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ABSTRACT

In this papemwe presenta methodto extract3-D informationof the shapeandmovementof the humanbodyusingvideo
sequencesacquiredwith three CCD camerasThis work is part of a projectaimedat developinga highly automated
systemto model most realistically humanbodiesfrom video sequencesOur image acquisitionsystemis currently
composedf threesynchronizedCCD camerasanda framegrabbemwhich acquiresa sequencef triplet images.From
the video sequencesye extracttwo kinds of 3-D information: a threedimensionakurfacemeasurementf the visible
body partsfor eachtriplet and3-D trajectoriesof pointson the body. Our approacho surlacemeasuremeris basedon
multi-imagematching,usingthe adaptve leastsquaresnethod. A semiautomatednatchingprocesgdetermines dense
setof correspondingointsin thetriplets, startingfrom few manuallyselectedseedpoints. The trackingprocesss also
basedon leastsquaresnatchingtechniquesthusthe nameLSMTA (LeastSquaredMatching TrackingAlgorithm). The
spatial correspondenceetweenthe threeimagesof the different views and the temporalcorrespondencelsetween
subsequentramesare determinedwith a leastsquaresnatchingalgorithm. The advantageof this tracking processs
twofold: firstly, it cantrack naturalpoints,without usingmarkers;secondlyit canalsotrack entire surfacepartson the
humanbody In thelastcasethetrackingprocesss appliedto all the pointsmatchedn theregion of interest.Theresult
canbe seenasa vectorfield of trajectories(position, velocity andacceleration)vhich canbe checled with thresholds
andneighborhood-basdilters. The 3-D informationextractedfrom the video sequencesanbe usedto reconstructhe
animation model of the original sequence.

1 INTRODUCTION

The approactto humanbody modelingis usuallysplit into two differentcasesthe static3-D modelof the bodyandthe
3-D modelof themotion. For pureanimationpurpose®r definition of virtualizedworlds, wherethe shapeof the human
bodyis first definedandthenanimatedBadler2000,Badleretal. 1999,Boulic etal. 1997,Gravila etal. 1996),only an
approximatve measurements required. An exact 3-D measuremendf the body is insteadrequiredin medical
applications(Bhatiaet al. 1994, Commearet al. 1994, Yumei 1994) or in manufcturingof objectswhich have to be
fittedto a specificpersonor groupof personsasfor examplein the spaceandaircraftindustryfor thedesignof seatsand
suits(McKennal999,BoeingHumanModeling System)or moregenerallyin clothesor carindustry(Certainetal. 1999,
Bradtmiller et al. 1999, Joneset al. 1993, CyberDressbrms). Recently anthropometricdatabasesiave beendefined
(Paugetet al. 1999,Robinetteet al. 1999).Besideghe shapenformation,they containalsootherrecordsof the person,
which canbeusedfor commerciabr researchpurposegMcKennal999).In thelastyears thedemandor 3-D modelsof

humanbodieshasdrasticallyincreasedn all theseapplicationsThe currentlyusedapproachetor building suchmodels
arelaserscanneDaaneret al. 1997,Cybervare),structuredight methodgBhatiaet al. 1994,Youmei1994),infrared
light scanner(Horiguchi 1998) and photogrammetryVedulaet al. 1998).Laserscannersre quite standardn human
body modeling,becauseof their simplicity in the use,the acquiredexpertise(Brunsmanet al. 1997) and the related
market of modeling software (Burnsides1997). Structuredlight methodsare well known and used for industrial
measuremertb capturethe shapeof partsof objectswith high accurag (Wolf 1996,GOM). Theacquisitiontime of both

laser scannerand structuredlight systemsrangesfrom a couple of secondso half minute. In caseof humanbody



