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Abstract— We consider communication over a time invariant
discrete memoryless channel with noiseless and instantaneous
feedback. We assume that the communicating parties are not
aware of the underlying channel, however they know that it
belongs to some specific family of discrete memoryless channels.
Recent results [4] show that for certain families (e.g., binary
symmetric channels and Z channels) there exists coding schemes
that universally achieve any rate below capacity while attaining
Burnashev’s error exponent. We show that this is not the case in
general by deriving an upper bound to the universally achievable
error exponent.

I. INTRODUCTION

Burnashev [1] proved that, given a discrete memoryless
channel (DMC) Q with noiseless and instantaneous (causal)
feedback, and with finite input and output alphabets X and Y ,
the maximum achievable error exponent is given by

EB(R,Q)

�
(

max
(x,x′)∈X×X

D(Q(·|x)‖Q(·|x′))
) (

1 − R

C(Q)

)
(1)

where

D(Q(·|x)‖Q(·|x′)) �
∑
y∈Y

Q(y|x) ln
Q(y|x)
Q(y|x′)

is the Kullback-Liebler distance1 between the output distribu-
tions induced by the input letters x and x′, and where R and
C(Q) denote the rate and the channel capacity. From now on
EB(R,Q) will be referred as the Burnashev’s error exponent.

Suppose now that the DMC under use is revealed neither
to the transmitter nor to the receiver but that it is known that
the channel belongs to some specific set Q of DMCs. Does
Burnashev’s result still hold? In other words can one design
a coding scheme that asymptotically (as the decoding delay
tends to infinity) yields the error exponent (1) simultaneously
on all channels in Q? A partial answer is provided in [4]
for the family of Binary Symmetric Channels (BSCs) with
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1ln denotes the logarithm to the base e.

crossover probability ε ∈ [0, L] and with L ∈ [0, 1/2). Given
any γ ∈ [0, 1) there exists coding schemes that achieve
simultaneously over that family a rate guaranteed to be at
least γ times the channel capacity, and with a corresponding
maximum error exponent, i.e., equal to (1). Similarly, if one
now is interested in having a low error probability instead of
a high communication rate, there exists coding schemes that
universally achieve a rate guaranteed to be at most γ times
the channel capacity, and with a corresponding error exponent
that is also maximum. A similar results holds for the class
of Z channels with crossover probability ε ∈ [0, L] and with
L ∈ [0, 1). In [4] it is shown that, given any γ ∈ [0, 1), there
exists coding schemes that simultaneously reach the maximum
error exponent at a rate equal to γ times the channel capacity.
In other words, for BSCs and Z channels it is possible to
achieve Burnashev’s error exponent universally while having
a certain control on the rate.

In this paper we consider the possibility of extending the
results in [4] to arbitrary family of channels, such as for
instance the set of all binary input channels with some finite
output alphabet. We show that, under some conditions on a
pair of channels Q1 and Q2, no zero-rate coding scheme
achieves the Burnashev’s exponent simultaneously on both
Q1 and Q2. Therefore the results obtained in [4] cannot
be generalized to arbitrary families of channels: in general,
given a family of DMCs, Burnashev’s error exponent is not
universally achievable at all rates below capacity.

II. PRELIMINARIES AND STATEMENT OF RESULT

We first remind the definitions of coding schemes, rate,
error probability and error exponent for a DMC with perfect
feedback. Then we state a theorem of Burnashev, present our
result, and a sketch of its proof.

Definition 1 (Coding Scheme): Given two finite alphabets
X and Y and a message set M of size M ≥ 1, an encoder
(or codebook) is a sequence of functions

CM = {Xn : M×Yn−1 −→ X}n≥1 . (2)

The symbol xn to be sent at time n is obtained by evaluating
Xn for the message and the feedback sequence received so
far, i.e., xn � Xn(m, yn−1) where yn−1 � y1, y2, . . . , yn−1.
A codeword for message m is the sequence of functions



