
Fountain Capacity
Shlomo Shamai

Technion
Haifa, Israel

sshlomo@ee.technion.ac.il

Emre Telatar
EPFL — I&C — LTHI
Lausanne, Switzerland
emre.telatar@epfl.ch

Sergio Verdú
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Abstract— Fountain codes have been successfully employed for
reliable and efficient transmission of information via erasure
channels with unknown erasure rates. This paper introduces
the notion of fountain capacity for arbitrary channels, and
shows that it is equal to the conventional Shannon capacity for
stationary memoryless channels. In contrast, when the channel
is not stationary or has memory, Shannon capacity and fountain
capacity need not be equal.

I. FOUNTAIN CODES

The first fountain codes were the LT codes introduced
by M. Luby in [1]. The LT codes are linear rateless codes
that encode a vector of k symbols of information with
an infinite sequence of parity check bits. The parity check
equations (known to the decoder) are chosen equiprobably
from a random ensemble: The cardinality of the parity check
equations has a histogram given by the so-called robust soliton
distribution and all k information symbols have identical prob-
ability to participate in any given parity check equation. The
infinite sequence is transmitted through an erasure channel.
The decoder runs a belief propagation algorithm observing
only as many channel outputs as necessary to recover the k
transmitted bits.

Incurring only a slight increase in encoding/decoding com-
plexity, better performance can be obtained with the Raptor
codes introduced by A. Shokrollahi in [2]. The same codes
have been applied to other channels such as binary symmetric
channels in [3] and [4].

A typical application of fountain codes is a system where
the same message is to be broadcast simultaneously to several
receivers, served by erasure channels with different erasure
rates. The conventional Shannon-theoretic approach to this
scenario is the compound channel (see e.g., [5]), where the
actual channel is unknown to the encoder and chosen from
a given uncertainty set. The resulting capacity, which ensures
reliable communication for all receivers, boils down (in the
case in which, like in the compound erasure channel, the
mutual information of all channels in the uncertainty class is
maximized by the same input distribution) to the worst-case
capacity. This setup not only requires the transmitter to cater
to the worst channel conditions but it incurs a considerable
waste of channel resources for those receivers that enjoy better
erasure rates than the worst. The use of fountain codes enables
receivers to listen to the channel only for a sufficiently long
period of time to ensure that their information is decoded
reliably. Thus, receivers that face favorable channel conditions

only need to obtain from the channel a number of symbols that
is a small multiple (close to 1) of the number of information
symbols.

Fountain codes have been adopted in the 3GPP wireless
standard for Multimedia Broadcast/Multicast [6], [7] and they
have been used in lossless data compression in [8].

In addition to their appealing conceptual structure, the com-
mercial success and excellent efficiency achieved by fountain
codes are incentives to investigate their Shannon theoretic
limits. The main difference from the standard Shannon setup
is in the definition of rate: a fountain code is rateless (or
zero-rate) in that it adds an infinite amount of redundancy
to the information vector. Instead of defining the rate from
the perspective of the encoder, in the fountain setup we define
it from the perspective of the decoder: ratio of information
symbols transmitted to channel symbols received.

In Section II we give the definition of fountain capacity
for an arbitrary channel, along with the associated notions of
reliability and allowable encoding strategies. Fountain capacity
is upper bounded by Shannon capacity. In Section III we
show that the fountain capacity of any discrete memoryless
channel is equal to its Shannon capacity. Moreover, we also
consider memoryless compound and arbitrarily-varying chan-
nels (AVC), and show that the compound/AVC capacities of
those channels are equal to the corresponding compound/AVC
fountain capacities1.

In Section IV we show examples of channels with memory
whose Shannon capacity is much larger than their fountain
capacity.

II. DEFINITION OF FOUNTAIN CAPACITY

For the purpose of defining fountain capacity we consider a
general channel {PY n|Xn}∞n=1 with input and output alphabets
X , Y , respectively.

A fountain codebook with M codewords is a mapping

C : {1, . . . , M} → X Z
+

that associates to each message m in {1, . . . ,M} an infinite
sequence (Xm1, Xm2, . . . ) of channel input symbols.

A fountain codelibrary with M codewords, L, is a collection
of fountain codebooks with M codewords, L = {Cθ : θ ∈ Θ},
indexed by a set Θ.

1For the AVC this only holds in the so-called random coding setting, when
the “jammer” is not informed of the actual code, only of the ensemble from
where it is chosen.
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A schedule ℵ is a subset of the positive integers, whose
cardinality we denote by |ℵ|. The receiver is only allowed to
see the channel outputs (Yi, i ∈ ℵ) at those times belonging
to the schedule ℵ. The schedule is unknown to the encoder.

