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Abstract— Suppose Q is a family of discrete memoryless
channels. An unknown member of Q will be available with
perfect (causal) feedback for communication. A recent result [9]
shows the existence, for certain families of channels (e.g. Binary
Symmetric Channels and Z channels), of coding schemes that
achieve Burnashev’s exponent universally over these families. In
other words, in certain cases, there is no loss in the error exponent
by ignoring the channel: transmitter and receiver can design
optimal blind coding schemes that perform as well as the best
feedback coding schemes tuned for the channel under use. Here
we study the situation where communication is carried by first
testing the channel by means of a training sequence, then coding
the information according to the channel estimate. We provide an
upper bound on the maximum achievable error exponent of any
such scheme. If we consider Binary Symmetric Channels and Z
channels this bound is much lower than Burnashev’s exponent.
This suggests that in terms of error exponent, a good universal
feedback scheme entangles channel estimation with information
delivery, rather than separating them.

I. INTRODUCTION

When considering information transmission over a channel
that is partially known to either the transmitter or the receiver
or both, it is common to employ a training sequence. This
sequence is sent prior to the data to be conveyed and its
purpose is to help the decoder (for channels without feedback)
or both the encoder and the decoder (for channels with
feedback) to adjust its/their parameters for the upcoming
communication. For example, in slow fading channels without
feedback, a training sequence can be sent at the beginning
of each coherence interval, so that the receiver can estimate
the channel characteristics, and then communicate with these
parameters (see, e.g., [1], [5], [6], [10]).

Here we study feedback communication over a time invari-
ant discrete memoryless channel (DMC) with perfect feed-
back, i.e, noiseless and instantaneous (causal). We assume that
the transmitter and the receiver are not aware of the transition
probability matrix Q of the channel, however, both know that
Q belongs to some subset Q of DMCs.

In principle, the sending of a training sequence need not
affect the rates achievable by the communication system: the
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test sequence length can be made negligible compared to the
length of the subsequent information sequence. However, and
this is the main concern of this paper, the separation of the
channel estimation from the information coding may result in
itself in a penalty in terms of error exponent.

At this point we would like to mention the work of Feder
and Lapidoth [4] in which universal decoders for families of
channels without feedback are considered. It is shown that
there exists universal decoders that are optimal in the sense that
they perform (asymptotically) as well as the Maximum Like-
lihood decoder tuned for the channel over which transmission
is carried out. In particular it is shown that the combination
of a training sequence and a Maximum Likelihood decoder
designed for the estimated channel is not optimal. The results
presented in this paper, while concerning feedback channels,
have the same flavor.

II. PRELIMINARIES

In this section we remind the definitions of coding schemes,
rate, error probability, and error exponent for a DMC with
perfect feedback, then we state a Theorem due to Burnashev.

Definition 1 (Coding Scheme): Given two finite alphabets
X and Y and a message set M of size M ≥ 1, an encoder
(or codebook) is a sequence of functions

CM = {Xn : M×Yn−1 −→ X}n≥1 . (1)

The symbol xn to be sent at time n is obtained by evaluating
Xn for the message and the feedback sequence received so
far, i.e., xn � Xn(m, yn−1) where yn−1 = y1, y2, . . . , yn−1.
A codeword for message m is the sequence of functions
{Xn(m, · )}n≥1. A decoder (ΨM , T (M)) consists of a
sequence of functions

ΨM = {ψM
n : Yn −→ M}n≥1 , (2)

and a stopping time T (M), relative to the received symbols
Y1, Y2, . . .,1that represents the decision time. The decoded
message is given by ψM

T (M)(y
T (M)). A coding scheme is a

tuple SM = (CM ,ΨM , T (M)).

1An integer-valued random variable U is said to be a stopping time with
respect to Y1, Y2, . . . if, given Y1, Y2, . . . , Yn, the event {T = n} is
independent of Yn+1, Yn+2, . . . for all n ≥ 1.



Definition 2 (Rate): For a channel Q, an integer M ≥ 1
and a coding scheme SM = (CM ,ΨM , T (M)), the average
rate is2

R(SM , Q) � lnM
ET (M)

nats per symbol , (3)

where ET (M) denotes the expected decision time over uni-
formly chosen messages, i.e.,

ET (M) � 1
M

∑
m∈M

E
(
T (M)

∣∣ message m is sent
)
. (4)

The asymptotic rate for a sequence of coding schemes θ =
{SM}M≥1 and a given channel Q is

R(θ,Q) � lim
M→∞

R(SM , Q) (5)

whenever the limit exists.
Definition 3 (Error Probability): The average (over uni-

formly chosen messages) error probability given a coding
scheme SM and a channel Q is defined as

P(E|Q,SM )

=
1
M

∑
m∈M

P

(
ψM

T (M)(Y
T (M)) �= m

∣∣∣ message m is sent
)
.

