
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur informaticien diplômé EPF
de nationalité suisse et originaire de Bellinzone (TI)

acceptée sur proposition du jury:

Suisse, EPFL
2007

Prof. D. Thalmann président du jury
Prof. A. Ijspeert, directeur de thèse

Prof. H. Kimura, rapporteur
Prof. A. Menciassi, rapporteur

Dr F. Mondada, rapporteur

DESIGN AND CONTROL OF AMPHIBIOUS ROBOTS WITH
MULTIPLE DEGREES OF FREEDOM

Alessandro CRESPI

THÈSE NO 3786 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 8 JUIN 2007

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

INSTITUT DES SYSTÈMES INFORMATIQUES ET MULTIMÉDIAS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

2

Abstract

This thesis presents the design and realization of two generations of robot elements that
can be assembled together to construct amphibious mobile robots. These elements, de-
signed to be individually waterproof and having their own battery, motor controller, and
motor, have been used to actually construct a snake, a boxfish and a salamander robot.
Central pattern generator (CPG) models inspired from those found in vertebrates have
been used for online trajectory generation on these robots and implemented on their
onboard locomotion controllers. CPGs proved to be an interesting way of controlling
complex robots, providing a simple interface which hides the complexity of the robot to
the end user. Online learning algorithms that can be used to dynamically adapt the lo-
comotion parameters to the environment have been implemented. Finally, this work also
shows how robotics can be a useful tool to verify biological hypotheses. For instance, the
salamander robot has been used to test a model of CPG for salamander locomotion.

Keywords: biologically inspired robotics, amphibious robotics, central pattern gen-
erators, locomotion.

3

4

Résumé

Cette thèse présente la conception et la réalisation de deux générations d’éléments
destinés à être assemblés pour la construction de robots mobiles amphibies. Ces éléments,
conçus pour être individuellement étanches et ayant leur propre accumulateur, contrôleur
et moteur, ont été utilisés pour la réalisation d’un robot serpent, d’un robot poisson et
d’un robot salamandre. Des modèles de central pattern generator (CPG) inspirés par ceux
qui se trouvent dans les animaux vertébrés ont été utilisés pour la génération en temps réel
des trajectoires et programmés dans les contrôleurs à bord de ces robots. Les CPGs ont
montré d’être une solution intéressante pour le contrôle de robots complexes, fournissant
une interface simple qui cache la complexité du robot à l’utilisateur final. Des algorithmes
d’apprentissage online pouvant être utilisés pour adapter dynamiquement les paramètres
de locomotion à l’environnement ont été implémentés. Ce travail montre également que
la robotique peut être un outil intéressant pour vérifier des hypothèses biologiques. En
l’occurrence, le robot salamandre a été utilisé pour vérifier un modèle de CPG pour la
locomotion de la salamandre.

Mots clés : robotique bioinspirée, robotique amphibie, central pattern generators,
locomotion.

5

6

Contents

1 Introduction 11

2 Related work 17
2.1 Snake robots . 17

2.1.1 Hardware . 17
2.1.2 Control architectures . 18

2.2 Fish robots . 20
2.3 Salamander robots . 20
2.4 Other related work . 21

2.4.1 Aquatic and amphibious robots . 21
2.4.2 Modular robotics . 21
2.4.3 Robots with rotating legs . 21

2.5 Robots as tools for biology . 22

3 Technical description 25
3.1 Design overview . 25
3.2 First prototype . 26

3.2.1 Body elements . 26
3.2.2 Limb elements . 28
3.2.3 Design problems . 30

3.3 Current elements (second prototype) . 31
3.3.1 Body elements . 31
3.3.2 Limb elements . 36
3.3.3 Locomotion controller circuit . 36

3.4 Simulation . 38
3.5 Discussion . 40

4 Snake robot 41
4.1 Snake locomotion . 41
4.2 Central pattern generator model . 42

4.2.1 Proof of convergence . 45

7

4.3 Locomotion characterization . 46
4.3.1 Crawling and swimming in simulation 47
4.3.2 Crawling with the real robot . 47
4.3.3 Swimming with the real robot . 48

4.4 Interface for the control parameters . 50
4.4.1 Control of direction on ground . 53
4.4.2 Results . 53

4.5 Discussion . 55

5 Fish robot 57
5.1 Hardware description . 57
5.2 Locomotion control . 60

5.2.1 CPG model . 60
5.2.2 Complete control architecture . 63

5.3 Experiments and results . 65
5.3.1 Sequentially testing the locomotor behaviours 65
5.3.2 Evaluating the speed of locomotion 65
5.3.3 Phototaxis . 69

5.4 Exhibition . 69
5.4.1 Hardware description . 72
5.4.2 User interaction . 75

5.5 Discussion . 75

6 Salamander robot 77
6.1 Central pattern generator model . 77
6.2 Locomotion characterization . 81

6.2.1 Speed as function of drive . 81
6.2.2 Kinematic measurements . 84

6.3 Discussion . 89

7 Online learning 91
7.1 Video tracking . 91
7.2 Central pattern generator model . 92
7.3 Optimization algorithm . 94

7.3.1 One dimensional optimization . 94
7.3.2 Multi-dimensional optimization . 94

7.4 Results . 95
7.4.1 Optimization of crawling . 96
7.4.2 Optimization of swimming . 97
7.4.3 Optimization of simulated crawling 98
7.4.4 Optimization of simulated crawling on a slope 100

8

7.5 Discussion . 103

8 Conclusions 105
8.1 Conclusion . 105
8.2 Future work . 106

9

10

Chapter 1

Introduction

The general goal of the project of which this thesis is part, is (1) to design robots that can
be used to test neurobiological models of locomotion control and (2) to take inspiration of
animals to design new types of robots and of locomotion controllers. Both goals primarily
concern lower vertebrates, specifically the lamprey, the boxfish and the salamander.

The main goal of this thesis is the design of robotic tools to be used as building blocks
for the construction of amphibious mobile robots. A modular approach has been taken:
the idea is to have a limited number of modules (that has been fixed to two), which can be
used to construct a variety of models. The most important design considerations behind
these modules were the following:� To have two types of elements: a “body” element (figure 1.1a) with a single vertical

degree of freedom, and a “limb” element (figure 1.1b) with two aligned degrees of
freedom capable of continuous rotation, parallel to the ground and perpendicular to
the locomotion direction.� To be completely modular, in terms of energy, actuation and motor control. This
means that each element should have its own battery, motor, and motor controller.� To be used for building amphibious robots. Each element should therefore be com-
pletely waterproof, independently from the other elements, and without the need
for an external coating.� To have a density lower than water, in order to be able to be slightly buoyant.

These assumptions, combined with the absence of off-the-shelf waterproof robot ele-
ments, implied that a custom design had to be made. For example, commercial servo-
motors do not meet the requirements for our design (mostly for their size and need of
continuous rotation for the limb elements), therefore we needed to implement our own
motor control system using a DC motor with incremental encoder, a motor controller and

11

(a) “Body” element (b) “Limb” element

Figure 1.1: Top view of the two types of planned elements.

a custom gearbox (see chapter 3 for all the details about the hardware implementation of
the modules).

The modularity offered by such elements could be exploited to build several types of
robots, simply by connecting them together in different ways: some examples are shown in
figure 1.2. The robots which have been physically realized are the snake robot (described
in chapter 4, see fig. 1.2a), a Boxfish-like fish robot (chapter 5, see fig. 1.2b) and the
salamander robot (chapter 6, see fig. 1.2e).

A large part of this thesis thus concerns the development of these robot elements,
solving the problems owing to the design considerations. All the mechanical part has
been developed by André Guignard. All the electronics have been developed during this
thesis, with the exception of the PID controller. The rest of the work concerns the
software implementation of the robot controllers (and of all the needed external software
and hardware, e.g., the transceiver connected to a PC which enables radio communication
with the robot) and the experiments done with the realized robots, most of which have
been published (see the different chapters for the references).

The project does not aim at mimicking snakes, lampreys, or salamanders per se, but
to be close enough to them in order to meet the goals of the project. As stated above,
the first goal of the overall project is to test neurobiological models of locomotion control:
this requires the robots to have similar kinematic an dynamic properties to match the
animal bodies. The robot is clearly only an approximation of the animal (for example,
the number of degrees of freedom that a robot will have will be lower than the one of
the corresponding animal, and DC motors have different properties from animal muscles),
but it will be still useful to verify that the neural models to be tested are actually able
to generate forward motion, and to provide speed and direction control. The approach

12

Figure 1.2: Examples of different types of robots that could be constructed by connecting
together the two types of elements described. In this thesis, the robots (a), (b), and (e)
will be constructed.

13

using a robot complements mechanical simulations, as with a real robot there is no need
to model and simulate a complex environment (as it is the case with hydrodynamics, for
instance).

The second goal of the project is to create novel types of agile robots that exhibit
dexterous locomotion, taking inspiration from the body shape and neuronal control mech-
anisms found in vertebrates. Snake-like robots are indeed among the most flexible and
versatile mobile robots. In particular, their long but thin body and its division in several
small segments make them well-suited to a large number of applications. Such applications
include, for example, exploration and inspection tasks (e.g., in areas that are inaccessible
to humans, such as pipes) and the participation to search and rescue missions (e.g., in a
collapsed building or a flooded zone). The salamander robot can be seen as an extension
of the snake robot, which improves its locomotion on the ground (removing the necessity
of the special contact mechanisms needed to create asymmetrical friction on ground; see
chapter 4).

The concept of central pattern generator (CPG) will be extensively used in this the-
sis. Central pattern generators are networks of neurons that can produce coordinated
oscillatory signals without oscillatory inputs (Delcomyn, 1980). In vertebrates, CPGs for
locomotion are located in the spinal cord and distributed in multiple oscillatory centers.
A CPG could be modeled in different ways, namely using neural networks or dynamical
systems like nonlinear oscillators; the second approach will be used here.

CPGs are an interesting source of inspiration for controlling robots: (1) they imple-
ment a control scheme that can be implemented in a distributed fashion, (2) they require
only simple command signals to produce complex coordinated multi-dimensional output
signals, and (3) they easily incorporate sensory feedback and take mechanical perturba-
tions into account. These properties make them suitable for the implementation of simple
interfaces to facilitate the control of a complex robot by a human operator, as simple
input signals are enough to generate complex locomotion. It is also possible to implement
CPGs for different robots accepting the same inputs, therefore allowing the same control
interface to be used for different types of robots.

Recently, the concept of CPGs is increasingly used as an alternative approach for
online rhythmic trajectory generation (Fukuoka et al., 2003; Nakanishi et al., 2004; Ijspeert
et al., 2005). In most cases, the CPGs are implemented as recurrent neural networks or
systems of coupled nonlinear oscillators. In this thesis, CPG models will be presented
for controlling the swimming, serpentine crawling, and walking for the fish, snake and
salamander robots.

The main contributions of this thesis are the following:� The construction of generic elements, meeting the constraints stated in this chap-
ter (and more in detail in chapter 3), that can be assembled together to obtain
amphibious biologically inspired robots.

14

� The construction of one of the first amphibious snake robots. In the literature it
is possible to find a variety of terrestrial snake robots of different types, a small
number of aquatic snake robots (generally named eel or lamprey robots), but to the
best of our knowledge there are only two other truly amphibious snake robots (the
HELIX-I, see Takayama and Hirose (2002), and its successor ACM-R5, see Yamada
et al. (2005)). A review of existing snake robots is presented in the next chapter.� The construction of the first amphibious salamander robot, and the first robot ca-
pable of swimming, serpentine crawling, and walking.� The use of central pattern generators for online control of a mobile robot. CPGs
are currently more and more used for locomotion control in robots. This thesis
will show how CPG models based on amplitude-controlled phase oscillators can be
constructed to control a variety of different gaits.� The use of an online learning algorithm for the automatic determination of the
optimal locomotion parameters of the snake robot in a given environment.

In the next chapters, a review of related work is presented (chapter 2), followed by
a detailed technical description of the two generations of robot elements that have been
developed (chapter 3). The following chapters present the snake (chapter 4), fish (chapter
5) and salamander (chapter 6) robots, and the experiments done with them. The use of
online learning on the snake robot for the determination of optimal locomotion parameters
is presented in chapter 7. Finally, conclusions and future work are discussed (chapter 8).

15

16

Chapter 2

Related work

In this chapter, work relating to this thesis will be presented. The first section presents
existing snake robots, and the control methods used with them. A review of currently
existing fish robots and of control methods is then presented, followed by a section on
salamander robots. Other related work (e.g., modular robots) is also briefly presented.
The last section presents a short review about the use of robots as tools for biology.

2.1 Snake robots

2.1.1 Hardware

Snake robots can be classified into two main groups:� Robots that move using powered wheels or caterpillars (i.e., a torque is applied on
the axis of the wheels, which are in contact with the ground, producing a rotation
and consequently a movement).� Robots that move by applying torques on the joints between the segments. Among
these robots, some have passive wheels.

Robots using powered wheels are simpler to control: the design techniques are well
known and standard algorithms for the control of mobile robots can be used; however, the
resulting locomotion is completely artificial and the wheels may not be adequate in every
environment. Robots of this type are often developed for inspection tasks in difficultly
accessible zones (Paap et al., 1996; Klaassen and Paap, 1999) and are sometimes used,
for example, for the inspection of pipes (Choi and Ryew, 2002). On the other side, robots
that use powered joints instead of powered wheels are more complicated to design, and
the control algorithms that can be used are partially unexplored. As we aim to design a
biologically inspired snake robot that can both crawl and swim with powered joints, we
are mainly interested in this second approach.

17

One of the first known snake robots was built by Hirose and colleagues at the end of
1972 (Umetani and Hirose, 1976). He generically named this kind of robot an active cord
mechanism (ACM). After this first prototype he built some other snake robots (Hirose,
1993). A huge snake robot has been developed in 1992 at Caltech (Chirikjian and Bur-
dick, 1992). The Jet Propulsion Laboratory of the NASA presented in 1994 a serpentine
robot (Lee et al., 1994). Miller developed several prototypes of snake robots; among them
the last one, S5 (Miller, 2002), has a very realistic lateral undulatory gait (its locomotion
is probably the most similar to a biological snake, compared to other snake robots). Saito
and colleagues presented in 2002 a simple snake robot used to validate some theoretical
results (Saito et al., 2002). Conradt and Varshavskaya (2003) developed WormBot, a
snake-like robot controlled by local CPGs. For a more detailed review of snake robots,
see Dowling (1997) and Worst (1998).

Swimming snake robots (also referred to as lamprey robots or eel robots) are rarer.
They are generally designed to imitate the anguilliform swimming of the eel (or the very
similar one of the lamprey). Several theoretical papers have been written on this subject,
but there are only a few real robotic realizations. The robots in this category that are the
most interesting are the eel robot REEL II (McIsaac and Ostrowski, 1999) and the lamprey
robot built at Northeastern University (Wilbur et al., 2002). In principle, these eel and
lamprey robots could be adapted to terrestrial locomotion, but such experiments have not
been reported. To the best of our knowledge, there are currently only a few amphibious
snake-like robots, the HELIX-I (Takayama and Hirose (2001) as cited by Hirose and
Fukushima (2002); Takayama and Hirose (2002)) and its successor ACM-R5 (Yamada
et al., 2005), that can both swim in water and crawl on the ground (although ground
locomotion is not described in the papers).

2.1.2 Control architectures

The control architectures used with snake robots can roughly be divided into three cate-
gories: sine-based, model-based, and CPG-based.

Sine-based approaches use simple sine-based functions for generating travelling waves
(see for instance Miller (2002); Tsakiris et al. (2005)). The advantages of such an approach
are its simplicity and the fact that important quantities such as frequency, amplitude and
wavelength are explicitly defined. A disadvantage is that online modifications of the
parameters of the sine function (e.g., the amplitude or the frequency) will lead to discon-
tinuous jumps of setpoints, which will generate jerky movements with risks of damaging
the motors and gearboxes. This problem can to some extent be overcome by filtering
the parameters and/or the outputs but the approach then loses its simplicity. Another
disadvantage is that sine-based functions do not offer simple ways of integrating sensory
feedback signals.

Model-based approaches use kinematic (Ostrowski and Burdick, 1996; Matsuno and
Suenaga, 2003) or dynamic (Prautsch and Mita, 1999; Date et al., 2001; Ute and Ono,

18

2002; McIsaac and Ostrowski, 2003) models of the robot to design control laws for gait
generation. The control laws are sometimes based on sine-based functions as above
(e.g., Ostrowski and Burdick (1996); McIsaac and Ostrowski (2003)), but the model-
based approaches offer a way to identify fastest gaits for a given robot by using kinematic
constraints or approximations of the equations of motion, for instance. Model-based
approaches are therefore very useful for helping to design controllers but have two limi-
tations. First, the resulting controllers are not always suited for interactive modulation
by a human operator. Second, the performance of controllers will deteriorate when mod-
els become inaccurate, which is rapidly the case for interaction forces with a complex
environment (e.g., friction with uneven ground).

CPG-based approaches use dynamical systems, e.g., systems of coupled nonlinear os-
cillators or recurrent neural networks, for generating the travelling waves necessary for
locomotion (see for instance Lu et al. (2005); Tsakiris et al. (2006); Wilbur et al. (2002);
Conradt and Varshavskaya (2003)). These approaches are implemented as differential
equations integrated over time, and the goal is to produce the travelling wave as a limit
cycle. If this is the case, the oscillatory patterns are robust against transient perturbations
(i.e., they asymptotically return to the limit cycle). Furthermore, the limit cycle can usu-
ally be modulated by some parameters which offer the possibility to smoothly modulate
the type of gaits produced. Finally, CPGs can readily integrate sensory feedback signals
in the differential equations, and show interesting properties such as entrainment by the
mechanical body (Taga, 1998).

However, one difficulty with CPG-based approaches is how to design the CPG to pro-
duce a particular pattern. Many CPG models do not have explicit parameters defining
quantities such as frequency, amplitude, and wavelength (for instance, a van der Pol oscil-
lator does not have explicit frequency and amplitude parameters). This does not need to
be the case. The CPG model that has been used for the snake robot presented in chapter 4
is based on amplitude-controlled phase oscillators. An interesting aspect of this approach
is that the limit cycle of the CPG has a closed form solution, with explicit frequency,
amplitude and wavelength parameters. The approach therefore combines the elegance
and robustness of the CPG approaches with the simplicity of sine-based approaches. Fur-
thermore, our CPG model is computationally very light which makes it well suited to be
programmed on a simple microcontroller on board of the robot. The implementation of
the CPG is inspired from lamprey models (Cohen et al., 1982). It is close to the CPG
model presented in Conradt and Varshavskaya (2003), but differs in the following aspects:
(1) it is made of a double chain of oscillators, (2) it has differential equations controlling
the amplitudes of each oscillator (not only the phase), (3) it has an interface function that
allows easy modulation of speed and direction by a human operator, and (4) the CPG is
used to control not only serpentine crawling but also swimming.

19

2.2 Fish robots

Although more recent than snake robots, a number of fish robots have been developed in
the last years. Most of them have been designed to study the hydrodynamics of fishes
and underwater vehicles.

Multiple fish robots have been designed and realized. Most robots implement an-
guilliform or carangiform swimming modes, which mainly use the body and the tail for
propulsion (Sfakiotakis et al., 1999; Colgate and Lynch, 2004). Ostraciiform or labriform
modes, which use caudal and pectoral fins and almost no body motions, have been less
studied. Relatively few fish robots are fully autonomous, capable of swimming in 3D and
reacting to their environment. For instance, the well-known RoboTuna from MIT, which
has been designed to study speed optimization, is attached to a horizontal guide (Tri-
antafyllou and Triantafyllou, 1995).

Several groups are very active in designing autonomous fish robots (Kato, 2000; Liu
et al., 2004; Yu et al., 2004). The National Marine Research Institute (NMRI) in Japan, for
instance, is working on multiple projects, including maneuvering, swimming performance
and modular robotics for water; each robot is built for a particular purpose like up-down
motion, high turning performance, or high speed swimming.1 The University of Essex
developed a 3D swimming robotic fish called MT1 which is fully autonomous (Liu et al.,
2005). A micro robotic fish actuated by PZT bimorph actuators has recently been built by
the University of California, Berkeley (Deng and Avadhanula, 2005), mimicking a boxfish.

