if it was generated with Importance

Sampling. A detailed description of the algorithm is given in table 4.2.
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From the “old” sample set {s(n)
k−1, w

(n)
k−1, n = 1, .., Nk−1} at timestep k−1, construct

a “new” sample set {s(n)
k , w

(n)
k , n = 1, .., Nk} for time k. Construct the new sample

set as follow:

1. Resample. Select a sample s
∗(n)
k = (x∗(n), i) as follows:

• Generate a random number j with probability proportional to

w
(j)
k−1.This can be done by binary subdivision using cumulative proba-

bilities.

• Set s
∗(n)
k = s

(j)
k−1

2. Predict. Sample from p(Xk|Xk−1 = s
∗(n)
k ) to choose s(n) = (x

(n)
k , θ

(n)
k ):

• Sample transition probabilities P (θk|θk−1 = i) to find θ
(n)
k .

• Sample sub-process density p
θ
(n)
k

(xk|x∗(n)
k ) as follow:

a) if θ
(n)
k = I choose s

(n)
k by sampling from q(x̂k−1) and set the impor-

tance correction factor λ
(n)
k =

f(s
(n)
k )

q(s
(n)
k )

b) if θ
(n)
k = P choose s

(n)
k propagating the sample according to the

equation pk = pk−1+Sku and set the importance correction factor

λ
(n)
k = 1

c) if θ
(n)
k = R choose s

(n)
k by sampling from N(x̄k−1,Sk) and set the

importance correction factor λ
(n)
k = 1

3. Measure. Assign a weight to the new position in terms of the image data

yk and the importance sampling correction term:

w
(n)
k = λ

(n)
k p(yk|Xk = s

(n)
k )

Normalize the weights so that
∑

w
(n)
k = 1

Table 4.2: The Final Algorithm.
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Chapter 5

Test and Results

In the previous chapter we have presented our proposed approach for infant face

tracking based on a mixed state Condensation technique. In the following chapter

we show the application of our technique on several sequences and we report the

comparative results between our approach and some other techniques described

in previous chapters.

The chapter is organized as follows: first implementation details are given,

such as the programming language adopted, the function library used, the de-

scription of the face model. Then, we describe how we decide to assess the perfor-

mance of a tracking algorithm and, finally, we present the results in a comparative

manner.

5.1 Implementation

Implementation of the tracker is based on AAM-API, a C++ implementation of

Active Appearance Model. This library has been developed by M. B. Stegmann

for his diploma project [11], and provided as open source.

In order to build our AAM representation of face (see section 2.2), we have

manually landmarked a set of 222 images using the facial model reported in

figure 5.1. The texture vector is composed of 2420 pixels and the shape vector

dimension is 44. The model is built using 28 shapes modes, 99 texture modes and
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59 combined appearance modes thus retaining the 98% of the combined shape

and texture variation.

Figure 5.3 shows the variance associate to each mode of variation of the com-

bined eigenvalues in descending order, while 5.2 shows the effect of varying the

first three combined model parameters.
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Figure 5.1: Hand annotated image. The 44 landmarks representation of the face.

63



5.1. IMPLEMENTATION Chapter 5

First Mode

Second Mode

Third Mode

Figure 5.2: The effect of varing the first three model parameters between ±3

standard deviations.
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Figure 5.3: Combined eigenvalues. 59 combined appearance modes retain 98% of

the combined shape and texture variation
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5.2 Performance Assessment

Assessing tracker performance is not straightforward. In general, it is difficult to

find a performance index that summarizes the “goodness” of a given approach,

which also depends on the particular application the tracker is designed for. Since

we have no real-time constraints, we consider accuracy and robustness the main

components to evaluate and in the following we will define what accuracy and

robustness represent in our context. With the term accuracy, we mean the ability

to reproduce a synthetic face as “near” as possible to the true face. In order to

measure the closeness between the true face and the tracked one we decide to use

the texture distance introduced in 4.1.1.

