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Abstract— Multiple description coding offers an elegant and
competitive solution for data transmission over lossy paoht-
based networks, with a graceful degradation in quality as
losses increase. On the other hand, coding techniques based
redundant transforms give a very promising alternative for the
generation of multiple descriptions, mainly due to redundacy
inherently given by a transform itself, that offers intrinsic
resiliency to losses. In this paper, we show how the partititing of
a generic redundant dictionary can be used to obtain an arbitary
number of multiple complementary, yet correlated descriptons.
The most significant terms in the signal representation are
drawn from the partitions that better approximate the signal,
and distributed into the different descriptions, while the less
important ones are alternatively split between the descrifions.
As compared to state-of-the-art solutions, such a strateggllows
for a better central distortion since atoms in different desriptions
are not identical. In the same time, it does not penalize theide
distortion significantly, since atoms from the same clusterare
likely to be highly correlated. The proposed scheme is ap@d to
the multiple description coding of digital images, and simiation
results show increased performances compared to state-tie-art
schemes, both in terms of average distortion, and robustnesto
loss probability variations.

I. INTRODUCTION

known as Multiple Description Coding (MDC). The moti-
vation behind multiple description coding is to encode the
source information in such a way that high quality recon-
struction is achieved if all the descriptions are availalled

that the quality gracefully degrades in case of channel loss
(see Figure 1). Since multiple description coding induces
graceful degradation in the presence of loss and robustness
to uncertainty about channel characteristics, it has ratsol

the developments of numerous interesting coding algogthm
Some of these approaches completely rely on the redundancy
present in the source, while others try to introduce a cdlietio
amount of added redundancy such that the distortion after
reconstruction gracefully degrades in the presence of Tdss

main challenge remains to limit the increase of rate congpare
to a single description case, and to properly trade off sitk a
central distortion depending on the channel charactesisti
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Efficient transmission of information over erasure chasnel

has attracted a lot of efforts over the years, from diﬁereﬁfbe%"ds

MDC with two descriptions, encoded with ratBs. The distortion
on the number of descriptions available at reseiver

research communities. Such a problem becomes especially
challenging when the coding block length is limited, or when requndant transforms certainly represent one of the most
the channel is not perfectly known, like in most typical irag,omising alternatives to generate correlated descriptthat
co_m_munlcatlon problems. It becomes therefore non trivaal icely complement each other for efficient signal recomstru
efficiently allocate the proper amount of channel redunylangion " addition, recent advances in signal approximation
in order to ensure to be robust to channel erasures, and in th&e demonstrated the interesting approximation perfoces
same time to avoid wasting resources by over-protecting t§¢ fiexible overcomplete expansion methods. This is partic-
information. When information losses are almost ineveabl a1y true for multidimensional signals like natural inesgy
and complexity or delay constraints limit the applicatioh 0jominated by geometric features where classical orthdgona
long channel codes or information retransmissions, it BB ransforms have shown their limitations. Transforms thaich
primordial to design coding schemes where all available b gy4rse expansion of the signal over a redundant dictiafary
can help to the signal reconstruction. o _ functions, are able to offer increased energy compactiod, a

An elegant solution to these problems consists in des@ibigesign flexibility that generally results in interestingaatvity
the source information with seve_ral descrlptlons,_whlch Cqo signal classes. In addition, since the components of the
be used independently for the signal reconstruction. T:hlSéignau are not orthogonal, they offer intrinsic resilienty
channel loss, which naturally render redundant transforms
interesting in multiple description coding schemes.

