
858 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 5, AUGUST 2008
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Sender-Driven Video Streaming
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Abstract—We propose a sender-driven system for adaptive
streaming from multiple servers to a single receiver over sepa-
rate network paths. The servers employ information in receiver
feedbacks to estimate the available bandwidth on the paths and
then compute appropriate transmission schedules for streaming
media packets to the receiver based on the bandwidth estimates.
An optimization framework is proposed that enables the senders
to compute their transmission schedules in a distributed way,
and yet to dynamically coordinate them over time such that the
resulting video quality at the receiver is maximized. To reduce
the computational complexity of the optimization framework an
alternative technique based on packet classification is proposed.
The substantial reduction in online complexity due to the resulting
packet partitioning makes the technique suitable for practical
implementations of adaptive and efficient distributed streaming
systems. Simulations with internet network traces demonstrate
that the proposed solution adapts effectively to bandwidth vari-
ations and packet loss. They show that the proposed streaming
framework provides superior performance over a conventional
distortion-agnostic scheme that performs proportional packet
scheduling on the network paths according to their respective
bandwidth values.

Index Terms—Channel coding, distributed collaboration, In-
ternet, packet scheduling, source prunning, optimal control, packet
partitioning, protocols, rate control, rate-distortion optimization,
sender-driven transmission, video coding, video streaming.

I. INTRODUCTION

C OLLABORATIVE streaming has drawn considerable at-
tention in recent years. One of the scenarios that fall into

this category is distributed streaming, where multiple senders
transmit packets over separate network paths to a single re-
ceiver. This setting can be encountered for example in Con-
tent Delivery Networks (CDNs), where multiple streaming or
edge servers may stream multimedia data to a single client, or
in peer-to-peer (P2P) overlay networks, where a client may have
access to the same multimedia data at multiple peers in the net-
work. A related concept is the Digital Fountain model [1] where

Manuscript received March 17, 2006; revised January 16, 2008 and January
18, 2008. Published July 9, 2008 (projected). This work was presented in part
at the International Conference on Multimedia and Expo (ICME), Toronto,
Canada, July 2005. This work was supported in part by the Swiss National
Science Foundation under Grants PP002-68737 and CTI 7388.2 ESPP-E. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Wenjun (Kevin) Zeng.

J. Chakareski was with the Signal Processing Institute, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

P. Frossard is with the Signal Processing Institute, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland (e-mail:
pascal.frossard@epfl.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2008.921846

the system tries to minimize the download time of a file at a
client by connecting to multiple mirror server sites.

The possibility to receive the same data over multiple paths
increases the resilience of the media presentation to network
outages or congestion onsets. These may occur on some of the
paths and thereby may prevent the timely delivery of the data
units sent exclusively over those individual paths. Furthermore,
if the network paths exhibit good transmission quality it may
be still desirable to spread the transmissions of the media data
over multiple paths, i.e., to send different data units over dif-
ferent paths, in order to reduce the start-up delay of the client
application and to ensure smooth and continuous play-out. The
adaptive streaming session can be controlled either by the re-
ceivers, or by the senders. The latter solution provides several
advantages in terms of media optimization, since the relative
importance of the media packets can be known at the servers.
In addition, the deployment of practical solutions is facilitated
in this case since the management of overall network resources
becomes easier, and the clients do not require any complex or
non-standard functionality to access the streaming application.

We propose in this paper a distributed sender-driven
streaming solution where servers collaboratively adapt to the
network status in order to provide the media client with a
superior video quality. The objective is to take benefit from
the advantages offered by multipath streaming [2], [3] without
complex synchronization or communication between servers.
Instead of computing transmission schedules for every sender
as in receiver-driven approaches, the client only monitors
incoming packets and sends back information about the net-
work availability. This information is distributed to all the
servers, such that they can coordinate the delivery of the media
stream, and avoid wasting bandwidth resources. Bandwidth
estimates are then used in conjunction with a rate-distortion
optimization framework to compute appropriate transmission
actions at each sender. In essence, this framework enables the
senders, based on the feedback information from the client, to
compute independently, yet in a coordinated fashion, what their
respective transmission policies should be, given the available
bandwidth on each network path. In order to maximize the
resulting video quality at the receiver, each sender takes into
account the relative distortion importance of every video packet
when computing its transmission policy.

The computational load imposed by the global optimization
framework, however, increases with the number of servers,
which may be prohibitive in practical scenarios. Therefore,
we propose an alternative algorithm based on a priori packet
classification. The technique achieves similar performance
with a dramatically reduced complexity, thereby providing an
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interesting solution for practical and scalable implementations
of adaptive and efficient distributed streaming systems. Simu-
lation results on real internet traces demonstrate the superiority
of the proposed rate-distortion optimized system compared to
distortion-agnostic streaming solutions.