(6)
Let us denote by θ a particular sequence of coding schemes
{SM}M≥1, and by Θ the set of all sequences of coding
schemes.

Definition 4 (Error Exponent): Given a channel Q and
a sequence of coding schemes θ = {SM}M≥2 =
{(CM ,ΨM , T (M))}M≥1 such that P(E|Q,SM ) → 0 as M →
∞, the error exponent is

E(θ,Q) � lim inf
M→∞

− 1
ET (M)

ln P(E|Q,SM ) . (7)

We now state an important result related to the error
exponent of DMCs with perfect feedback:

Theorem 1 (Burnashev 1976 [2]): Let Q be a DMC with
capacity C(Q). For any R ∈ [0, C(Q)] and any θ =
{SM}M≥1 ∈ Θ such that R(θ,Q) = R,

lim sup
M→∞

− 1
ET (M)

ln P(E|Q,SM ) ≤ EB(R,Q) (8)

where

EB(R,Q)

�
(

max
(x,x′)∈X×X

D(Q(·|x)‖Q(·|x′))
) (

1 − R

C(Q)

)
, (9)

and where

D(Q(·|x)‖Q(·|x′)) �
∑
y∈Y

Q(y|x) ln
Q(y|x)
Q(y|x′)

is the Kullback-Liebler distance between the output distri-
butions induced by the input letters x and x′. Moreover
there exists θ ∈ Θ such that R(θ,Q) = R and E(θ,Q) =
EB(R,Q).

From now on EB(R,Q) will be referred as the Burnashev’s
exponent.

2ln denotes the natural logarithm.

III. STATEMENT OF RESULT

In this section we propose a general definition of a training
based scheme and provide an upper bound on the error
exponent of any such coding schemes. Then we draw a few
comparisons between training based schemes and universal
schemes studied in [9] that do not separate channel estimation
and information delivery. Finally we give a sketch of the prove
of our result.

Let Q be a family of DMCs. We suppose that com-
munication is carried over some element Q ∈ Q that is
revealed neither to the transmitter nor to the receiver. The
communication schemes we shall focus on are referred as
“training based schemes” and admit two phases: a first phase
of fixed length t, the “training period” (or “test period”), during
which the channel parameter is estimated, and a second phase
used to carry information. The choice of the encoder/decoder
pair used for the second phase is based upon the channel
estimate that results from the first phase. Formally we define
training based schemes as being coding schemes that satisfy
the following two requirements:

I. Given a set of M messages, a training based scheme
SM = (CM ,ΨM , T (M)) admits a rate function Nt :
Yt −→ R+ that associates to each output yt of the
training sequence, the (average) length of the second
phase. During the test period, each input symbol is
trained a fixed number of times.

II. A sequence of training based schemes {SM =
(CM ,ΨM , T (M))}M≥1 satisfies for some A < ∞ and
γ ∈ [0, 1), the conditions T (M) ≤ A lnM for all M ≥ 1
and

lim
M→∞

P

(
lnM
T (M)

= γC(Q)
∣∣∣Q

)
= 1

for all Q ∈ Q with capacity C(Q).
A few comments are in order. Condition I requires to

employ for the second phase a coding scheme whose rate
depends only upon the output of the test sequence. One cannot
use, as a second phase, a coding scheme with a rate that
adapts itself according to the channel under use, implicitly
estimating the channel (see, e.g., [7], [9]). Also notice that
without condition I, it may be possible to first train, then use
a variable length coding scheme that simply ignores the result
of the testing part while adapting its rate on the run. Hence,
condition I implies that, at least from the rate point of view,
training based schemes do not estimate the channel during
the second phase. Also notice that the requirement I imposes
neither a restriction on the channel estimation itself nor on
the decision that results from it. Moreover, variable length
codes can be used for the second phase provided that, once
the training period is over, the average decoding time is set.
In particular, the decoding time T (M) equals t + Nt where
the average value of Nt depends only on the outcome of the
training period.