In this paper, we present a method for the generation of
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an arbitrary numbetN > 2 of descriptions, by partitioning Multiple description coding based on both scalar and vector
generic redundant dictionaries into coherent blocks ofmato quantization have been proposed [4], [5]. The multiple dpsc
During encoding, atoms of the same dictionary partition at®n scalar quantization (MDSQ) concept has also been suc-
distributed in different descriptions. Since they are @moscessfully applied to the coding of images (see for examgle [6
from blocks of correlated atoms, such an encoding strategy[7]) or image sequences [8]. However, multiple desaipti
does not bring an important penalty in the side distortion. koding based on quantization techniques is mostly limited t
the same time, as they are still different, they all contebutwo descriptions due to the rapid increase in complexityrwhe
to improvement of the reconstruction quality, and therefothe number of descriptions augments.
decrease the central distortion as opposed to the addifion oTransform coding has also been proposed to produce multi-
pure redundancy. This new encoding scheme is then applfd descriptions [9], where it basically helps in reintroohg
to an image communication problem, where it is shown #® controlled amount of redundancy to a source composed
outperform classical MDC schemes based on Unequal Eradr samples with small correlation (as produced by typical
Protection of signal components. The main contributions ofthogonal transforms). This redundancy becomes evéytual
this paper reside in the design of a flexible multiple desiip beneficial to recover the information that has been lost due
scheme, able to generate an arbitrary number of balandedhannel erasures. The JPEG image coding standard can be
descriptions, based on a generic dictionary. It additignalmodified to generate two descriptions by rotating the DCT
outperforms classical MDC schemes in terms of averageefficients [10], [11], and thus reintroducing a non-ngiplie
distortion, and resilience to incorrect channel charésties correlation between them. In practice however, the design
estimation. of optimal correlating transforms is quite challenging. l&h
The paper is organized as follows. Section Il presents aptimal solutions hold for a Gaussian source in the case of
overview of the most popular multiple description codingwo descriptions, the generalization to a larger number of
strategies, with an emphasis on the redundant transforohs @escriptions does not have yet any analytical solution.
their potentials. Section Il presents the motivationsibeéh Instead of implementing a transform that tries to provide
MDC with redundant dictionaries, and presents a few dafncorrelated coefficients, followed by a correlating tfans
initions that are used in such a framework. In Section INp increase robustness to channel errors, one can diresly u
we show how to partition redundant dictionaries, in order t®dundant transforms to provide a signal expansion withna co
generate multiple descriptions with a controlled corielat trolled redundancy between components. Typical examgles o
Reconstruction of the signal with the available descripgio redundant signal expansions are based on frames, or Mgtchin
is discussed in details, and the particular influence of tiRursuit approximation. In [12], harmonic frames are used to
distribution of atoms in the redundant dictionary is analyz generate multiple descriptions, and it was shown that timd k
Section V presents the application of the proposed multipté expansion performs better than Unequal Error Protection
description coding scheme to a typical image communicati(dEP) schemes. Similar conclusions can be drawn from [13],
scenario, while Section VI finally provides simulation riksu where a frame expansion is applied to the wavelet coefficient
that highlights the quality improvements compared to MDerotrees to generate two or four descriptions. However, us
schemes based on either atom repetition, or unequal embiframes for the generation of multiple descriptions isteui
protection. Finally, section VI concludes the paper. limited by the fact that not all subsets of received frame
components enable a good signal reconstruction [12].
In [14], [15], the authors propose to generate two descrip-
tions from video sequences with a Matching Pursuit algorith
This section presents a brief overview of multiple descripn their implementation, the elements of a redundant dictig
tion coding techniques, with a particular emphasis on alg(so called atoms) that best approximate a signal are repaate
rithms based on redundant transforms, and methods apphledh descriptions, while the remaining atoms are altevabti
to multidimensional signals like images or video. The firgplit between the descriptions. The redundancy between the
and certainly simplest idea for the generation of multipldescriptions is controlled with the number of shared atoms.
descriptions is based on information splitting [1], whick-b The same principle, combined with multiple descriptionlaca
sically distributes the source information between défér quantization, can also be found in [16], [17], where the argh
descriptions. This technique is quite effective if redumtiais used the orthogonalized version of Matching Pursuit. Haxev
present in the source signal, as it is typically the case agen the problem with these solutions is that they do not exphuit t
and video signals. For example, wavelet coefficients of aadundancy inherently offered by the transform, but thélyena
image could be split into polyphase components [2]. Sirlyilar introduce channel redundancy by repeating the most impiorta
video information can be split into sequences of odd and eviefiormation. If no loss occurs, such a repetition resultgim
frames [3]. However, information splitting is generallgnited obvious waste of resources. This is exactly what we try to
to the generation of two descriptions due to drastic loss &void, and we therefore propose a multiple descriptionropdi
coding efficiency when the number of descriptions increasesigorithm that relies on partitioning of the redundantidicry
Multiple descriptions can also be produced by extendingto coherent blocks of atoms. In this way, descriptions can
guantization techniques with proper index assignment metie made similar, in order to be robust to channel erasurés, ye
ods. These techniques lead to a refined quantization of different enough to improve the signal reconstruction when
source samples, when the number of description increas® channel is good.