To the best of our knowledge, the earliest work that studied
the problem of transmission coordination among the multiple
senders in distributed streaming is [4]. In this work, the authors
propose an algorithm that is run at the client and that performs
rate allocation and packet partitioning among the senders. Based
on this information the servers then adjust their sending rates in
order to meet constraints from the network, which aggregated
bandwidth still allows to transmit the complete media stream. In
a follow-up work, the authors combined the previously proposed
algorithm with forward error correction for improved error re-
silience to burst packet loss [5]. Similarly, the works in [6], [7]
consider receiver-driven control protocols that synchronize the
senders’ transmissions in a rate-distortion optimized way. For
improved error-resilience, Multiple Description Coding (MDC)
is employed at each sender to pre-encode (prior to transmission)
a progressively encoded media content that is streamed after-
wards to the client. Another related work is [8], where a rate-dis-
tortion optimization framework is proposed for packet sched-
uling in receiver-driven distributed video streaming. The paper
establishes that the gains in performance due to server (path)
diversity, relative to a single server (path) case, are dependent
on the quality of the network paths in terms of packet loss and
delay. Finally, the works in [3], [9] examine the performance of
an MDC scheme for distributed video streaming in CDNs. The
authors report a 20–40% reduction in client video distortion,
for the considered network conditions and topologies, relative
to conventional CDNs that do not employ multiple description
encoded video streams.

Differently from the prior work, we propose in this paper
an optimization framework for sender-driven streaming, where
multiple servers synchronize their transmission schedules for
sending parts of a standard (single description) video stream
under bandwidth and delay constraints. Each server selects the
media packets that have to be transmitted in priority and deter-
mines the corresponding scheduling strategy in order to mini-
mize the distortion at the receiver. The assistance from the re-
ceiver is limited to feedback necessary for bandwidth estima-
tion, which is certainly required for the design of efficient adap-
tive streaming strategies.

The rest of the paper is organized as follows. In Section II,
we describe the distributed streaming system, and formulate the
rate-distortion optimization problem when servers collaborate
to minimize the distortion at the client. Section III describes
the media and network models, and the methodology that is
used for computing the rate-distortion optimal packet sched-
uling strategy. A low-complexity solution is later proposed in
Section IV, where a priori source pruning and packet classi-
fication allow to dramatically reduce the computational com-
plexity relative to the original optimization framework. Finally,
in Section V, simulation experiments on synthetic and realistic
network traces show that both algorithms outperform a conven-
tional distortion-agnostic system, which performs packet sched-
uling based only on the available bandwidth.

Fig. 1. Distributed streaming: multiple senders—single receiver.

II. SENDER-DRIVEN DISTRIBUTED STREAMING

A. Media Communication Model

We consider a streaming system with senders (servers)
transmitting a media presentation on independent bidirec-
tional paths to a streaming media client, as illustrated in Fig. 1.
The media presentation is available at each server in the form
of a collection of interdependent data units with delivery dead-
lines. The servers encapsulate media data units into packets
and collaboratively stream (parts of) the media presentation
to the streaming client. The client, in turn, monitors incoming
packets, and piggybacks information about the availability
of the network paths on acknowledgment packets to all the
sending servers. Based on this information, the servers period-
ically estimate the bandwidth available on all the paths from
the senders to the media client. At the end of each estimation
period the servers therefore know bandwidth estimates

for every path. This information is used to adapt
the rate-distortion optimized streaming strategy to a varying
network availability.

Based on bandwidth estimates, the servers then select the ap-
propriate transmission schedules for sending the media packets.
Specifically, a transmission schedule or policy represents the ac-
tions performed by the servers on a given data unit , at each
transmission opportunity. More formally, let be
a window of transmission opportunities at which the senders
can transmit packets with the data unit to the streaming client,
prior to its delivery deadline (i.e., ).
The transmission policy for data unit then forms a matrix of
binary actions , for , and ,
where the row and column indices denote respectively the cor-
responding sender/path and transmission opportunity at which
that action is undertaken. In other words, signifies the
transmission of a packet with the data unit by the server at
transmission opportunity , and signifies the converse.
The arrival of a packet with the data unit at the client is imme-
diately acknowledged to every sender by sending acknowledg-
ment packets in the backward direction on all paths. Note
that sender will only send a packet with the data unit for

if no acknowledgment arrives at the sender by to
report the correct reception of the data unit due to earlier trans-
missions.

B. Optimization Problem

We are interested in finding the transmission policy that min-
imizes the distortion experienced at the client, under constraints
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TABLE I
PARAMETERS USED IN THE DISTRIBUTED STREAMING ALGORITHM

Fig. 2. Directed acyclic graph: illustration of data unit interdependencies in a typical scalable media stream (I, P, and B, respectively, represent Intra, Predicted
and Bidirectional predicted frames in MPEG terminology).

given by the available bandwidth on each network path. Sup-
pose that there are data units in the multimedia session. Let

be the transmission policy for data unit and
let be the vector of transmission policies for
all data units. Any given policy vector induces for the mul-
timedia session an expected distortion and a vector of ex-
pected transmission rates on
the forward channels of the network paths. We thus seek the
policy vector that minimizes the expected distortion
such that the expected transmission rate in the forward direction
on every network path does not exceed the available bandwidth,
i.e.,

(1)

Using the method of Lagrange multipliers, we reformulate
(1) as an unconstrained optimization problem. That is, we seek
the policy vector that minimizes the expected Lagrangian

for some vector of positive
Lagrange multipliers , and thus achieves a
point on the lower convex hull of the set of all achievable distor-
tion-rate pairs .1 We solve the rate-distortion opti-
mized distributed streaming problem in the next section, and we

1Equivalently, the set of all achievable distortion-rate (D;R ; . . . ; R )
(M + 1)-tuples.

later propose a low complexity solution based on packet classi-
fication. For the sake of clarity, we summarize the notation used
in this paper in Table I.

