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Abstract. We present a method to grid-enable tandem mass spectrometry protein 
identification. The implemented parallelization strategy embeds the open-source 
x!tandem tool in a grid-enabled workflow. This allows rapid analysis of large-
scale mass spectrometry experiments on existing heterogeneous hardware. We 
have explored different data-splitting schemes, considering both splitting spectra 
datasets and protein databases, and examine the impact of the different schemes on 
scoring and computation time. While resulting peptide e-values exhibit fluctuation, 
we show that these variations are small, caused by statistical rather than numerical 
instability, and are not specific to the grid environment. The correlation coefficient 
of results obtained on a standalone machine versus the grid environment is found 
to be better than 0.933 for spectra and 0.984 for protein identification, demonstrat-
ing the validity of our approach. Finally, we examine the effect of different split-
ting schemes of spectra and protein data on CPU time and overall wall clock time, 
revealing that judicious splitting of both data sets yields best overall performance. 
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Introduction 

Proteomics is the systematic, parallel study of ensembles of proteins found in particular 
cell types or present under particular exogenous or endogenous conditions. These stud-
ies promise deep and detailed insights into the control and function of biological 
systems by comparing samples from different tissues, developmental stages or disease 
states [1]. Along with other high-volume experimental techniques, proteomics is a 
cornerstone of systems biology, an emerging discipline characterized by the systematic 
and quantitative large-scale collection of data, linked to the use of computational bio-
logy to model and predict the behavior of complex biological systems [2].  

Proteomics and systems biology are increasingly applied in clinically relevant 
fields of research, such as the biology of cancer, diabetes or other multifactorial dis-
eases [3, 4]. Moreover, they are vital tools in the development of new drugs [5] and the 
study of biomarkers (i.e. disease-related alterations of the protein composition of 
accessible body fluids) in the diagnosis of diseases, the adaptation of therapy to inter-
individual variation in drug metabolism, response, and toxicity. [6-9].  
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To identify proteins present in a particular biological sample, tandem mass 
spectrometry (MS/MS) combined with bioinformatics analysis is commonly applied. 
Briefly, the following steps are performed: First, the proteins contained within a 
biological sample are separated into fractions along one or multiple dimensions, such 
as size, isoelectric point, or hydrophobicity. Subsequently, fractions are digested by 
specific proteases, ionized and injected into a mass spectrometer, where peptide parent 
ions are selected, fragmented, and the mass fingerprint of the fragments is acquired.  

Bioinformatics approaches for protein identification are computationally expensive 
(see [10, 11]). Observed peptide fragment masses are compared against peptide mass 
fingerprints computed from a database of protein target sequences. To model peptide 
fingerprints, the protein database must be expanded into a list of expected peptides by 
chopping sequences at specific proteolytic cleavage sites. This step models protein 
digestion prior to MS/MS analysis. Further database expansion criteria may include 
coverage of missed or unanticipated cleavage sites, mutations of single amino acids, 
and constant or potential amino acid mass modifications. The last can occur during 
sample preparation or may be post-translational modifications (PTM) of biological 
relevance. Expansion of peptide mutations and of a list of potential PTMs must be 
exhaustive, since completeness of annotated mutations and PTMs is not guaranteed in 
protein sequence databases. As all these expansion criteria are orthogonal, their joint 
extension rapidly leads to combinatorial explosion of the computational complexity. 

A single MS/MS experiment routinely results in tens of thousands of spectra, e.g. 
in [12], which leads to considerable computational requirements for analysis and forces 
strict limits on expansion criteria to prevent the search problem from becoming intract-
able. On the other hand, experiments typically yield a significant proportion of spectra 
that cannot be assigned to a peptide in spite of good data quality. It therefore makes 
sense to allow for as many biologically meaningful peptide modifications as possible in 
an attempt to match previously unidentified spectra. Such searches require the avail-
ability of large computational resources, as can be provided by a compute grid. 
Moreover, protein identification from MS/MS spectra is essentially a data-parallel 
problem, and is well suited for efficient grid-based execution.  

In this paper, we demonstrate how x!tandem [13], a publicly available MS/MS 
identification tool can be grid-enabled. Our system allows users to submit MS/MS data 
for analysis via a web front end. Protein identification is performed on a grid of hun-
dreds of desktop PCs. This work extends the ParallelTandem parallelization strategy 
[14] and adapts it to a grid environment. In particular, we have investigated the impact 
of parallelization on search results in terms of their numerical stability, the stability of 
the score statistics, detection characteristics (sensitivity and specificity), and runtime.  