We impose condition II essentially in order to have some
control on the rate, through the “normalized rate” γ, and
also to compare training based schemes with universal coding
strategies that are proposed in [9] and that have the property
that the channel estimation and the coding part are not



separated. Finally the restriction that T (M) ≤ A lnM for
all M ≥ 1 may be considered as a mild technical requirement
provided that infQ∈Q C(Q) > 0.

Our result stands in the following theorem:
Theorem 2: Let Q be a family of DMCs that have the same

input alphabet X and same output alphabet Y , and let θ =
{SM}M≥1 be a sequence of training based schemes for Q
and with parameter γ ∈ [0, 1). For any Q ∈ Q,

lim sup
M→∞

− 1
ET (M)

ln P(E|Q,SM ) ≤ Etbs(γ,Q), (10)

where

Etbs(γ,Q)

� min
V ∈A(Q)

1
C(V )

max
{

max
x∈X

D(V (·|x)||Q(·|x)), EB (γC(V ), Q)
}

(11)

with A(Q) � {W ∈ Q : C(W ) ≥ C(Q)}.

IV. EXAMPLES

Given a particular family of channels Theorem 2 gives an
upper bound on the error exponent that can be achieved by any
training based scheme. We may want to compare this bound
with the maximum error exponent that can be universally
achieved. Unfortunately few families of channels exists for
which we know the maximum error exponent that can be
universally achieved. Among them the Binary Symmetric
Channels (BSCs) and the Z Channels families [9].

A. Binary Symmetric Channels

Assume that Q = BSCL where BSCL denotes the set of
BSCs with crossover probability ε ∈ [0, L] with L ∈ [0, 1/2).3

For conciseness, from now on ε denotes both the crossover
probability and the BSC with this crossover probability, and
C(ε) its capacity, i.e., C(ε) � ln 2+ ε ln ε+(1− ε) ln(1− ε).
It is easy to see that (11) now becomes

Etbs(γ, ε) = min
δ∈[0,ε]

1
C(δ)

max{D(δ||ε), EB (γC(δ), ε)}
(12)

where D(δ‖ε) � δ ln δ
ε + (1 − δ) 1−δ

1−ε . Moreover, one can
show that the function Etbs(γ, ε) has a slope that vanishes
at capacity, more precisely we have for all ε ∈ (0, L]

lim
γ↑1

Etbs(γ, ε)
1 − γ

= 0 . (13)

As one may notice, Etbs(γ, ε) is the same function for any
value of L ∈ [0, 1/2). In figure 1, we plot for two channels
(ε = 0.1 and ε = 0.4) the function R �→ Etbs(R/C(ε), ε)
(lower curve) and Burnashev’s exponent given by (9) (upper
line).

In order to discuss the result we obtain for BSCs, let us
first briefly refer to recent results obtained in [9]. Theorem
1 [9] claims that, given any constant γ ∈ [0, 1), and the

3As mentioned in the paragraph preceding the Theorem 2, the restriction
that T (M) ≤ A ln M of requirement II is a mild condition provided that
infQ∈Q C(Q) > 0. For this reason we restrict L to be strictly less than 1/2.

family BSCL with L ∈ [0, 1/2), there exists coding schemes
that achieve, for every channel ε ∈ BSCL a rate at least
equal to γC(ε) and a corresponding maximum error exponent,
i.e., equal to (9). Suppose now one is interested in having a
low error probability instead of a high communication rate.
Similarly there exists coding schemes that universally achieve
a rate that is guaranteed to be at most γ times the channel
capacity and with a corresponding error exponent that is also
maximum.

In contrast with these results training based schemes cannot
achieve Burnashev’s exponent for BSCs. While feedback does
not help to increase capacity Burnashev’s result tells us that
feedback is of particular help at rates close to capacity: a
little drop in the rate results in a linear augmentation in the
error exponent. Training based schemes fail precisely in having
this property: the slope of their error exponent equals zero at
capacity. Hence an important feature of feedback is lost and
the situation becomes essentially the same as if the channel
were revealed to both the transmitter and the receiver and no
feedback were available (since the sphere packing bound has
a slope equal to zero at capacity).

We may also draw a parallel between feedback commu-
nication over a known BSC and an unknown BSC. In the
first case, Dobrushin [3] showed that the restriction to fixed
length block codes results in an error exponent upper bounded
by the sphere packing bound,4 hence having zero slope at
capacity. In the second case, the restriction to training based
schemes also results in an error exponent that has zero slope
at capacity, even though training based schemes allow variable
length codes.

