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ABSTRACT

In this paperwe presenta methodto extract3-D informationof theshapeandmovementof thehumanbodyusingvideo
sequencesacquiredwith threeCCD cameras.This work is part of a projectaimedat developinga highly automated
systemto model most realistically humanbodiesfrom video sequences.Our imageacquisitionsystemis currently
composedof threesynchronizedCCD camerasanda framegrabberwhich acquiresa sequenceof triplet images.From
the video sequences,we extract two kinds of 3-D information:a threedimensionalsurfacemeasurementof the visible
bodypartsfor eachtriplet and3-D trajectoriesof pointson thebody. Our approachto surfacemeasurementis basedon
multi-imagematching,usingtheadaptive leastsquaresmethod.A semiautomatedmatchingprocessdeterminesa dense
setof correspondingpointsin thetriplets,startingfrom few manuallyselectedseedpoints.Thetrackingprocessis also
basedon leastsquaresmatchingtechniques,thusthenameLSMTA (LeastSquaresMatchingTrackingAlgorithm). The
spatialcorrespondencesbetweenthe three imagesof the different views and the temporalcorrespondencesbetween
subsequentframesaredeterminedwith a leastsquaresmatchingalgorithm.The advantageof this trackingprocessis
twofold: firstly, it cantracknaturalpoints,without usingmarkers;secondly, it canalsotrackentiresurfacepartson the
humanbody. In thelastcase,thetrackingprocessis appliedto all thepointsmatchedin theregion of interest.Theresult
canbe seenasa vectorfield of trajectories(position,velocity andacceleration)which canbe checked with thresholds
andneighborhood-basedfilters. The3-D informationextractedfrom thevideosequencescanbeusedto reconstructthe
animation model of the original sequence.

1  INTRODUCTION

Theapproachto humanbodymodelingis usuallysplit into two differentcases:thestatic3-D modelof thebodyandthe
3-D modelof themotion.For pureanimationpurposesor definitionof virtualizedworlds,wheretheshapeof thehuman
bodyis first definedandthenanimated(Badler2000,Badleret al. 1999,Boulic et al. 1997,Gravila et al. 1996),only an
approximative measurementis required. An exact 3-D measurementof the body is instead required in medical
applications(Bhatiaet al. 1994,Commeanet al. 1994,Yumei 1994)or in manufacturingof objectswhich have to be
fitted to aspecificpersonor groupof persons;asfor examplein thespaceandaircraftindustryfor thedesignof seatsand
suits(McKenna1999,BoeingHumanModelingSystem)or moregenerallyin clothesor carindustry(Certainetal. 1999,
Bradtmiller et al. 1999,Joneset al. 1993,CyberDressForms).Recently, anthropometricdatabaseshave beendefined
(Pauqetet al. 1999,Robinetteet al. 1999).Besidestheshapeinformation,they containalsootherrecordsof theperson,
whichcanbeusedfor commercialor researchpurposes(McKenna1999).In thelastyears,thedemandfor 3-D modelsof
humanbodieshasdrasticallyincreasedin all theseapplications.Thecurrentlyusedapproachesfor building suchmodels
arelaserscanner(Daanenet al. 1997,Cyberware),structuredlight methods(Bhatiaet al. 1994,Youmei1994),infrared
light scanner(Horiguchi 1998)andphotogrammetry(Vedulaet al. 1998).Laserscannersarequite standardin human
body modeling,becauseof their simplicity in the use,the acquiredexpertise(Brunsmanet al. 1997) and the related
market of modeling software (Burnsides1997). Structuredlight methodsare well known and used for industrial
measurementto capturetheshapeof partsof objectswith highaccuracy (Wolf 1996,GOM). Theacquisitiontimeof both
laserscannerand structuredlight systemsrangesfrom a coupleof secondsto half minute. In caseof humanbody
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modeling,this canposeaccuracy problemscausedby the needfor a personto remainimmobile for several seconds.
Photogrammetry methods (D’Apuzzo 1998) can instead acquire all data in less than one second.
Thesecondcomponentof thehumanbodymodelingprocessconsistsin thecaptureof themotion(Dyeretal. 1995).The
differentsystemscanbedivided into groupsdependingon which characteristicis usedfor classification,e.g.accuracy,
time to processthedata,methodused,priceof thesystem,portability of thesystem.Photogrammetricsystemsmeasure
very accuratelythe trajectoriesof signalizedtarget points on the body (Boulic et al. 1998,Vicon, Qualisys,Northen
Digital); someof themcomputethedatain real-time.Othersystemsuseelectromagneticsensorswhich areconnectedto
a computerunit which canprocessthe dataandproduce3-D datain real time (Ascension,Polhemus).Therearealso
mechanicalsystems,wherethepersonhasto wearspecialsuitswith mechanicalsensorswhich registerthemovementof
thedifferentarticulations(Analogus).Motorizedvideotheodolitesin combinationwith a digital videocamerahave also
beenusedfor humanmotionanalysis(Anai etal. 1999).A differentapproachis usedby theimage-basedmethodswhere
imagesequencesaretakenfrom differentpositionsandthenprocessedto recover the3-D motionof thebody(Gravila et
al. 1996).
Thecommoncharacteristicof thesesystemsis theseparatedconsiderationof thetwo modelingaims:shapeandmotion
aremodeledin two differentsteps.In this paper, we presentinsteada methodto solve thetwo problemssimultaneously,
recovering from one data set both 3-D shape and 3-D motion information.
The coreof this paperis the descriptionof the leastsquaresmatchingtrackingalgorithm(LSMTA). It usesthe least
squaresmatchingprocessto establishthe correspondencesbetweensubsequentframesof the sameview as well as
correspondencesbetweenthe imagesof the different views. Leastsquaresmatchinghasbeenchosenamongothers
methods for its adaptivity.