{Xn(m, · )}n≥1. A decoder (ΨM , T ) consists of a sequence
of functions

ΨM = {ψM
n : Yn −→ M}n≥1 , (3)

and a stopping time T (M), with respect to to the received
symbols Y1, Y2, . . .,2that represents the decision time. The de-
coded message is given by ψM

T (M)(y
T (M)). A coding scheme

is a tuple SM = (CM ,ΨM , T (M)).
Definition 2 (Rate): For a channel Q, an integer M ≥ 1

and a coding scheme SM = (CM ,ΨM , T (M)), the average
rate is

R(SM , Q) � lnM
ET (M)

nats per symbol , (4)

where ET (M) denotes the expected decision time over uni-
formly chosen messages, i.e.,

ET (M) � 1
M

∑
m∈M

E
(
T (M)

∣∣ message m is sent
)
. (5)

The asymptotic rate for a sequence of coding schemes θ =
{SM}M≥1 and a given channel Q is

R(θ,Q) � lim
M→∞

R(SM , Q) (6)

whenever the limit exists.
Definition 3 (Error Probability): The average (over uni-

formly chosen messages) error probability given a coding
scheme SM and a channel Q is defined as

P(E|Q,SM )

=
1
M

∑
m∈M

P

(
ψM

T (M)(Y
T (M)) �= m

∣∣∣ message m is sent
)
.

(7)
Let us denote by θ a particular sequence of coding schemes
{SM}M≥1, and by Θ the set of all sequences of coding
schemes.

Definition 4 (Error Exponent): Given a channel Q and
a sequence of coding schemes θ = {SM}M≥2 =
{(CM ,ΨM , T (M))}M≥1 such that P(E|Q,SM ) → 0 as M →
∞, the error exponent is

E(θ,Q) � lim inf
M→∞

− 1
ET (M)

ln P(E|Q,SM ) . (8)

We now state an important result related to the error
exponent of DMCs with perfect feedback:

Theorem 1 (Burnashev 1976 [1]): Let Q be a DMC with
capacity C(Q). For any R ∈ [0, C(Q)] and any θ =
{SM}M≥1 ∈ Θ such that R(θ,Q) = R,

lim sup
M→∞

− 1
ET (M)

ln P(E|Q,SM ) ≤ EB(R,Q) . (9)

Moreover there exists θ ∈ Θ such that R(θ,Q) = R and
E(θ,Q) = EB(R,Q).

2An integer-valued random variable U is said to be a stopping time with
respect to Y1, Y2, . . . if, given Y1, Y2, . . . , Yn, the event {T = n} is
independent of Yn+1, Yn+2, . . . for all n ≥ 1.
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Fig. 1. Example of a “decision tree” for a binary output channel. The
square leaves correspond to message A whereas the round leaves correspond
to message B.

Before we state our result, let us define the quantity
K(Qi, Qj) for any two channels Qi and Qj with same input
alphabet X :

K(Qi, Qj)

� max
(x,x′)∈X×X

[D(Qi(·|x)‖Qi(·|x′)) +D(Qi(·|x)‖Qj(·|x′))] .
(10)

Theorem 2: Let Q1 and Q2 be two DMCs on X ×Y such
that for (i, j) ∈ {(1, 2), (2, 1)}

K(Qi, Qj) < 2 max
(x,x′)∈X×X

D(Qi(·|x)‖Qi(·|x′)) . (11)

For any θ ∈ Θ, either E(θ,Q1) < EB(0, Q1) or E(θ,Q2) <
EB(0, Q2).
A simple example of channels Q1 and Q2 that satisfy the
assumptions of Theorem 2 is given by Q1 = BSC(ε) and
Q2 = BSC(1 − ε) where 0 < ε < 1/2. In this case we have

K(Q1, Q2) = max
(x,x′)∈X×X

D(Q1(·|x)‖Q1(·|x′))
= max

(x,x′)∈X×X
D(Q2(·|x‖Q2(·|x′))

= K(Q2, Q1) . (12)

From Theorem 2 we conclude that, given a family of
DMCs Q, in general no zero-rate coding scheme achieves
Burnashev’s error exponent universally over Q. Therefore the
property of the families of BSCs and Z channels that was
shown in [4] is not true for an arbitrary class of channels: even
with perfect feedback, the fact that the channel is unknown
may result in an error exponent smaller than the best error
exponent that could be obtained if the channel were revealed
to both the transmitter and the receiver [1].