A fountain decoder maps (Yi, i ∈ ℵ) to a message in
{1, . . . ,M}, knowing the codebook used at the encoder.

Assuming that the maximum likelihood decoder is used, and
therefore that the decoder chooses the most likely message
upon knowledge of the codebook, schedule, and channel
law, the error probability achieved by a codebook C and a
schedule ℵ (averaged over equiprobable messages) is denoted
by e(C,ℵ).

In a fountain communication system the transmitter and
receiver are equipped with a fountain codelibrary L = {Cθ :
θ ∈ Θ} with M codewords, and a θ ∈ Θ drawn according to a
probability distribution γ. Observe that θ is known to both the
transmitter and receiver and thus ‘random coding’ is allowed
as a communication technique, not just as a method to prove
the existence of good codes. To communicate message m, the
transmitter sends the infinite sequence Cθ(m); the receiver,
upon observing the channel output {Yi, i ∈ ℵ}, declares the
maximum likelihood estimate m̂ of m.

Definition 1: A fountain rate R is said to be achievable if
there exists a sequence of fountain codelibraries L1,L2, . . . ,
where Ln = {Cn,θ : θ ∈ Θn} has �2nR� codewords, and a
sequence of distributions γn on Θn such that

lim
n→∞ sup

ℵ:|ℵ|≥n

∫
Θn

e(Cθ,ℵ) dγn(θ) = 0. (1)

The channel fountain capacity, CF is the supremum of all
the achievable fountain rates.

Note that in the above definition of achievable rate, the
choice of the schedule is performed by an adversary who
knows the codelibrary and the probability law by which a
codebook in this library is chosen, but is unaware of which
codebook is actually chosen. This adversary chooses the
schedule with the aim of maximizing the ensemble average
probability of error under the constraint that a sufficient
number of channel symbols are observed by the receiver.

An easy consequence of the definition above is:
Proposition 1: The fountain capacity is upper bounded by

the Shannon capacity.
Proof: We can lower bound the left side of (1) by taking

the contiguous schedule ℵ = {1, . . . , n} in which case the
setup boils down to the conventional setup [5], in which rates
above Shannon capacity are not achievable even with random
coding.

It is straightforward to incorporate the ingredient of com-
pound or arbitrarily-varying channels (AVC) into the capacity
by taking the supremum in (1) to be with respect to not only
the schedule but the channel uncertainty class. The same rea-
soning as in the proof above shows that the fountain capacity in
these settings is upper bounded by the corresponding random-
coding Shannon capacities.

To see why we need to consider random codes to arrive at
a nontrivial definition of fountain capacity, suppose that the

scheduler knows which codebook is used. We can view the
codebook as M infinitely long rows. Since there are |X |M
possibilities (at most) for each column, the scheduler can
always find an infinite subsequence in which the columns are
all equal, in which case the decoder sees a repetition code
which cannot achieve any positive rate with vanishing error
probability.

One can state a more general conclusion along these lines:
Theorem 1: If L1,L2, . . . , is a sequence of codelibraries

with Ln = {Cn,θ : θ ∈ Θn}, and if each Θn is a finite set,
then L1,L2, . . . cannot achieve any positive fountain rate.

Proof: Since Kn = |Θn| is finite, we can view the
codelibrary Ln as a collection of �2nR�Kn rows. As there
are |X |�2nR�Kn possibilities for each column, there exist a
schedule for which all columns are identical for time indices
in the schedule. Thus, no matter which codebook is used, it
still looks like a repetition code to the decoder.

III. MEMORYLESS CHANNELS

Theorem 2: For a stationary memoryless channel, the foun-
tain capacity CF equals the Shannon capacity CS .

Proof: Given a rate R < CS , find an input distribution
PX on the input alphabet X of the channel so that R <
I(X; Y ). Consider now choosing Ln to contain all codebooks
with �2nR� codewords, and choose the probability distribution
γ to make the random variables Xm,j : θ �→ Cθ(m)j i.i.d. with
distribution PX .

Observe now, that for any ℵ, the integral in (1) is nothing
but the ensemble average error probability of the i.i.d. random
coding ensemble of rate Rn/|ℵ| over the memoryless channel
PY |X , and thus depends on ℵ only through its cardinality |ℵ|.
For |ℵ| ≥ n, the rate of the random coding ensemble is less
than R, and by [9, Theorem 5.6.2], this ensemble average error
probability approaches zero as n gets large.