III. RATE-DISTORTION OPTIMIZED DISTRIBUTED STREAMING

A. Media and Network Models

We first overview the media and network models that we
use to solve the optimization problem of distributed streaming.
These models are commonly accepted and have been widely
used recently for the design of optimized streaming solutions.
We limit ourselves to the minimal presentation necessary to un-
derstand the algorithms proposed in this paper, and refer the
reader to [10], [11] for more details.

In a streaming media system, the encoded data are packetized
into data units and stored in a file on a media server. We con-
sider here non-scalable as well as layered streams proposed by
recent standardization bodies, as opposed to multiple descrip-
tion video coding that is generally limited to two descriptions,
hence two streaming servers. All the data units in the presen-
tation have interdependencies, which can be expressed by a di-
rected acyclic graph, as illustrated in Fig. 2. Each node of the
graph corresponds to a data unit, where an edge of the graph di-
rected from data unit to data unit implies that data unit can
be decoded only if data unit is first decoded.



CHAKARESKI AND FROSSARD: DISTRIBUTED COLLABORATION FOR ENHANCED SENDER-DRIVEN VIDEO STREAMING 861

Fig. 3. Framework for distributed streaming with packet erasure channels.

Associated with each data unit is a size , a decoding
time , a set of data units and an importance .
Specifically, the size is the size of the data unit in bytes.

is the delivery deadline by which data unit must ar-
rive at the client to be usefully decoded. Packets containing data
units that arrive after the data units’ delivery deadlines are dis-
carded. Furthermore, is the set of data units
that the receiver considers for error concealment in case data
unit is not decodable by the receiver on time. Finally, ,
for , is the reduction in reconstruction error (distor-
tion) for the media presentation, when data unit is not decod-
able but is concealed with data unit that is received and de-
coded on time.

The network is represented as a simple model where the for-
ward and backward directions on the network path between a
sender (server) and the receiver are described as independent
time-invariant packet erasure channels with random delay, as
represented in Fig. 3. In general, each of the paths has different
characteristics in terms of loss probability or latency. Hence,
the path (for ) is specified with the prob-
abilities of packet loss and , and the probability densi-
ties of the transmission delay and , respectively. This
means that if a server sends a packet on the forward channel

at time , then the packet is lost with probability . How-
ever, if the packet is not lost, then it arrives at the client at time

, where the forward trip time is randomly
drawn according to the probability density . Therefore, we
let denote the
probability that a packet transmitted by the server at time does
not arrive at the client application by time , whether it is
lost in the network or simply delayed by more than . Similar
relations can be defined for the backward channel, which induce
a probability of losing a packet ei-
ther on the forward or backward channel, and a round trip time
distribution ,
where is the convolution of and . Note
that is the probability that the server does
not receive an acknowledgment packet by time for a data
packet that has been transmitted at time .

B. Expected Distortion and Streaming Rate

Now that media and network models are defined, we can
compute the distortion and the streaming rate that

result from a streaming policy . We do that by extending to
the multiple sender case the formulation proposed in [10], [11].
The expected transmission rate on path is the sum of
the expected transmission rates on this path for each data unit

in the presentation:

(2)

where is the size of data unit in bytes and is the
expected cost per byte, or the expected number of transmitted
bytes per source byte under policy on path . The expected
distortion is somewhat more complicated to express, but
it can be expressed in terms of the expected error, or the proba-
bility that data unit does not arrive at the client on time
(under policy ). It reads

(3)

where is the expected reconstruction error for the presenta-
tion if no data units are received. is the set of ancestors of

, including . is the set of data units
that are not mutual descendants, i.e., for

, where is the set of descendants of data
unit , and “ ” denotes the operator “set difference”.

The expected error-cost functions for sender-driven dis-
tributed streaming can be derived by extending the results from
[11] to the multiple path case. Recall that is the probability
that data unit is not delivered on time given the transmission
actions in . Furthermore, the expected cost on path at
transmission opportunity is zero if , and otherwise
it is equal to the probability that no acknowledgments arrive at
sender by , as a result of previous transmissions of the data
unit. Hence, sender computes these two quantities using

(4)
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(5)

where the conditional probabilities in (4) and (5) can be com-
puted using Bayes’ rule [12] and the fact that

, for nonnegative and . To this end,
note that the probability densities of the sums
can be obtained as the convolution of the corresponding densi-
ties for and .

C. Rate-Distortion Optimization

Based on the expressions for the expected distortion and
streaming rate as functions of the streaming policy , we now
have to find the policy vector that minimizes the expected
Lagrangian . This is in general difficult since the terms
involving the individual policies in are not indepen-
dent. Therefore, we employ an iterative descent algorithm,
called Iterative Sensitivity Adjustment (ISA), in which we
minimize the objective function one variable
at a time while keeping the other variables constant, until
convergence [10], [11]. The appropriate choice of the Lagrange
multipliers that allow to meet the bandwidth constraints is
then determined as follows. We initially select , for

, and some . We repeatedly rerun the
ISA optimization algorithm till convergence, while adjusting
one of the Lagrange multipliers every time the optimization
algorithm converges. The Lagrange multiplier is adjusted
using the bisection search technique [13]–[15] until either the
target rate is achieved or the interval wherein can range
becomes smaller than a predefined threshold. The procedure
outlined above is repeated until we properly adjust all Lagrange
multipliers.