Most of these robots are controlled using traditional control methods that combine
(algorithmic) sine-based trajectory generators, and PID feedback controllers.

To the best of our knowledge, CPGs have rarely been applied to the control of a
swimming robot. Arena and Ayers’ groups have independently used CPG models inspired
by the lamprey locomotor network for controlling tethered lamprey-like robots (Arena,
2001; Wilbur et al., 2002). The robots were capable of producing travelling waves for
propulsion, but autonomous swimming was to the best of our knowledge not explored.

2.3 Salamander robots

Currently only a few prototypes of salamander robots have been object of scientific pub-
lications:� A salamander robot with 6 segments and an on-board FPGA-based control system

has been presented by Hiraoka and Kimura (2002). It is not amphibious and can
only walk.� Robo-Salamander, a salamander robot with two degrees of freedom for the spine,
and two for each leg, has been presented by Breithaupt et al. (2002); no experiments

1Fish Robot Home Page of NMRI. URL: http://www.nmri.go.jp/eng/khirata/fish/index e.html

20

seem to have been done with it, and no other publications followed. This robot was
not autonomous and was powered and controlled using a cable. It is only capable
of walking.

There are also some legged robots with flexible spine built by hobbyists, whose descrip-
tions can be found on Internet, but none of them has been designed or used for scientific
experiments.

None of the robots listed here is capable of swimming, and none is fully autonomous
or amphibious.

2.4 Other related work

2.4.1 Aquatic and amphibious robots

Although amphibious snake robots are rare, and no amphibious salamander robot has been
previously described, a number of other aquatic and amphibious robots currently exists.
A short review of existing fish robots has already been presented in section 2.2. Other
examples of aquatic and amphibious robots include Aqua (an amphibious RHex robot
that can mount either 6 flippers or 6 legs; Dudek et al. (2007)), Madeleine (an aquatic
tetrapod robot having 4 flippers; Long et al. (2006)), RoboLobster (an amphibious lobster
robot with 8 legs; Ayers et al. (2000)), and Ariel (a 6-legged robot produced by iRobot,
for which no publication is available).

2.4.2 Modular robotics

There is a great number of robots that have been designed for being modular and re-
configurable. These robots are made of multiple identical modules and can change struc-
ture thanks to dynamic connection mechanisms. Examples of such robots include M-
TRAN (Murata et al., 2002), PolyBot (Duff et al., 2001), CONRO (Shen et al., 2002),
ATRON (Jørgensen et al., 2004) and SuperBot (Shen et al., 2006). Although the modular-
ity idea of this project is clearly related to the field of modular robotics, the reconfiguration
aspect is not our primary goal (the elements have to be unmounted to be assembled to-
gether, and no attempt to automatic reconfiguration has been done), and modularity is
mostly a way to simplify the construction of the robots. To the best of our knowledge,
there is no waterproof modular robot, excepting the Hydron module prototypes developed
for the Hydra project (Konidaris et al., 2004).

2.4.3 Robots with rotating legs

The approach used for the legs of the salamander robot presented in chapter 6 is directly
inspired from the ones found in the RHex and Whegs robots.

21

RHex is the name of a series of hexapod robots with rotating legs (Saranli et al., 2001;
Prahacs et al., 2005). The term whegs (derived from wheel-legs) has been introduced by
another research group for the same concept (Quinn et al., 2001). This approach greatly
simplifies the mechanical design and control (each leg has only one degree of freedom and
thus only one motor), and still allows behaviours which are very similar to the biological
ones (i.e., legs having a stance and a swing phase).

2.5 Robots as tools for biology

This thesis is part of a new trend to use robots as tools to verify biological hypotheses
or as models of biological sensorimotor systems (Webb, 2000). Examples include lamprey
locomotion (Wilbur et al., 2002; Stefanini et al., 2006), lobster locomotion (Ayers and
Crisman, 1993), cricket phonotaxis (Webb and Reeve, 2003) and cat locomotion (Fukuoka
et al., 2003). For a more detailed review, see Webb (2001, 2002).

Compared to computer simulations, the use of real robots is interesting as it provides
several advantages:� The model is completely interacting with a real environment, using real sensors

and real actuators. This therefore eliminates the need to simulate the sensors and
the actuators (which can be generally simulated only with approximate models).
The absence of simplified models or biased results owing to the simulation is a
great advantage, as some aspects could strongly depend on the interaction with the
environment.� There is no need to simulate complex environments or complicated force models. A
correct simulation of some phenomena (for example friction forces, hydrodynamical
forces, etc.) is extremely difficult (especially if associated with articulated moving
bodies, whose shape is not constant); simulations are therefore generally limited to
a simplified model which could introduce artifacts that cause the model to behave
differently than in the real world.

However, it is also important to notice that the use of real robots has some drawbacks
compared to simulations:� Reproducing the mechanical properties of real animal bodies on a robot is very

difficult. A robot will be an approximation of the real animal, as generally it is
technically not feasible to build a robot having the same properties (especially for
the number of degrees of freedom: a robot with hundreds of degrees of freedom like
a real snake would be much larger than the animal). The visco-elastic properties of
animal muscles are also difficult to implement in robots.

22

� Almost everything can be designed in a simulation, including systems using compo-
nents (e.g., sensors or actuators) that are expensive, hard to use, or even not existing
with the current technology. For example, some animal sensor systems (like touch)
are difficult to replicate with currently existing sensing devices.� Building a robot generally requires much more work than implementing a simulation,
and robots sometimes have to be repaired or maintained. Moreover, robots only run
in real time (simulations can be faster).

23

24

Chapter 3

Technical description

In this chapter, the design considerations underlying the developed robot elements are
presented. A technical description of the first prototype is given, followed by the descrip-
tion of the current elements and of the fundamental differences between the two versions.
Finally, the physical simulation of the robot is presented.

The elements described here have been designed as modules to be used to build a
snake and a salamander robot. Later, they have been used to build a fish robot. They
could also be used for other types of robots (e.g., an hexapod or a centipede). All the
elements have been designed to be waterproof, in order to be used for the construction of
amphibious robots.

All the mechanics have been developed by André Guignard. The PD controller and its
electronics have been developed at the Autonomous Systems Laboratory (ASL) at EPFL.
My contribution has principally been the development of the electronics (except for the
already existing PD controller) and its testing and programming.

3.1 Design overview

The two types of robot elements (“body”and“limb”elements, see figure 1.1) were designed
to build robots with the following characteristics:� To be modular. We aim at having a robot that is composed of multiple elements,

with only a few element types. This allows us, for instance, to quickly adjust the
length of the robot by adding or removing elements, as well as to replace defective
elements.� To have distributed actuation, power and control. In order to be truly modular,
each element carries its own DC motor, battery, and microcontroller.

25

� To be waterproof. Each individual element is made waterproof (as opposed to having
a coating covering a chain of elements). This facilitates modularity and ensures that
a leakage will only damage a single element.� To be slightly buoyant. We aim at having a robot that passively returns to the
surface of the water when inactive. Furthermore, we construct the elements such
that the center of gravity is placed below the geometrical center, in order to obtain
a vertical orientation that self-stabilizes in water.� To have large lateral surfaces for good swimming efficiency.� For the snake robot, to have asymmetric friction for the lateral undulatory (ser-
pentine) locomotion on ground (lower friction coefficient in the longitudinal axis
compared to the perpendicular axis).� To be controlled by a central pattern generator (CPG) composed of coupled non-
linear oscillators.� To be remotely controlled in terms of speed and direction commands, but other-
wise have an onboard locomotion controller for coordinating its multiple degrees of
freedom.

3.2 First prototype

This section gives an overview of how the two types of elements of the first prototype of
the robot were built, and then explains the encountered problems. The elements described
in this section have been used to build a snake robot, named AmphiBot I; the robot and
the experiments done with is have been published in Crespi et al. (2004, 2005a,b).

3.2.1 Body elements

Each element has a single degree of freedom, and elements are fixed such that all axes
of rotation are aligned. They consist of four structural parts: a body, two covers and a
connection piece (a drawing of two connected elements is visible in figure 3.2). All parts
are molded using polyurethane, using molds created from positive parts in aluminium
shaped with a CNC milling machine. The Li-Ion battery is directly incorporated into the
bottom cover when the polyurethane is cast in the mould. To ensure the waterproofing
of the robot, O-rings are placed between each cover and the body, and around the output
axis (the bottom O-ring has been subsequently replaced by a silicone sealant, because the
complete closing of the bottom cover was generating mechanical problems to the gearbox).
An element has a length of 7 cm and a section of 5.5 by 3.3 cm.

26

(a) Power supply (b) Motor controller (top) (c) Motor controller
(bottom)

Figure 3.1: Pictures of the printed circuit boards of the first prototype (real size).

Each element contains two printed circuits (one for the power supply/battery charger
and one for the motor controller, see figure 3.1), a DC motor and a set of gears. Two
different voltages are used inside an element: 3.6 V and 5 V. The first one is the typical
value of a Li-Ion battery and is only used to power the motor; the second one is used
to power the electronics. When the robot is battery-powered (no external power source
is connected), the motor is directly powered using the battery, without any intermediary
regulator or converter, and the 5 V used by the electronics are generated with a capacitive
charge-pump step-up converter (LTC3200). When an external (5 V) power source is
connected, the 3.6 V for the motor are generated using a low-efficiency diode to create a
voltage drop, and the electronics are directly powered using the external source. When
the external power source is present, the battery could also be charged if this is necessary;
for this reason a small battery charger (LTC1733) is part of the power supply circuit.
The charger can be enabled or disabled by the user over the I2C bus. The battery has
a capacity of 600 mAh, which is enough to power the element for an average time of
approximately two hours of continuous use (but this largely depends on the movements
that the robot has to do and on the external constraints applied to it). An empty battery
can be charged in approximately one hour.

The motor controller is built with a PIC microcontroller (PIC16F876) and some ex-
ternal components. The motor has a magnetic encoder, which generates 16 impulsions for
every complete rotation of the axis. This encoder is connected to a LS7084 quadrature
detector that filters and decodes the signals of the magnetic coder, generating a clock
signal and a direction flag; these two signals are sent to the microcontroller, allowing it
to track the current position of the motor. A 10 kΩ potentiometer is fixed to the output
axis (after the reduction gears) and is connected to an analog input of the PIC; this po-
tentiometer can be used to read the absolute position of the axis (for example when the
robot is switched on, or to detect possible skews between the position measured with the
magnetic coder and the real one).

The motor coil is powered through a SI9986 H-bridge, which supports currents up
to 1 A. The H-bridge is driven by the microcontroller using a Pulse-Width Modulation
(PWM) signal, allowing the the speed of the motor to be changed.

27

body

cover

cover

connection

Figure 3.2: Drawing of two elements connected together.

Between the H-bridge and the motor, a 1 Ω resistor causes a voltage drop. The resistor
is connected to the input of an INA146 operational amplifier, the output of which is
connected to one of the analog inputs of the microcontroller, therefore allowing a measure
of the current used by the motor, and then indirectly of its torque.

The 0.75 W DC motor (having a maximum torque 1.2 mN·m) drives a set of reduction
gears with a reduction factor of 400, and an efficiency around 60%. The output axis of the
gears is fixed to the aforementioned potentiometer and to the connection piece fixed to
the next element. Considering the typical working speed of the motor and the reduction
of the gears, a maximum oscillation frequency of approximately 0.3 Hz can be obtained
if the full amplitude (±45°) is used.

Five wires, passing through the (internally empty) axis, are connected to the contacts
that are molded into the connection piece; four of them are used to pass the I2C bus and
the external power source all along the robot.

3.2.2 Limb elements

The first limb elements, very similar in structure to the current ones (see section 3.3.2) but
with the same electronics as the old body elements, were also tested as a first prototype
of a salamander robot (without its tail; see figure 3.5).

Most of the body elements were damaged by water leakages (which were not immedi-
ately detected) after the tests published in Crespi et al. (2005b); only three of them were
still working and have been used for the salamander prototype. This was therefore only a
preliminary design for testing the conception of the limb elements (no experiments have

28

Figure 3.3: View of an element of the first prototype during mounting.

Figure 3.4: The AmphiBot I robot, built with first generation elements, during snake
locomotion tests. The passive wheels are clearly visible on the bottom of the elements.

29

Figure 3.5: The prototype of salamander robot built with the first generation elements.

been done), and no detailed description of them will be given.

3.2.3 Design problems

This first prototype suffered of several design problems, which have been mostly corrected
in the current version of the elements (see next sections):� The direct use of 5 V for the external power supply (mostly due to the lack of internal

space for step-down converters, which require big coils) rendered the usage of the
robot with external power (and the battery charging) very problematic, as only a
limited amount of current can pass through the internal wires (having a section of
0.127 mm2). For instance, a current of approx. 2 A on the wires caused a voltage
drop along the robot around 2.5 V, causing part of the elements to reset (disabling
battery charging).� The torque generated by the elements was insufficient to achieve full oscillations at
frequencies greater than 0.3 Hz, resulting in very slow locomotion.� The waterproofing of the elements was very problematic and required sealing them
with silicone.� There was no possibility to detect the presence of water inside elements. Any mal-
functioning supposedly owing to water leakage required the robot to be completely

30

unmounted.� The rigid connection between the elements combined with the small differences in
the pieces caused the mounted robot to have bad contacts with the ground (i.e., it
was not perfectly flat). This resulted in suboptimal serpentine crawling. Moreover,
the used passive wheels were too small and badly attached to the elements.� No battery protection mechanisms were implemented, and there was no possibility
of turning off the robot, therefore it had to remain connected to the external power
all the time to preserve the batteries from being completely discharged (and thus
rendered unusable).� No connectors were on the circuits, and all the connections (including those to the
motor) were realized by directly soldering the wires to the PCB (see figure 3.3).
This operation was difficult (hence giving high mounting times for each element)
and rather unreliable.� The absence of any onboard trajectory generation capabilities and of radio com-
munication required the direct control of the robot through a long shielded cable
connected to a PC using a RS-232–I2C converter.

3.3 Current elements (second prototype)

These new prototype address most of the problems found with the previous one, par-
ticularly in terms of mounting simplicity, electronic reliability, and waterproofing. The
elements described in this section have been used to build a snake robot (AmphiBot II,
results can be found in chapter 4 and Crespi and Ijspeert (2006); Ijspeert and Crespi
(2007)), a boxfish robot (BoxyBot, see chapter 5 and Lachat et al. (2006); Crespi et al.
(2007)) and a salamander robot (Salamandra robotica, see chapter 6 and Ijspeert et al.
(2007)).

3.3.1 Body elements

The same material of the first generation elements (polyurethane resin lighted with glass
microballs) has been chosen for the external casing of the elements. They consist of two
vertical symmetrical parts that are fixed together with screws. This is different from the
first prototype which was having a body closed with two covers (top and bottom). The
elements are connected (both mechanically and electrically) using a compliant connection
piece (molded with polyurethane rubber) fixed to the output axis, which contains 6 wires.
The use of compliant connection pieces corrects the bad contact with the ground that
was a serious problem of the previous generation elements, and allows the robot to better

31

PIC16F876A

I²C bus

LS7084

M motor
with encoder

e
n
c
o
d
e
r

o
u
tp

u
t

quadrature
detector

H-bridges

3 x SI9986 shunt

IN
A

1
4

6
o

p
. a

m
p

.

Figure 3.6: Block schema of the PD controller of the body (and legs) elements.

deal with irregularities of the ground. All the output axes of the elements are aligned,
therefore producing planar locomotion. To ensure the waterproofing of each element,
custom O-rings (placed between the two parts composing the body) are used.

Each element contains three printed circuits (a power board, a PD motor controller
and a small internal water detector) connected with a flat cable, a DC motor with an
integrated incremental encoder, a set of gears (which uses two additional printed circuits
as mechanical support) and a rechargeable Li-Ion battery. A view of an open element
can be seen in figure 3.8. In opposition to the old elements, where all connections were
realized by soldering the wires directly on the printed circuit boards, the new circuits
use MicroMatch connectors for all the interconnections (bus, battery, motor and inter-
circuit connection); only the water detector (which was added later to the design; see
below) uses directly soldered wires for reasons of space. The elements are completely
independent from each other (both electrically and mechanically). The density of the
robot elements is slightly lower than 1 kg/m3 (the density of the old elements was slightly
higher, therefore the first robot was not buoyant). The battery is placed at the bottom of
the elements to have the center of mass below the vertical center, therefore ensuring the
vertical stability of the robot during both swimming and crawling.

In this description, for simplicity, we will not distinguish on which of the printed
circuits each component is located. The motor controller is based on a PIC16F876A mi-
crocontroller, and is basically the same of the first prototype. It is connected to the I2C

32

ext. power

s
h

u
n

t

LT1977

step-down
converter

7...35 V

2 x IRF7410

MOSFET
switch ideal diode

LTC4411

DS2764

battery
monitor

+Li-Ion
battery

Power off

LTC1733

battery
charger

LTC3200-5

step-up
converter

4.2 V
1 A

5.0 V
100 mA

Figure 3.7: Block schema of the power circuits of the body (and legs) elements.

Figure 3.8: Internal view of a body element (real size). The output axis is not mounted.

33

(a) Power and motor circuits
(top side)

(b) Power and motor circuits
(bottom side)

(c) Microcontroller circuit

(d) Water sensor

Figure 3.9: Pictures of the printed circuit boards of the robot (real size).

bus of the robot through a simple bidirectional repeater (built using two BSS138 MOS
transistors), which is very useful to protect the microcontroller internal drivers. The mo-
tor has an integrated magnetic incremental encoder, which generates 512 pulses for every
complete rotation of the motor axis. The encoder is connected to a LS7084 quadrature
detector that filters and decodes the signals coming from the encoder, generating a direc-
tion flag and a clock signal, which are connected to the microcontroller. Compared to the
first generation elements, the potentiometer has been removed to simplify the mechanical
structure.

The motor coil is powered through three SI9986 buffered H-bridges connected in par-
allel (each of which has a maximum current of 1 A; the maximal current that can be
drawn by the motor is thus 3 A). These H-bridges are driven by the microcontroller with
a Pulse-Width Modulation (PWM) signal, allowing the speed of the motor to be changed
by modifying the duty cycle of the control signal.

To measure the current used by the motor (and then, indirectly, its torque), a couple
of 0.2 Ω resistors in parallel are inserted between the output of the H-bridges and the
motor. The voltage drop obtained on these resistors is amplified by a INA146 operational
amplifier and sent to an analog input of the microcontroller. The negative power (−5 V)
for the operational amplifier is generated using a small capacitive inverter (MAX1719).

The power supply part of the electronics has been completely redesigned compared to
the first prototype. A battery monitoring and protection circuit, which was missing, has
also been included. The circuit generates the voltage required by most of the electronics
(5 V) using a capacitive charge-pump step-up converter (LTC3200-5). All the electronics
can be either powered by the internal Li-Ion battery, or by an external power source

34

(connected to the last element and distributed internally to all elements). When no
external power source is connected, the battery (connected to the rest of the circuit
through a DS2764 battery monitoring/protection circuit that controls two IRF7410 power
MOSFETs) directly powers the motor. When an external power source is connected,
an inductive step-down converter (LT1977) generates a voltage of approximately 4.6 V,
which can both replace the battery voltage (to power the motor and the step-up converter)
and power the LTC1733 battery charger. The circuit accepts up to 35 V (to reduce as
much as possible the current on the internal wires, which have a limited section). The
switch between the internally generated 4.6 V and the battery is realized with a LTC4411
“ideal diode” and a SS34 Schottky diode. The used battery is the same that was used
in the previous prototype and has a capacity of 600 mAh; it can power an element for
approximately two hours of continuous use in normal conditions. When empty, the battery
can be recharged in approximately one hour. The battery protection circuit disconnects
the battery when its voltage drops below a critical threshold, thus preserving it from the
often irreversible complete discharging. The circuit can also measure the instantaneous
and accumulated current used by the circuit (or by the battery, during charging), and the
battery voltage. This information could be read out using an I2C bus, but these signals
are currently left unconnected on the power card, to limit the total number of devices on
the bus (which is global to the robot).

A signal coming from a reed contact placed in one of the elements allows the user to
switch off the robot by placing a magnet on it. This solution was found to be simpler than
using a big waterproof switch. This signal is connected to the enable pin of the aforemen-
tioned LTC4411 (no current is drawn, the signal can therefore be directly generated using
one of the batteries).