2  EXTRACTION OF 3-D DATA FROM VIDEO SEQUENCES

In this section,we will first describethe systemfor dataacquisitionandthe methodusedfor its calibration.We then
depictour methodsfor theextractionof 3-D datafrom themulti-imagevideosequence.Theextractedinformationis of
two differenttypes:3-D pointscloudsof thevisible partsof thehumanbodyfor eachtime stepanda 3-D vectorfield of
trajectories.The LSMTA canbe alsousedin 2-D mode;we give an exampleof this possibleusein trackingof facial
expressions.

2.1    Data Acquisition and Calibration

Three synchronizedCCD camerasin a linear arrangement(left,
center, right) areused.A sequenceof triplet imagesis acquiredwith
a framegrabberandtheimagesarestoredwith 768x576pixelsat 8
bit quantization.The CCD camerasareinterlaced,i.e. a full frame
is split into two fields which are recorded and read-out
consecutively. As odd andeven lines of an imagearecapturedat
different times, a saw pattern is created in the image when
recordingmoving objects.For this reasononly theodd linesof the
imagesare processed,at the cost of reducing the resolution in
verticaldirectionby 50 percent.In the future is plannedtheuseof
progressive scan cameras which acquire full frames.
To calibratethe system,the referencebar method(Maas1998) is
used.A referencebarwith two retroreflective targetpointsis movedthroughtheobjectspaceandat eachlocationimage
tripletsareacquired.The imagecoordinatesof the two targetpointsareautomaticallymeasuredandtrackedduring the
sequence with a least squares matching based process (Figure 1).
Thethreecamerasystemcanthenbecalibratedby self-calibratingbundleadjustmentwith theadditionalinformationof
the known distancebetweenthe two points at every location. The result of the calibrationprocessare the exterior
orientationof the threecameras(position and rotations:6 parameters),parametersof the interior orientationof the
cameras(cameraconstant,principlepoint,sensorsize,pixel size:7 parameters),parametersfor theradialanddecentring
distortion of the lensesand optic systems(5 parameters)and 2 additional parametersmodeling other effects as
differentialscalingandshearing(Brown 1971).A thoroughdeterminationof theseparametersmodelingdistortionsand
other effects is required to achieve high accuracy.