It is the duty of sender , , to recompute the
optimal policy for data unit at every and then execute

from . This is done in order to account for acknowledg-
ments received by the senders due to packets carrying other data
units sent prior to and also to account for prospective band-
width variations on the network paths. Clearly, the search for
the optimal transmission policy, as described before, may lead
to systems that does not scale very well in practice; indeed, the
overall computational complexity, as well as the computational
complexity at each server, increase with the number of senders.
This is the price to pay for having a fully distributed streaming
strategy, where the sending servers do not communicate among
themselves. In the subsequent section, we therefore propose a
low complexity algorithm based on source pruning and packet
classification that dramatically reduces the computational re-
quirements of the system.

IV. LOW-COMPLEXITY DISTRIBUTED STREAMING

A. Packet Classification Based on Source Pruning

In order to reduce the complexity of the rate-distortion opti-
mization problem described in the previous section, we now de-
sign a low-complexity algorithm based on media packet classi-
fication. The classification that can be computed offline, is built
on a rate-distortion pruning strategy, which has been proposed
in [16] for the design of low-complexity adaptive streaming sys-
tems. The source pruning strategy defines the set of the most im-
portant packets that should be transmitted when the average bit
rate is constrained. It establish priorities between packets and
proceeds as follows.

We are interested in finding the vector of packet selection
actions for the presentation, where
denotes the action of keeping data unit in the presentation,
while signifies the converse. The incurred reconstruction
error (or distortion) for the media presentation associated with
a particular vector is denoted and can be computed as

(6)

where the notation simply signifies the fact that the choice
of a subset from that will be used to reconstruct data unit
depends on the selection vector . Similarly, the associated data
rate of the source as a function of the selection vector can
be computed as . We are interested in finding
the optimal selection vector that minimizes the resulting re-
construction error and for which the data rate of the source does
not exceed the available resource as given by , i.e.,

(7)

Using the method of Lagrange multipliers the solution to the
constrained optimization problem can be replaced with an
equivalent convex hull approximation that is obtained as a
solution of the unconstrained optimization problem given as

(8)

where is a Lagrange multiplier. The adjustment of
according to the rate constraint is performed in an itera-
tive fashion using a bisection search technique. Due to interde-
pendencies between media packets, the solution for the optimal
policy vector is again computed by using the ISA algorithm that
minimizes the Lagrangian one compo-
nent at a time, until convergence [10], [11], [16].

The source pruning algorithm leads to a straightforward
classification of the media packets as a function of the target
streaming rate. Running the pruning scheme at successive target
rates directly results in fine packet classification. The packet
partitioning then simply performs as follows. Let
be a sequence of monotonically increasing data rates. Packets
of a media stream are classified into sets , where
the sets are obtained by pruning the source at the corre-
sponding rates , for . It is important to note
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Fig. 4. Operational R �Q function obtained via packet classification.

that the pruning algorithm typically creates embedded sets,2

i.e., for any two sets and such that , it holds that
. Therefore, a comprehensive pruning of the full stream

is not necessary at all target rates, and the classification can be
performed iteratively with a limited complexity.

In essence, the procedure described above outlines the opera-
tional rate-quality3 function for the media source, as represented
by its data units. This is illustrated in Fig. 4, where for each
rate point , there is a companion video quality point , and
where the data units are denoted as packets , for .
The incremental increase in quality and rate that each new set

provides relative to its predecessor can be determined
as .4 Hence, each seg-
ment of the operational function can be characterized
with a “gradient” of the function (on that segment) defined as

. In plain words, denotes the per unit rate
increase in quality that the segment adds to the reconstructed
video stream. For more details on the packet pruning algorithm,
the reader is referred to the cited [16].

B. Streaming via Packet Partitioning

We propose the following algorithm for partitioning the
packets of a video stream among the senders based on
the available bandwidth. Each sender employs the technique
proposed above in order to create a priori the subsets for
the video stream. A sufficiently large range of data rates is
chosen so that it covers the possible bandwidth fluctuations
encountered on the network paths. Moreover, a sufficiently
large is chosen so that there is fine (incremental) division of
the data rate range . Note that should be chosen
such that it corresponds to the encoding rate of the source, i.e.,

contains all the packets from the video stream.
Now, given the vector of estimated bandwidth values on every

path the packet partitioning algorithm proceeds as

2This is due to the fact that the actual rates associated with the sets S lie on
the convex hull of the operational rate-distortion function for the compressed
packetized media [16].

3In this context, quality is inversely proportional to reconstruction distortion.
For example, distortion can represent the MSE of the reconstructed media units,
while quality can then be the PSNR of this quantity.

4It can be safely assumed that R = Q = 0.

Fig. 5. Distributed streaming via packet partitioning.

follows. If there is an such that it holds
, then we are done. The video stream is simply streamed on

any one of the paths for which the above is true.5 Otherwise,
for each sender solves for the index
according to

(9)

and sends to the client the packets from the set
, where “ ” denotes the operator “set difference”.

In case there is an for which , there is no
need to run the algorithm further, i.e., for the rest of the indices

. In other words, we would reach a point where we
could send all the packets from the video stream on the first
paths. Note that employing such a procedure for constructing
the partitions of packets sent on each path is possible because
of the property that the sets are embedded, as mentioned
earlier. We summarize the packet partitioning algorithm in
Fig. 5.