The water detector circuit (fig. 3.9d), used internally to detect and localize any leakage,
is placed at the bottom of the element. It has been introduced in the current elements to
ease the detection of water leakages. It has a sensitive surface of about 1 cm2, consisting of
several parallel tracks, half of which are connected to the power source through a resistor.
When water (or a big amount of moisture) is on this surface, it acts like a resistor between
the power source and the base of an NPN transistor, which begins to conduce. When
water is detected, the circuit blinks a LED fixed through the top of the element, therefore
allowing the user to immediately detect the leakage and its position (i.e., the concerned
element). The LED blinking is implemented using a PIC10F200 microcontroller, which
in normal conditions accepts an incoming control signal for the LED and transparently
replicates it on the output, hence permitting the LED to be used for other purposes. The
introduction of this water detector dramatically simplified the handling of water leakages
in the robot, which can now be localized without unmounting all the elements.

The 2.83 W DC motor (Faulhaber 1724 T 003 SR) has a maximum torque of 4.2
mN·m and drives a gearbox with a reduction factor of 125. It is approximately four times
faster and stronger than the motor used in the previous generation of elements, therefore
allowing higher amplitudes and oscillation frequencies to be reached. The output axis of

35

Figure 3.10: Internal view of a limb element (real size).

the gears is fixed to the connection piece, which is inserted into the next element. Six wires
are inserted into the axis, and connected to the power boards of two adjacent elements:
two are used for the external power, two for the I2C bus, one for the power switch and
the last one is reserved for future usage and currently unconnected.

3.3.2 Limb elements

The limb elements have been designed mainly as legs for the salamander robot, but can
indeed be used for other purposes (for example the pectoral fins of the fish robot). Each
limb element includes a pair of identical circuits (one for the left limb and one for the
right one). The design is unlike a real animal limb: this element has an axis capable of
continuous rotation as output (and thus only one degree of freedom), similarly to robots
using whegs (i.e., wheel-legs, see Quinn et al. (2001); Saranli et al. (2001)). This gives to
the element both flexibility (it can be used for other purposes than legs) and simplicity
(only one motor and gearbox per limb).

These elements are based on the same electronics of the body elements, however, as
the printed circuits are also used as mechanical support for the gears and the motor,
the components are differently distributed between the circuits. Additionally, an infrared
LED/phototransistor couple allows the detection of the absolute position of the output
axis (using a hole in the last wheel of the gearbox), in order to automatically align it when
powering up the robot.

3.3.3 Locomotion controller circuit

The locomotion controller circuit has been designed to meet the following criteria:� To provide a simple but flexible locomotion controller with low energy consumption.

36

Figure 3.11: Block schema of the electronics of the locomotion controller circuit.

It should be possible to implement on it any control algorithm, following the needs
of the user (in this thesis, CPG-based controllers have been implemented on it).� To have bidirectional radio communication capabilities (both on ground and under
water) for remote control and measure.

The circuit is placed inside an empty body element (i.e., without the motor and the
gearbox); a variation of the same circuit without the radio communication functions has
been used for controlling the BoxyBot fish robot (see chapter 5). A block schema of the
controller electronics can be seen in figure 3.11. The circuit is based on a PIC18F2580
microcontroller, which is master on the I2C bus of the robot. It can implement a locomo-
tion controller (for example, a CPG) and sends out the setpoints to the motor controllers
of each element in real time. The main microcontroller communicates, using a local serial
line, with a PIC16LF876A microcontroller, which controls a nRF905 radio transceiver.
The radio communication is handled by this separate microcontroller for simplicity, and
because the PIC18F2580 can not handle hardware SPI and I2C at the same time. The
antenna is internal to the element and consists of a simple λ/4 wire (where λ is the wave
length of the used frequency). The radio system uses the 868 MHz ISM band: preliminary
experiments showed that a 10 mW signal (the power transmitted by the nRF905) on this
frequency can penetrate in water up to at least 30 cm (the maximum tested depth). The
more common 2.4 GHz band has not been used because it is heavily absorbed by the

37

water. The maximal bandwidth is approximately 50 kbps, largely enough to send control
commands and parameters to the online trajectory generator.

The software running on the locomotion controller can easily be reprogrammed with
an external programming connector placed on the element.

3.4 Simulation

Simulated models of robots created with the elements described in this chapter have been
created with the physics based robot simulator Webots (Michel, 2004). They include a
snake-like robot (see chapter 4) and a salamander robot (see chapter 6). Snapshots of the
simulator are visible in figure 3.12.

These models can be controlled, for example, by one of the CPG-based controllers
presented in the next chapters, and have mechanical and physical properties that are
close to those of the real robots.

Having a physically realistic (although not perfect) simulation of the implemented
robots is very useful, as it permits to rapidly test new control methods or parameters
in a fraction of the time needed to do the same on the real robot, and without the
inconveniences of doing this (e.g., battery charging, possible physical damages or water
leakages, etc.). It also allows a rapid creation of new types of robots (by connecting
together the elements in different ways), without any need to assemble the real elements
before obtaining the wanted properties in the simulation.

The passive wheels used in the snake robot (see chapter 4) are modeled with asym-
metric friction (simulated with a simplification of the Coulomb friction model):

F⊥ = −µ⊥ · FN · v⊥
|~v|

F‖ = −µ‖ · FN ·
v‖
|~v|

(3.1)

The used friction coefficients are µ⊥ = 1.0 and µ‖ = 0.05. This friction model is only
a first approximation of the real friction, and although the simulation is giving maximal
velocities similar to the ones obtained in the reality, the underlying parameters are often
quite different.

For swimming, the hydrodynamic forces applied to each element of the robot are the
Archimedes’ force

−→
FA and the drag forces

−→
FD:

−→
FA = −Vel · ρwater · ~g

FDd
= 1

2
· ρwater · Sd · Cd · v

2
d (d ∈ {x, y, z})

(3.2)

where Vel is the volume of the immersed part of the element, ρwater is the density of the
water, ~g is the gravity acceleration, Sd is the surface of the element’s section perpendicular
to the d axis, Cd is the drag coefficient relative to the d axis, and vd is the speed of the
element along the d axis. Although this model is relatively simple (e.g., it does not take

38

(a) Snake robot with 7 active elements.

(b) Salamander robot with 6 active elements and 4 legs

Figure 3.12: Snapshots of the robot simulation in Webots.

39

into account the turbulence generated in the water by the movement of the robot), it is
enough for a qualitative analysis of the swimming motion.

3.5 Discussion

In this chapter, the mechanics and electronics of the developed robot elements (both the
old and current ones) have been presented, explaining the main differences between the
two generations (future work to improve the current elements is described in chapter
8). The simulation of the robot elements has also been briefly explained. Although
this simulation is useful to obtain qualitative results, it still needs to be calibrated and
enhanced (especially for swimming) if quantitative results are to be obtained, as the used
friction and hydrodynamical models are too simple.

40

Chapter 4

Snake robot

This chapter describes the use of the elements presented in the previous chapter to build
an amphibious snake-like robot that can both crawl on ground and swim in water. The
results presented in this chapter have been published in Crespi and Ijspeert (2006); Ijspeert
and Crespi (2007).

4.1 Snake locomotion

Four main different locomotion modes have been documented in snakes (Gray, 1946;
Jayne, 1986; Dowling, 1997): lateral undulation (also called serpentine locomotion), con-
certina, sidewinding and rectilinear. Several other gaits exist, however they are used only
by a restricted number of snake species in somewhat special situations (tree climbing,
jumping, etc.). Sometimes, depending on the environment, snakes use more than one
locomotion mode at the same time, having a locomotion mode for one part of the body
and another one for the other part (Gans (1974) as cited by Jayne (1986)).

The lateral undulatory mode, characterized by a lateral S-shaped wave travelling from
head to tail, is the most common and efficient one, and almost all snakes use it. Swimming
snakes move the body practically in the same way (Jayne, 1985). This type of swimming
is called anguilliform swimming among elongate fishes, such as eels and lampreys. In
the concertina mode, part of the snake’s body is pushed against a surface forming a
small number of waves: by moving these waves, and the corresponding contact points,
the snake progresses. This mode is generally used when the snake has to move along a
straight path or when the friction coefficients of the floor do not allow lateral undulatory
locomotion; however this is a rather inefficient mode and is seldomly used only when
needed. Sidewinding is used by desert snakes that need to move on sand; in this mode,
the snake lifts a part of the body to maintain only a few contact points with the ground,
using them to move the rest of the body. The rectilinear mode is obtained by cyclically
“fixing” parts of the skin to the ground using scales, then moving the backbone forward

41

with respect to the skin, and finally releasing the scales allowing the skin to move forward.
This locomotion mode is generally used only by big snakes (like boas), because their weight
makes the lateral undulation inefficient. As its name says, rectilinear locomotion does not
produce lateral undulations like the other ones.

Our robot will use lateral undulatory locomotion. To achieve this type of locomotion,
an issue is of fundamental importance: the friction coefficients between the snake and
the ground have to be directional. For each segment of the body (a snake has as many
segments as the number of vertebrae – between 100 and 400 depending on the species),
there must be a low friction coefficient in the tangential direction (the direction in which
the segment is moving) and a high friction coefficient in the perpendicular direction, in
order to avoid lateral displacement of the segment. This directional friction is obtained
in snakes by the particular structure of the skin. A similar mechanism is used when
swimming: due to the elongate shape, propulsion is produced by the combination of a
low drag coefficient in the tangential direction and a higher one in the perpendicular
directions.

4.2 Central pattern generator model

The CPG model presented here has been developed together with Auke Ijspeert. It is
based on a system of amplitude-controlled phase oscillators. The design of the CPG
is loosely inspired from the neural circuit controlling swimming in the lamprey (Grillner
et al., 1995): it spontaneously produces travelling waves with constant phase lags between
neighboring segments along the body, and it is made of multiple oscillators connected as
a double chain. An oscillator in the model corresponds to an oscillatory center in the
lamprey, i.e., a subnetwork of several thousands of neurons located in one segment of the
spinal cord that is capable of producing oscillations independently of other centers.

The CPG model is a double chain of oscillators with nearest neighbor coupling (fig-
ure 4.1). The chain is designed to generate a travelling wave, from the head to the tail
of the robot. This wave is used to achieve anguilliform swimming in water and serpen-
tine locomotion on ground. Compared to previous neural network models developed for
the lamprey CPG (Ijspeert et al., 1999; Ijspeert and Kodjabachian, 1999), the model
presented here is simpler (much fewer state variables) and therefore better suited for be-
ing programmed on a microcontroller on board of the robot, while keeping the essential
features of lamprey travelling wave generation.

The total number of oscillators is 2N where N = 7 is the number of actuated joints in
the robot. Actuated joints are numbered 1 to N from head to tail. Oscillators in the left
chain of the CPG are numbered 1 to N and those on the right side are numbered N + 1
to 2N from head to tail.

The CPG is implemented as the following system of 2N coupled oscillators:

42

Figure 4.1: Structure of the CPG used in the robot.

θ̇i = 2πνi +
∑

j

wij sin
(

θj − θi − φij

)

r̈i = ai

(

ai

4
(Ri − ri) − ṙi

)

xi = ri

(

1 + cos(θi)
)

(4.1)

where the state variables θi and ri represent, respectively, the phase and the ampli-
tude of the ith oscillator, the parameters νi and Ri determine the intrinsic frequency and
amplitude, and ai is a positive constant. The coupling between the oscillators is defined
by the weights wij and the phase biases φij . The variable xi is the rhythmic and positive
output signal extracted out of oscillator i. The first differential equation determines the
time evolution of the phase θi. It can be shown that two (or more) coupled oscillators
will synchronize (i.e., oscillate at the same frequency and with a constant phase lag) if the
coupling weights wij are sufficiently large compared to the differences of intrinsic frequen-
cies (see section 4.2.1). The phase lag between the oscillators will then depend on φij , wij

and νi. The second differential equation is a second order linear differential equation that
ensures that the amplitude ri smoothly converges to Ri in a critically dampened fashion.

The setpoints ϕi, i.e., the desired angles for the N actuated joints, are obtained by
taking the difference between signals from the left and right oscillators. A standard PD
motor controller is then used to compute the voltage τi (i.e., torque) applied to the motor

43

0 5 10 15 20
−2

−1

0

1

2

3

Time [s]

freq
phase
AL
AR

Figure 4.2: Effect of changing the parameters of the CPG. Top: setpoint signals, Bottom:
control parameters. Initial parameters are AL = AR = 1, ν = 1 Hz and N · ∆φ=1. At
t = 4 s, ν is temporarily changed to 2.0 Hz, at t = 8 s, AL and AR are temporarily changed
to 0.5 and 1.5 respectively which leads to a negative offset of the setpoint oscillations. At
t = 12 s, N · ∆φ is temporarily set to −1.0 which leads to a reversal of the direction of
the travelling wave. At t = 16 s, AL and AR are changed to 0.5 which leads to reduced
amplitude in the oscillations.

44

(using a PWM signal):

ϕi = xi − xN+i

τi = Kpei +Kdėi
(4.2)

where ei = ϕi−ϕ̃i is the tracking error between the desired angles ϕi and the actual angles
ϕ̃i measured by the motor incremental encoders, and Kp and Kd are the proportional and
derivative gains.

Here, we chose the frequency parameters to be equal for all oscillators, i.e., νi = ν.
We also chose the amplitude parameters on one side of the CPG to be an affine function
of the maximal amplitude on that side: Ri = αi · AL for the left side (i = [1, ..., N]) and
Ri = αi−N · AR for the right side (i = [N + 1, ..., 2N]). The αi parameters are linearly
interpolated between the open parameter α1 (head) and αN = 1.0 (tail). The phase
biases φij are chosen to be equal to π between left and right oscillators (i.e., these will
oscillate in anti-phase). The phase biases between neighbor oscillators are set to ∆φ for
the descending connections and to −∆φ for the ascending connections. We used wij = 4
for all connections and ai = 100 for all oscillators. The PD coefficients Kp and Kd are
tuned manually for each element (e.g., elements in middle of the chain require larger gains
than those at the extremities for good trajectory tracking).

With these settings, the CPG asymptotically converges to a limit cycle (see a skeleton
of the proof in section 4.2.1) that is defined by the following closed form solution for the
ith actuated joint:

ϕ∞
i (t) = αi · (AL − AR + (AL + AR) · cos(2πν · t+ i∆φ+ φ0)) (4.3)

where φ0 depends on the initial conditions of the system. This means that the system
always stabilizes into a travelling wave which depends on the control parameters ν, ∆φ,
AL, AR and αi. Indeed the frequency, phase lag, amplitude and offset are directly deter-
mined by ν, ∆φ, αi(AL + AR), and αi(AL − AR), respectively. These parameters can be
modified online by a human operator from a control PC using the wireless connection.
The CPG will rapidly adapt to any parameter change and converge to the modified travel-
ling wave after a short transient period. An example of how the CPG reacts to parameter
changes can be observed in figure 4.2: when the parameters are changed, the oscillator
smoothly converges to the new limit cycle, without any discontinuities in the outputs.

The differential equations are integrated by the microcontroller of the head using the
Euler method, with a time step of 10 ms and using fixed point arithmetics.

4.2.1 Proof of convergence

The limit cycle of the CPG is determined by the time evolution of the amplitude and phase
variables. We here show the particular case of two oscillators coupled bi-directionally with
coupling weights w12 = w21 = w and phase biases φ12 = −φ12 = ∆φ:

45

θ̇1 = 2πν1 + w sin(θ2 − θ1 − ∆φ)
r̈1 = a(a

4
(R1 − r1) − ṙ1)

θ̇2 = 2πν2 + w sin(θ1 − θ2 + ∆φ)
r̈2 = a(a

4
(R2 − r2) − ṙ2)

(4.4)

It is easy to demonstrate that the state variables r1 and r2 asymptotically converge
to R1 and R2, respectively, from any initial condition. Since we are interested in deter-
mining whether these two oscillators will synchronize (i.e., evolve with a constant phase
difference), and, if yes, with which phase difference, it is useful to introduce the phase
difference ψ = θ2 − θ1. The time evolution of the phase difference is determined by

ψ̇ = f(ψ) = θ̇2 − θ̇1 = 2π(ν2 − ν1) − 2w sin(ψ − ∆φ) (4.5)

If the oscillators synchronize, they will do so at the fixed points ψ∞ (i.e., points where
f(ψ∞) = 0)):

ψ∞ = arcsin(
π(ν2 − ν1)

w
) + ∆φ (4.6)

In our case we have ν1 = ν2 = ν, and this equation has a single solution ψ∞ = ∆φ.
This solution is asymptotically stable because ∂f(ψ∞)/∂ψ < 0. The outputs of the
oscillators therefore asymptotically converge to oscillations that are phase-locked with a
phase difference of ∆φ: x∞1 (t) = R1(1 + cos(2πνt+ φ0)) and x∞2 (t) = R2(1 + cos(2πνt +
∆φ + φ0)) where φ0 is a constant that depends on initial conditions. Since the complete
CPG is made of multiple bi-directionally coupled oscillators and that all parameters φij are
consistent (i.e., the sums of the parameters φij are equal to a multiple of 2π on any closed
path between oscillators), the same reasoning can be recursively applied to demonstrate
convergence of the complete CPG.

4.3 Locomotion characterization

The results presented in this section have been published in Crespi and Ijspeert (2006);
Ijspeert and Crespi (2007).

Serpentine locomotion and anguilliform swimming require a travelling wave to be
propagated from the head to the tail of the robot. In this section, we analyze the results
of our experiments, where we systematically tested how the three control parameters of the
CPG (amplitude A, phase difference ∆φ and frequency ν) affect the locomotion speed of
the robot, both on ground and in water. The parameters have been kept into a reasonable
range: the amplitude between ±10◦ and ±60◦ (with a step of 10◦), the frequency between
0.2 Hz and 1.0 Hz (with a step of 0.2 Hz) and the phase difference between 0.25/N and
1.5/N (with a step of 0.25/N). For the lowest phase (0.25/N), the amplitude has been
limited to ±40◦, as a greater amplitude would lead to collisions between the elements of
the robot at some points of the cycle.

46

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.05

0.1

0.15

0.2

0.25

0.3

(a) Crawling

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Swimming

Figure 4.3: Speeds (m/s) for the simulated systematic tests at ν = 1.0 Hz.

4.3.1 Crawling and swimming in simulation

The results of the simulated systematic tests at ν = 1.0 Hz (this frequency corresponds to
the observed maximal speed for both modes) are plotted in figure 4.3. The maximal speed
obtained for crawling is 0.33 m/s, with N ·∆φ = 0.75 and A = ±40◦. For swimming, the
maximal locomotion speed is 0.87 m/s, withN ·∆φ = 0.25 andA = ±20◦. For both modes,
the optimum is relatively peaked (meaning that a small distance from the optimum causes
a significant drop of the speed), without any local speed maxima. We systematically tested
locomotion at other frequencies and found that the optimal amplitude and phase difference
values for a given frequency slightly change compared to the tests with ν = 1.0 Hz (data
not shown). The frequency seems to have a direct, almost linear, effect on the locomotion
speed (see figure 4.4), slightly influencing the optimal amplitude and phase parameters
for crawling, and not influencing them at all for swimming.

4.3.2 Crawling with the real robot

For each parameter set, the speed has been measured as follows: the robot was placed
on a wooden floor, in front of an horizontal line, then started, and was stopped manually
when reaching another line, parallel to the first one, at a distance of 2.00 m. The exact
time between the start and stop commands was measured by the controlling PC. If the
locomotion was visibly bad (i.e., if the first line was not reached after approximately 40 s),
the robot was stopped before reaching the end line and the distance manually measured.

Depending on the parameters, the locomotion speed varied between 0 and 0.40 m/s
(0.52 body lengths/s). In the tested range, the speed clearly increased with the increase
of the frequency, and the optimum was always obtained with an amplitude of ±30◦. The
optimal phase difference clearly depends on the frequency, moving from N ·∆φ = 0.5 (“C”
shape undulation) for ν = 0.2 Hz to N · ∆φ = 1.0 (“S” shape undulation) for ν = 1.0 Hz.