modeling,this can poseaccurag problemscausedby the needfor a personto remainimmobile for several seconds.
Photogrammetry methods (D’Apuzzo 1998) can instead acquire all data in less than one second.
Theseconccomponentf thehumanbodymodelingprocessonsistsn thecaptureof themotion (Dyer etal. 1995).The
differentsystemscanbe dividedinto groupsdependingon which characteristiés usedfor classificationg.g.accurag,
time to procesgshe data,methodused price of the system portability of the system Photogrammetrisystemaneasure
very accuratelythe trajectoriesof signalizedtarget points on the body (Boulic et al. 1998, Vicon, Qualisys,Northen
Digital); someof themcomputethedatain real-time.Othersystemsaiseelectromagnetisensorsvhich areconnectedo
a computerunit which canprocesshe dataand produce3-D datain real time (AscensionPolhemus)Thereare also
mechanicabystemswherethe persorhasto wearspecialsuitswith mechanicasensorsvhich registerthe movementof
thedifferentarticulations(Analogus).Motorizedvideotheodolitesn combinationwith a digital video camerahave also
beenusedfor humanmotionanalysig(/Anai etal. 1999).A differentapproachs usedby theimage-basedethodsvhere
imagesequencearetakenfrom differentpositionsandthenprocessedo recover the 3-D motion of thebody (Gravila et
al. 1996).

The commoncharacteristiof thesesystemss the separatedonsideratiorof the two modelingaims:shapeandmotion
aremodeledn two differentsteps.n this paperwe preseninsteada methodto solve thetwo problemssimultaneously
recovering from one data set both 3-D shape and 3-D motion information.

The core of this paperis the descriptionof the leastsquaresmatchingtracking algorithm (LSMTA). It usesthe least
squaresmatchingprocessto establishthe correspondencelsetweensubsequenframesof the sameview aswell as
correspondencesetweenthe imagesof the different views. Leastsquaresmatchinghasbeenchosenamongothers
methods for its adapity.

2 EXTRACTION OF 3-D DATA FROM VIDEO SEQUENCES

In this section,we will first describethe systemfor dataacquisitionandthe methodusedfor its calibration.We then
depictour methodgor the extractionof 3-D datafrom the multi-imagevideo sequenceT he extractedinformationis of
two differenttypes:3-D pointscloudsof thevisible partsof the humanbodyfor eachtime stepanda 3-D vectorfield of
trajectories.The LSMTA canbe alsousedin 2-D mode;we give an exampleof this possibleusein tracking of facial
expressions.

2.1 Data Acquisition and Calibration

Three synchronizedCCD camerasin a linear arrangemen{left,
centerright) areused A sequencef tripletimagess acquiredwith
aframegrabberandtheimagesarestoredwith 768x576pixelsat 8
bit quantization.The CCD camerasareinterlaced,.e. a full frame
is split into two fields which are recorded and read-out
consecutiely. As odd and even lines of an imageare capturedat
different times, a sawv pattern is createdin the image when
recordingmoving objects.For this reasoronly the oddlines of the
imagesare processedat the cost of reducingthe resolutionin
vertical directionby 50 percent.In the future is plannedthe useof Figure 1. Automatically measured image
progressie scan cameras which acquire full frames. coordinates of the twpoints on the reference t
To calibratethe system,the referencebar method(Maas1998)is

used A referencebarwith two retroreflectve tamget pointsis movedthroughthe objectspaceandat eachlocationimage
tripletsareacquired.The imagecoordinateof the two target pointsareautomaticallymeasureandtracked during the
sequence with a least squares matching based process (Figure 1).

Thethreecamerasystemcanthenbe calibratedby self-calibratingoundleadjustmentvith the additionalinformationof
the known distancebetweenthe two points at every location. The result of the calibration processare the exterior
orientationof the three camerag(position and rotations:6 parameters)parametersf the interior orientationof the
cameragcameraconstantprinciple point, sensosize,pixel size:7 parameters)parameteror theradialanddecentring
distortion of the lensesand optic systems(5 parametersland 2 additional parametersmodeling other effects as
differentialscalingandshearing(Brown 1971).A thoroughdeterminatiorof theseparametersnodelingdistortionsand
other efects is required to achie high accurac
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2.2 Surface Measuement

Our approachis basedon multi-image photogrammetry Three images are
acquiredsimultaneoushpy threesynchronizedamerasA multi-imagematching
process(D’Apuzzo 1998) establishescorrespondencesn the three images
startingfrom a few seedpoints.It is basedon the adaptve leastsquaresnethod
(Gruen1985)which considersanimagepatcharounda selectegoint. Oneimage
is usedas templateand the othersas searchimages.The patchesn the search
imagesare modified by an affine transformation(translation,rotation, shearing
andscaling).Thealgorithmfindsthecorrespondingointin theneighbourhoof
theselectegointin the searcimageshy minimizing the sumof the square®f thedifferencedetweerthegrey levelsin
thesepatchesFigure2 shavstheresultof theleastsquaresnatchingwith animagepatchof 13x13pixels. Theblackbox
representthepatcheselectedinitial locationin thesearchimage)andthewhite box representshe affinely transformed
patch in the search image.