The algorithm can be generalized in a straightforward
manner to the case when the network paths exhibit packet loss
in the forward direction, in addition to the varying bandwidth.
In particular, let denote the erasure rate of packets sent to
the client on path , for . These quantities can
be estimated by the client based on missing sequence numbers
of arriving packets and can be piggybacked periodically to the
senders on the corresponding acknowledgments. The modifi-
cation on the senders’ part then consists of merely employing
the updated bandwidth estimates
in the packet partitioning algorithm. Note that the effective
bandwidth is surely a good approximation when the number
of packets is large enough, or equivalently when the streaming
rate at each server is sufficiently high.

Note that partitioning the media packets among the senders
corresponds to distributing the streaming load among them
based on the available bandwidth on their respective network

5For example, the senders can agree ahead of time on the strategy where the
stream is sent on the first (smallest)m for which this condition holds.
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paths. Hence, the computational complexity of packet sched-
uling at each server is bounded by the number of packets
in the partition allocated to that server. This is equivalent to
partitioning the overall search space of transmission policies
for each server in the original optimization problem presented
in Section III. The search space at each server decreases with
the number of servers, and the computational complexity gen-
erally reduces linearly with the size of the search space [17].
Therefore, a dramatic reduction of the computational load at
each server is achieved relative to the rate-distortion optimal
solution.

V. SIMULATION RESULTS

A. Setup

This section examines the performance of the proposed opti-
mization framework, henceforth denoted RDOpt, for distributed
streaming of packetized video content. The performance of
its low-complexity alternative, henceforth denoted PackClas,
is also investigated. The video content employed in the simu-
lation experiments are the test video sequences Foreman and
Mother & Daughter in QCIF size encoded at 10 fps using an
H.264 codec [18]. Each sequence is encoded with a constant
quantization level at an average luminance (Y) PSNR of about
36 dB and a Group of Pictures (GOP) size of 20 frames, where
each GOP consists of an I frame followed by 19 consecutive
P frames. Performance is measured in terms of the average
Y-PSNR of the frames of a reconstructed video content at the
receiver. Video frames that are not delivered on time are re-
placed by the receiver using previous frame error concealment.

We consider the case with two streaming servers
that transmit the video content to a client over two indepen-
dent network paths. The time interval between transmission op-
portunities has been set to . It should be noted
that at every time instance at which packet scheduling is per-
formed, a sender considers only a subset of the media packets for
the presentation. This subset is chosen by employing a sliding
window over the whole set of media packets [10], according to
the packets’ delivery deadlines. In essence, the sliding window
selects the packets that are most relevant (pressing) to be sent
given the current transmission opportunity .

A simple algorithm is implemented to estimate the trans-
mission bandwidth for the streaming session. The receiving
client monitors the forward-trip time (FTT) of arriving packets
and piggybacks this information on returning acknowledg-
ment packets to all the sending servers. In particular, let

be the transmission delays experi-
enced by packets received by the client on path and returned to
the servers via the corresponding acknowledgments in the last

seconds. Then, the most recent estimate for the bandwidth
(data rate) available on path is computed by the servers as

. This is simply the average of
the most recent estimates of the available bandwidth on the
path associated with the corresponding received packets, where

is the size of packet in bits (or bytes). The time period
employed at the server for bandwidth estimation has been set
to , in accordance to the techniques proposed in [19].
It can be noted that other bandwidth estimation methods can be

implemented at the server, such as the one proposed in [19] or
inspired from [20], [21], since delays and loss rate information
are made available via receiver feedbacks. We do not expect
that the actual bandwidth estimation method would however
change the analysis and the conclusions derived in this paper.

For comparison purposes, in the simulations we also examine
the performance of a conventional system, denoted Baseline,
which performs proportional packet scheduling based only on
the available bandwidth values. In particular, the two senders
split the packets of a video stream in proportion to the bandwidth
estimates on the corresponding network paths. Packet dropping
decisions in Baseline are performed randomly without taking
into account their specific distortion importance. In other words,
Baseline is distortion-agnostic.

B. Distributed Streaming Over the Internet

We simulate the behavior of our distributed streaming system
in practical settings, and we consider sending the video content
over network traces of actual packet delays and losses collected
in the Internet. The two senders are located on the East Coast,
while the receiving destination is located on the West Coast
of the continental USA. We examine the performance of the
sending sources for delivering the media content to the receiving
destination over their respective network paths using each of the
three scheduling mechanisms considered in our experiments. To
collect the network traces packet probes of 50 Bytes were sent in
both directions on each path every 10 ms for the duration of two
full days in order to sample continuously the network conditions
on the paths. The data rate of the probes (40 kbps) represents a
small fraction of the access links at the sender and the receiver,
thereby not having an effect on the delay and loss characteris-
tics of the paths. For more details on the methodology that was
employed to collect the traces and the related issues, the reader
is referred to [22].

In Fig. 6, we examine the performance of the scheduling
schemes in terms of the Y-PSNR quality computed on the se-
quence reconstructed at the decoder. The performances are re-
ported as a function of the playback delay at the receiver, for
streaming the Foreman sequence from two servers. It can be
seen that both optimized schemes, RDOpt and PackClas, outper-
form the conventional system Baseline with a significant margin
when the playback delay is small. This is due to the fact that
RDOpt and PackClas can take advantage of the different im-
portance of the media packets when scheduling their transmis-
sions. In particular, by sending the most important packets first
and ahead of time, these schemes increase the likelihood of
successful delivery of the corresponding data units to the re-
ceiving client. This in turn reduces the reconstruction distortion
for the media presentation that the client would observe on the
average. On the other hand, as the baseline scheme does not have
the knowledge of packet importance, it schedules every packet
equally, which in turn results in higher average distortion for the
reconstructed stream.