Sketch of the Proof of Theorem 2:3 The theorem is proved
by deriving an upper bound on the maximum achievable error
exponent for two-message coding schemes, and using the fact
that the zero-rate error exponent is upper bounded by the error
exponent for a fixed number of messages.

Given a decoder of a two-message coding scheme for a
channel Q with output alphabet Y , the set of all output
sequences for which a decision is made can be represented
by the leaves of a complete |Y|-ary tree. The set of leaves
is divided into two sets that correspond to declaring message

3The proof of Theorem 2 can be found in [5].



A and B. The decoder starts climbing the tree from the root.
At each time it chooses the branch that corresponds to the
received symbol. When a leaf is reached the decoder makes a
decision as indicated by the label of the leaf (see figure 1 for
an example).

From a probabilistic point of view, given a particular coding
scheme, the decision time of the decoder determines the
probability space of the output sequences, equivalently the
set of leaves. On this probability space, each set of encoding
functions {Xn(m, ·)}n≥1, m ∈ {A,B}, together with the tran-
sition probability matrix of the channel Q induces a probability
measure that we denote by Pm. In other words, associated to a
channel and a two-message coding scheme, there is a natural
probability space with two probability measures PA and PB

that correspond to the sending of message A and B.
Assume now that the transmitter and the receiver still

communicate using a particular two-message coding scheme
but neither the transmitter nor the receiver know which channel
will be used: it might be either Q1 or Q2, both defined on the
same common input and output alphabets X and Y . Let Pm,i

denote the probability of the output sequence when message
m ∈ {A,B} is being sent through channel Qi, i ∈ {1, 2}. In
order to decode, the receiver has to perform a statistical test
for two composite hypothesis {PA,1, PA,2} and {PB,1, PB,2}.
From classical results in hypothesis testing [3] it is well known
that the error probabilities of such a test essentially depend on
“how close” the hypotheses are. More precisely, given that
message m is sent through channel Qi, one can show that
the error probability behaves as e−Em,i where Em,i equals
to the smallest divergence term between D(Pm′,i||Pm,i) and
D(Pm′,j ||Pm,i), with m′ �= m and j �= i. Using a martingale
argument we show that, whenever Q1 and Q2 satisfy the
hypothesis of Theorem 2, the eight terms D(Pm′,j ||Pm,i),
where i, j ∈ {1, 2}, m,m′ ∈ {A,B}, and with m �= m′,
cannot be simultaneously large. We then deduce that, under
the hypothesis of Theorem 2, no two-message coding scheme
yields Burnashev’s exponent simultaneously on Q1 and Q2.

To that end, consider two probability measures P1 and P2

on a probability space (Ω,F). It is well known that unless P1

and P2 are singular,4 the quantities P1(E) and P2(Ec) cannot
be both rendered arbitrary small by an appropriate choice of
E ∈ F .5 More specifically, from the data processing inequality
for divergence,6 we have the following lower bounds on P1(E)

4P1 and P2 are said singular if there exists E ∈ F such that P1(E) = 1
and P2(E) = 0.

5Ec denotes the complementary set of E in Ω.
6 Let (Ω,F) be a probability space, let P1 and P2 be two probability

measures on (Ω,F) and let E ∈ F . From the data processing inequality for
divergence [2, p. 55], we have

D(P2‖P1) ≥ D(P2(E)‖P1(E)) (13)

where

D(P2(E)‖P1(E)) �

P2(E) ln
P2(E)

P1(E)
+ (1 − P2(E)) ln

(1 − P2(E))

(1 − P1(E))
. (14)

Expanding (13) we deduce that

P1(E) ≥ exp

»−D(P2‖P1) − H(P2(E))

1 − P2(Ec)

–

in terms of P2(Ec)