An automatedprocessbasedon least squaresmatching
determinesa dense set of correspondingpoints. The
processstartsfrom a few seedpoints, which have to be
manuallyselectedn the threeimages.Thetemplateimage
is dividedinto polygonalregionsaccordingto which of the
seedpointsis closest(\Voronoitessellation) Startingfrom
the seed points, the stereo matcher automatically
determinesa denseset of correspondencem the three
images.The centralimageis usedasatemplateimageand
the other two (left and right) are usedas searchimages. Figure 3: Search stragg for the establishment of
The matchersearcheshe correspondingpointsin the two correspondences between images
searchimagesindependentlyAt the endof the processthe

datasetsare meigedto becometriplets of matchedpoints. The matcherusesthe following strateyy: the processstarts
from oneseedpoint, shifts horizontallyin the templateandin the searcimagesandappliesthe leastsquaresnatching
algorithmin the shifted location. If the quality of the matchis good, the shift processcontinueshorizontally until it
reacheghe region boundariesThe covering of the entire polygonalregion of a seedpoint is achieved by sequential
horizontal and ertical shifts (Figure 3).

To evaluate the quality of the result,
different indicators are used (resulted a
posteriori standarddeviation of the least
squares adjustment, resulted standard
deviation of the shift in x andy directions,
displacemenfrom the startpositionin x and
y direction). Thresholdgor thesevaluescan
be defined for different cases (level of
texture in image, type of template).If the
quality of the match is not satishctory
(quality indicators are bigger than the
thresholds),the algorithm computesagain
the matching process changing some
parameters(e.g. smaller shift from the
neighbouy bigger size of the patch). The
search process is repeated for each
polygonalregion until the whole image is
covered.At the end of the processholesof areasnot analyzedcanappeaiin the setof matchedpoints. The algorithm

tries to close theseholes by searchingfrom all directionsaround.In caseof poor natural texture, local contrast
enhancementf theimagesis requiredfor the leastsquaresnatching.Figure4 shaws the original imagestaken by the

three cameras, the results after contrast enhancement and the matched points which result from the matching process.
Beforecomputingthe 3-D coordinateof the matchedpoints,the datapassthrougha neighborhoodilter. It checksthe

datafor neighborsimilarity of the matchedpoints comparingeachpoint with the local meanvaluesof the affine
transformatiorparametersf the matchingresults A matchingprocesss repeatedafterfiltering to measureheremoved

points.

Figure 2. Least squares matchin
algorithm (LSM). Left: template
image, right: search image
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The 3-D coordinatesof the matchedpoints are
then computedby forward ray intersectionusing
the orientationandcalibrationdataof the cameras.
To reduceremainingnoisein the 3-D dataandto
get a more uniform density of the point cloud, a
secondfilter is appliedto the data.The first filter
was based on the matching results space, the
secondfilter is insteadappliedto the 3-D data.lIt
divides the object space in voxels (whose
dimensionganvary) andthe 3-D pointscontained
in eachvoxel arereplacedy its centerof gravity. N

The 3-D dataresultingafter this filtering process Figure 5. 3-D point cloud after passing filtering
have a more uniform density and the noise is

reduced. Figure 5 st the 3-D point cloud desd from the images of Figure 4.

Dueto the poor naturaltexture of the shovn example,the matchingprocesgproducesa 3-D point cloud with relatively
low densityandhigh noise.In the future, it is plannedto integratein the matchingprocessew functionalitiessuchas
geometric constraints and neighborhood constraints. This will et results in quality and density

2.3 Tracking Process

2.3.1 Tracking single points. The basicidea of the e L o

tracking processis to track triplets of corresponding e ‘SLPSTM.;,T " «%» O e
points through the sequencein the three images. - "“

Therefore,at the end of the processit is possibleto LSMi‘emPOfa' LS“{;Zi temporal LSM i‘empora'
compute their 3-D trajectories. ] L [