Then to assess performance at least two approaches can be adopted [11]:

1. The first approach is that to compare the tracked face model with a known

ground truth to produce a measure of the true error. This imply, however,

that for each frame in the video sequence, manual landmarks must be placed

on the face. This is extremely high time-consuming, hardly feasible for video

sequences with an high number of frames.

2. As a second approach, the results could be validated directly by using the

tracking error in (4.7), that is the distance between the texture generated

from the tracked parameters c, and the image patch sampled in correspon-

dence to the tracked pose and shape. In the following, we will refer to this

procedure as self-contained validation.

If a total occlusion occurs in a video frame, both approaches cannot be per-

formed, since the target face is not in the image and the the frame should be

excluded from the analysis. Regarding the second approach, the self-validation

is well defined only when the tracking succeeds or, at least, when the tracked

shape is placed upon the true face. In figure 5.4, two situations are presented: on

the left, the face is well tracked. In this case self validation process is well posed

since the sampled image patch represents the true face. On the right, instead,
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the tracker fails. In this case the tracking error is a misleading measure. When

using self validation, a preliminary classification is necessary in order to separate

the tracked frames accordingly to the two described situations. In the following

we will use the terms in-track and target-lost referring to the two cases reported

in fig 5.4.

Target in track Target lost

Figure 5.4: On the left: the tracker succeeds so the self validation is well posed.

On the Right: the tracker fails so the tracking error is meaningless.

The definition of a robustness measure is more problematic. Robustness of

a tracker refers to the property of succeeding in tracking even when distraction

occurs, that is, when the face is occluded by other objects and/or when in the

background some object mimics the appearance of a face. Even though the fitting

error is partially related to robustness (the loss of a target implies increase of the

fitting error), this error measure cannot be directly associated to the property

of robustness. For our purposes we state that a tracker is as much robust as

more frames are classified in-track. A simple index then consists in counting the

number of tracking failures in a video sequence or, in other words, the number of

target-lost frames.

Even if we have no time constraints, computational time must be reason-

able. Furthermore under the same results in terms of accuracy and robustness,

we clearly prefer an algorithm which performs better in time. To assess time
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performance, we have decided to use the mean frame rate defined as:

RF =
Total Number of frame

Total Computational time (sec)
(5.1)

5.3 Results

To test the Mixed State Condensation tracker we used 50 video sequences. For

all of them a visual analysis has been done, resulting in good overall performance

of the proposed tracker. To show the benefits of our approach we have chosen

3 video sequences that we consider representative for performance assessment.

Simulation results for the algorithms discussed in chapter 4 are presented in a

comparative manner.

For two of these sequences, we have used a self-contained validation. For

the third sequence, we additionally performed an accurate analysis: first hand-

placed landmarks were annotated in a subset of the video frames; then, we found

an exact values for the tracking error comparing the tracked face model with the

ground truth.

At the end, we compared the algorithms in terms of throughput (as defined in

(5.1)) and showed that the mixed state algorithm uses a quite reasonable amount

of time resources.

5.3.1 Self Validation

To perform a self validating analysis, we have chosen two long video sequences:

1. Sequence 1 is about 2700 frames long. The sequence is characterized by

heavy total occlusions, which often occur when an hand completely covers

the face (see figure 5.5)

2. Sequence 2 is about 2200 frames long. In this sequence the infant moves

widely and even hides the face for a long time (about 200 frames) (figure

5.6).
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In figures 5.5 and 5.6 we show some tracking results. In the image grid each

column represents a tracked frame from the sequence, while each row is related

to one of the 3 compared approaches: the Mixed State Condensation, the ICon-

densation and the Condensation-pose tracker.

For displaying purpose only 4 frames per sequence are shown but these are

representative of the whole sequence. Below the image grid a plot shows the

tracking error for the entire sequences. In both image sequences there is a central

event: in the first sequence an hand occludes totally the face (frame 2029) while

in the second a total self-occlusion occurs (frame 1512).