Figure 1. Automatically measured image
 coordinates of the two points on the reference bar
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2.2    Surface Measurement

Our approachis based on multi-image photogrammetry. Three images are
acquiredsimultaneouslyby threesynchronizedcameras.A multi-imagematching
process(D’Apuzzo 1998) establishescorrespondencesin the three images
startingfrom a few seedpoints.It is basedon the adaptive leastsquaresmethod
(Gruen1985)whichconsidersanimagepatcharoundaselectedpoint.Oneimage
is usedas templateand the othersas searchimages.The patchesin the search
imagesare modified by an affine transformation(translation,rotation,shearing
andscaling).Thealgorithmfindsthecorrespondingpoint in theneighbourhoodof
theselectedpoint in thesearchimagesby minimizing thesumof thesquaresof thedifferencesbetweenthegrey levelsin
thesepatches.Figure2 showstheresultof theleastsquaresmatchingwith animagepatchof 13x13pixels.Theblackbox
representsthepatchesselected(initial locationin thesearchimage)andthewhiteboxrepresentstheaffinely transformed
patch in the search image.
An automatedprocessbasedon least squaresmatching
determinesa dense set of correspondingpoints. The
processstartsfrom a few seedpoints, which have to be
manuallyselectedin thethreeimages.Thetemplateimage
is dividedinto polygonalregionsaccordingto which of the
seedpoints is closest(Voronoi tessellation).Startingfrom
the seed points, the stereo matcher automatically
determinesa denseset of correspondencesin the three
images.Thecentralimageis usedasa templateimageand
the other two (left and right) are usedas searchimages.
The matchersearchesthe correspondingpoints in the two
searchimagesindependently. At theendof theprocess,the
datasetsaremergedto becometriplets of matchedpoints.The matcherusesthe following strategy: the processstarts
from oneseedpoint, shiftshorizontallyin thetemplateandin thesearchimagesandappliesthe leastsquaresmatching
algorithm in the shifted location. If the quality of the matchis good, the shift processcontinueshorizontally until it
reachesthe region boundaries.The covering of the entire polygonalregion of a seedpoint is achieved by sequential
horizontal and vertical shifts (Figure 3).
To evaluate the quality of the result,
different indicators are used (resulted a
posteriori standarddeviation of the least
squares adjustment, resulted standard
deviation of the shift in x andy directions,
displacementfrom thestartpositionin x and
y direction).Thresholdsfor thesevaluescan
be defined for different cases (level of
texture in image, type of template).If the
quality of the match is not satisfactory
(quality indicators are bigger than the
thresholds),the algorithm computesagain
the matching process changing some
parameters(e.g. smaller shift from the
neighbour, bigger size of the patch). The
search process is repeated for each
polygonal region until the whole image is
covered.At the endof the process,holesof areasnot analyzedcanappearin the setof matchedpoints.The algorithm
tries to close theseholes by searchingfrom all directions around. In caseof poor natural texture, local contrast
enhancementof the imagesis requiredfor the leastsquaresmatching.Figure4 shows theoriginal imagestakenby the
three cameras, the results after contrast enhancement and the matched points which result from the matching process.
Beforecomputingthe3-D coordinatesof thematchedpoints,thedatapassthrougha neighborhoodfilter. It checksthe
data for neighborsimilarity of the matchedpoints comparingeachpoint with the local meanvaluesof the affine
transformationparametersof thematchingresults.A matchingprocessis repeatedafterfiltering to measuretheremoved
points.

Figure 2. Least squares matching
algorithm (LSM). Left: template

image, right: search image

zoom

seed points

matched points

Figure 3: Search strategy for the establishment of
correspondences between images

Figure 4. Original triplet (first row), enhanced images (second row) and
matched points (third row); the first image on the left is the template
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The 3-D coordinatesof the matchedpoints are
then computedby forward ray intersectionusing
theorientationandcalibrationdataof thecameras.
To reduceremainingnoisein the 3-D dataandto
get a more uniform densityof the point cloud, a
secondfilter is appliedto the data.The first filter
was based on the matching results space, the
secondfilter is insteadappliedto the 3-D data.It
divides the object space in voxels (whose
dimensionscanvary)andthe3-D pointscontained
in eachvoxel arereplacedby its centerof gravity.
The 3-D dataresultingafter this filtering process
have a more uniform density and the noise is
reduced. Figure 5 shows the 3-D point cloud derived from the images of Figure 4.
Dueto thepoornaturaltextureof theshown example,thematchingprocessproducesa 3-D point cloudwith relatively
low densityandhigh noise.In the future, it is plannedto integratein thematchingprocessnew functionalitiessuchas
geometric constraints and neighborhood constraints. This will improve the results in quality and density.