1. Materials and Methods 

1.1. Tandem Mass Spectrometry Protein Identification Tool 

X!tandem is an open-source implementation of an algorithm to match a set of peptide 
tandem mass spectra with a list of protein sequences [13, 15]. The free availability of 
the executable, its source code and plug-ins make this tool particularly attractive for 
(academic) grid environments, where licensing costs and models, flexibility, maintain-
ability and portability are important issues. Its pluggable architecture allows the 
integration of additional scoring schemes.  



X!tandem splits the matching process into two sequential steps. First, spectra are 
assessed against the complete database of proteins with a low level of model 
complexity,  permitting rapid elimination of non-matching sequences and establishing a 
set of candidate proteins. On these candidates, a second, refined search is carried out, 
resulting in additional peptide identifications. 

At the beginning of both the non-refined and refined search, the protein sequences 
are expanded into a peptide list. For each peptide, the mass values of its possible frag-
ment ions are calculated, producing an artificial peptide mass fingerprint. This 
fingerprint is compared to each measured tandem mass spectrum and scored using ei-
ther the native or a plugged-in scoring scheme. 

The native x!tandem scoring scheme, called hyperscore, is based on the dot-pro-
duct between spectrum (I) and prediction (P) peaks (eq. 1). Nb and Ny are the number of 
matched b- and y-ions, respectively, i.e. N- and C-terminal peptide fragments. 
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In order to assess the statistical significance of a calculated hyperscore, x!tandem 
computes an expectation value (e-value) as proposed in [16]. For each peptide, a 
hyperscore histogram of all scored spectra is established. Only the highest-scoring 
spectrum is supposed to be a valid match and all other spectra are considered as 
random matches. The p-value of the valid score, i.e. the probability of observing that 
score at random, can be estimated by log-linear extrapolation of the right-hand tail of 
this extreme value distribution. Multiplying this value by the number of scored sequen-
ces yields the expected number of equal scores, considering the given set of spectra and 
peptide list. 

Once the peptide evidence is established, x!tandem attempts to infer protein identi-
ties. Based on the number of peptide hits n of a protein and their respective scores ei, a 
protein e-value is calculated according to eq. 2: 
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where s is the number of mass spectra in the dataset, N the number of peptide se-
quences scored to find the unique peptides, and p is N divided by the total number of 
peptides in the considered protein expansion. The equation is a Bayesian model for a 
protein to have obtained the observed number of matches by chance. The first two 
terms mainly describe the probability of random parent mass matches, a concept also 
suggested in [17], whereas the product of the underlying peptide e-values takes into 
account their non-randomness with respect to their fragment mass fingerprints. 

1.2. Parallelization Scheme 

X!tandem supports multithreading on suitable machine architectures. In a cluster 
environment, however, parallelization requires inter-node communication tools like 
PVM or MPI. Such a cluster-based parallelization strategy has been implemented in 
ParallelTandem [14]. The authors introduce the distribution of subsets of the initial 
mass spectra to different cluster nodes. After a first non-refined step, results are col-



lected, candidate proteins are extracted from all subjobs, and refinement jobs are sent 
out to the nodes again. A consolidation step calculates the final protein e-values. 

A major constraint in grid calculation is data distribution. In most cases, mass 
spectra files are much smaller than the protein databases they are matched against. The 
December 2006 release of TrEMBL [18] is about 1.3 GB in size. Distributing the entire 
file on each target machine can cause data transport and local storage issues. Addition-
ally, [13] demonstrate a log-log-linear reduction of per-spectrum analysis time with 
increasing size of the set of spectra, whereas the influence of the protein database size 
on calculation time is proportional. As a consequence, it is opportune to explore the 
impact of splitting spectrum sets, protein sequence files, or both. The implemented 
parallelization scheme is shown in Figure 1a. To compensate for the effect of reduced 
peptide list size on peptide e-values, the output threshold of the non-refined step is low-
ered proportional to the number of protein database subdivisions, leading to an almost 
stable number of candidate proteins. 