Note however that the comparison between training based
schemes and the optimal coding schemes derived in [9] is not
completely fair since for training based schemes we require
an exact control on the rate through the parameter γ, whereas
for the optimal coding schemes γ only yields an upper or a
lower bound.

B. Z Channels

Assume that Q = ZL where ZL denotes the set of Z
channels with crossover probability ε ∈ [0, L] with L ∈ [0, 1).5

Pick a particular channel Q ∈ ZL with nonzero crossover
probability. One can find a γ ∈ [0, 1) sufficiently close to 1
as well as a channel W ∈ ZL such that γC(W ) > C(Q).
Therefore we have

Etbs(γ,Q)

� min
V ∈A(Q)

1
C(V )

max
{

max
x∈X

D(V (·|x)||Q(·|x)), EB (γC(V ), Q)
}

≤ 1
C(W )

max
{

max
x∈X

D(W (·|x)||Q(·|x)), EB (γC(W ), Q)
}

=
1

C(W )
max
x∈X

D(W (·|x)||Q(·|x))
<∞ (14)

4The result remains true for symmetric channels.
5As mentioned in the paragraph preceding the Theorem 2, the restriction

that T (M) ≤ A ln M of requirement II is a mild condition provided that
infQ∈Q C(Q) > 0. For this reason we restrict L to be strictly less than 1.
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Fig. 1. Upper bound on the error exponent of training based schemes (lower curve) and Burnashev’s error exponent (upper line).

where the second equality holds because EB (γC(W ), Q) =
0 since Burnashev’s exponent vanishes above capacity, and
where the last inequality holds since Q has a nonzero crossover
probability. Hence, training based schemes for the ZL family
have a finite error exponent for any Q ∈ ZL with nonzero
crossover probability, and for γ sufficiently close to 1. This
is in contrast with a result obtained in [9]. Theorem 2 [9]
claims that given the family ZL for some L ∈ [0, 1) and
any constant γ ∈ [0, 1), there exists coding schemes that
universally achieve a rate equal to γC(Q) and a corresponding
error exponent equal to Burnashev’s, in this case infinite. These
coding schemes do not separate the estimation of the channel
from the information delivery, hence are not training based
schemes.

Finally, in the light of the present result and the results in
[9], it appears from the previous examples that, at least for
BSCs and Z channels, a necessary condition for a universal
coding scheme to reach Burnashev’s exponent is not to sepa-
rate channel estimation and the information delivery.
Sketch of the Proof of Theorem 2:6 We restrict ourselves to the
case where Q = BSCL with L ∈ [0, 1/2). The general case
is essentially a straightforward extension of this case.

Without loss of generality we assume the training sequence
to be the all–zero sequence of length t. First, one can show
that in order to fulfill the requirement II the rate function
has to “strongly” rely on the empirical channel that results

6The proof of Theorem 2 can be found in [8].

from the training period. In other words, if during the training
period the channel behaves like BSC(δ), from the condition
II one deduces that the length of the second phase must be
approximately ln M

γC(δ) −t. Using the fact that the rate function’s
decision is essentially based on the empirical channel, one
shows that a large probability of error occurs because of the
atypical behavior of the channel during the training, more
specifically a large probability of error occurs whenever during
the training the channel behaves as a channel with a higher
capacity.

Suppose the true channel is ε, with ε �= 0, and let δ be such
that C(δ) ≥ C(ε), i.e., δ ∈ [0, ε]. We lower bound the error
probability of training based schemes as

P(error)
≥ P(error and during the training the channel behaves like δ)
= P

(
error

∣∣during the training the channel behaves like δ
)

× P(during the training the channel behaves like δ) .
(15)

By a principle of large deviations we have

P(during the training the channel behaves like δ) ≈ e−tD(δ||ε) .
(16)

where D(δ||ε) � δ ln δ
ε + (1 − δ) ln (1−δ)

(1−ε) .
Since the average length of the second phase is approxi-

mately equal to ln M
γC(δ) − t, and since Burnashev’s exponent



yields a lower bound to the error probability we have

P
(
error

∣∣during the training the channel behaves like δ
)

� e
−( ln M

γC(δ)−t)EB

 
ln M

ln M
γC(δ)−t

,ε

!
.
(17)

From (15), (16), and (17) one deduces the desired result by
optimizing the fraction of the communication time dedicated
to the training and noticing that δ is arbitrary in [0, ε].
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