The same argument as in the proof just above also es-
tablishes that if we have a compound memoryless channel,
its “compound fountain capacity” equals its usual compound
channel capacity.

For a memoryless arbitrarily varying channel (AVC), the
channel law is also a function of a state s under the control of
an adversary, formally, the channel is described by PY |X,S .
The adversary is completely free in his choice the state
sequence, and he does so with the full knowledge of the
mechanism employed by the transmitter and receiver, but
without knowing which message is being communicated. If
random coding is allowed, and if the adversary knows the
random coding ensemble (but not the code in use), the capacity
of an AVC is given by (see, e.g., [10])

CR = max
P

min
ζ

I(P,Wζ) (2)

where the maximization is over probability distributions P on
the channel input, minimization is over all probability distri-
butions ζ on the state, Wζ denotes the channel Wζ(y|x) =∑

s ζ(s)PY |X,S(y|x, s), and I(P,W ) denotes the mutual in-
formation between two random variables with distribution
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P (x)W (y|x). The proof of this result establishes that if the
random coding ensemble is the one that chooses the codewords
by making each letter of each codeword i.i.d. with distribution
P and the code has rate less than minζ I(P,Wζ), then the error
probability for any choice of the state sequence approaches
zero as the blocklength increases.

If we use the same codelibrary as in the proof of Theorem 2,
with R < CR we see that the integral in (1) again depends
on ℵ only through its size, and for |ℵ| ≥ n it is the error
probability of a random code of block length |ℵ| of rate
less than R. By the above discussion, this error probability
approaches zero for any state sequence as n gets large, and
so we see that the fountain capacity for a memoryless AVC
equals (2), the random coding Shannon capacity of the AVC.

It is easy to see that for a non-stationary discrete memory-
less channel with

PY n|Xn(yn|xn) =
n∏

i=1

Wi(yi|xi) (3)

where Wi ∈ G and G is a finite set, the Shannon capacity is

CS = lim
n→∞

1
n

n∑
i=1

Ci (4)

whereas the fountain capacity is

CF = min
j:Wj∈G∗

Cj (5)

where
Cj = sup

P
I(P,Wj)

and G∗ is the subset of G containing the channels that appear
infinitely often in the sequence W1,W2, . . . .

IV. CHANNELS WITH MEMORY

We have not been able to find a general formula for
the fountain capacity of channels with memory (that would
generalize the formula for Shannon capacity in [11]). However,
in the presence of memory, fountain capacity can be quite a
bit smaller than Shannon capacity. We provide two examples:

Example 1: The input and output alphabets are the real
interval [0, 1] and modulo-1 addition in that interval is denoted
by ⊕. The channel described by

Yi = Xi ⊕ Wi (6)

where the noise process {Wi} is defined as(
. . . , W−1,W0,W1,W2,W3, . . .

)
={(

. . . , N−1, N0, N0, N1, N1, . . .
)

with prob. 1/2,(
. . . , N0, N0, N1, N1, N2, . . .

)
with prob. 1/2.

(7)

where . . . , N−1, N0, N1, . . . is an i.i.d. sequence of random
variables uniformly distributed on the interval [0, 1].

The zero-error capacity (and thus, the Shannon capacity) of
the channel above is infinite. To see this, note that regardless
of the cardinality of S ⊂ [0, 1], if we let X0 = X1 = 0 and

X2i = 0, X2i+1 = Si, i = 1, 2, . . . (8)

with Si ∈ S, we can recover {Si} noiselessly, with probability
1, via the equations:

Ŝi =

{
Y2i+1 
 Y2i if Y0 = Y1,

Y2i+1 
 Y2i+2 otherwise
(9)

where 
 stands for subtraction modulo the unit interval.
However, if the schedule ℵ contains only the even integers,

then the channel output observed at the receiver is

Y2k = X2k ⊕ W2k, k = 1, 2, . . . .

Noting that the sequence {W2k : k = 1, 2, . . . } is i.i.d.
and that each W2k is uniformly distributed in the interval
[0, 1], the capacity of this channel is zero, and thus so is the
fountain capacity. Note that a simpler example of zero fountain
capacity and infinite capacity can be given by not attempting
to stationarize the noise; we do that in order to explicitly show
that it is memory (rather than nonstationarity as in (3)), that
accounts for the discrepancy.