47

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

ν (Hz)

S
pe

ed
 (

m
/s

)

Figure 4.4: Effect of the frequency on the simulated speeds (◦: crawling at A = ±40◦ and
N · ∆φ = 0.75; ×: swimming at A = ±20◦ and N · ∆φ = 0.25).

This effect was also visible in the simulation, but less important. Snapshots from the
video of the locomotion producing the maximal crawling speed are visible in figure 4.6.

The complete results are presented in figure 4.5. Running the robot with A = ±10◦

produces practically no locomotion, as the passive wheels tend to bend around their axis
and slip on the ground. The optimum is clearly peaked, and there are no local maxima.
This is interesting, as it suggests that relatively simple online optimization algorithms
could be used to adapt the CPG parameters to the current environment in which the
robot is moving (this will be addressed in chapter 7).

Compared to the simulation, the obtained maximal speed is 1.2 times larger. The
difference is mostly due to the fact that the simulated friction model is only an approxi-
mation of the passive wheels used on the robot. Furthermore, the speed of locomotion is
sensitive to friction coefficient values. For example, a change of the µ‖ friction coefficient
of the simulation from 0.025 to 0.05 decreases the maximum obtained speed to 0.25 m/s
(i.e., a drop of 24%). Another difference is that with the real robot, the optimal phase was
correlated to the frequency; this effect was not visible in simulation and is likely to have
the same origin of the observed speed difference (i.e., the approximated friction model).

4.3.3 Swimming with the real robot

The speed for a given set of parameters was measured as follows: the robot was started
at the beginning of the aquarium. A chronometer was started when it reached a first

48

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) ν = 0.2 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ
O

sc
ill

at
io

n
am

pl
itu

de
 (

°)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) ν = 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) ν = 0.6 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) ν = 0.8 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e) ν = 1.0 Hz

Figure 4.5: Real robot crawling locomotion speeds (in m/s) with the different parameters.

49

Figure 4.6: The robot crawling at A = ±30◦, N · ∆φ = 1.0 and ν = 1.0 Hz. The time
step between the snapshots is 0.12 s.

horizontal line placed at 1.15 m from the border, and stopped when crossing the second
line, placed at 1.00 m from the first one. For some parameters producing very low speeds,
the chronometer has been stopped before the second line and the distance manually mea-
sured. No measure has been taken for A = ±10◦, as the robot did not stay vertically
in this configuration, due to small asymmetries of the center of mass. A small aquarium
pump has been used to inject low pressure air inside the robot (through a highly flexible
silicon tube) to reduce the risk of water leakages due to the extensive use of the robot
during these tests.

Depending on the parameters used, the swimming speed varied between 0 and 0.23 m/s
(0.30 body lengths/s). The optimal amplitude was A = ±30◦ at low frequencies, moving
to A = ±50◦ for ν ≥ 0.8 Hz. Similarly, the optimal phase moves with the frequency: the
optima at ν < 0.8 Hz have N · ∆φ = 0.5, and those at ν ≥ 0.8 Hz have N · ∆φ = 1.0.
The complete results are plotted in figure 4.7. The optimum is peaked, although less
remarkably than in crawling. Snapshots from the video of the locomotion producing the
maximal swimming speed are visible in figure 4.8.

Compared to the results of the simulation, the maximal swimming speed appears to
be almost 4 times lower; this is not really surprising, as a really simplified hydrodynamic
force model has been used and more work is needed to calibrate the drag coefficient values.
Even if the position of the optimum is not the same, especially at high frequencies, the
structure of the results is similar, although the existence of small local maxima at ν < 0.6
Hz has not been predicted by the simulation and is maybe the effect of turbulence induced
by the robot when swimming.

4.4 Interface for the control parameters

More details on the results presented in this section can be found in Ijspeert and Crespi
(2007). To simplify the control of the robot by a human operator, it is useful to reduce
the number of commands to two, one for speed and one for direction, instead of the four

50

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(a) ν = 0.2 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ
O

sc
ill

at
io

n
am

pl
itu

de
 (

°)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) ν = 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(c) ν = 0.6 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(d) ν = 0.8 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(e) ν = 1.0 Hz

Figure 4.7: Real robot swimming locomotion speeds (in m/s) with the different parame-
ters.

51

Figure 4.8: The robot swimming at A = ±50◦, N · ∆φ = 1.0 and ν = 0.8 Hz. The time
step between the snapshots is 0.16 s.

control parameters for the CPG.1

Turning can be induced by modulating AL −AR, i.e., by adding offsets to the setpoint
oscillations. The robot will then make undulations around a bent posture and turn towards
the side with higher amplitude. We can therefore introduce the turning command T
which determines the difference between left and right amplitudes normalized by the
total amplitude, namely T = AL−AR

AL+AR

.

As we have seen in section 4.3, the control of speed is more difficult because the speed
of locomotion depends jointly on the frequency ν, the amplitude A = AL + AR and the
phase lag ∆φ of the travelling wave, as well as on the type of environment (e.g., the type
of friction with the ground, the slope, etc.). The outcome of the study is that, in the
explored parameter space, the speed of locomotion always monotonically increases with
the frequency when the two other parameters are kept fixed at any value. The amplitude
and phase lag show a more complex, non-monotonic, influence on the speed. For a given
frequency, for instance, the dependence of speed on the amplitude and phase parameters
is a smooth function with a single optimum. The location of the optimum varies with
the frequency. For instance, on ground with ν = 0.2 Hz the maximum speed (0.15 m/s)
is obtained with A = 30◦ and ∆φ = 0.5/N , while at ν = 1.0 Hz the maximum speed
(0.40 m/s) is obtained with A = 30◦ and ∆φ = 1.0/N . In order words, with our robot it
is better to make C-shaped undulations (∆φ = 0.5/N) at low frequencies and S-shaped
undulations (∆φ = 1.0/N) at higher frequencies. The same is true for swimming.

We therefore choose the frequency as a single command parameter for speed, and de-
sign two functions [A,∆φ] = fground(ν) and [A,∆φ] = fwater(ν) for setting the amplitude
and phase lag for a given frequency. These piece-wise linear functions are simple linear
interpolations between the observed optima. The functions thus ensure that the travel-
ling wave produced at a given frequency remains close to the fastest locomotion at that
frequency. When the robot makes a transition from ground to water or vice-versa, the

1Note that by design the robot is only capable of planar locomotion and therefore does not require
control of vertical motion.

52

human operator makes a manual switch from one function to the other.2 Note that, since
these functions depend on the environment, it is useful to implement online optimiza-
tion algorithms to identify good parameters for a given (possibly unknown) environment,
instead of systematic search (see chapter 7).

With this interface, the speed and direction of locomotion of the snake robot can now
easily be adjusted in real-time by a human operator by setting the frequency ν and the
turning command T .

4.4.1 Control of direction on ground

To evaluate the turning ability of the robot on ground, we used video tracking of a green
LED mounted on the head of the robot. When a non zero turning command T is sent
to the robot, it will on average progress on a circle. Figure 4.9 shows the trace that
the head element makes. A circle is fitted to the outer bounds of the trace to provide
an estimation of the turning ability: the shorter the radius R, the sharper the turning.
Figure 4.10 shows how the inverse of the radius varies with the T command. Interestingly,
the relation between 1/R and T is almost linear. The sharpest turning is obtained at T=1,
where the radius of the curvature is 25 cm. Turning is therefore quite sharp for a 72 cm
long robot.

4.4.2 Results

We systematically tested the speed of serpentine locomotion using different values of our
command parameter ν. Figure 4.11 shows the resulting values. The speed is evaluated by
measuring the time needed by the robot to travel a given distance (1 m), and repeating
the measure four times.

Results show that the speed increases monotonically with ν. The highest speed at
1.0 Hz is approximately 0.4 m/s, which corresponds to 0.55 bodylength/s. Higher speeds
can be reached at higher frequencies, but tracking errors in the PD controllers become
significative above 1.0 Hz due to motor torque limits. As explained in Section 4.4, because
of the function fground, the types of undulations are quite different between low frequencies
where the undulations make C-shapes (∆φ=0.5/N) and high frequencies where the undu-
lations make S-shapes (∆φ=1.0/N). Note that while the speed measures have been made
at fixed ν values, ν can be continuously and interactively adjusted to produce locomotion
with smooth accelerations and decelerations.

Similarly to locomotion on ground, we tested how the speed of swimming depends
on the command ν. Speed was measured by taking the time necessary to travel a given
distance. Since accelerations are slower in water than on ground, we waited enough time
(approximately 5 seconds) before the beginning of the measurement such as to be close

2In the future, this switch will be done automatically using an external water sensor.

53

Figure 4.9: Tracking of the robot while turning on ground. The dotted line is the trace
left by the head element. The radius of the circle fitting the outer bounds is used to
measure the curvature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

T

1/
R

 (
m

−
1)

Figure 4.10: Control of direction during serpentine locomotion. The horizontal and ver-
tical axes are respectively the turning command T and the inverse of the radius 1/R.

54

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ν (Hz)

S
pe

ed
 (

m
/s

)

Crawling
Swimming

Figure 4.11: Control of speed during serpentine crawling (continuous line) and swimming
(dotted line). Each data point is the average of 4 speed measures, and the error bars
correspond to the standard deviation.

to steady-state swimming. Figure 4.11 shows the results of the measurements. Speed
increases monotonically with ν up to ν = 0.9 Hz, where it saturates. A maximum speed
of 0.23 m/s, i.e., 0.32 bodylengths/s, is attained. Compared to serpentine locomotion,
the speeds are lower and the measurements show a larger variability, which is related to
the fact that water in motion makes experiments less reproducible because of the complex
dynamics of waves bouncing against the small swimming pool walls.

4.5 Discussion

The systematic tests showed (1) that the parameters producing the optimal velocity of the
robot for a given environment are peaked (which is meaning that small deviations of the
parameters from this optimum rapidly result in suboptimal gaits), (2) that the resulting
speed is directly proportional to the oscillation frequency, and (3) that the position of
the optimum (in terms of oscillation amplitude and phase difference) depends on the
frequency.

Using these results, we showed that it is possible to implement an interface function
which allows a users to interactively modulate the speed and direction of the robot with-
out having to deal with too many parameters (the speed is directly controlled by varying
the frequency and setting the other parameters appropriately). This type of interface
function, for instance, simplifies the control of the robot to a human user, who can simply
control the speed and direction of locomotion, without dealing with the underlying loco-

55

motion parameters. A restriction of this interface function is that it is limited to a given
environment (although it is possible to have multiple interface functions —one for each
possible environment— this implies that systematic tests would have to be carried out
for each of these environments). This limitation can be overcome with the use of online
optimization techniques (see chapter 7).

56

Chapter 5

Fish robot

This chapter describes a fish robot, inspired from the Boxfish (fishes belonging to the
Ostraciidae family). It has been built as a semester project, using the robot elements
described in chapter 3, by Daisy Lachat. Subsequently, a new controller implementing
several random behaviours, and user interaction has been developed by Ariane Pasquier
for a semester project, the aim of which was adapting the robot to the public exhibition
(“forum découvertes”) at the School of Computer and Communication Sciences at EPFL.
My contribution to this project as been the supervision of the semester projects, as well
as the development of the electronics and PC programs used for the exhibition. The
results presented in this chapter have been published (Lachat et al., 2006) or submitted
for review (Crespi et al., 2007).

The main goal motivating the construction of this robot is to show that the elements
described in chapter 3 could be used to build other types of robots than snakes and
salamanders. Another goal is to use sensory information to close the control loop, to
obtain a simple phototaxis behaviour, obstacle avoidance, and reaction to user knocks.

5.1 Hardware description

The fish robot, that has been named BoxyBot, is built using two of the elements described
in chapter 3: a body element, connected to the caudal fin, and a limb element, used for
pectoral fins. All the fins are realized using cut PVC and rubber glued together. The
circuits inside the limb element have been slightly adapted to include an ADXL203 two-
axis accelerometer and a PIC18F2580 microcontroller (master on the I2C bus and running
the control program implementing the controller described in the following section), which
has several inputs. Two TSLG257 light sensors and a simple contact sensor have also been
added and are connected to the microcontroller.

1distributed under Creative Commons license, see http://creativecommons.org/

licenses/by-nc-nd/2.0/

57

Figure 5.1: A real boxfish (picture: Adrian Moody)1.

Figure 5.2: The BoxyBot fish robot in its aquarium.

58

2 x TSLG257

light sensors

ADXL203

accelerometer

PIC18F2580
5 Vreed

spring

front touch sensor

magnet

I²C bus

Figure 5.3: Additional hardware mounted in the limb module (pectoral fins) of the fish
robot.

Accelerometer The two-axis accelerometer, mounted vertically, is connected to two
analog inputs of the PIC18F2580 microcontroller through a low-pass filter to minimize
high-frequency noise on the measures. It allows the control program of the robot to mea-
sure the accelerations around the pitch and roll axes; this information could for instance
be used to determine the inclination of the robot with respect to the ground.

Light sensors A couple of TSLG257 sensors is mounted inside two plastic tubes sealed
with silicone and fixed externally at the front of the robot. The field of vision of the
sensors is partially overlapped, each sensor measuring the intensity level of the light at
one side. The sensitivity of the sensor is reduced by placing two blue non-shrunk shrink
gains over the tubes. The obtained sensitivity greatly reduces the impact of ambient light
(except for direct sunlight), but requires the use of strong light sources (e.g., halogen
lamps). These light sensor will be used for phototaxis (light tracking).

Contact sensor The contact sensor allows the robot to detect obstacles in front of it,
and thus to change its behaviour accordingly. This sensor is built using a small reed
contact placed in a sealed tube and connected to a power source. This tube is placed
at the side of a system composed by a spring, a magnet and a thin PVC cylinder (see
figure 5.3). In normal conditions (i.e., when the PVC cylinder is not pressed) the magnet

59

is far enough from the reed contact not to close it. When an obstacle is touched (pressing
on the PVC cylinder), the magnet moves at the side of the reed contact, thus closing it
and allowing the microcontroller to detect the obstacle.

5.2 Locomotion control

The locomotion controller is composed of a CPG model for producing coordinated oscil-
lations extended by a finite state machine for modulating the CPG activity and imple-
menting various locomotor behaviours.

5.2.1 CPG model

The locomotion controller is based on a CPG model implemented as a system of three
coupled amplitude-controlled phase oscillators, one per fin (figure 5.5). This oscillator is
very similar to the one used for the snake robot (see chapter 4), with the main difference
that there is an explicit offset variable (e.g., for turning), instead of having two oscillators
per degree of freedom, and that the connections between the oscillators are different.
This limits the total number of oscillators (and thus of state variables), simplifying the
implementation on a microcontroller.

An oscillator i is implemented as follows:

φ̇i = ωi (5.1)

+
∑

j

(wij rj sin(φj − φi − ϕij)

r̈i = ar(
ar

4
(Ri − ri) − ṙi) (5.2)

ẍi = ax(
ax

4
(Xi − xi) − ẋi) (5.3)

θi = xi + ri cos(φi) (5.4)

where θi is the oscillating set-point (in radians) extracted from the oscillator, and φi, ri,
and xi are state variables that encode respectively the phase, the amplitude, and the offset
of the oscillations (in radians). The parameters ωi, Ri, and Xi are control parameters for
the desired frequency, amplitude and offset of the oscillations. The parameters wij and
ϕij are respectively coupling weights and phase biases which determine how oscillator j
influences oscillator i. The parameters ar and ax are constant positive gains (ar = ax = 20
rad/s). The reference position (i.e., corresponding to a zero offset) for the pectoral fins is
when these fins are turned backwards in a horizontal position. The reference position for
the caudal fin is when that fin is in the sagittal plane.

60

These equations were designed such that the output of the oscillator θi exhibits limit
cycle behaviour, i.e., produces a stable periodic output. Equation 5.1 determines the time
evolution of the phases of the oscillators. Here, we use the same frequency parameter
ωi = ω for all oscillators. The coupling parameters are wij = 0.5 Hz, ϕij = 0.0 Hz for
all i 6= j and wii = 0.0 Hz, ϕii = 0.0 Hz otherwise (i.e., there are no self-couplings).
Oscillators 1,2,3 respectively correspond to the left-pectoral, right-pectoral, and caudal
fins. With these parameters, the phases will converge to a regime in which the phases
grow linearly with a common rate ω and with a zero phase difference between all three
oscillators (i.e., ∆φij = ϕij = 0.0) from almost any initial conditions.2

Equations 5.2 and 5.3 are critically damped second order linear differential equations
which have respectively Ri and Xi as stable fixed points. From any initial conditions, the
state variables ri and xi will asymptotically and monotonically converge to Ri and Xi.
This allows one to smoothly modulate the amplitude and offset of oscillations.

With these settings, the CPG therefore asymptotically converges to a limit cycle θ∞i (t)
for the ith actuated joint that is defined by the following closed form solution:

θ∞i (t) = Xi +Ri · cos(ωt+ φ0) (5.5)

where φ0 depends on the initial conditions of the system. This means that the system
stabilizes into oscillations that are synchronous for all three degrees of freedom, and that
can be modulated by 7 control parameters, namely ω for setting the common frequency,
Xi (i ∈ {1, 2, 3}) for setting the individual amplitudes, and Ri (i ∈ {1, 2, 3}) for setting the
individual offsets. Figure 5.4 illustrates how the system converges to the stable oscillations
starting from random initial conditions and after a random perturbation.

Such a CPG model has several nice properties. The first interesting property is that
the system exhibits limit cycle behaviour, i.e., oscillations rapidly return to the steady-
state oscillations after any transient perturbation of the state variables (Figure 5.4). The
second interesting property is that this limit cycle has a closed form solution.3 The func-
tion is sine-based and has control parameters (ω, Ri, and Xi) that are explicit and are
directly related to relevant features of the oscillations. This facilitates the design of lo-
comotion controllers. A third interesting property is that these control parameters can
be abruptly and/or continuously varied while inducing only smooth modulations of the
set-point oscillations (i.e., there are no discontinuities nor jerks). This property will exten-
sively be used in the Results section for varying the locomotor behaviours (Section 5.3).
Finally, a fifth interesting feature is that feedback terms can be added to Equations 1-3

2The only exceptions are initial conditions in which two oscillators i, j are exactly in phase, i.e.,
∆φij = φj − φi = 0, and the third oscillator k is exactly in antiphase, i.e., ∆φik = π. For those
conditions, the system evolves to a regime which keeps these particular phase differences. In other words,
this particular case represents an unstable fixed point for the differential equations that determine the
time evolution of the phase differences.

3Very few types of oscillators have a closed form solution for their limit cycle.

61

0 0.5 1 1.5 2 2.5 3 3.5 4

−pi/2

0

pi/2

θ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

r

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

φ

Time [s]

Figure 5.4: Limit cycle behaviour of the CPG. Starting from random initial conditions,
the system quickly stabilizes in synchronous oscillations with controlled amplitude. A
t = 2s, random perturbations are applied to the state variables φi and ri, and the system
rapidly returns to the steady state oscillations.

62

in order to maintain entrainment between control oscillations and mechanical oscillations
(however this will not be explored here).

5.2.2 Complete control architecture

The diagram of the complete control architecture is given in Figure 5.5. The CPG model
produces the set-points θi for PD controllers of the three fins. Different locomotor be-
haviours can be obtained by modulating the CPG control parameters ω, Ri, and Xi for
the three fins.

Examples of locomotor behaviours include:� swimming forwards, by oscillating only the caudal fin, both pectoral fins, or all fins,
with all offsets Xi set to zero.� swimming backwards, by turning the pectoral fins forward (i.e., by setting the pec-
toral offsets X1 and X2 to π) and stopping the oscillations of the caudal fin (R3 = 0).� spinning around the roll axis, by setting the pectoral offsets X1 and X2 to π/2 and
−π/2 (i.e., by turning one pectoral fin up and the other down).� turning (around the yaw axis) while swimming, by having a non zero offset X3 for
the caudal fin.� turning on the spot, by oscillating the pectoral fins, with one of the pectoral offset
to π.� swimming up (or down), by setting an offset for both pectoral fins (X1 = X2)
between 0 and π/2 (−π/2), proportionally to the desired vertical speed.� crawling, by stopping the oscillations of the fins (R1 = R2 = R3 = 0), and applying
a continuously increasing offset (X1 and X2) to both pectoral fins. Two possibilities
are with X1 = X2 (both pectoral fins rotate in phase) or X1 = X2 +π (pectoral fins
rotate in anti-phase).