1.3. Grid-Enabled Implementation 

End users should not be forced to know all the complexities and peculiarities involved 
in executing large proteomics analysis jobs in a grid environment. In addition, the use 
of PVM or MPI is not appropriate for grids due to network latency and node persis-
tence issues. To this end, we have developed a three-layered application service to 
interface between users and the actual computation (Figure 1b). The service takes care 
of portal and workflow aspects for proteomics searches and uses existing grid middle-
ware or local resource management systems (LRMS) to submit independent jobs. 

The central part of the application service consists of a Perl service daemon, which 
parallelizes incoming search requests and preprocesses input data. Data sets are de-
ployed to the grid, and jobs are monitored, triggering intermediate or post-processing 
steps.  

The application service interacts with compute resources through a separate layer, 
which abstracts interaction with the grid middleware or LRMS. This layer has been 
implemented as a Perl local resource management system interface (LRMSI) module 
that hides the implementation differences of different grid middleware or batch systems 
and presents a simple API for handling jobs and job data. This approach has the advan-
tage that changes in middleware versions or even switching from a grid infrastructure 
to a cluster environment can take place rapidly. The LRMSI is a derivative of the 
ProtoGRID developed in the context of the SwissBioGrid [19], and already supports a 
number of common LRMS software.  

Requests for analysis are submitted by users through a web portal, and the results 
of finished analyses can be retrieved and visualized within the portal. We are using a 
customized version of the Swiss-Model Workspace web application [20] as framework 
for user-based project and data handling. 
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Fig. 1: a) Parallelization scheme of the algorithm. In the non-refined step, work units are formed by the 
cross-product of n sets of spectra and m protein database subdivisions. Collected candidate proteins are sub-
jected to a refined search against the original spectra parts (including previously matched spectra) before 
consolidation. Steps marked with a bolt are executed on the grid. b) Three-layer architecture of the proteo-
mics application service. Requests are received through a web portal. A daemon implements the paralleliza-
tion scheme and interacts with the underlying compute infrastructure through a LRMS interface layer. 

1.4. Validation of Parallelization Scheme 

To assess the validity of the proposed grid parallelization scheme, a test case was set up 
by defining a benchmark consisting of a set of spectra, a standard protein database and 
common model parameters. Three runs on a single-CPU computer using different 
analysis protocols (R1, R2, R3) serve as reference to assess the results obtained on the 
grid. The MS/MS dataset used is a standard set created by analyzing a mixture of 17 
proteins from different species on a Micromass MALDI Q-TOF device, provided in 
mzXML format [21] and obtained from [22]. UniProtKB/Swiss-Prot version 9.1 was 
used as protein sequence database, containing 241’365 protein sequences (107 MB) 
[18]. For reference runs and grid analyses, the same x!tandem binary (version 2006-09-
15-3) including the k-score plug-in [23] was used running on Microsoft Windows XP. 

The peptide expansion model included tryptic digestion with a maximum of 3 
missed cleavage sites. Cysteine residue mass was modified by +57 Da to account for 
cysteine carboxamidomethylation during protein sample preparation. Additionally, the 
following frequently observed potential modifications were added: methionine oxida-
tion (+16Da), asparagine/glutamine deamidation (+1Da), as well as serine/threonine 
phosphorylation (+80Da) in refinement.  

We define the R1 reference as the results of a local, single-CPU run of x!tandem. 
In the R1 protocol, the whole MS/MS dataset of the mzXML file is matched against the 
complete native protein sequence database. As the protocol for grid-based analysis 
comprises more processing steps, several sources of noise can interfere with the final 
output. In order to get fine-grained information about where score variations may be 
caused, two modified local runs were carried out that approximate the grid protocol. 
The R2 reference was defined as the result of a local standalone run, followed by a 
consolidation step against the extracted candidate protein list. In this step, previous 
x!tandem output (including processed spectra and model parameters) is used as input. 
Here, both spectra set and protein sequences have changed, and the spectra might have 
undergone minor conversion modifications. A third reference, the R3 standard, is ob-
tained by converting the MS/MS dataset from mzXML to plain peak lists (DTA 
format) before executing the R2 protocol. This conversion is a prerequisite for spectra 
rebundling in the grid environment.  