P1(E) ≥ exp
[−D(P2‖P1) −H(P2(E))

1 − P2(Ec)

]
(15)

where H(α) � −α lnα− (1 − α) ln(1 − α).
Suppose the communicating parties use a particular two-

message coding scheme (C2,Ψ2, T (2)) on some known chan-
nel Q. Since we will deal only with two-message coding
schemes, from now on we simply write (C,Ψ, T ) instead
of (C2,Ψ2, T (2)). Letting E be the set of leaves for which
message A is declared, respectively the set of leaves for which
message B is declared, from (15) we obtain

PB(A) ≥ exp
[−D(PA‖PB) −H(PA(A))

1 − PA(B)

]

and PA(B) ≥ exp
[−D(PB‖PA) −H(PB(B))

1 − PB(A)

]
(16)

where Pm(m′) denotes the probability under Pm of the set of
leaves for which message m′ is declared. Note that since one
is normally interested in the case where PB(A) and PA(B) are
small, the terms on the right hand side of (16) are essentially
exp[−D(PA‖PB)] and exp[−D(PB‖PA)].

Assume now that the transmitter and the receiver still
use the two-message coding scheme (C,Ψ, T ), but that they
don’t know which channel will be used, it might be either
Q1 or Q2, both defined on the same common input and
output alphabets X and Y . We now have four distributions
on the set of leaves, namely, Pm,i with m ∈ {A,B},
i ∈ {1, 2}. There are also four error probabilities PA,1(B),
PA,2(B), PB,1(A) and PB,2(A). Using (15) with E = B,
and (P1, P2) = (PA,1, PB,1), (PA,1, PB,2), . . . we get the
following inequalities:

PA,1(B) ≥ exp
[−D(PB,1‖PA,1) −H(PB,1(B))

1 − PB,1(A)

]
(17)

PA,1(B) ≥ exp
[−D(PB,2‖PA,1) −H(PB,2(B))

1 − PB,2(A)

]
(18)

PA,2(B) ≥ exp
[−D(PB,1‖PA,2) −H(PB,1(B))

1 − PB,1(A)

]
(19)

PA,2(B) ≥ exp
[−D(PB,2‖PA,2) −H(PB,2(B))

1 − PB,2(A)

]
. (20)

In similar fashion one also obtains

PB,1(A) ≥ exp
[−D(PA,1‖PB,1) −H(PA,1(A))

1 − PA,1(B)

]
(21)

PB,1(A) ≥ exp
[−D(PA,2‖PB,1) −H(PA,2(A))

1 − PA,2(B)

]
(22)

PB,2(A) ≥ exp
[−D(PA,1‖PB,2) −H(PA,1(A))

1 − PA,1(B)

]
(23)

PB,2(A) ≥ exp
[−D(PA,2‖PB,2) −H(PA,2(A))

1 − PA,2(B)

]
. (24)

A martingale argument yields

D(PB,1‖PA,1) +D(PB,2‖PA,1)

where H(P2(E)) � −P2(E) ln P2(E)−P2(Ec) ln P2(Ec) and where Ec

denotes the complementary set of E in Ω.



+D(PB,1‖PA,2) +D(PB,2‖PA,2)
+D(PA,1‖PB,1) +D(PA,2‖PB,1)
+D(PA,1‖PB,2) +D(PA,2‖PB,2)

≤ 2K(Q1, Q2)E1T + 2K(Q2, Q1)E2T (25)

where EiT denotes the expected decoding when channel Qi is
used. Now pick any sequence of two-message coding schemes
that yields vanishing error probabilities PA,1(B), PA,2(B),
PB,1(A) and PB,2(A). From (25), under the hypothesis that
for (i, j) ∈ {(1, 2), (2, 1)}

K(Qi, Qj) < 2 max
(x,x′)∈X×X

D(Qi(·|x)‖Qi(·|x′)) , (26)

we derive that the error exponent of this sequence of two-
message coding schemes cannot be made simultaneously equal
to EB(0, Q1) on channel Q1 and equal to EB(0, Q2) on
channel Q2, yielding the desired result.
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