2.3    Tracking Process

2.3.1 Tracking single points. The basic idea of the
tracking processis to track triplets of corresponding
points through the sequencein the three images.
Therefore,at the end of the processit is possibleto
compute their 3-D trajectories.
The tracking process is based on least squares
matching techniques. The spatial correspondences
betweenthethreeimagesof thedifferentcamerasat the
sametime step (spatial LSM) and also the temporal
correspondencesbetweensubsequentframesof each
camera(temporal LSM) arecomputedusing the same
least squaresmatching algorithm mentionedbefore
(Figure 6).
Theflowchartof Figure7 showsthebasicoperationsof
the tracking process.To start the processa triplet of
correspondingpoints in the three imagesis needed.
This is achieved with the least squaresmatching
algorithm(spatialLSM), theprocesscanthenenterthe
tracking loop. The fundamental operations of the
tracking processare three: (1) predict the position in
thenext frame,(2) searchthepositionwith thehighest
crosscorrelationvalueand(3) establishthepoint in the
next frames using least squaresmatching (temporal
LSM). Thesethreestepsare computedin parallel for
the three images. Figure 8 shows graphically the
process.
For the frame at time i+1 , a linear predictionof the
position of the tracked point from the two previous
framesis determined(step1). A searchbox is defined
aroundthis predictedpositionin theframeat time i+1 .
This box is scannedfor searchingthe position which
hasthe highercrosscorrelationbetweenthe imageof
frameat time i andtheimageof frameat time i+1 (step
2). This positionis consideredanapproximationof the
exact position of the point to be tracked.

Figure 5. 3-D point cloud after passing filtering
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The least squaresmatching algorithm is then applied at that
positionandtheresultcanbeconsideredtheexactpositionof the
tracked point in the new frame (step3).
Like explainedbefore,this processis performedin parallelfor the
threeimagesof thedifferentviews.To testtheindividual resultsin
the threeimages,a spatial LSM is thenexecutedat the positions
resultingfrom thetemporal LSMs (seeflowchartin figure7) andif
no significant differencesoccur betweenthe two matches,the
point is consideredtracked and the processcan continueto the
next time step.If insteadthedifferencesaretoo large,theprocess
goes back to step (2) by searchingthe value of best cross
correlationin a biggerregion aroundthepredictedposition.If the
result is rejected again, then the tracking process stops.
Theresultof thetrackingprocessarethecoordinatesof a point in
the threeimagesthroughthe sequence,thusthe 3-D trajectoryis determinedby computingthe 3-D coordinatesof the
point for each time step by forward ray intersection. Velocities and accelerations are also computed.
This way of trackingpointsmayproduceerrorswhich cannotbeeasilydetected.In fact,theonly controlof thetracking
resultis thetestexecutedbetweenthespatialLSM resultsandthe temporal LSM results.Thereis no 3-D controlof the
trajectories.Thus, false trajectoriescan be generatedeven if the tracking resultsseemsgood. A new test has to be
integrated in the process to detect the false trajectories.
Thiscanbeachievedby trackingpartof surfacesandnotonly singlepoints.In thiscase,theresultof thetrackingprocess
canbe consideredasa vectorfield of trajectories,which canbe checked for consistency andlocal uniformity. Indeed,
sincethehumanbodycanbeconsideredasanarticulatedmoving object,theresultingvectorfield of trajectoriesmustbe
locally uniform, i.e. the velocity vector must be nearly constantin sufficiently small regions at a particular time.
Therefore, filters can be defined to check these properties. The next paragraph describes the approach.

2.3.2 Surface tracking. Tracking surface parts means track simultaneouslypoints
belongingto a commonsurface.Practically, the trackingprocessdepictedin the previous
paragraph,is appliedto all thepointsmatchedon thesurfaceof thefirst frames.With this
approach,anew problemhasto beconsidered:duringthesequence,somesurfacepartscan
getlost by occlusionandnew partsof surfacecanappear(e.g.thelegswhich occludeeach
otherduringa walk sequence).For this reason,a new functionalityhasto be integratedin
the trackingprocess.Beforeproceedingto the next time step,the dataresultingfrom the
tracking processis checked for density (seeflowchart in Figure 9). This operationis
executedwith a definedfrequency (which canbe for exampleevery two frames).In the
regionsof low density(determinedby athreshold),new pointsareintegratedin theprocess,
so that new appearingsurface parts are also tracked. The new points come from data
previously computed (surface measurement of the body for each frame).
Figure 10 shows 6 frames of a walking sequence and the results of the surface tracking process.