2. Results and Discussion 

Peptide and protein e-values both depend on the set of spectra analyzed, the protein 
database, and on model parameters causing database expansion. Changes in one or 
more of these factors may strongly influence the resulting e-values both for peptides 
and proteins. Instability might be increased in protein scores, as in addition to 
cumulated peptide score shifts and fluctuations, further distortion is injected by the 
dataset and protein-database related terms in the protein scoring function. To study 
these effects, we first investigated differences in the results of the three reference 
protocols, and subsequently compared these to results of the grid-enabled version.  

2.1. Reference Performance 

The results of both the R2 and R3 reference were compared to the output of the single-
run R1 reference analysis. The correlations to the e-values of R1 are cs = 0.94 for both 
R2 and R3.  

The scatter plot of consensus hits (spectra and proteins that were matched in both 
analyses) of R1 and R2 shows significant fluctuations between corresponding e-values 
on peptide level (Figure 2). No significant difference was observed between R2 and R3, 
as spectrum conversion has more influence on the composition of the scored set of 
spectra than on the e-values of consensus spectra. This means that a considerable 
amount of statistical flickering is injected in the consolidation step, where e-values are 
based on conditions much different from the original setting. The least-squares linear 
fit reveals a systematic –0.78 shift of the consolidated log(e-values), corresponding to 
e-values being almost 6 times smaller in R2 than in R1.  

At protein level, e-values show a much higher correlation of cp = 0.99. This indi-
cates that underlying peptide e-value fluctuations are random enough to be 
compensated in the protein scoring function. However, the peptide e-value shift is 
cumulated in protein scores and amplified in proteins featuring multiple peptide 
matches, resulting in increased deviations for highly significant protein identifications.  

To investigate the impact of the statistical instabilities on the output characteristics, 
ROC-like sensitivity-selectivity curves of R1 and R2 analyses have been plotted in 
Figure 3. For increasing e-value cutoff levels (decreasing match significance), the 
number of true positive hits, i.e. matches against peptide sequences present in the 
known protein mixture, is plotted against the false positives. At spectrum level, no 
significant difference between the characteristics appears in the first 200 assigned 
spectra. Beyond, the curves diverge as R1 yields a few more true positives.  

At the level of inferred proteins, there is no significant divergence between the 
reference schemes. The generally high false positive rate is due to shadow matches by 
homologous proteins, e.g. from different species.  

2.2. Stability of Grid Results  

2.2.1. e-Value Correlation 

To investigate the stability of the e-value statistics under grid parallelization conditions, 
the results of grid analyses were compared to the R1 and R2 reference e-values. For 
each grid result, the subset of consensus spectra and proteins were extracted. The 
distributions of the log(e)-differences (residues) are shown in Figure 4. 
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Fig. 2: Peptide (a) and protein (b) score correlations of R2 against the R1 reference. The histograms show the 
respective score distributions of consensus spectra/proteins (assigned in both references) (dark) and matches 
from only one analysis (light). 

 
Varying the number of spectra subdivisions has no significant impact on either 

spectra or protein score residue distributions. When using different numbers of protein 
database subdivisions, minor differences in the distributions appear.  

Compared to their R1 counterparts, grid spectra log(e-values) are shifted by approx. 
–0.8. The negative outliers of protein e-value residues reflect the cumulated shift in 
high ranking proteins. Compared to R2, this shift entirely disappears both for peptides 
and proteins, confirming the consolidation step as the cause of this shift. Residues 
spread slightly wider for higher numbers of database subdivisions, as illustrated by 
both the outliers and the increased inter-quartile distance. This is due to an overcorrec-
tion of the adapted output e-value threshold at the non-refined step: about 15% less 
candidates are selected with 25 protein database subdivisions than when the database is 
not split. In this way, low-quality matches are removed which score very close to the 
threshold and reduce residue dispersion.  
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Fig. 3: Spectra (a) and protein (b) ROC-plots of the R1/R2 references and of grid-computed results differing 
in the number of protein database subdivisions. Line thickness illustrates log(e-value) threshold and the 
diagonal lines indicate the number of selected matches. The high number of false positives in the protein 
charts is due to the shadow matches of homologous proteins (e.g. from different species). 
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Fig. 4: Residues of spectra and protein log(e-values) between different grid analysis configurations and R1 
(a+b) or R2 (c+d). 