It should be mentioned that the lower end of playback de-
lays considered here are sufficiently small (relative to the packet
delays experienced on the network paths) to effectively pro-
hibit packet retransmissions. Retransmissions would certainly
improve the performance of all three scheduling mechanisms,
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Fig. 6. Distortion performance for streaming Foreman over network traces as
a function of play-out delay.

and especially of the conventional technique. This is evident
from Fig. 6 for the higher end of playback delay values, when
the performances of the three schemes converge. Finally, note
that the difference in performance between RDOpt and Pack-
Clas is non-negligible, as shown in Fig. 6. RDOpt represents
the rate-distortion bound for a given playback delay. Contrarily
to PackClas, it can schedule transmissions of the same packet,
in case of high importance, from both senders, which increases
the likelihood of its delivery.

We observed similar relative performance between the three
systems in the case of Mother & Daughter. As seen from Fig.
7, RDOpt and PackClas again provide substantially improved
performance over the baseline scheme for the lower range of
playback delays. The performance difference between the three
schemes then reduces as the playback delay is increased, which
is expected, as argued earlier for the case of the Foreman se-
quence. Finally, it should be mentioned that the performance
differences between the three systems exhibited in Fig. 7 are
somewhat smaller relative to the corresponding ones for the
Foreman sequence. This is due to the fact that error concealment
works more effectively in the case of Mother & Daughter due to
the slow-moving nature of this video content. This in turn ren-
ders the presence of certain video packets less crucial for the re-
construction quality of the video presentation, thereby reducing
the effects of the relative differences in packet delivery that each
of the scheduling schemes may contribute to.

C. Performance Analysis

Here, we examine in greater detail the performance of the
proposed system with a particular emphasis on its adaptivity to
bandwidth variations and packet loss. We choose a simple net-
work model in order to facilitate the analysis, where the network
bandwidth in the forward direction on each path is randomly
varying between a lower and an upper bound. The random fluc-
tuations of the available bandwidth occur every two seconds.

Fig. 7. Distortion performance for streaming Mother & Daughter over network
traces as a function of play-out delay.

The characterization of the bandwidth variations that we employ
here has been chosen to match typical bandwidth variations ob-
served in the Internet. At the same time, we do not expect that
the performance of the distributed streaming system is highly
sensitive to short time variations of the available bandwidth, as
long as the play-out delay of the client application allows for
buffering delays on the order of the time needed for accurate
bandwidth estimation. The playback delay of the client applica-
tion is set to one second, which is a small values for practical
streaming systems. It moreover corresponds to the time period

that is used for bandwidth estimation. In our simple network
model, the packet delay densities are assumed to be exponential
functions and are inherently tied to the available bandwidth on
the network paths. In particular, from the M/M/1 model [23] that
is frequently used to model network queues, we know that the
mean of the corresponding exponential distribution for the net-
work delay experienced by a packet is ,
where is the average packet size used
in our simulations, and is the available bandwidth. The
range in which the available bandwidth is randomly varying
is given as for one of the paths, and

for the other network path, where
is measured in kbps. Hence, the paths are asymmetric

in terms of available bandwidth and the backward channels that
are used only for acknowledgments packets are considered to
offer sufficient bandwidth in all cases.

1) Bandwidth Adaptation: We first analyze the behavior of
the distributed streaming system when it faces frequent varia-
tions of the available bandwidth. In particular, the packet loss
rates on the network paths are assumed to be zero (i.e.,

), and we study how the framework performs in ad-
justing the streaming rate of the video content to the bandwidth
variations of the underlying network. In the simulations, we
change across a certain range, and for each of its values
we record the corresponding Y-PSNR performances of RDOpt,
PackClas, and Baseline.
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Fig. 8. Rate-distortion performance for bandwidth adaptation of Foreman.

In Fig. 8, we show the performances of the three systems
under investigation for streaming the Foreman sequence, as a
function of the minimum transmission bandwidth available on
both paths during a session, i.e., . It can be
seen from the figure that RDOpt provides an improved perfor-
mance over the baseline system almost over the whole range
of values considered for the minimum overall bandwidth that
is available. The gains in performance are especially significant
in the lower half of the bandwidth range. For example, at 60
kbps minimum overall bandwidth there is a difference of 4.5 dB
in performance between the two systems. The improvement is
due to the fact that the optimized system takes into account the
distortion importance of the individual packets while adapting
the video stream to the available bandwidth. In particular, by
selecting the most important packets for transmission for the
given available data rate on each path, RDOpt ensures the best
possible reconstruction quality of the video presentation at the
receiver. On the other hand, Baseline performs bandwidth adap-
tation without treating the various packets preferentially, as it
is distortion-agnostic. Therefore, some more important packets
may be dropped at the expense of others, less important ones,
which would ultimately lead to a degradation in video quality at
the client.