The next example is perhaps somewhat more familiar:
Example 2: Consider an additive Gaussian noise channel

with colored noise,

Yk = Xk + Zk (10)

where the channel input X1, X2, . . . is power constrained to
have average (over messages and time) power P and {Zk}
is zero mean, stationary additive Gaussian noise, whose law
is independent of the channel input. Consider a “low-pass”
noise whose power spectral density Sz(θ) is confined to half
the bandwidth:

Sz(θ) =

{
2N −π/2 ≤ θ < π/2
0 else,

(11)

where N = (2π)−1
∫
[−π,π)

Sz(θ) dθ is the variance of Zk.
It is clear that the Shannon capacity in this case is infinite

for any non-zero P , as there are noise-free frequency bands.
However, the fountain capacity is upper bounded by

1
2 log(1+P/N). This follows from the observation that {Z2k :
k = 1, 2, . . . } form an i.i.d. sequence of zero mean Gaussian
random variables of variance N , and thus for the schedule
that lets the receiver see only the outputs at even times,
the equivalent channel is an additive white Gaussian channel
whose capacity is 1

2 log(1 + P/N).
For those who are unhappy with noise processes that are not

regular (in the sense that past samples of the noise determine
the future samples) one can modify the example by taking an
0 < ε < N and letting

Sz(θ) =

{
2(N − ε) −π/2 ≤ θ < π/2
2ε else.

It is easy to check that {Z2k : k = 1, 2, . . . } still form an i.i.d.
sequence of zero mean Gaussian random variables of variance
N , so that the fountain capacity is still bounded by 1

2 log(1 +
P/N). The Shannon capacity will now be given by the water-
pouring solution, but in any case is larger than 1

4 log(1+P/ε)
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(by allocating power to only to high frequencies). We again see
that the discrepancy between Shannon and fountain capacities
can be made arbitrarily large by taking ε arbitrarily small;
indeed for any given nonzero a < A, Shannon capacity can
be made larger than A and fountain capacity smaller than a
by a proper choice of P and ε.

Considering causal channels for which the output sequence
up to time n, Y n

−∞, is independent of the future inputs X∞
n+1

when conditioned on past inputs Xn
−∞, Fano’s inequality

establishes that the fountain capacity is upper bounded by

CF ≤ lim
n→∞ sup

Xn
−∞

inf
Bn

1
|Bn|I(Xn

−∞; Bn) (12)

where the infimum is taken over all subsets Bn ⊂
{Y1, . . . , Yn}. Under some additional assumptions on the
ergodic behavior of such channels, we conjecture that (12)
holds with equality.

V. CONCLUDING REMARKS

The setting proposed here to formalize the notion of foun-
tain capacity is very reminiscent of the random-coding setting
used for the arbitrarily varying channel in which the “jammer”
does not know the code used by the communicator. Indeed,
given a channel with input alphabet X and output alphabet Y ,
we can define a new channel by equipping the original channel
with a state chosen from alphabet S = {0, 1}, and augmenting
the output alphabet with an erasure symbol E such that when
the state is 0, the output of the new channel equals the output
of the original channel, and when the state is 1, the output of
the new channel equals the symbol E.

x1, x2, . . . y1, y2, . . . ỹ1, ỹ2, . . .

s1, s2, . . .

PY |X Erase/Pass

Recall that in an AVC setting, the state sequence is con-
trolled by an adversary who knows the communication mech-
anism used by the transmitter and receiver, but not the message
being sent. If randomized coding used, then the adversary
knows—just as in the fountain setting above—the codelibrary,
but not which codebook is actually used. Thus the role of the
adversary for this AVC is of determining the schedule.

However, there are important differences. The AVC setting
defines the rate as a property of the transmission code, it does
not allow, as is done here, to define the rate with respect to the
actions of the adversary, or equivalently, from the perspective
of the receiver. The AVC setting does allow one to consider an
average cost constrained adversary. Through this, one can, for
example, insist that a guaranteed fraction of channel outputs
are received unerased. However, even with this AVC capacity
under cost constraints, one cannot capture the notion of a
fountain rate as defined here.

Another difference is apparent by recalling that if the deter-
ministic coding average-error-probability capacity of an AVC
is nonzero, then it does not increase further if random coding
is allowed [12]. However, in the fountain setting, knowledge
of the codebook by the scheduler renders the fountain capacity
trivially zero (Theorem 1).
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[11] S. Verdú and T. S. Han. “A General Formula for Channel Capacity,”
IEEE Transactions on Information Theory, vol. 40, no. 4, pp. 1147-
1157, July 1994.

[12] R. Ahlswede, “Elimination of correlation in random codes for arbitrarily
varying channels,” Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, vol. 44, no. 2, pp. 159–175, 1978.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1884