 
In summary, correlation coefficients of the consensus e-values against R1 fall in 

the intervals [0.9327 0.9460] for spectra and [0.9838 0.9880] for proteins. Against R2, 
they improve to [0.9722 0.9972] and [0.9955 0.9974], respectively. Within these 
bounds, correlations tend to degrade slightly with increasing number of protein data-
base subdivisions.  

2.2.2. Detection Characteristics 

To compare the analytic power of grid results with local runs, the ROC-curves of 
different protein database distribution schemes are shown in Figure 3a and b. In this 
context, the number of sets of spectra plays a minor role and can be neglected.  

Grid analyses consistently yielded more spectra hits. However, their true/false-
positives ratio is very similar to that of the R2 reference. Characteristics are almost 
equal for the best 200 spectra, and differ only in the low-quality part. At protein level, 
no significant differences appear at all.  

These findings, taken together with the e-value correlation data, indicate that the 
quality of grid results is nearly indistinguishable from searches using the R2 or the R1 
protocol locally, in particular when considering the top-scoring spectra and proteins, 
which typically are the most relevant in experiments. 
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Fig. 5: CPU (a) and project wall clock time (b) for different combinations of spectra set and protein database 
divisions. The contour lines in the wall time chart emphasize the central region of optimal configuration. 

2.3. Numerical Stability and Performance Metrics of Grid-Enabled Executable  

CPU time depends on the collective CPU power of the machines a job is running on, a 
quantity that fluctuates in a heterogeneous, dynamic grid resource. We have measured 
calculation time for 10 identical distributed x!tandem analyses to quantify the magni-
tude of these variations. Job splitting parameters were set to a batch size of 500 spectra 
and 10 protein database subdivisions, giving rise to 50 non-refined and 5 refined work 
units. The Grid MP middleware estimates the amount of CPU time used by a job based 
on the share of CPU assigned to a particular work unit, integrated over time and all 
work units of a job. Despite the wide heterogeneity of PC-grid machines, relative stan-
dard deviation between the runs was 5.3%. Moreover, all 10 searches resulted in 
identical output, demonstrating numerical stability of the grid-enabled application.  

Next, CPU times were recorded for different schemes of spectra and protein data-
base splitting. Results are shown in Figure 5a. As expected, splitting generally 
increases the cumulative CPU time, due to multiplication of the program overhead. 
This effect is particularly prominent when splitting spectra datasets, as the protein 
expansion step is computationally expensive.  

From the user perspective, the total wall clock time for job execution is perceived 
as more important, defined as the time between job submission and result retrieval, 
including queuing and transmission overhead. Corresponding measures have been sam-
pled for the same distribution schemes as above (Figure 5b). We identified a valley of 
optimal configuration in the wall time charts. Performance gain is most pronounced 
when splitting the protein database into 5 subdivisions speeds up the non-refined step, 
and when splitting spectra into 5 subdivisions enhances refinement step performance.   

3. Conclusions 

In the present work, we have demonstrated how MS/MS protein identification can be 
transformed into a data-parallel task suitable for efficient grid computing. By develop-
ing a multi-layer application service, we manage to abstract the parallelization and grid 
submission process from the user while maintaining an open architecture supporting 
various LRMS. We have validated our approach by comparing results obtained on the 
grid with a number of reference result sets that were calculated on a local single-CPU 
resource.  



Although grid processing introduces fluctuations into peptide and protein scores, 
the resulting peptide and protein score characteristics do not degrade. However, the fact 
that match selection ultimately relies on e-value calculations that show extreme 
dependence on boundary conditions inherently causes statistical instability. Here, we 
demonstrate how this instability can be minimized, but using the present scoring 
scheme, it can not fully be eliminated. One future direction in this regard is the inclu-
sion of complementary information and descriptors in the process of peptide and 
protein inference.  

We next investigated the best scheme for job parallelization. While an optimum is 
expected to exist, the exact position depends mainly on 3 job-specific factors: spectra 
dataset size, protein database size, and protein expansion model complexity. Ideally, 
parallel submission to many machines decreases overall time, but the computation/data 
transfer ratio must be kept high to avoid accruing overhead. In bigger experiments 
(more spectra, larger databases, more complex model), the optimum is likely to shift 
towards a higher number of database subdivisions. Grid-based optimization strategies, 
such as the one presented here, are crucial to address the computational needs of large-
scale proteomics studies. 
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