The low-complexity technique also outperforms the baseline
system, as shown in Fig. 8. This is quite encouraging, as this
system induces only a small online complexity. The improved
performance of PackClas is due to the fact that the packet par-
titions from which the senders stream the video data are se-
lected based on the subsets of packets . These in turn are se-
lected such that they correspond to the maximum possible video
quality for the corresponding available data rates, as explained
in Section IV. It should be noted though that the low-complexity
technique provides a somewhat degraded performance relative
to the global optimization framework. The difference in per-
formance between the two systems reaches up to 1–1.2 dB in
the lower end of data rates. This is anticipated, as in the former
system streaming is performed based on the packet subsets

Fig. 9. Rate-distortion performance for bandwidth adaptation of Mother &
Daughter.

that are selected ahead of time. Therefore, they provide less flex-
ibility in terms of adapting to dynamic bandwidth variations
relative to the optimization framework, in which at every in-
stance a sender has access to all the packets from a video stream
when making transmission decisions. This is the necessary price
that systems like PackClas pay in order to reduce their online
complexity by having predefined sets of packets to choose from
when streaming. The number of packet sets is finite, and there-
fore fine adaptation to bandwidth variations is constrained by
the granularity of the target rates used for
the packet partitioning.

Finally, it can be seen from Fig. 8 that all three systems
perform alike for sufficiently large minimum overall band-
width. This is expected here since there is sufficient bandwidth
available throughout the session to ensure timely delivery
of all packets to the receiver in the case of each system. In
other words, no packet needs to be dropped anymore due to a
mismatch between the network bandwidth variations and the
dynamically varying source encoding rate.

Similar relative performances for the three systems are ob-
served for streaming Mother & Daughter, as shown in Fig. 9. It
can be seen that again both RDOpt and PackClass outperform
Baseline almost over the whole range of bandwidth values under
consideration, with gains reaching up to 6–8 dB in the lower
half of the bandwidth range. Similarly, there is a performance
gap between RDOpt and PackClass, which is due to the reason
explained earlier. Finally, when the overall available bandwidth
reaches a value at which no bandwidth adaptation is needed
throughout the session, all three systems perform identically, as
illustrated by their performances for 80 kbps minimum overall
bandwidth.

2) Adaptation to Bandwidth and Packet Loss: Next, we
examine the performance of RDOpt, PackClas, and Baseline
when adapting to both bandwidth variations and random packet
loss. In particular, in addition to dynamic bandwidth varia-
tions the communication channels also exhibit random packet
erasures. Therefore, packets will be lost during transmission
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Fig. 10. Bandwidth and packet loss adaptation of Foreman: (left) � = 5% and (right) � = 10%.

and a streaming system needs to decide then whether it would
retransmit packets or send new packets. This trade-off is
necessitated by the fact that the available bandwidth is insuf-
ficient to support sending all the packets together, including
the (re)transmissions. Note that the target rates used for the
packet classification in PackClas are adapted to match the
effective bandwidth on the streaming paths (see Section IV-B),
in order to take the loss process into account. In the new set of
simulations, we measure the performances of the three systems
as a function of the available data rate, but now in the presence
of packet loss. Specifically, we examine packet loss rates
of 5% and 10% on the forward channels from the senders to
the receiver.

In Fig. 10, we show the performances of the three distributed
streaming systems for transmitting the Foreman sequence on
lossy channels. First, it can be seen that all of them exhibit
a degraded performance relative to the corresponding results
shown in Fig. 8, where only bandwidth adaptation is performed.
This is expected since each of the streaming systems has to
take into account retransmissions of lost packets, in addition
to discarding packets due to bandwidth variations. Therefore,
higher data rates on the communication channels are needed to
achieve the same Y-PSNR performance relative to the case of
bandwidth adaptation only. Second, it can also be seen that the
performances of RDOpt, PackClas, and Baseline degrade with
increasing the packet loss rate. For example, for , all
three systems exhibit a Y-PSNR performance within the 33–34
dB range when the total available data rate on the channels is
140 kbps. However, that performance reduces to being in the
range of 30–32 dB for the same data rate at packet loss rate of
10%. Such a performance behavior across the three systems is
also expected, as increasing the loss rate reduces the number of
packets that can be delivered on time to the receiver, given a
fixed play-out delay.

The two optimized systems RDOpt and PackClas provide the
most significant gains over Baseline in the lower end of data
rates under consideration, especially for , as seen from

Fig. 10 (left). This is expected as these systems can trade off
the importance of each packet for the effective data rate, while
the conventional system is distortion agnostic. However, as the
packet loss rate is increased RDOpt and PackClas cannot take
a lot of advantage of their knowledge of the packets’ distor-
tion importance. Even though packets are prioritized in terms
of transmission, they become more likely to be lost and there is
not enough data rate to perform loss recovery by retransmission.
On the other hand, when there is sufficient data rate available on
the channels, all three systems can deal effectively with packet
losses by retransmission, as illustrated by their similar perfor-
mance in the upper end of the data rate range. Note that again
RDOpt outperforms PackClas over all data rates and packet loss
rates considered, as shown in Fig. 8. RDOpt achieves that by
taking advantage of the fact that it considers for transmission
the complete set of video packets, all of the time. This in turn
allows for more efficient dynamic adaption, as explained before.

In Fig. 11 we show the corresponding performances of
RDOpt, PackClas, and Baseline for streaming the “Mother &
Daughter” sequence. It can be seen that the relative perfor-
mances of the three systems across the different data rates and
packet loss rates under consideration exhibit a similar behavior
to those for the case of the Foreman sequence. In particular,
the optimized systems outperform more significantly the con-
ventional system in the lower end of data rates and especially
for lower packet loss rates. As the packet loss rate increases the
performances of the three systems degrade significantly and
therefore become more alike. In the same spirit, as the available
data rate is sufficiently large, the three systems perform alike
again. In this case, there is enough bandwidth to recover (almost
completely) from packet losses by retransmissions, as shown
in Fig. 11.