For all these behaviours, the speed of locomotion can be varied by adjusting the
frequency ω and/or the amplitudes Ri of oscillations. Typically the speed of locomotion
increases with those parameters until the torque limits of the motors are reached.

We made two types of experiments for testing these different locomotor behaviours.
In a first set of experiments, the choice of behaviour is done sequentially in a prefixed
order without sensory inputs to test the different locomotor behaviours and the transitions
between them.

In a second set of experiments, the behaviour controller is programmed as a finite state
machine to implement a simple phototaxis both in water and on the ground. A strong

63

Figure 5.5: Diagram of the complete control architecture. While using a predefined
behaviour the values from light sensors are not used. The values of pitch and roll were
not used during the experiments described in this paper.

halogen lamp is used as a movable light source and a behaviour is chosen on the basis of
the values of both light sensors and of the water sensor. The default behaviour is to track
the light. But if the robot is not in water, it starts to crawl. If the light sensors’ signal is
too weak, it turns on the spot until it finds the light source again. And if the signals are
saturated (i.e., the robot is too close to the lamp), the robot stops. When a contact with
an obstacle is detected with the front touch sensor, the backwards behaviour overrides all
other behaviours for a few seconds.

Once a behaviour has been chosen, a second finite state machine determines the 7 con-
trol parameters (frequency, amplitude, and offset of each motor) to obtain that behaviour.
For example, if light tracking is chosen, the speed of the robot is controlled inversely pro-
portionally to the amplitude of light by adjusting both the frequency (eq. 5.6) and the
amplitude of the oscillations (eq. 5.7). The caudal offset is controlled proportionally to
the difference of light (eq. 5.8).

ωi = kωi ·
1

l1 + l2
i = 1, 2, 3 (5.6)

Ri = kRi ·
1

l1 + l2
i = 1, 2, 3 (5.7)

X3 = kX3 · (l1 − l2) X1 = 0, X2 = 0 (5.8)

where the kij are gains of the regulator and l1, l2 the amplitudes of the two light
sensors. Note that the CPG never needs any resetting and is continuously running while
the control parameters are modified.

64

5.3 Experiments and results

5.3.1 Sequentially testing the locomotor behaviours

We tested the ability of the CPG to produce the different types of locomotor behaviours
presented above. Figure 5.6 presents a sequence of transitions from one behaviour to the
other. In that sequence, the CPG makes transitions between swimming straight with
both pectoral and caudal fins (t ≤ 2 s), turning with a caudal offset (2 < t ≤ 4 s),
swimming straight with only pectoral fins (4 < t ≤ 6 s), swimming backwards (6 < t ≤ 8
s), swimming upwards (8 < t ≤ 10 s), rolling (10 < t ≤ 12 s), slow swimming straight
with pectoral and caudal fins (12 < t ≤ 14 s), crawling (14 < t ≤ 18 s), and swimming
straight with small amplitudes (18 < t ≤ 20 s). Figure 5.7 illustrates forward swimming
with pectoral fins. Figure 5.8 shows the crawling gait using X1 = X2, it crawls straight
forward. If only one pectoral fin is actuated the robot crawls to the left or right. With
X1 = X2 + π, it crawls forward zigzagging.

Figure 5.9 shows a turning maneuver by modulating the offset of the tail fin (turn to
the right followed by a turn to the left). The minimal radius of turning for this type of
turning (with caudal offset) is 0.12 m. Even sharper turns can be made with the turning
on the spot maneuver. Movies of the robot can be viewed at http://birg2.epfl.ch/boxybot.

All these transitions are obtained with abrupt changes of the control parameters ω,
Ri, and Xi. Despite these abrupt changes, smooth oscillations are produced by the CPG
(as shown on Figure 5.9). Note also that all oscillations remain phase-locked with a zero
phase difference thanks to the inter-oscillator couplings.

5.3.2 Evaluating the speed of locomotion

The speed of locomotion can be adjusted by gradually increasing both the frequency
and/or amplitude parameters of the CPG. Figure 5.10 shows the activity of the CPG
when both are increased simultaneously.

In order to test how the speed of locomotion depends on the frequency and amplitude
of oscillations, we carried out a series of swimming tests. Steady-state speed was measured
at different levels of frequencies and amplitudes of all fins. Figure 5.11 shows the results
for variations of frequency at a fixed amplitude (on the left) and for variations of ampli-
tude at a fixed frequency (on the right). As could be expected, the speed of swimming
increases with the frequency until the motors reach their torque limits. Similarly, at a
fixed frequency, the speed of swimming increases with the amplitude until the oscillations
become too large and create braking wakes. Overall, the robot can swim up to 0.37 m/s
(i.e., 1.4 body lengths per second) at a frequency of 8 Hz and amplitudes of ±40◦ with
both pectorals and caudal fins.

65

−pi/2
0

pi/2

P
ec

t.
l.

−pi/2
0

pi/2

P
ec

t.
r.

−pi/2
0

pi/2

C
au

da
l

0
2pi
4piω

0
pi/4

R
i

0 5 10 15 20
0

2piX
i

Time [s]

Figure 5.6: Sequence of different locomotor behaviours. The graphs show the set-points
in radians sent to the three fins. See text for details.

66

Figure 5.7: Snapshots of swimming forwards with both pectoral fins (from top left to
bottom right).

Figure 5.8: Snapshots of crawling using continuous rotation of pectoral fins X1 = X2

(from top left to bottom right).

67

Figure 5.9: Snapshots of turning transition.

0 1 2 3 4 5

−pi/2

0

pi/2

P
ec

to
ra

l l
ef

t

0 1 2 3 4 5

−pi/2

0

pi/2

P
ec

to
ra

l r
ig

ht

0 1 2 3 4 5

−pi/2

0

pi/2

C
au

da
l

Time [s]

Figure 5.10: Acceleration during swimming.

68

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Frequency of fin oscillations [Hz]

F
or

w
ar

d
sp

ee
d

[m
/s

]

0 20 40 60 80
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Amplitude of fin oscillations [°]

F
or

w
ar

d
sp

ee
d

[m
/s

]

Figure 5.11: Variation of forward velocity with pectoral fins. On the left, variation with
oscillations frequency at a fixed amplitude of 20◦. On the right, variation with oscillation
amplitude at a fixed frequency of 2 Hz. Speed is obtained from the measure of distance
covered and time using video recordings. Error bars are calculated from the estimated
precision of those two measures (±0.02 m for the distance and ±0.08 s for the time).

5.3.3 Phototaxis

Using the phototaxis behaviour described above, the fish robot is able to reach a static
bright light (brighter than the environment) from a maximal distance of 50 cm and to
keep station near the light. It is also able to follow a light that moves slowly (figure 5.12).
If the light moves too quickly on the side, the robot cannot track it because the control
law for choosing the speed and caudal offset is very basic (only proportional gains are
used). The robot is programmed to then slowly turn on itself until the light comes into
view again, in which case it resumes the light tracking behaviour. The same phototaxis
behaviour is also implemented on ground (Figure 5.13).

5.4 Exhibition

Since March 2006 BoxyBot is part of a public exhibition (“forum découvertes”) at the
School of Computer and Communication Science at EPFL. The aim of this exhibition is
to present some research projects carried out in the school to the general public. The
robot stays day and night in an aquarium and different means of interacting with it are
provided to the visitors. The robot is programmed with essentially the same control
architecture as used in the previous experiments (Figure 5.5) with the exception that
the robot is permanently connected through a tether to an offboard PC for monitoring
and for receiving information from external sensors. The batteries are also permanently
recharged through that tether to allow the robot to be active 16 hours per day. Because
of this the robot is not truly autonomous anymore. For us the purpose of this exhibition
is to demonstrate that the CPG-based control architecture is well suited for interactive

69

Figure 5.12: Snapshots of phototaxis during swimming (from top left to bottom right).

70

Figure 5.13: Snapshots of phototaxis during crawling (from top left to bottom right).

71

Figure 5.14: BoxyBot in its aquarium at the exhibition (picture: Alain Herzog).

control with a human in the loop. The exhibition is also a demonstration that the robot
is robust enough for long and extensive use.

The environment is an aquarium (150× 75 cm) filled with water, inside which the fish
robot swims. Four halogen lamps are placed externally to the aquarium, near the corners
of the short side. The whole setup is protected by a plexiglas cover, which restricts the
visitors from directly manipulating it.

5.4.1 Hardware description

The overall structure of the system designed for the exhibition is depicted in figure 5.17.
A standard aquarium filter is placed inside the aquarium to constantly clean the water;
moreover, a small amount of sodium hypochlorite is added to avoid the development of
algae. A fan is placed on the top of the plexiglas cover to remove the moisture, thus
avoiding the formation of condensation.

The robot is connected to an interface card through a 5-wire cable and a rotating
contact. The cable supplies the robot with external power when needed (24 V), has a
signal to completely turn off the robot (i.e., to disconnect the batteries from the circuits)
and also contains the I2C signals used for communication. A small aquarium pump,
like the one used during systematical tests for the snake robot (see section4.3.3), injects
low pressure air inside the robot through a highly flexible silicon tube, to avoid water

72

KA78T05

+5 V linear
regulator

24 V DC 5 V

MAX232

UART level
converter

PIC18F6622

microcontroller

ULN2803

NPN Darlington
array

Control PC
(RS-232)

I²C bus

Relay bankRelay

Power output

Power off signal

12 V AC

Lamp power
outputs

Touch sensor

Figure 5.15: Block schematic drawing of the interface card used at the exhibition.

Figure 5.16: Interface card printed circuit (real size, top layer; only a few components are
mounted on the bottom layer).

73

Figure 5.17: Schematic drawing of the whole setup at forum découvertes (top view).

leakages.4

The interface card (is based on a PIC18F6622 microcontroller, configured as an I2C
slave and connected to the internal bus of the robot through an I2C driver (the internal
drivers of the PIC are too weak, due to the cable length). The software on the microcon-
troller implements a register bank that can be read and written both over I2C and using a
RS-232 line connected to a PC. The interface card is powered with a 24 V switching power
supply, whose output is also supplied to the robot through a relay. The card has seven
other relays (four of which are used to power the halogen lamps, the others can be used
for future extensions), which are connected to a 12 V transformer. The state of all the
relays is directly controlled by one of the registers implemented on the microcontroller,
and can thus be read and modified both by the robot and by the control PC.

Three buttons, implemented as capacitive touch sensors connected to the interface
card, are fixed inside the plexiglas cover to implement a simple user interface (see below).

A small microphone connected to the PC is placed at the side of the aquarium to
detect when users knock on the cover. The detection is done with a very simple but
effective threshold function on the average intensity of the sound.

4The robot is normally waterproof, but for long term usage (e.g., over several months) the increased
air pressure inside the robot helps preventing leakages which were inevitably occurring without it. The
internal pressure also helps identifying possible leakage points, since these become visible through air
bubbles.

74

Figure 5.18: The user interface (real size) fixed inside the plexiglas cover. The capacitive
touch sensor is placed behind the front panel.

5.4.2 User interaction

Visitors can interact with the robot in several ways: (1) by turning on the lights located
around the aquarium, (2) by forcing the robot to perform a particular action by pressing a
button, and (3) by knocking on the plexiglas cover. The three buttons of the user interface
(see figure 5.18) have different functions. One of the them cyclically turns on one of the
lights. By pressing it, the user can therefore induce the phototaxis behaviour. When one
of the lights is turned on, the robot swims in its direction using the light sensors, and turns
it off (using the communication with the interface card) when touching the border of the
aquarium in front of the light. The two other buttons allow the user to force the robot
to perform two particular behaviours: diving to the bottom of the aquarium and making
it swim backwards. Knocks on the cover are detected and are also used for interacting
with the system: a single hit makes the robot swim forwards faster than normal, and a
double hit makes it do the spinning behaviour. When no user input is detected, the robot
is programmed to randomly switch between the different locomotor behaviours described
in Section 4.2. When no user activity is observed for more than two minutes, the robot
is automatically turned off, and is reactivated when any type of activity is detected.

The amount of time the robot is powered each day is counted by the monitoring PC
and plotted in figure 5.19. During peak days, the robot has been active up to almost 6
hours.

5.5 Discussion

BoxyBot has demonstrated its capacity of maneuverability. Using only three fins, it can
move in 3D with different types of maneuvers and go out of water using a crawling gait.
It can avoid obstacles by going backwards for a few seconds. Finally, the robot can reach
a bright light and follow it slowly.

75

Figure 5.19: Daily robot activity plot.

One of the purposes of the experiments presented in this chapter was to demonstrate
that the CPG model can be very useful for the online generation of the fin trajectories.
Like for the snake robot, it provides the possibility to abruptly change control parame-
ters while ensuring smooth variations of behaviour. Producing continuous and smoothly
varying setpoints is indeed important to limit mechanical damage to the motors and gear-
boxes, but also to avoid jerks that could destabilize the swimming and crawling gaits.
In addition, the phototaxis experiment showed that the CPG model can be continuously
modulated and can therefore readily be used by higher level behaviour controllers. This
is not unlike locomotion control in vertebrate animals where CPGs in the spinal cord
produce the rhythmic patterns necessary for locomotion, and higher control centers such
as the motor cortex and the cerebellum generate signals for the modulation of speed and
direction.

The presentation of BoxyBot at the forum découvertes exhibition showed that the
robot is able to swim for long periods of time. The waterproofing problems which were
present during the first weeks were solved with the addition of the external air pump, as
correcting them mechanically would imply modifications on the molded parts. Moreover,
the possibility for any unexperienced user to control the robot behaviour demonstrates
the validity of the CPG approach for interactive robot locomotion with a human in the
loop.

76

Chapter 6

Salamander robot

This chapter presents a salamander robot that has been constructed using the elements
described in chapter 3. It has 6 body elements, 2 limb elements (i.e., 4 rotating legs),
and one head element containing the locomotion controller. It has been designed for
testing the CPG models explaining the transition between swimming and walking in
the salamander. The CPG model presented in this chapter has been designed by Auke
Ijspeert. My contribution consists in its implementation and testing on the trajectory
generator, the electronic development of the robot elements, and all the experiments and
measures.

6.1 Central pattern generator model

The swimming motion of salamanders is similar to the one of lampreys, using axial undu-
lations which propagate as travelling waves from head to tail. The walking motion has a
different pattern: the salamander moves the diagonally opposed limbs together, generat-
ing at the same time a S-shaped standing wave (which has nodes at the girdles) with the
body.

If the swimming motion can be generated by the same CPG presented in chapter 4 for
the snake robot, the walking motion requires additional oscillators and connections: the
CPG has in fact to generate signals for the limbs, and a standing wave for the body.

As for the snake robot, the body CPG model is a double chain of oscillators with
nearest neighbor coupling (figure 6.1). The chain is designed to generate a travelling
wave, from the head to the tail of the robot. This wave is used to achieve anguilliform
swimming in water. In addition to this body CPG, limb oscillators have been added to
the model (one per limb); they are bidirectionally coupled together and unidirectionally
coupled to all body oscillators (see figure). During swimming, these oscillators are stopped
(they don’t oscillate), and thus do not influence the behaviour of the body CPG, which
continues to produce a travelling wave. During walking, the oscillators are enabled and

77

Figure 6.1: Structure of the CPG used in the robot.

influence the body oscillators, which begin to produce an S-shaped standing wave that
can be used for walking.

The total number of oscillators is N = 20: NB = 16 oscillators (i.e., 8 couples) for
the body CPG (which controls 6 real elements and 2 fictive joints placed in the limb
elements), and NL = 4 oscillators for the limbs. Body joints (both real and fictive) are
numbered 1 to 8 from head to tail. Oscillators in the left chain of the CPG are numbered
1 to 8 and those on the right side are numbered 9 to 16 from head to tail. Limb oscillators
are numbered 17 to 20.

To allow the control of the whole CPG with a single parameter, reproducing the output
of the MLR in the animal, a saturation function has been introduced:

(

νi

Ri

)

= g(d) =

(

gν(d)
gR(d)

)

(6.1)

This function is a stepwise linear function, defined by the following equations:

gν(d) =

{

cν,1d+ cν,0 if dlow ≤ d ≤ dhigh

νsat otherwise
(6.2)

gR(d) =

{

cR,1d+ cR,0 if dlow ≤ d ≤ dhigh

Rsat otherwise
(6.3)

78

Body and limb oscillators use different saturations functions, as they have to saturate
at different levels of drive (see figure 6.3).

The CPG, a system of 20 coupled oscillators, is implemented with the same oscillator
equations used for the snake robot (see section 4.2):

θ̇i = 2πνi +
∑

j

wij sin
(

θj − θi − φij

)

r̈i = ai

(

ai

4
(Ri − ri) − ṙi

)

xi = ri

(

1 + cos(θi)
)

(6.4)

where the state variables θi and ri represent, respectively, the phase and the ampli-
tude of the ith oscillator, the parameters νi and Ri determine the intrinsic frequency and
amplitude, and ai is a positive constant. The coupling between the oscillators is defined
by the weights wij and the phase biases φij . The variable xi is the rhythmic and positive
output signal extracted out of oscillator i. For more details about the oscillator and a
proof of convergence, see section 4.2.

For the body, similarly to the snake robot, the setpoints ϕi, i.e., the desired angles for
the 6 actuated joints, are obtained by taking the difference between the xi signals from
the left and right oscillators. A standard PD motor controller is then used to compute
the voltage τi (i.e., torque) applied to the motor (using a PWM signal):

ϕi = xi − xN+i

τi = Kpei +Kdėi
(6.5)

where ei = ϕi−ϕ̃i is the tracking error between the desired angles ϕi and the actual an-
gles ϕ̃i measured by the motor incremental encoders, and Kp and Kd are the proportional
and derivative gains.

Because the limbs need to make complete rotations, their setpoints should monotoni-
cally increase, instead of having rhythmic movements like the body joints. The setpoints
ϕi are therefore directly calculated from the phases θi of the limb oscillators using a non-
uniform rotation function (which accelerates the movement of the leg when it is not in
contact with the ground):

ϕi = h(θi)
τi = Kpei +Kdėi

(6.6)

The h(θ) function used on the robot is plotted in figure 6.2.

The frequency and amplitude parameters of all oscillators are determined, on the base
of the input drive d, by the saturation function:

79

-3 -2 -1 0 1 2 3

-3

-2

0

1

2

3

θ

h
(θ

)

θ
1

θ
2

θ
1
’

θ
2
’

Figure 6.2: Leg rotation function used on the robot. θ1 and θ2 correspond, respectively,
to the begin and end of the stance phase of the leg.

(

νbody

Rbody

)

= gbody(d)
(

νlimb

Rlimb

)

= glimb(d)

(6.7)

The actual saturation function is plotted in figure 6.3.
To achieve turning, different drives dL and dR can be applied to the left and right sides

of the body oscillator.
In the body oscillator, the phase biases φij are chosen to be equal to π between left and

right oscillators (i.e., these will oscillate in anti-phase). The phase biases between neighbor
oscillators are set to 2π

NB/2
= 2π

8
for the descending connections and to − 2π

NB/2
= −2π

8
for the

ascending connections; this produces a complete wave of the body. In the limb oscillator
and for the couplings between body and limb oscillators, φij = π is used for all connections.

We use wij = 10 for all connections, with the exception of the couplings from limb
to body oscillators, which need to be stronger, for which a value of wij = 30 has been
used. For all oscillators, ai = 20. The PD coefficients Kp and Kd are tuned manually for
each element (e.g., elements in middle of the chain require larger gains than those at the
extremities for good trajectory tracking).

The d parameter can be modified online by a human operator from a control PC
using the wireless connection. The CPG will rapidly adapt to any parameter change and

80

0 1 2 3 4 5 6
0

0.5

1

1.5

ν
[H

z]

Body
Limb

0 1 2 3 4 5 6
0

0.2

0.4

0.6

drive

R

Body
Limb

Figure 6.3: Saturation function used on the robot.

converge to the modified travelling or standing wave after a short transient period. An
example of how the CPG reacts to parameter changes can be observed in figure 6.4: even
with a continuously changing input drive, the oscillator generates smooth trajectories
without any discontinuities in the outputs.