The tracking processis based on least squares R % Spatial % frame f+1

matching techniques. The spatial correspondences
betweerthethreeimagesof thedifferentcamerasitthe . ]
sametime step (spatial LSM) and also the temporal Figure 6. Bmporal and spatial LSM
correspondencebetweensubsequenframesof each

left centre right

camera(tempoal LSM) are computedusing the same

qust squaresmatching algorithm mentioned before e s rss
(Figure 6). ?_ |

Theflowchartof Figure7 shawvs the basicoperationsf \SPATLLLSM S

the tracking process.To startthe processa triplet of [Twnces - | waces

correspondingpoints in the three imagesis needed. @
This is achiered with the least squaresmatching

algorithm(spatial LSM), the processanthenenterthe
tracking loop. The fundamental operations of the
tracking processare three: (1) predict the positionin

the next frame, (2) searchthe positionwith the highest
crosscorrelationvalueand(3) establishthe pointin the
next frames using least squaresmatching (tempoal
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LSM). Thesethree stepsare computedin parallel for REsuy REsuL
the three images. Figure 8 shawvs graphically the o o o
process. T
For the frame at time i+1, a linear prediction of the B

position of the tracked point from the two previous
framesis determinedstepl). A searchbox is defined
aroundthis predictedpositionin theframeattime i+1.
This box is scannedor searchingthe position which
hasthe higher crosscorrelationbetweenthe image of
frameattimei andtheimageof frameattimei+1 (step . .
2). This positionis considerecan approximatiorof the Figure 7. Flavchart of the LSM tracking process
exact position of the point to be traedk
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The least squaresmatching algorithm is then applied at that
positionandthe resultcanbe consideredhe exact positionof the pnd | Uﬁm
tracked point in the ne frame (stef8). wﬁﬁ W

Like explainedbefore,this processs performedin parallelfor the
threeimagesof thedifferentviews. To testtheindividual resultsin
the threeimages,a spatial LSM is then executedat the positions
resultingfrom thetempoal LSMs (seeflowchartin figure 7) andif
no significant differencesoccur betweenthe two matches,the
point is considerediracked and the processcan continueto the

FRAME i-1 FRAME i FRAME i+1

next time step.If insteadthe differencesaretoo large, the process 2, Trenerenn ST cesrxcom
goes back to step (2) by searchingthe value of best cross N
correlationin a biggerregion aroundthe predictedposition.If the Figure 8. Tacking in image space: temporal LS
result is rejected @in, then the tracking process stops. is applied at the position of best cross correla

Theresultof thetrackingprocessarethe coordinatef a pointin

the threeimagesthroughthe sequencethusthe 3-D trajectoryis determinedby computingthe 3-D coordinatesf the

point for each time step by foard ray intersection.alocities and accelerations are also computed.

This way of trackingpointsmay produceerrorswhich cannotbe easilydetectedIn fact,the only control of thetracking

resultis the testexecutedbetweerthe spatial LSMresultsandthe tempoal LSMresults.Thereis no 3-D control of the

trajectories.Thus, false trajectoriescan be generatedeven if the tracking resultsseemsgood. A new testhasto be

integrated in the process to detect thksé trajectories.

This canbeachiezedby trackingpartof surfacesandnotonly singlepoints.In this casetheresultof thetrackingprocess
canbe consideredasa vectorfield of trajectorieswhich canbe checled for consisteng andlocal uniformity. Indeed,
sincethe humanbody canbe consideredsanarticulatedmoving object,theresultingvectorfield of trajectoriesnustbe

locally uniform, i.e. the velocity vector must be nearly constantin sufficiently small regions at a particular time.

Therefore, filters can be defined to check these properties. Xheanagraph describes the approach.

2.3.2 Surface tracking. Tracking surface parts meanstrack simultaneouslypoints Csmart)
belongingto a commonsurface.Practically the tracking procesdepictedin the previous
paragraphis appliedto all the pointsmatchedon the surfaceof the first frames.With this
approachanew problemhasto beconsideredduringthe sequencesomesurfacepartscan FOR ALL POINTS
getlost by occlusionandnew partsof surfacecanappear(e.g.thelegswhich occludeeach
otherduring a walk sequence)For this reasona new functionality hasto be integratedin

TRACKING PROCESS

LOW [ INcLUDE

the tracking processBefore proceedingo the next time step,the dataresultingfrom the NEW POINTS
tracking processis checled for density (seeflowchart in Figure 9). This operationis [ o
executedwith a definedfrequenyg (which canbe for example every two frames).In the

regionsof low density(determinedy athreshold) new pointsareintegratedin theprocess, Figure 9. Flavchart of the
so that nev appearingsurface parts are also tracked. The new points come from data ~ Surice tracking proces
previously computed (suaice measurement of the body for each frame).