3) Bandwidth Estimation Performance: Finally, we examine
the performance of the simple algorithm described earlier for es-
timating the available bandwidth on a network path. In Fig. 12
(left), we show the bandwidth evolution over time on one of the
network paths when streaming Foreman. The solid line denotes
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Fig. 11. Bandwidth and packet loss adaptation of Mother & Daughter: (left) � = 5% and (right) � = 10%.

Fig. 12. Bandwidth variations over time on a network path when streaming Foreman. Random bandwidth changes occur every (left) 2 s, (right) 5 s.

the actual bandwidth values, while the dashed line represents its
estimate obtained using the proposed algorithm. It can be seen
from Fig. 12 (left) that the estimated values track quite well the
dynamic variations of the actual bandwidth on the path, espe-
cially given the fact that random bandwidth changes are initi-
ated frequently (every 2 s) relative to the bandwidth estimation
period (every one second). Notable discrepancies between the
actual and the estimated values occur only when there is a sub-
stantial sudden reduction in the available bandwidth, as illus-
trated at a few points in the bandwidth trace shown in Fig. 12
(left) (for example around Time equal to 18 s and 60 s on the
x-axis). This is expected, as the procedure for estimating the
available bandwidth is causal, i.e., it is based on previously re-
ceived acknowledgment packets within a time period. There-
fore, when the available network bandwidth suddenly and sub-
stantially drops there are not so many acknowledgment packets
received within the next time period that can be used for accu-
rate bandwidth estimation.

In order to examine how the frequency of bandwidth varia-
tions affects the accuracy of the estimation technique, we per-
formed the same simulations as before, but now with random
bandwidth fluctuations occurring every five seconds. These re-
sults are shown in Fig. 12 (right). It can be seen that the esti-
mated bandwidth values track even closer now the actual band-
width on a network path. That is because the bandwidth changes
less frequently now relative to the estimation period, which al-
lows for better and more stable estimates to be performed using
the proposed technique, as illustrated in Fig. 12 (right).

Finally, a useful evidence for the interpretation of the
streaming results presented earlier is the source encoding rate
of the Foreman video sequence used in the simulations, which
has an average value of 82.23 kbps. Even though the minimum
overall bandwidth is 100 kbps, and the average source encoding
rate is almost 20 kbps smaller than that, still there are points
along the time axis when the instantaneous source encoding
rate exceeds the available network bandwidth (marked with
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Fig. 13. Dynamic variations of overall bandwidth on the paths and of encoding
rate for Foreman.

arrows in Fig. 13 at Time roughly equal to 8 s and 35 s on the
x-axis). Therefore, packets need to be dropped at these points
to compensate for the insufficient transmission bandwidth,
which results in loss in Y-PSNR performance. It is interesting
to note that the same situation occurs when the instantaneous
source rate is larger than the estimate of the available network
bandwidth (though not necessarily of its actual value), as evi-
dent from Fig. 13 at Time equal to roughly 22 s. This is exactly
where the packet prioritization performed by the optimized
distributed streaming solutions proves to be advantageous com-
pared to a distortion-agnostic schedulers. Lastly, it should be
pointed out that analogous observations regarding the dynamics
of the source rate and the available network bandwidth were
made for the case of streaming Mother & Daughter.

D. Discussion

We have shown that the distributed streaming system based
on packet classification provides performance that is quite com-
petitive with the rate-distortion optimal solution. The subop-
timal behavior is due to several design choices, which objectives
are mainly driven by reducing the computational complexity
of the optimal streaming solution. In particular, a priori parti-
tioning of the media packets breaks the dependencies between
media units, since each server manages a distinct subset of data
units, independently of the streaming strategies decided by other
servers, on other complementary subsets of data units. Addition-
ally, we observed in our simulations that the rate-distortion op-
timal strategy sometimes sends the same packet from different
servers in order to increase the probability of on-time arrival
at the client of important packets. Such a strategy is excluded
from the streaming policies available in PackClas scheme, due
to the partitioning of the media packets into distinct subsets.
Finally, another limitation of PackClas stems from the gran-
ularity of target rates when classification of the media packet
is performed originally (see Section IV-B). For computational
complexity reasons, the granularity cannot be chosen arbitrarily
fine, which in turn affects how efficient PackClas can be when

adapting to bandwidth variations. Nonetheless, PackClas proves
to be a competitive solution for distributed streaming applica-
tions thanks to its low computational complexity, ease of de-
ployment due to minimal requirements on the receiver, and yet
efficient rate-distortion performance.

VI. CONCLUSIONS

We presented a system for rate-distortion optimized packet
scheduling in distributed video streaming scenarios where
several sources collaborate to serve a media client. The system
consists of an optimization framework for scheduling the packet
transmissions at the individual senders. Using bandwidth esti-
mates based on client feedbacks, the senders can independently,
but still in coordination, decide what the most important packets
are to transmit on every network path, for the given bandwidth
estimates. We designed a low-complexity solution that pre-
computes optimized packet schedules ahead of time thereby
reducing substantially the required online complexity during
streaming. This is achieved by employing packet classification,
via source pruning, of the compressed video stream at different
data rates. Extensive simulations demonstrate minimal perfor-
mance loss compared to the complex rate-distortion optimal
solution, as well as significant performance gains over a con-
ventional distortion-agnostic system for distributed streaming
with comparable online complexity.
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