The differential equations are integrated by the microcontroller of the head using the
Euler method, with a time step of 10 ms and using fixed point arithmetics. As the current
trajectory generator has a limited computing power (10 MIPS with one 8-bit register),
the code heavily uses lookup tables for calculating functions.

6.2 Locomotion characterization

6.2.1 Speed as function of drive

The speed of the robot has been measured for 18 different drive values (between 1.0 and
3.0 for walking, and between 3.001 and 5.0 for swimming, with a step of 0.25). Each
measure has been repeated 5 times, giving a total of 90 measures.

For walking, the speed has been measured by taking the time used to travel a given
distance (i.e., 2 m). For swimming, the procedure was the same, but the distance was
reduced to 1 m and the measure only started after an acceleration space of approximately
50 cm, to approach steady-state swimming as close as possible. The results are plotted
in figure 6.5.

81

(a)

(b)

(c)

(d)

Figure 6.4: Switching from walking to swimming; activity of the CPG model when the
drive signal is progressively increased. (a) xi signals from the left body CPG oscillators
(oscillators on the right side are exactly in antiphase). Units are in radians (scale bar on
the top right). Note the transition from standing waves (with synchrony in the trunk,
synchrony in the tail, and an antiphase relation between the two, 4 s < t < 20 s) to
travelling waves (20 s < t < 36 s). (b) xi signals from the left-limb CPG oscillators.
Ipsilateral fore- and hindlimbs are in antiphase. (c) Instantaneous frequencies measured

as θ̇i

2π
in cycles/s. The variations in the instantaneous frequencies among individual oscil-

lators at times t = 4 s and t = 20 s correspond to brief accelerations and decelerations
before resynchronization. (d) Linear increase of the drive d applied to all oscillators. The
horizontal lines correspond to the lower (dlimb

low = dbody
low = 1) and upper (dlimb

high = dbody
high = 5)

oscillation thresholds for limb and body oscillators in arbitrary drive units.

82

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

Drive

S
p
e
e
d
 (

m
/s

)

Figure 6.5: Speed of the salamander robot for walking (d ≤ 3) and swimming (d > 3).

83

Figure 6.6: The salamander robot swimming with the tracking markers fixed on it.

For walking, the speed almost linearly increases over the whole range of drives, from
3.54 · 10−2 m/s for d = 1 to 1.19 · 10−1 m/s for d = 3. For swimming, the speed increases
linearly from 1.20 · 10−1 m/s for d = 3.001 to 1.40 · 10−1 m/s for d = 3.5, then stabilizes
around this value up to d = 4. For d > 4, the speed decreases, with a minimal value of
9.24 · 10−2 m/s for d = 4.5. The decrease is mainly owing to the torque of the motors,
which is not enough to follow the desired trajectories in water, with the consequence that
the speed saturates, and then for higher drives, the travelling wave begins to deform, with
the resulting decrease of speed.

6.2.2 Kinematic measurements

To compare the movements of the robot with those of the real animal, kinematic mea-
surements have been done on the robot, using a custom video tracking system. These
data have been compared with kinematic recordings of Pleurodeles waltlii salamanders,
which have been provided by Isabelle Delvolvé (INSERM, Bordeaux).

The robot was filmed from above at 15 frames/s with a Basler A602fc-2 camera using
a 8 mm C-mount lens. The frame data acquired over an IEEE1394 link was processed
in real time with a custom program using the ARTag library (Fiala, 2004) to extract the
(x, y) coordinates of the markers (sort of 2D barcodes, see fig. 6.6) placed on the robot.
For body elements, the markers were placed at the rotation center of the output axis;

84

(a) (b)

Figure 6.7: Snapshots from videos for salamander (a) and robot (b) walking. The time
step between the snapshots is 0.12 s for the salamander, and 0.20 s for the robot.

(a) (b)

Figure 6.8: Snapshots from videos for salamander (a) and robot (b) swimming. The time
step between the snapshots is 0.04 s for the salamander, and 0.12 s for the robot.

for head and limb elements, they were placed at the same distance from the element’s
border than on body elements. The coordinates have been exported in CSV files and
then imported in MATLAB for processing and analysis, like for the salamander. The
tracking markers had a size of 55 × 55 mm. To minimize motion blur, the exposure time
of the camera was set around 2 ms, using two 500 W halogen projectors for lighting. For
walking, they were fixed on the top of the robot with double-sided adhesive tape. For
swimming, they were fixed on a PVC support having the same size of the marker and
placed 75 mm above the robot (using a rigid PVC cylinder of diameter 4 mm), to ensure
that the markers were always out of the water during tracking (figure 6.6). The measures
were repeated five times for each drive level. For walking, the camera field of view was
always containing two complete cycles; for swimming, this varied between two and five
cycles.

For illustration, snapshots from videos (without the tracking markers) for one locomo-
tion cycle for walking and swimming can be seen in figures 6.7 and 6.8, respectively.

The envelopes of lateral displacement of each marker (relative to the direction of
motion) measured with the video tracking are plotted in figures 6.9 (walking) and 6.10

85

020406080100
0

2

4

6

8

10

12

14

16

Marker pos (% of BL)

D
is

pl
ac

em
en

t (
%

 o
f B

L)

HeadTip of tail

Robot
Salamander

Figure 6.9: Lateral displacements of the robot and real salamander during walking.

020406080100
0

2

4

6

8

10

12

14

16

Marker pos (% of BL)

D
is

pl
ac

em
en

t (
%

 o
f B

L)

HeadTip of tail

Robot
Salamander

Figure 6.10: Lateral displacements of the robot and real salamander during swimming.

86

(a) (b)

Figure 6.11: Comparison of lateral displacements of the salamander (a) and robot (b)
during walking. Velocities were 0.06 m/s (0.34 body lengths/s) for the animal, and 0.06
m/s (0.07 body lengths/s) for the robot (d = 2.0).

87

(a) (b)

Figure 6.12: Comparison of lateral displacements of the salamander (a) and robot (b)
during swimming. Velocities were 0.17 m/s (0.89 body lengths/s) for the animal, and
0.11 m/s (0.13 body lengths/s) for the robot (d = 4.0).

88

(swimming), with the corresponding data of the animal. For walking, the motion is
qualitatively similar for the robot and the animal; both have minimal lateral displacements
at the girdles (which are not at the same relative position). The main differences are the
displacements of the queue (the salamander maintains the tip of its queue mostly straight,
whereas the robot moves it) and of the head (the robot lacks a joint in the neck, therefore
producing a greater lateral displacement of the head). For swimming, the motion is
also similar for the robot and the salamander, but with more differences than for walking.
Particularly, the lateral displacements of the robot are higher than those of the salamander
between the girdles. This can be explained by the lack of hinge joints in the limb elements
of the robot, and by their increased weight.

A detailed comparison of the lateral displacements during a complete locomotion cycle
can be found in figures 6.11 and 6.12. As it can be seen in the figures, the type of
waves generated along the body is similar for the salamander and the robot, with the
aforementioned differences.

6.3 Discussion

Considering the results presented in section 6.2, we can consider that the neurobiological
model presented in section 6.1 has been successfully tested on a real robot and can indeed
produce forward locomotion for both walking and swimming gaits. More details about
the model can be found in Ijspeert et al. (2007).

In addition to the testing of neurobiological models, this robot (and its improve-
ment) could find useful practical applications, for example for inspection/exploration
tasks, where its agility and capability to deal with different environments could be a
clear advantage. Compared to the snake robot, the presence of the legs can help the
locomotion on solid grounds (possibly with small obstacles), removing at the same time
the need for special contacts (e.g., passive wheels) to generate the asymmetric friction it
requires to crawl with serpentine locomotion.

The presented CPG model will be useful for remote operation of the robot by a human:
the operator only has to send high-level commands, like the upper parts of the brain in
the animal; the CPG coordinates the trajectories of all the degrees of freedom for the
control of speed, direction and type of gait.

89

90

Chapter 7

Online learning

In this chapter, a method to do online optimization of the locomotion parameters of
the snake robot presented in chapter 4 is described. This optimization is based on the
Powell’s method, which is an heuristic optimization algorithm in multiple dimensions,
which rapidly converges for smooth functions.

Systematic tests on different types of ground have been carried out (see chapter 4). The
main outcomes of these experiments are that (1) optimal gaits are significantly different
from one medium to the other, (2) the optimums are usually peaked, i.e., velocity rapidly
becomes suboptimal when the parameters are moved away from the optimal values. This
is clearly visible, for example, by comparing the results of the systematic crawling tests on
linoleum presented later in this chapter, to the ones done on a wooden floor (parquet) that
have been detailed in chapter 4. Thus, if the robot has to autonomously deal with different
types of environment, it is clearly necessary to have an optimization function which can
rapidly determine the appropriate locomotion parameters. Being able to learn gaits online,
as opposed to do offline optimization with a model or a simulator for instance, is of great
importance for biomimetic robotics. Indeed it might be one of the only solutions to tackle
the problem of adapting gaits to complex, possibly unknown, environments. Keeping a
realistic and up-to-date model of the interaction forces with such environments might be
impossible or not accurate enough to allow alternative (e.g., model-based) approaches.
The results presented in this chapter can be found in Crespi and Ijspeert (2007).

7.1 Video tracking

To run an optimization algorithm, we need an estimation of the performance of the robot
(the velocity in the experiments presented here) for a given set of locomotion parameters.
Several solutions to this problem exist. For simplicity, we chose video tracking (in future
work, we are planning to provide the robot means to estimate its velocity on its own).
The tracking system that has been developed for these experiments is relatively simple: a

91

bright 48 lm green led having an irradiation angle of 130◦ and powered by an independent
Li-Ion battery is fixed on the head of robot. The experimental setup is filmed using a
Basler a622f camera connected through a IEEE 1394 interface to a PC on which a simple
tracking program is running. The whole system is depicted in figure 7.1.

The tracking program acquires the data from the camera at 15 fps, with a resolution
of 800x600 pixels and a depth of 8 bits per pixel. The used image processing algorithm is
trivial: the coordinates (Sx, Sy) of the LED spot (in pixels) are calculated as the average
coordinates of all the pixels having a lightness higher than a given threshold (currently
192). The coordinates are then converted to the real (homogeneous) coordinates of the
robot on the plane (Rx/Rw, Ry/Rw) by using a 2D transformation matrix:

Rx

Ry

Rw

 =

a b c
d e f
g h i

 ·

Sx

Sy

1

 (7.1)

The coefficients a, b, ..., i are obtained (for a given placement and orientation of the
camera) by solving a linear system:

aPn,x + bPn,y + c− gDn,xPn,x − hDn,xPn,y − iDn,x = 0
dPn,x + ePn,y + f − gDn,yPn,x − hDn,yPn,y − iDn,y = 0

(∀n ∈ [1...4])
(7.2)

where D1...D4 are the real coordinates of four reference points (aligned on two parallel
lines), and P1...P4 their coordinates in pixels. The system is currently solved numerically
by writing it into matrix form and using SVD decomposition.

The tracking system includes a TCP/IP server, allowing the coordinates of the robot
(and its visibility status) to be remotely retrieved in real time.

7.2 Central pattern generator model

The CPG model used for the online learning experiments is essentially the same presented
in chapter 4, with the exception that a new α1 parameter has been introduced, which
modulates the amplitudes Ri along the body to obtain an amplitude slope. The amplitudes
are therefore Ri = αi · AL for the left side (i = [1, ..., N]) and Ri = αi−N · AR for the
right side (i = [N + 1, ..., 2N]). The αi parameters are linearly interpolated between the
open parameter α1 (head) and αN = 1.0 (tail). The parameter α1 therefore acts as an
amplitude gain, and allows the CPG to make undulations of increasing amplitude from
head to tail, as is often seen during anguilliform swimming.

92

Figure 7.1: The video tracking system used for crawling. The setup for swimming is very
similar.

93

7.3 Optimization algorithm

The function we want to optimize is the locomotion velocity v(~x) of the robot, where ~x
is the parameter vector containing the parameters to be optimized (oscillation amplitude
A, total phase lag N∆φ and amplitude gain α1). The value of the function for a given
set of parameters can be automatically estimated using the video tracking system (the
parameters ~x can be sent to the robot using a TCP/IP gateway, see below).

As the convergence time is critical in this context (online optimization of locomotion
parameters), methods requiring a large number of function evaluations (e.g., genetic algo-
rithms) have to be avoided. Moreover, we do not have any gradient information for v(~x),
and are therefore limited to gradient-free methods. The algorithm we chose is Powell’s
method (Press et al., 1994), which is an heuristic optimization algorithm that rapidly
converges for smooth functions. The main risk associated with this kind of algorithm is
the possibility to converge to a local optimum of the function, rather than to the global
one; however, systematical tests with the snake robot show that the velocity function
v(~x) is rather smooth with typically a single global optima for a given frequency. A brief
description of the algorithm, inspired from the one found in Press et al. (1994), follows.

7.3.1 One dimensional optimization

The goal of function optimization is to find x such that f(x) is the highest or lowest
value in a finite neighborhood. From now on we just consider the problem of function
minimization. Note that function maximization is trivially related because it is equivalent
to a minimization −f(x). The main idea of one-dimensional function optimization is to
bracket the minimum with three points a < b < c such that f(b) is less than both f(a)
and f(c). In this case and if f is nonsingular, f must have a minimum between a and c.
Now suppose that a new point x is chosen between b and c. If f(b) < f(x), the minimum
is bracketed by the triplet (a, b, x). In the other case if f(x) < f(b), the new bracketing
points are (b, x, c). In both cases, the bracketing interval decreases and the function value
of the middle point is the minimum found so far. Bracketing continues until the distance
between the two outer points is tolerably small (Press et al., 1994). The challenge is
finding the best strategy for choosing the new point x in the bracketing interval at each
iteration. We use Brent’s method, which is a combination of golden section search and
parabolic interpolation (Brent, 1973; Press et al., 1994).

7.3.2 Multi-dimensional optimization

Consider a line defined by a starting point P and a direction ~n in N -dimensional space. It
is possible to find the minimum of a multidimensional function f on this line using a one-
dimensional optimization algorithm (Press et al., 1994) (e.g., Brent’s method, see above).
Direction-set methods for multidimensional function minimization consist of sequences of

94

such line minimizations. The methods differ by the strategies in choosing a new direction
for the next line minimization at each stage. Powell’s method (Brent, 1973; Press et al.,
1994) is best explained with an example. Consider a function with a “valley” along x = y
that descends to the origin:

f(x, y) = x2 + y2 + (x− y)2 (7.3)

Powell’s method starts with the unit vectors e1, e2, ..., eN of the N -dimensional search
space as a set of directions. One iteration of the algorithm does N line minimizations
along the N directions in the set. The algorithm is illustrated in Figure 7.2 for the two-
dimensional function introduced above (Eq. 7.3). Starting at the initial point P0 = (2, 5),
the first line minimization along the direction given by the unit vector [1, 0]T takes us to
the point P1. From this point the second line minimization along [0, 1]T takes us to P2 and
completes the first iteration. As you can see on Figure 7.2, repeated line minimizations
along the unit vectors would involve many iterations because the minimum would be
approached in small steps. After each iteration, Powell’s method checks if it is beneficial
to replace one of the directions in the set by vi = P0 − PN where P0 was the starting
point at the current iteration and PN the new point after the N line minimizations.
In the example of Figure 7.2, v2 replaces [1, 0]T in the second iteration. The algorithm
correctly decides not to include new directions in all other iterations as this would actually
slow down convergence. The mechanisms for deciding whether or not to include the new
direction vi after each iteration and which direction in the set should be replaced are
described in Brent (1973); Press et al. (1994). Note that there is no learning rate; the
algorithm simply always goes to the optimum in the next direction.

7.4 Results

Several optimization experiments, both with the real snake robot and in simulation, have
been done, using two fixed frequencies, ν = 0.4 Hz and ν = 1.0 Hz. The frequency has
not been included in the optimized parameters as the systematic tests showed a direct
dependence of the speed on the frequency (Crespi and Ijspeert, 2006; Ijspeert and Crespi,
2007). The optimization has been done with the real robot for crawling on a horizontal
plane and for swimming, and with the simulator for crawling on a horizontal plane and
on a slope (ascending and descending). All the experiments with the real robot have been
repeated five times. Note that all the presented systematic tests have been done with a
fixed value of α1 = 1.0 (and thus in a 2D space, for a given frequency). The comparison
of the optimization with the systematic tests permits a validation of the optimization
algorithm.

95

Figure 7.2: Example of function optimized with the Powell’s method.

7.4.1 Optimization of crawling

The parameters A, N∆φ and α1 have been optimized at fixed frequencies of ν = 0.4 Hz
and ν = 1.0 Hz, on a horizontal linoleum experimental surface. The speed function was
evaluated automatically, using the video tracking system, by running the robot for a fixed
period of 10 s with the parameters to be evaluated and then measuring its distance from
the initial position. Whenever the robot left the experimental surface (i.e., when it was
not anymore visible by the tracking camera), the measure was automatically stopped
and then restarted from the beginning after a manual repositioning of the robot. The
optimization has been run five times, starting from a point at the center of the parameter
space (A = 30◦, N∆φ = 0.75 and α1 = 0.5). For comparison, systematic tests have been
done for the same frequencies, with a fixed value of α1 = 1.0, amplitudes between 10◦ and
60◦ (with a step of 10◦) and a total phase lag between 0.25 and 1.50 (with a step of 0.25).

The results are plotted in figure 7.4. For ν = 0.4 Hz, the algorithm converged to two
slightly different optima: the average parameter values are A = 52.3◦, N∆φ = 0.87 and
α1 = 0.70, with an average velocity of 0.178 m/s (0.231 BL/s) for the first optimum, and
A = 52.3◦, N∆φ = 1.05 and α1 = 0.50, with an average velocity of 0.169 m/s (0.220
BL/s) for the second optimum. The maximal velocity obtained during systematic tests
was 0.201 m/s (0.261 BL/s). For ν = 1.0 Hz, the algorithm converged to a single optimal
result having average parameter values of A = 52.8◦, N∆φ = 1.24 and α1 = 0.81, and
an average obtained velocity of 0.296 m/s (0.384 BL/s). This is better than the maximal

96

Figure 7.3: The robot crawling at A = 53◦, N · ∆φ = 1.24, ν = 1.0 Hz and α1 = 0.90.
The time step between the snapshots is 0.12 s. Videos of the robot are available at
http://birg.epfl.ch/amphibot.

velocity obtained during systematic tests, which was 0.278 m/s (0.361 BL/s). There were
always two iterations of the algorithm, with an average of 32.2 evaluations at ν = 0.4 Hz
and of 29.2 evaluations at ν = 1.0 Hz. Figure 7.3 shows snapshots of the optimal crawling
gait at ν = 1.0 Hz.

The obtained gaits have a high amplitude for both frequencies. The other parameters
depend on the frequency, which is in agreement with the results obtained during systematic
tests; the wavelength is shorter (i.e., N∆φ is larger) for ν = 1.0 Hz than for ν = 0.4 Hz,
and α1 increases with the frequency.

7.4.2 Optimization of swimming

The parameters A, N∆φ and α1 have been optimized at fixed frequencies of ν = 0.4 Hz
and ν = 1.0 Hz, in an aquarium measuring 2.5 x 0.8 m. The speed function was evaluated
automatically, using the video tracking system, by running the robot with the parameters
to be evaluated and then measuring its distance from the point reached after an accel-
eration phase of 1.50 s. For each measure, the robot was placed at the beginning of the
aquarium, and stopped when it reached the position threshold (15 cm before the end of
the aquarium), or a maximum run time of 10 s (whichever came first). As for crawling,
the optimization has been run five times, with the same starting point. Systematic tests
have been done for the same frequencies (see chapter 4 and Ijspeert and Crespi (2007)),
with the same parameter range than for crawling.