Figure 10. Left: 6 frames of a walk sequence (upper left to lower right)
Right: Tracked points displayed in image space for the 6 frames
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As explainedbefore,the trackingprocess
can produce false trajectories. This is
clearlyshown in theFigure11, wherethe
computed3-D trajectoriesfor 30 frames
aredisplayed(for thewalkingsequenceof
Figure10).Thevectorfield of trajectories
(position, velocity and acceleration)can
now bechecked for consistency andlocal
uniformity of the movement.Two filters
are applied to the results to remove or
truncatefalse trajectories.The first filter
consistsof thresholdsfor thevelocity and
acceleration(Figure12, left). The second
filter checksfor thelocaluniformity of the
motion,bothin spaceandtime(Figure12,
right). To checkthis property, thespaceis
divided in voxels, for eachvoxel at each
time step a mean value of the velocity
vectoris computed.Thesingletrajectories
arecomparedto local (in spaceandtime)
meanvaluesof the velocity vector. If the
differencesare too large, the trajectoryis
consideredto be falseand it is truncated
or removed.
As it can be seencomparingFigure 13
with Figure 11, the majority of the false
trajectoriesare removed or truncatedby
the two filters. Still, some false
trajectories remain in the data after
filtering.

2.3.3 LSMTA in 2-D mode: The
LSMTA is a flexible tool andcanalsobe
used in 2-D mode. In that case, the
sequenceof a single camera, e.g. a
camcorder, is processed.The use of a
single image sequencecannotobviously
produce3-D databut for somecasesthe
3-D information is not required. The
Figure 14 shows a simple example of
tracking facial expressions,where some
key points are tracked through the
sequence. The images were indeed
acquired with a video camcorder. This
example underlinesthe flexibility of the
LSMTA which can producein this case
simple animation,tracking key points on
the face without using markers.

thresholds of velocity and acceleration check for consistency and local uniformity

removed part of trajectory

      Figure 12. Filter to remove or truncate false trajectories.
Left: threshold filter, right: consistency and uniformity filter

Figure 13. 3-D trajectories after filtering.
    Left: frontal view, right: lateral view

Figure 11. 3-D trajectories of the tracked points.
           Left: frontal view, right: lateral view

        Figure 14. Some frames of a single camera image sequence
              (the crosses on the first frame show the tracked points).
Bottom: basic animation created joining the tracked points with lines
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3  USE OF 3-D DATA FOR HUMAN BOD Y MODELING

From the multi-imagesequence,the processdescribedextracts
datain form of a 3-D point cloud of the visible body surfaceat
eachtime stepand a vector field of 3-D trajectories.Figure 16
shows the resultsachieved by a 2-D contourtrackingalgorithm
using the 3-D trajectories.The algorithm is basedon the snake
technique(Kasset al. 1988).Given an extractedcontourin one
frame, the trajectory information of surrounding3-D points,
projectedonto the imageplane,is usedto predictthepositionof
thecontourin thenext frame.Thesilhouetteinformationandthe
measured3-D points for eachframe are usedto fit a complete
animationmodelto thedata.Theresultsof thefitting processare
shown in Figure17. For the detailedexplanationof the process
we refer to the related publication (Plaenkers et al. 1999).

4  CONCLUSIONS AND FUTURE WORK

A processfor anautomatedextractionof 3-D datafrom multi-imagesequenceshasbeenpresented.Theextracted3-D
datais composedof two parts:measurementof thebodysurfaceat eachtime stepof thesequenceanda vectorfield of
3-D trajectories(position,velocity andacceleration).Initially, the two different typesof dataarevery noisy, therefore
adequate filters have been developed and applied to the data.
Lot of work still remainsfor thefutureto improve thequalityof theextracted3-D data.For thesurfacemeasurement,the
most important featurewhich has to be integratedin the process,is the definition of geometricand neighborhood
constraintsin the least squaresmatchingalgorithm. The considerationof neighborhoodinformation should be also
integrated in the tracking process to achieve more reliable results.
In addition,thegain in robustnessandlevel of automationshouldbealsoconsidered,sincethefinal goalof theprojectis
the development of a fully automated and robust process.
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