We can notice that although the Condensation-pose tracker is quite robust to

the occlusion, the tracking error is still very high since it doesn’t track the inner

motion of the face.

The behavior of the ICondensation is exactly the opposite: it tracks well

as long as the target is not occluded, but it is not able to recover tracks once

distracted. The Mixed State Condensation shows a good trade-off behavior: it

automatically switch model choosing the best for each situation. It reveals high

robustness and the best accuracy (see 5.1) from this self validated analysis. This

is confirmed by accurate results reported in the next section 5.3.2.

ICondensation Condensation-pose Mixed State Condensation

Sequence 1 0.042 0.045 0.019

Sequence 2 0.047 0.069 0.029

Table 5.1: Mean tracking-error for the first two sequences.
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Figure 5.5: Results of self-contained validation analysis for the first sequence.

The tracking errors (Lorenzian norm) are plotted.
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Figure 5.6: Results of self-contained validation analysis for the second sequence.

The tracking errors (Lorenzian norm) are plotted.
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5.3.2 Accurate analysis

In section 5.3.1 a self-contained validation of two long video sequences resulted

in a outperforming of the Mixed State tracker when compared to the others. Our

purpose is to confirm such results with a more accurate analysis, on the basis

of the considerations made in section 5.2. The drawback of the self validation

approach is that the tracking error is only an approximated measure of the texture

distance between the tracked face and the true one. Even if we perform a self

validation only on the target in-track frames, partial occlusion or extreme poses

of the face will result in a tracked shape not perfectly aligned to the true face.

This means that it can even happen that the tracked error is lower than the true

error; this is the case, for example, when partial occlusions occur and the tracked

face is found in a position of local minimum (respect to the texture distance) in

a non-face region. The only solution, in such cases, is to manually annotate the

image.

On the basis of the above considerations, we performed the following steps:

• We chose a shorter video sequence of 800 frames and manually annotated

a part of it: we sampled the sequence at a fixed interval of 5 frames, anno-

tating thus 800/5=160 frames.

• We excluded from analysis 14 total occluded frames, and we classified the

remaining frames as in-track or target-lost on the basis of the considerations

made in section 5.2.

Then we calculated the tracking error for the in-track frames, and the true

error for the in-track frames when a ground truth was available. The results

are shown in figure 5.7 and 5.8.

• Moreover we found an optimum model of face for each ground truth. The

optimum model can be defined as the face model that matches at best

the true face in the image. When an hand-annotated image is given, the

optimum model can be obtained projecting the true shape and the corre-
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sponding texture points into the subspace spanned by the c parameters,

simply inverting the linear relationship b = Φcc (recall section 2.2), where

b is the vector of concatenated shape and texture points.

• The optimum-model true-error has been used for displaying purposes, and

it is the black line in the error plot. Thus, the black line represents the

approximate lower bound for error, because it basically models the limits

of AAM to model the face.
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Figure 5.7: Tracking errors comparison for the third sequence. The black line

represent the optimum-model error.
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Figure 5.8: True errors comparison for the third sequence. The black line repre-

sent the optimum-model error.

We summarize the results for the accurate analysis in table 5.2. The mixed

state tracker still outperforms in terms of accuracy, even when the true error

is considered and it is comparable to Condensation-pose in terms of number of

failures.

Comparing numerical results in table 5.2, one can note that, on average,

tracking error is lower then the true error. On the whole, however, the results

from the two different analysis are in accordance, showing that the self contained

validation can be trusted.