The results are plotted in figure 7.6. For ν = 0.4 Hz, the algorithm converged to
several distinct optima (having similar amplitudes but different values of N∆φ and α1)
with similar resulting velocities and an average of 0.132 m/s (0.171 BL/s). The parameter
values for the best result are A = 42.0◦, N∆φ = 0.45 and α1 = 0.50, with a resulting
velocity of 0.136 m/s (0.177 BL/s). The maximal velocity obtained during systematic
tests was 0.147 m/s (0.191 BL/s). For ν = 1.0 Hz, the algorithm found four optimal
results, all having the same amplitude (A = 52.9◦), but with different values of N∆φ

97

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.181

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.301

0

0.05

0.1

0.15

0.2

0.25

(b) 1.0 Hz

Figure 7.4: Results of the optimization for crawling. The data from the systematic tests
with α1 = 1.0 are plotted in the background, and the evaluations done by five runs of the
optimization algorithm are represented by the small dots (the α1 dimension is not visible
in the plot). All the speeds are in m/s. The speed indicated in the caption inside the plot
is the highest velocity obtained with optimization.

and α1. The resulting average velocity is 0.220 m/s (0.286 BL/s). The best result has
N∆φ = 1.05 and α1 = 0.82, and the obtained velocity is 0.249 m/s (0.323 BL/s). The
average velocity obtained with the optimization is therefore very similar to the one found
during systematic tests, which was 0.222 m/s (0.288 BL/s). There was always only one
iteration of the algorithm, with an average of 14.4 evaluations at ν = 0.4 Hz and of 10.4
evaluations at ν = 1.0 Hz. Figure 7.5 shows snapshots of the optimal swimming gait.

The parameters of the obtained optimal gaits clearly depend on the frequency, like it
was the case during the systematic tests (see chapter 4). As for crawling, the wavelength
is shorter when the frequency is higher; the amplitude increases with the frequency, and
there is only a slight change of α1. The fact that all optimal values of α1 are smaller than
1.0 is in accordance with the anguilliform swimming with increasing amplitude observed
in animals (Gillis, 1996).

7.4.3 Optimization of simulated crawling

We reproduce here in simulation the optimization of crawling done with the real robot.
The use of a simulation allows us to test the optimization in environments that are difficult
to realize (see next subsection). The parameters A, N∆φ and α1 have been optimized at
fixed frequencies of ν = 0.4 Hz and ν = 1.0 Hz, in an environment with friction coefficients
µ⊥ = 1.0 and µ‖ = 0.05. For each evaluation, the simulator was started with the robot in
the initial position, and its average velocity measured over 20 s after a stabilization time
of 10 s. The starting from was at the center of the parameter space (A = 30◦, N∆φ = 0.75

98

Figure 7.5: The robot swimming at A = 53◦, N · ∆φ = 1.05, ν = 1.0 Hz and α1 = 0.82.
The time step between the snapshots is 0.12 s. Videos of the robot are available at
http://birg.epfl.ch/amphibot.

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.136

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.249

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) 1.0 Hz

Figure 7.6: Results of the optimization for swimming at ν = 0.4 Hz and ν = 1.0 Hz. The
speed indicated in the caption is the highest velocity obtained during optimization.

99

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.207

0

0.05

0.1

0.15

0.2

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.401

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) 1.0 Hz

Figure 7.7: Results of the optimization for simulated crawling at ν = 0.4 Hz and
ν = 1.0 Hz. The speed indicated in the caption is the highest velocity obtained dur-
ing optimization.

and α1 = 0.5). Systematic tests have been done for the same frequencies, with a fixed
value of α1 = 1.0, amplitudes between 10◦ and 60◦ (with a step of 10◦) and a total phase
lag between 0.25 and 1.50 (with a step of 0.25).

The results are plotted in figure 7.7. For ν = 0.4 Hz, the algorithm converged to
an optimum with A = 37.4◦, N∆φ = 0.45 and α1 = 0.82, with a velocity of 0.207 m/s
(0.269 BL/s). The maximal velocity obtained during systematic tests was slightly higher,
0.222 m/s (0.288 BL/s). For ν = 1.0 Hz, the algorithm found optimal parameter values of
A = 41.5◦, N∆φ = 0.56 and α1 = 0.45, and a resulting velocity of 0.401 m/s (0.521 BL/s),
slightly lower than the maximal one found with systematic tests, which was 0.415 m/s
(0.539 BL/s). There was always only one iteration of the algorithm, with 9 evaluations
at ν = 0.4 Hz and 14 evaluations at ν = 1.0 Hz.

The amplitude and wavelength of the optimum are similar for the two frequencies, and
only the α1 parameter decreases with the frequency. This is a clear difference compared to
the results obtained with the real robot: the obtained maximal velocities are higher than
the real ones, and the position of the optima in the systematical tests is clearly different.
This mostly owes to the used friction model, which is too simplified.

7.4.4 Optimization of simulated crawling on a slope

The movement of a snake on a slope has different parameters than on a flat ground (Hirose,
1993), and it is clearly expected that this will be also the case for a snake robot.

The parameters A, N∆φ and α1 have been optimized in the same way of the simulated
crawling, using an environment in which the ground was rotated of a given angle θ.
Systematic tests have also been done with the same parameter range.

100

Figure 7.8: The simulated robot crawling on a slope (θ = 15◦) at A = 51◦, N ·∆φ = 0.68,
ν = 1.0 Hz and α1 = 0.78. The time step between the snapshots is 0.12 s.

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.054

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.117

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) 1.0 Hz

Figure 7.9: Results of the optimization for simulated crawling on slope (θ = 15◦).

Figure 7.10: The simulated robot descending a slope (θ = −15◦) at A = 0.3◦, N · ∆φ =
1.41, ν = 1.0 Hz and α1 = 0.11. The time step between the snapshots is 0.12 s.

101

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

118.749
0

10

20

30

40

50

60

70

80

90

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

N ⋅ ∆φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

118.734

0

10

20

30

40

50

60

70

80

90

100

(b) 1.0 Hz

Figure 7.11: Results of the optimization for simulated crawling on a slope (θ = −15◦).

The results for θ = 15◦ (where a positive angle means that the robot climbs on the
slope) are plotted in figure 7.9. For ν = 0.4 Hz, the algorithm converged to an optimum
with A = 57.4◦, N∆φ = 0.69 and α1 = 0.70, with a velocity of 0.054 m/s (0.070 BL/s),
which is very similar to the maximal velocity obtained with systematic tests, 0.055 m/s
(0.071 BL/s). For ν = 1.0 Hz, the algorithm found optimal parameter values of A = 51.5◦,
N∆φ = 0.68 and α1 = 0.78, and a resulting velocity of 0.117 m/s (0.152 BL/s), slightly
higher than the maximal one found during systematic tests, 0.109 m/s (0.142 BL/s). There
always were two iterations of the algorithm, with a total of 17 evaluations at ν = 0.4 Hz
and 22 evaluations at ν = 1.0 Hz. Figure 7.8 shows snapshots of the resulting optimal
gait.

The parameters of the found optima are similar for both frequencies (with a slightly
higher amplitude at ν = 0.4 Hz). The algorithm clearly found waves with higher ampli-
tudes than for crawling on a plane, as it is the case for real snakes (Hirose, 1993). For
instance, the higher oscillation amplitudes increase the number of elements perpendicular
to the slope, which therefore reduces slipping.

The results for θ = −15◦ are plotted in figure 7.11. For ν = 0.4 Hz, the algorithm
converged to an optimum with A = 0.2◦, N∆φ = 1.31 and α1 = 0.18, with a velocity of
118.7 m/s (154.2 BL/s). The maximal velocity obtained with systematic tests is 95.3 m/s
(123.8 BL/s). For ν = 1.0 Hz, the algorithm found optimal parameter values of A = 0.3◦,
N∆φ = 1.41 and α1 = 0.11, and a resulting velocity of 118.7 m/s (154.2 BL/s), whereas
the maximal one found during systematic tests is 100.6 m/s (130.6 BL/s). There always
were two iterations of the algorithm, with a total of 17 evaluations at ν = 0.4 Hz and 22
evaluations at ν = 1.0 Hz.

The obtained speeds are clearly physically unrealistic and are caused by the simplicity
of the physical model that does not include velocity-dependent friction terms. The optimal
gaits are very similar for both frequencies, and can be summarized as having the robot as

102

straight as possible and letting it freely roll down the slope. These parameters are very
different from those found for climbing.

7.5 Discussion

This work has shown that the fastest gaits are considerably different from one medium to
the other. For instance crawling up a slope requires undulations with large amplitudes,
while crawling down a slope requires very small amplitudes. And slow swimming requires
shorter phase lags than slow crawling. This dependence on the environment is in agree-
ment with observations made by others (Hirose, 1993). In agreement with our previous
studies (presented in chapter 4 and in Crespi and Ijspeert (2006); Ijspeert and Crespi
(2007)), frequency is the parameter whose influence on the speed of locomotion is the
simplest: with all other parameters fixed (i.e., amplitude, phase lag, and amplitude gain),
increasing the frequency generally leads to an increase of speed (in the range tested). This
makes the frequency a useful control parameter. But one should notice that the optimal
gaits change with the frequency. It is therefore important to adapt all parameters when
the frequency is changed. Another important observation is that the optima are peaked.
For a given medium and a given frequency, the speed of locomotion drops rapidly when the
parameters are changed compared to their optimal values. In other words, two seemingly
very similar gaits might result in dramatically different speeds of locomotion.

All these observations confirm the importance to finely adapt gaits to the environment.
There is not a single gait which performs satisfactorily in all conditions, and a robot that
would rely on a single gait for various environments would be strongly suboptimal for most
conditions. These empirical tests with our robot have therefore confirmed the necessity
of designing online optimization methods for snake robots.

Any method for doing online optimization requires to fulfill at least two characteris-
tics: (1) to allow parameters to be changed online —i.e., to have a control mechanism
which smoothly adapts to parameter changes and does not need to be reset between
evaluations— and (2) to be fast —in order to avoid excessive wear and tear, and pro-
hibitive testing durations. The results presented here show that our control mechanism
satisfactorily fulfills the two requirements. The CPG is a useful building block that is
well-suited for optimizing the locomotion and modulating it (e.g., adapting the speed and
the direction, see chapter 4 and Ijspeert and Crespi (2007)), and for optimizing it. The
Powell’s method proved to be a useful algorithm for rapidly finding the optimal parameters
of the CPG in a given environment. It is significantly faster than doing extensive system-
atic evaluations of the robot velocity on the parameter space. For instance, a systematic
exploration of the three-dimensional parameter space considered during our experiments,
with 6 steps for each parameter, would require 216 evaluations of the function, whereas
the Powell’s method can obtain similar results with an order of magnitude less evaluations
(between 6 and 37 during the described experiments). In preliminary studies, it has also

103

be found to be one or two orders of magnitude faster than alternative methods such as
genetic algorithms (Marbach and Ijspeert, 2005). An analysis of the results shows that
there is clearly space for improvements: particulary, the stopping conditions of the one
dimensional optimization and of the Powell’s algorithm itself have to be carefully cali-
brated, in order to minimize the number of evaluations needed and to avoid stopping the
algorithm too early (or too late), as it seem to have been the case during some of the
experiments. Compared to related work on learning (e.g., Dowling (1997); Kulali et al.
(2002)), our approach is very empirical and is fast enough to learn gaits directly on the
robot without requiring a simulator or a model. As mentioned in the introduction, we
believe this empirical approach is the only viable for many situations, for instance, for
complex terrains that not be modelled or simulated accurately enough.

In previous work (Ijspeert and Crespi (2007); see chapter 4), we used results from
systematic searches to design interface functions to maintain an optimal gait for a given
frequency. Frequency is used as the control parameter that monotonously adjusts velocity,
and the interface functions adjust the other parameters (amplitude and phase lag) by
linearly interpolating between the optimal values measured with the systematic search.
Two interface functions, one for locomotion on a wooden floor and one for locomotion
in water, were designed. A human operator could thus easily control the speed (and
direction) of locomotion by adjusting the frequency (and the asymmetry of amplitudes),
without having to worry about the other control parameters. This is done transparently
for the human operator, except for the switch between functions for different environments.

This work extend the previous results by allowing to find optimal interface functions
for a given environment much faster. There are two interesting outcomes: (1) It is much
less tedious to create a database of interface functions for a variety of environments.
This database can be used by the human operator to rapidly switch between different
locomotion modes (ideally this decision should be made by the robot itself, see below). (2)
The optimization is fast enough to be run during operation time for novel environments.
For instance, if the robot is brought to a new terrain for a specific mission (e.g., search
and rescue), and one notices that locomotion is slow, the operator could rapidly run the
optimization process. The optimization takes in average 20 evaluations (i.e., less than 4
minutes) which seems acceptable for finding a good gait.

104

Chapter 8

Conclusions

8.1 Conclusion

Amphibious robot elements Amphibious robotics is a rather challenging topic: the
complete waterproofing requirements of amphibious robots, for instance, completely influ-
ence all aspects in the design process, rendering it more complex. However, the advantages
of amphibious robots are evident: if a robot has amphibious properties, it can deal with
difficult environments which include water in any form (for example rain, partially flooded
terrains, mud, etc.). This is a clear advantage, for instance, for outdoor robots used for
inspection or exploration tasks. In this work, we used a modular approach to construct
waterproof robots. The actual robots that have been realized are a snake, a boxfish, and
a salamander.

Central pattern generators in robots Central pattern generators are more and more
used for the control of robots. This biologically inspired control technique is well suited
for the control of complex robots having multiple degrees of freedom, as they can generate
coordinated control signals for all the joints, receiving only simple inputs. This means
that CPGs are a good control method for implementing interfaces to be used by human
operators for the interactive control of such robots. They also provide a sort of“abstraction
layer” that can hide the complexity of the robot to the end user, also rendering it possible
to control different types of robots with the same set of control signals. Finally, CPGs
can also easily deal with “difficult” input signals, like those that can be provided by a
human operator or learning algorithm. In this work, CPG models for controlling a snake,
a fish and a salamander robot have been developed and successfully implemented to run
on their onboard locomotion controller. The input signals of the CPGs are very similar for
all the models, thus allowing the different robots to be controlled with a limited number
of parameters. The design of CPGs remains a complex problem; the models presented
here have been inspired from those found in real animals (lamprey and salamander). For

105

more complex robot structures, a possible solution to the problem is the usage of learning
algorithms: as it has been shown in chapter 7, learning algorithms can be a powerful
technique to automatically adapt the generated trajectories to the environment. Here
the learning was done only on a limited number of parameters, but it can indeed be
extended to the whole CPG structure. One of the advantages of the use of CPGs is the
possibility to easily include sensory feedback in the control loop; however, this has still
not been implemented on the robots presented in this thesis, with the exception of the
simple phototaxis behaviour of the fish robot.

Contributions to biology Finally, robots proved to be useful tools for verifying biolog-
ical hypotheses. As explained in chapter 2, they provide for example a “body”with which
models of locomotion controllers can be tested to verify whether they actually generate
locomotion in a real environment. In the article reproduced in chapter 6, we presented a
model of central pattern generator that explains the locomotion control in salamanders
and the transition between walking a swimming, using a single control parameter. This
model has been successfully implemented and tested on a salamander robot, demonstrat-
ing that it can actually generate forward motion of a body, using real actuators, in a real
environment.

8.2 Future work

Although most of the limitations of the first generation of elements were addressed and
solved with the current generation, some problems remain partially unsolved, and new
weaknesses (related to previously unavailable features) appeared.

Despite the efforts to correct problems with waterproofing, small water leakages are
still possible. They mainly concern body elements, and owe to two main sources:� The absence of a pair of screws (due to lack of space) at the horizontal center of the

elements causes an insufficient compression of the O-ring. This problem is partially
solved by using a silicone based sealant around the O-ring when closing the elements.� The forces applied to the output axis during vertical movements (e.g., when lifting
the robot, or when it has to overcome a small obstacle) can detach the brass axis
from the flexible polyurethane rubber into which it is inserted, thus opening the way
for possible water leakages.

These waterproofing problems will be addressed in the future third prototype (which is
currently under development), using a new closing system based on permanent magnets
(instead of screws), thus also reducing the damages to the elements when unmounting
them.

106

The online learning algorithm (see chapter 7) has been used to optimize the locomotion
velocity. However, it would also be interesting to apply this algorithm to other functions,
e.g., the power consumption or a combination of power consumption and velocity.

The limited computational capabilities of the PIC18F2580 microcontroller used for
the locomotion controller (a 8-bit microcontroller running at 40 MHz, obtaining a speed
of 10 MIPS) required strong optimization of the code implementing the CPG locomotion
controller (for a description of the controller, see chapters 4 and 6). For instance, the CPG
had to be implemented with fixed-point arithmetics and a large use of lookup tables,
therefore obtaining an acceptable execution speed (mostly entirely using the available
RAM and program memory). The use of a fastest microcontroller (a 60 MHz 32-bit ARM
microcontroller) is planned for the next version of the locomotion controller.

Other needed improvements to the current elements include:� The replacement of the current global I2C bus with a faster and more reliable CAN
bus. The I2C would be used only inside elements for local communications between
the different components.� Adding the possibility to retrieve status information from the battery monitor-
ing/protection circuit, therefore allowing the user to know the charging state of
all the batteries, and to estimate the energy consumption of the robot and of each
individual element.� Integrating a new microcontroller (e.g., a microcontroller of the PIC18 family with
CAN support) in the elements. This will be necessary to implement the CAN bus
(as the currently used PIC16F876A does not have any CAN support), and can ease
the integration of sensors in the elements.� Simplify and enhance the reprogramming possibilities of the robot. It would be really
useful to give the user the possibility of reprogramming most of the microcontrollers
(central locomotion controller, or local microcontrollers inside each element) using
the radio link.� Implement a really distributed CPG, with each couple of oscillators placed in their
own element. With the actual hardware this would be too difficult to implement
(this would require a multi-master I2C bus, with all the implied problems, e.g., bus
arbitration).� Having more status information and diagnostic possibilities (both locally on the
elements, for example with LEDs, and remotely).� Adding a degree of freedom to the limb elements, which are currently rigid and
interrupt the wave on the element chain; this would result in a better locomotion.

107

� Adding a supplementary degree of freedom to have the possibility to lift the body
(i.e., to remove the current limitation to planar locomotion).� Adding sensors. The current design does not integrate any sensors, except for the
motor incremental encoder. Among the possible sensor types to be included, the
following seem the most interesting: infrared distance sensors, accelerometers, light
sensors and cameras. The addition of sensors will allow the control loop to be closed,
by including sensory feedback in the CPG.

108

Remerciements

Je tiens tout d’abord à remercier Auke Ijspeert pour avoir supervisé ma thèse, étant
toujours disponible pour répondre à toutes mes questions et me conseiller, ainsi que pour
avoir développé les modèles de CPG utilisés tout au long de ce travail. Le projet de
construire un robot salamandre est sa création, et c’est grâce à ce projet que cette thèse
existe.

Pour qu’un projet tel que celui-ci puisse aboutir, la collaboration de plusieurs personnes
ayant des compétences différentes est primordiale. Je remercie donc toutes les personnes
qui ont d’une manière quelconque contribué à ce projet, et en particulier :

– André Guignard, qui a fait un travail énorme en concevant, construisant et réparant
toutes les parties mécaniques des différents robots (et pas uniquement). Sa grande
expérience nous a permis de trouver des solutions intéressantes à un grand nombre
de problèmes rencontrés lors du développement des robots. Bien que tu ne sois parti
à la retraite que depuis un mois, tu nous manques déjà...

– André Badertscher (« Chico »), qui a monté une grande partie des cartes électro-
niques des robots, ainsi que plusieurs parties mécaniques. Il a aussi la grande ca-
pacité de trouver des solutions simples à des problèmes complexes, et des solutions
complexes à des problèmes simples...

– Georges Vaucher et Peter Brühlmeier, qui ont routé la plupart des circuits impri-
més utilisés dans les robots, ainsi que les différents circuits utilisés en phase de
prototypage.

– Jean-Jacques Moreillon, qui a aidé à monter les parties mécaniques de la deuxième
génération de robots.

– Francesco Mondada, qui a mis à disposition le contrôleur PD développé au LSA, ce
qui nous a permis de commencer rapidement à contrôler des moteurs.

– Daniel Burnier, qui nous a fourni l’interface RS-232–I2C qui était utilisée pour le
contrôle de la première génération de robots.

– Daisy Lachat, qui a imaginé et construit la première version du robot poisson qu’elle
a nommé BoxyBot.

– Ariane Pasquier, qui a travaillé au-delà de ce qui lui était demandé pour nous aider
à mettre en place l’aquarium avec le robot poisson au forum découvertes.

– Adamo Maddalena, qui a contribué au développement du logiciel qui contrôle la

109

communication radio des robots.
– Jérôme Braure, qui a développé la simulation de la première génération de robot

salamandre, ainsi que Yvan Bourquin, qui a adapté cette simulation à la deuxième
génération.