Figure 10 shas 6 frames of a alking sequence and the results of theam@tftracking process.

Figure 10. Left: 6 frames of aalk sequence (upper left tonNer right)
Right: Tracked points displayed in image space for the 6 frames



As explainedbefore,the tracking process
can produce false trajectories. This is
clearly shawvn in the Figure 11, wherethe
computed3-D trajectoriesfor 30 frames
aredisplayedfor thewalking sequencef

Figure10). Thevectorfield of trajectories -

(position, velocity and acceleration)can
now be checledfor consisteng andlocal

uniformity of the movement.Two filters

are applied to the resultsto remove or

truncatefalse trajectories.The first filter

consistsof thresholdgor the velocity and
acceleratiorn(Figure 12, left). The second
filter checkdfor thelocal uniformity of the
motion,bothin spaceandtime (Figurel2,

right). To checkthis property the spaceis

divided in voxels, for eachvoxel at each
time step a mean value of the velocity
vectoris computedThesingletrajectories
arecomparedo local (in spaceandtime)

meanvaluesof the velocity vector If the

differencesaretoo large, the trajectoryis

consideredo be falseandit is truncated
or remwed.

As it can be seencomparingFigure 13

with Figure 11, the majority of the false
trajectoriesare removed or truncatedby

the two filters. Still, some false
trajectories remain in the data after
filtering.

23.3 LSMTA in 2-D mode: The
LSMTA is aflexible tool andcanalsobe
used in 2-D mode. In that case, the
sequenceof a single camera, e.g. a
camcorder is processed.The use of a
single image sequencecannot obviously
produce3-D databut for somecasesthe
3-D information is not required. The
Figure 14 shons a simple example of
tracking facial expressions,where some
key points are tracked through the
sequence. The images were indeed
acquired with a video camcorder This
example underlinesthe flexibility of the
LSMTA which can producein this case
simple animation,tracking key pointson
the face without using maeks.

Figure 11. 3-D trajectories of the trackpoints.
Left: frontal vie, right: lateral viev

- -+ removed part of trajectory

thresholds of velocity and acceleration check for consistency and local uniformity

Figure 12. Filter to remve or truncatedlise trajectories.
Left: threshold filterright: consistencand uniformity filter

Figure 13. 3-D trajectories after filtering.
Left: frontal viev, right: lateral viev
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Figure 14. Some frames of a single camera image sequence
(the crosses on the first framenstiee traclked points).
Bottom: basic animation created joining the textpoints with lines



3 USE OF 3-D IATA FOR HUMAN BODY MODELING
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From the multi-image sequencethe processdescribedextracts
datain form of a 3-D point cloud of the visible body surfaceat
eachtime stepand a vectorfield of 3-D trajectories.Figure 16
shaws the resultsachieved by a 2-D contourtracking algorithm
usingthe 3-D trajectories.The algorithmis basedon the snale
technique(Kasset al. 1988). Given an extractedcontourin one
frame, the trajectory information of surrounding3-D points,
projectedontotheimageplane,is usedto predictthe positionof
the contourin the next frame.The silhouetteinformationandthe |
measured3-D pointsfor eachframe are usedto fit a complete
animationmodelto the data.Theresultsof thefitting processare
shavn in Figure 17. For the detailedexplanationof the process
we refer to the related publication (Plaerset al. 1999).

4 CONCLUSIONS AND EUTURE WORK Figure 17. Results of the fitting process

A procesdor anautomatedxtractionof 3-D datafrom multi-imagesequencebasbeenpresentedThe extracted3-D

datais composedf two parts:measuremeraf the body surfaceat eachtime stepof the sequenceanda vectorfield of

3-D trajectories(position, velocity and acceleration)Initially, the two differenttypesof dataare very noisy, therefore
adequate filters wva been deecloped and applied to the data.

Lot of work still remaingor thefutureto improve the quality of the extracted3-D data.For the surlacemeasurementhe

most important featurewhich hasto be integratedin the process,s the definition of geometricand neighborhood
constraintsin the least squaresmatchingalgorithm. The considerationof neighborhoodnformation should be also

integrated in the tracking process to agkienore reliable results.

In addition,thegain in robustnessandlevel of automatiorshouldbe alsoconsideredsincethefinal goal of the projectis

the deelopment of a fully automated and usb process.
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