ICondensation Condensation-pose Mixed State Condensation

Mean (true) Error 0.03 0.036 0.026

Mean (tracking) Error 0.027 0.032 0.021

Number of failures 488 64 136

Table 5.2: Results of accurate analysis.
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5.3.3 Time performance

The results given in table 5.3 are obtained with a P4 1.8 GHz processor, equipped

with 512MB of RAM. A further algorithm has been used for benchmarking:

“AAM Search”. This is a simple algorithm in which the AAM Search is ap-

plied frame-by-frame: it cannot be used for tracking in practical situations, since

it is neither accurate nor robust, however it gives a kind of reference for time

performance. From the table 5.3, it is clear that, despite the increased complex-

ity of the tracker, the Mixed State Condensation outperforms in sequence 1, and

has comparable performance for the other sequences. This is due to the adaptive

dynamics described in section 4.1.3: basically, the number of particles used to

represent the posterior distribution of the state vector, and therefore the compu-

tational time, is proportional to the accuracy of algorithm. Thus, the results in

table 5.3 are in accordance with the results in table 5.2, where we have shown

that the Mixed State tracker outperforms the other approaches in accuracy.

ICondensation Condensation-pose Mixed State Condensation AAM Search

Sequence 1 2.62 2.58 2.53 3.18

Sequence 2 3.13 2.57 2.59 2.5

Sequence 3 3.19 2.48 2.5 2.63

Table 5.3: Time performance comparison (values are given in frames/sec).
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Chapter 6

Conclusions and Future Work

In this work we presented a stochastic framework for robust face tracking using

complex models of face appearance. When compared to other approaches found

in literature [2][10], the presented tracker not only succeeds in crucial cases of

occlusion, but experiments show that it outperforms in accuracy and find an

equilibrate trade-off between robustness and use of time resources. The resulting

algorithm is an adapted mixed state Condensation combined with AAM. The

stochastic Condensation search compensates for AAM limits in handling occlu-

sions, and due to an appropriate choice of motion models, permits an efficient

reinitialization of tracking, when an exhaustive search in the image is impractical.

Furthermore the approach is general enough to be applied to other face tracking

problems: an advantage of the probabilistic approach is that it is modular, in

the sense that application-specific dynamical models or observation models can

be included seamlessly.

6.1 Main Contributions

The main contributions of this thesis are:

• A new robust algorithm for face tracking, obtained combining the AAMs

within the mixed-state Condensation framework. Three different state evo-
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lution models have been used to model the target dynamics. In particular,

a new motion model has been proposed for tracker reinitialization, specified

by a gaussian distribution with mean obtained from a weighted average of

state estimates up to time k.

• An efficient implementation of the tracker in the C++ language, that can

be used for further developments.

6.2 Propositions for further work

Here, we briefly discuss some ideas developed during the thesis work, that either

were out of the scope or out of reach within the given time span.

• Robust AAM Search. In 4.1.3, it has been shown how, in (near) occlusion-

free situations, AAM Search can help in the prediction stage to find a more

accurate state estimate. A zero velocity model, with random noise, must

be used instead when occlusions cause the AAM prediction to fail. Noise

variance must be high enough to allow rapid movements to be tracked hence

the algorithm runs more slowly. The efficiency of the tracking algorithm

heavily depends on the accuracy of the state evolution model. A robust

AAM search should be used, therefore, to improve the predictive step. The

problem of constructing AAM with occlusions has been addressed in recent

works on AAM extension [34][35][25][36], and could constitute an interesting

development for tracking purposes.

• Multi-View AAM. For the addressed problem, a near frontal model has

been considered sufficient to capture the expected variations of the face.

This is not always true, and large rotations or profile views are primary

sources of self occlusions. The mixed-state framework can be used to au-

tomatically support multiple motion models, together with a set of face

models to represent the variations in appearance from different view-point.
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Thus for example the left and right profile model can be used to add ro-

bustness to the tracker.

• Framework for test. Performance assessment is an extremely hard task.

Reliability and reproducibility of results are strongly related to an accurate

definition of a framework for testing. This requires, for example, to define:

proper performance parameters related to the specific application, the way

the measurement are done, the definition of suitable indexes of performance,

and a ground truth data set.

• Real time implementation. Even though some effort was spent on op-

timizing the algorithm resulting in satisfactory time performance, there is

still scope for improvement. In particular, real time implementation is an

attractive issue.
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