– Fabien Vannel, qui a conçu le capteur tactile employé comme interface utilisateur
pour le robot poisson au forum découvertes.

Je remercie également Arianna Menciassi, Hiroshi Kimura et Francesco Mondada pour
avoir accepté d’être rapporteurs pour cette thèse et avoir donné leurs conseils pour amé-
liorer la première version de ce document.

Un bon environnement de travail a clairement une grande importance. Avec le temps
j’ai pu découvrir que la bonne ambiance qui règne au BIRG (et qui régnait auparavant
au LSL avant sa fermeture) n’est malheureusement pas la règle partout... un grand merci
donc à tous mes collègues : les contributions de chacun d’entre-vous sont indéfinissables,
mais le résultat est excellent.

Avoir des relations sociales positives et équilibrées est essentiel. Je tiens à remercier
en particulier Achille, Chiara, Danielle, Fabiana, Fabien, Nicole, Patrik, Vicky et Yariv
pour tous les moments passés ensemble : qu’il s’agisse de faire des discussions plus ou
moins profondes, de partager un repas ou de se balader au bord du lac, la contribution
de chacun a été importante. Merci également à toutes les personnes que je n’ai pas citées
ici mais qui ont pu m’apporter quelque chose : lister tout le monde serait pratiquement
impossible.

Merci enfin à mes parents, qui m’ont toujours soutenu tout au long de mes études et
de ma thèse.

110

Curriculum vitae

Personal data

Name Alessandro Crespi
Birth Locarno (TI), October 21st, 1979
Nationality Swiss
Address Biologically Inspired Robotics Group (BIRG)

EPFL – IC – ISIM – GRIJ
Station 14
CH-1015 Lausanne

Phone +41 21 693 66 30
Fax +41 21 693 37 05
e-mail alessandro.crespi@epfl.ch

Education� PhD student in computer science (2003–2007)
Biologically Inspired Robotics Group (BIRG)
Ecole Polytechnique Fédérale de Lausanne (EPFL)� Computer engineering (1998–2003)
Diplôme d’ingénieur informaticien (equivalent to a BSc/MSc in computer science)
obtained in March 2003.
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Publications

Journal papers� A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. AmphiBot I: An am-
phibious snake-like robot. Robotics and Autonomous Systems, 50(4):163–175, 2005.

111

� A.J. Ijspeert, A. Crespi, and J.-M. Cabelguen. Simulation and robotics studies
of salamander locomotion. Applying neurobiological principles to the control of
locomotion in robots. Neuroinformatics, 3(3):171–196, 2005.� A. Crespi, D. Lachat, A. Pasquier, and A.J. Ijspeert. Controlling swimming and
crawling in a fish robot using a central pattern generator. Autonomous Robots.
Submitted for review.� A. Crespi, A.J. Ijspeert. Online optimization of swimming and crawling in an am-
phibious snake robot. IEEE Transactions on Robotics. Submitted for review.� A.J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From swimming to walk-
ing with a salamander robot driven by a spinal cord model. Science, 315(5817):1416–
1420, 2007.

Conference papers� A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. An amphibious robot ca-
pable of snake and lamprey-like locomotion. In Proceedings of the 35th international
symposium on robotics (ISR 2004), 2004.� A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. Swimming and crawling
with an amphibious snake robot. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), pages 3035–3039, 2005.� D. Lachat, A. Crespi, and A.J. Ijspeert. BoxyBot: a swimming and crawling
fish robot controlled by central pattern generator. In Proceedings of the First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomecha-
tronics (BioRob 2006), 2006.� A. Crespi and A.J. Ijspeert. AmphiBot II: An amphibious snake robot that crawls
and swims using a central pattern generator. In Proceedings of the 9th International
Conference on Climbing and Walking Robots (CLAWAR 2006), 2006.� A.J. Ijspeert and A. Crespi. Online trajectory generation in an amphibious snake
robot using a lamprey-like central pattern generator model. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation (ICRA 2007),
2007.

Supervised student projects� Stephan Singh, Simulation neuromécanique de la salamandre en Java, winter semester
2003–2004.

112

� Adamo Maddalena, Développement d’une interface sans fil RS232–I2C, winter semester
2004–2005.� Daisy Lachat, BoxyBot: design and realization of a fish robot, summer semester
2005.� Sacha Contantinescu, Design of fish robot sensory system, summer semester 2005.� Sarah Marthe, Java Applet for the Locomotion Controller of the Salamander Robot,
winter semester 2005–2006.� Ariane Pasquier, BoxyBot, le robot poisson – Finitions et Présentation, winter
semester 2005–2006.

113

114

Bibliography

P. Arena. A mechatronic lamprey controlled by analog circuits. In Proceedings of the 9th

IEEE Mediterranean Conference on Control and Automation (MED ’01), 2001.

J. Ayers and J. Crisman. The lobster as a model for an omnidirectional robotic ambula-
tion control architecture. In R.D. Beer, R.E. Ritzmann, and T.M. McKenna, editors,
Biological neural networks in invertebrate neuroethology and robotics, pages 287–316.
Academic Press, 1993.

J. Ayers, J. Witting, N. McGruer, C. Olcott, and D. Massa. Lobster robots. In T. Wu and
N. Kato, editors, Proceedings of the International Symposium on Aqua Biomechanisms,
2000.

R. Breithaupt, J. Dahnke, K. Zahedi, J. Hertzberg, and F. Pasemann. Robo-salamander
– an approach for the benefit of both robotics and biology. In Proceedings of the 5th

International Conference on Climbing and Walking Robots (CLAWAR 2002), 2002.

R. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, 1973.

G.S. Chirikjian and J.W. Burdick. Design, implementation, and experiments with a
thirty-degree-of-freedom ‘hyper-redundant’ robot. In ISRAM 1992, 1992.

H.R. Choi and S.M. Ryew. Robotic system with active steering capability for internal
inspection of urban gas pipelines. Mechatronics, 12:713–736, 2002.

A.H. Cohen, P.J. Holmes, and R. Rand. The nature of coupling between segmented
oscillations and the lamprey spinal generator for locomotion: a mathematical model.
Journal of Mathematical Biology, 13:345–369, 1982.

J.E. Colgate and K.M. Lynch. Mechanics and control of swimming: A review. IEEE
Journal of Oceanic Engineering, 29(3):660–673, 2004.

J. Conradt and P. Varshavskaya. Distributed central pattern generator control for a
serpentine robot. In ICANN 2003, 2003.

115

A. Crespi and A.J. Ijspeert. AmphiBot II: An amphibious snake robot that crawls and
swims using a central pattern generator. In Proceedings of the 9th International Con-
ference on Climbing and Walking Robots (CLAWAR 2006), 2006.

A. Crespi and A.J. Ijspeert. Online optimization of swimming and crawling in an am-
phibious snake robot. IEEE Transactions on Robotics, 2007. Submitted for review.

A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. An amphibious robot capable of
snake and lamprey-like locomotion. In Proceedings of the 35th international symposium
on robotics (ISR 2004), 2004.

A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. AmphiBot I: An amphibious
snake-like robot. Robotics and Autonomous Systems, 50(4):163–175, 2005a.

A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. Swimming and crawling with
an amphibious snake robot. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation (ICRA 2005), pages 3035–3039, 2005b.

A. Crespi, D. Lachat, A. Pasquier, and A.J. Ijspeert. Controlling swimming and crawling
in a fish robot using a central pattern generator. Autonomous Robots, 2007. Submitted
for review.

H. Date, Y. Hoshi, M. Sampei, and N. Shigeki. Locomotion control of a snake robot with
constraint force attenuation. In Proceedings of the American Control Conference, pages
113–118. AACC, June 2001.

F. Delcomyn. Neural basis for rhythmic behaviour in animals. Science, 210:492–498, 1980.

X. Deng and S. Avadhanula. Biomimetic micro underwater vehicle with oscillating fin
propulsion: System design and force measurement. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation (ICRA 2005), pages 3312–3317,
2005.

K. Dowling. Limbless Locomotion: Learning to Crawl with a Snake Robot. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, December 1997.

G. Dudek, P. Giguere, C. Prahacs, S. Saunderson, J. Sattar, L.-A. Torres-Mendez,
M. Jenkin, A. German, A. Hogue, A. Ripsman, J. Zacher, E. Milios, H. Liu, P. Zhang,
M. Buehler, and C. Georgiades. AQUA: An amphibious autonomous robot. Computer,
40:46–53, 2007.

D. Duff, M. Yim, and K. Roufas. Evolution of PolyBot: A modular reconfigurable robot.
In Proceedings of the Harmonic Drive Intl. Symposium, Nov. 2001.

116

M. Fiala. ARTag revision 1. A fiducial marker system using digital techniques. Tech-
nical Report NRC 47419, National research council Canada, institute for information
technology, 2004.

Y. Fukuoka, H. Kimura, and A.H. Cohen. Adaptive dynamic walking of a quadruped
robot on irregular terrain based on biological concepts. The International Journal of
Robotics Research, 22(3–4):187–202, 2003.

C. Gans. Biomechanics: an approach to vertebrate biology. University of Michigan Press,
1974.

G.B. Gillis. Undulatory locomotion in elongate aquatic vertebrates: Anguilliform swim-
ming since sir james gray. American Zoologist, 36:656–665, 1996.

J. Gray. The mechanism of locomotion in snakes. Journal of Experimental Biology, 23:
101–120, 1946.

S. Grillner, T. Degliana, Ö. Ekeberg, A. El Marina, A. Lansner, G.N. Orlovsky, and
P. Wallén. Neural networks that co-ordinate locomotion and body orientation in lam-
prey. Trends in Neuroscience, 18(6):270–279, 1995.

A. Hiraoka and H. Kimura. A development of a salamander robot - design of a coupled
neuro-musculoskeletal system. In Proceedings of the Annual Conference of the Robotics
Society of Japan, Osaka, 2002. (Paper in Japanese).

S. Hirose. Biologically Inspired Robots (Snake-like Locomotors and Manipulators). Oxford
University Press, 1993.

S. Hirose and E.F. Fukushima. Snakes and strings: New robotic components for rescue op-
erations. In B. Siciliano and D. Paolo, editors, Experimental Robotics VIII: Proceedings
of the 8th International Symposium ISER02, pages 48–63. Springer-Verlag, 2002.

A.J. Ijspeert and A. Crespi. Online trajectory generation in an amphibious snake robot
using a lamprey-like central pattern generator model. In Proceedings of the 2007 IEEE
International Conference on Robotics and Automation (ICRA 2007), pages 262–268,
2007.

A.J. Ijspeert and J. Kodjabachian. Evolution and development of a central pattern gen-
erator for the swimming of a lamprey. Artificial Life, 5(3):247–269, 1999.

A.J. Ijspeert, J. Hallam, and D. Willshaw. Evolving swimming controllers for a simulated
lamprey with inspiration from neurobiology. Adaptive Behavior, 7(2):151–172, 1999.

117

A.J. Ijspeert, A. Crespi, and J.-M. Cabelguen. Simulation and robotics studies of sala-
mander locomotion. Applying neurobiological principles to the control of locomotion in
robots. Neuroinformatics, 3(3):171–196, 2005.

A.J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From swimming to walking
with a salamander robot driven by a spinal cord model. Science, 315:1416–1420, 2007.

B.C. Jayne. Swimming in constricting (Elaphe g. guttata) and nonconstricting (Nerodia
fasciata pietiventris) colubrid snakes. Copeia, pages 195–208, 1985.

B.C. Jayne. Kinematics of terrestrial snake locomotion. Copeia, 4:915–927, 1986.

M.W. Jørgensen, E.H. Ostergaard, and H.H. Lund. Modular ATRON: Modules for a self-
reconfigurable robot. In Proceedings of IEEE/RSJ International Conference on Robots
and Systems (IROS 2004), pages 2068–2073, 2004.

N. Kato. Control performance in the horizontal plane of a fish robot with mechanical
pectoral fins. IEEE Journal of Oceanic Engineering, 25(1):121–129, 2000.

B. Klaassen and K.L. Paap. GMD-SNAKE2: A snake-like robot driven by wheels and a
method for motion control. In Proceedings of 1999 IEEE International Conference on
Robotics and Automation (ICRA 1999), pages 3014–3019. IEEE, 1999.

G. Konidaris, T. Taylor, and J. Hallam. HydroGen: Automatically generating self-
assembly code for Hydron units. In Proceedings of the Seventh International Symposium
on Distributed Autonomous Robotic Systems (DARS04), 2004.

G.M. Kulali, M. Gevher, A.M. Erkmen, and I. Erkmen. Intelligent gait synthesizer for ser-
pentine robots. In Proceedings of the 2002 IEEE International Conference on Robotics
and Automation (ICRA 2002), pages 1513–1518, 2002.

D. Lachat, A. Crespi, and A.J. Ijspeert. BoxyBot: a swimming and crawling fish robot
controlled by central pattern generator. In Proceedings of the First IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006),
2006.

T. Lee, T. Ohm, and S. Hayati. A highly redundant robot system for inspection. In
Proceedings of the conference on intelligent robotics in the field, factory, service, and
space (CIRFFSS ’94), pages 142–149, Houston, Texas, 1994.

J. Liu, I. Dukes, R. Knight, and H. Hu. Development of fish-like swimming behaviours
for an autonomous robotic fish. In Proceedings of Control 2004, 2004.

118

J. Liu, I. Dukes, and H. Hu. Novel mechatronics design for a robotic fish. In Proceedings of
the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2005), pages 807–812, 2005.

J.H. Long, Jr., J. Schumacher, N. Livingston, and M. Kemp. Four flippers or two?
Tetrapodal swimming with an aquatic robot. Bioinspiration and Biomimetics, 1:20–
29, 2006.

Z. Lu, B. Ma, S. Li, and Y. Wang. Serpentine locomotion of a snake-like robot controlled by
cyclic inhibitory CPG model. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2005), pages 96–101, 2005.

D. Marbach and A.J. Ijspeert. Online optimization of modular robot locomotion. In Pro-
ceedings of the 2005 IEEE International Conference on Mechatronics and Automation
(ICMA 2005), pages 248–253, 2005.

F. Matsuno and K. Suenaga. Control of redundant 3D snake robot based on kinematic
model. In Proceedings of the 2003 IEEE International Conference on Robotics and
Automation (ICRA 2003), pages 2061–2066, 2003.

K. McIsaac and J. Ostrowski. Motion planning for anguilliform locomotion. IEEE Trans-
actions on Robotics and Automation, 19(4):637–652, 2003.

K.A. McIsaac and J.P. Ostrowski. A geometric approach to anguilliform locomotion:
Simulation and experiments with an underwater eel-robot. In Proceedings of 1999 IEEE
International Conference on Robotics and Automation (ICRA 1999), pages 2843–2848.
IEEE, 1999.

O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced Robotics
Systems, 1(1):39–42, 2004.

G.S.P. Miller. Neurotechnology for biomimetic robots, chapter Snake robots for search and
rescue. Bradford/MIT Press, Cambridge London, 2002.

S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. M-TRAN:
Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatron-
ics, 7(4):431–441, 2002.

J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato. An empirical
exploration of phase resetting for robust biped locomotion with dynamical movement
primitives. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2004), pages 919–924, 2004.

119

J. Ostrowski and J. Burdick. Gait kinematics for a serpentine robot. In Proceedings of the
1996 IEEE International Conference on Robotics and Automation (ICRA 1996), pages
1294–1299, 1996.

K.L. Paap, M. Dehlwisch, and B. Klaassen. GMD-snake: a semi-autonomous snake-like
robot. In Distributed Autonomous Robotic Systems 2. Springer-Verlag, 1996.

C. Prahacs, A. Saunders, M.K. Smith, D. McMordie, and M. Buehler. Towards legged
amphibious mobile robotics. Journal of Engineering Design and Innovation, 1P, 2005.

P. Prautsch and T. Mita. Control and analysis of the gait of snake robots. In Proceedings of
the 1999 IEEE International Conference on Control Applications (ICRA 1999), pages
502–507, 1999.

W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C:
the art of scientific computing, 2nd edition. Cambridge University Press, 1994.

R D. Quinn, G.M. Nelson, R.J. Bachmann, D.A. Kingsley, J. Offi, and R.E. Ritzmann.
Insect designs for improved robot mobility. In Proceedings of the 4th International
Conference on Climbing and Walking Robots (CLAWAR 2001), 2001.

M. Saito, M. Fukaya, and T. Iwasaki. Serpentine locomotion with robotic snakes. IEEE
Control Systems Magazine, 22:64–81, 2002.

U. Saranli, M. Buehler, and D.E. Koditschek. RHex – a simple and highly mobile hexapod
robot. The International Journal of Robotics Research, 20(7):616–631, 2001.

M. Sfakiotakis, David M. Lane, and J.B.C. Davies. Review of fish swimming modes for
aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2):237–252, 1999.

W. Shen, B. Salemi, and P. Will. Hormone-inspired adaptive communication and dis-
tributed control for self-reconfigurable robots. IEEE Transactions on Robotics and
Automation, 18(5):1–12, 2002.

W. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh. Multimode
locomotion for reconfigurable robots. Autonomous Robots, 20(2):165–177, 2006.

C. Stefanini, G. Orlandi, A. Menciassi, Y. Ravier, G. La Spina, S. Grillner, and P. Dario. A
mechanism for biomimetic actuation in lamprey-like robots. In Proceedings of the First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomecha-
tronics (BioRob 2006), pages 579–584, 2006.

G. Taga. A model of the neuro-musculo-skeletal system for anticipatory adjustment of
human locomotion during obstacle avoidance. Biological Cybernetics, 78(1):9–17, 1998.

120

T. Takayama and S. Hirose. Development of HELIX: a hermetic 3D active cord with
novel spiral swimming motion. In Proceedings of TITech COE/Super Mechano-Systems
Symposium 2001, pages D-3, 2001.

T. Takayama and S. Hirose. Amphibious 3D active cord mechanism “HELIX”with helical
swimming motion. In Proceedings of the 2002 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2002), pages 775–780. IEEE, 2002.

M.S. Triantafyllou and G.S. Triantafyllou. An efficient swimming machine. Scientific
American, 272(3):40–48, 1995.

D.P. Tsakiris, M. Sfakiotakis, A. Menciassi, G. La Spina, and P. Dario. Polychaete-
like undulatory robotic locomotion. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), pages 3029–3034, 2005.

D.P. Tsakiris, M. Sfakiotakis, and A. Vlakidis. Biomimetic centering for undulatory
robots. In Proceedings of the First IEEE/RAS-EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob 2006), pages 744–749, 2006.

Y. Umetani and S. Hirose. Biomechanical study of active cord mechanism with tactile
sensors. In Proceedings of the 6th international symposium on industrial robots, pages
c1-1–c1-10, Nottingham, 1976.

J. Ute and K. Ono. Fast and efficient locomotion of a snake robot based on self-excitation
principle. In Proceedings of the 7th International Workshop on Advanced Motion Con-
trol, pages 532–539, July 2002.

B. Webb. What does robotics offer animal behaviour? Animal Behaviour, 60:545–558,
2000.

B. Webb. Can robots make good models of biological behaviour? Behavioral and brain
sciences, 24:1033–1050, 2001.

B. Webb. Robots in invertebrate neuroscience. Nature, 417:359–363, 2002.

B. Webb and R. Reeve. Reafferent or redundant: Integration of phonotaxis and optomotor
behavior in crickets and robots. Adaptive Behavior, 11(3):137–158, 2003.

C. Wilbur, W. Vorus, Y. Cao, and S.N. Currie. Neurotechnology for biomimetic robots,
chapter A Lamprey-Based Undulatory Vehicle. Bradford/MIT Press, Cambridge Lon-
don, 2002.

R. Worst. Robotic snakes. In Third German Workshop on Artifical Life, pages 113–126.
Verlag Harri Deutsch, 1998.

121

H. Yamada, S. Chigisaki, M. Mori, K. Takita, K. Ogami, and S. Hirose. Development of
amphibious snake-like robot ACM-R5. In Proceedings of the 36th International Sympo-
sium on Robotics, 2005.

J. Yu, M. Tan, S. Wang, and E. Chen. Development of a biomimetic robotic fish and
its control algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 34(4):1798–1810, 2004.

122