Il. RELATED WORK



[1l. PRELIMINARIES distortion. Finally, if all the descriptions are used foe tignal
A. Motivations reconstruction, the distortion is calleéntraldistortion. In the

. . . . se where all descriptions have approximately equal aimd
While most modern image compression algorithms, suc P PP yeq '

as the JPEG standard family, have been designed basedalort{:e side distortions are similar, we say that the deions
arebalanced

the classical coding paradigm with orthogonal transforrd an We now briefly recall a few definitions that allow to

scalar quantization, new representation methods havﬂtimecharacterize redundant dictionaries. First, we considsat af

been proposed to improve the shortcomings inherent to clas- S : : K
: . e . Signalss that lie in a real K-dimensional vector spade;*,
sical algorithms. Even if important improvements have beé . .
. endowed with a real-valued inner product. We further assume
offered by different types of separable wavelet transform?1 . . . .
e o .that any of those signals is to be represented with a finite
optimality of the approximation is only reached for specific . ; )
: : Collection of unitary norm elementary signals callatbms
cases. In particular, it has been shown that wavelet tramsfo lection D — fat'P! of (DI at is furth lled
are sub-optimal for the approximation of muItidimensionéA. (io ec 'OrF'{ d_d{algig_l t'o | .| atoms 1s hu;h etrtﬁa € ab
signals like natural images, which are dominated by edgéds aOC lonary. kedundant dictionaries are suc at the number
geometric features. Adaptive and non-linear approxinmatio

atoms in the dictionary is usually much bigger than the
over redundant dictionaries of functions have emerged as %lwensmnallty of the signal, i.eD| > K. There is in general
interesting alternative for image coding, where they hasenb

no particular constraint on the dictionary, except thahidd
proven to be highly effective, especially at low bit rate J[18

span the entire signal space.
In addition to increased design flexibility, and improved Several metrics have been proposed to characterize the re-
energy compaction properties, redundant dictionaries afls

dundant dictionaryD. For example, thstructural redundancy
fer some intrinsic resiliency to loss of information, due t

g reports the distribution of atoms in the dictionary, and is
channel erasures for example. Since the components of fyiten as:

signal expansion are not orthogonal, efficient recongonct p= a,\\lﬂleigyw’%)l' 1)
strategies can be derived in order to estimate lost elements
and improve the quality of the signal reconstruction. Edficy Basically, it measures the cosine of the maximum possible
can yet be improved is a careful signal encoding strategy@§dle between any direction of the signaland its closest
implemented. In particular, information can be arranged Rfrection among the atoms . The structural redundangy
such a way that the simultaneous loss of important corrélat@Pviously depends on the dictionary construction, androteit
components becomes unlikely. This naturally leads to thae approximation rate for overcomplete signal expansions
concept of multiple description coding that exactly pussu@Ver the dictionaryD.
this objective. Instead of introducing redundancy in thgnal ~ Another metric, which is often simpler to compute, reports
expansion to fight against channel loss, one can exploit ¢ worst case correlation between any two atoms in the
redundancy of the dictionary and partition it, such thattiple dictiqnary_. It is defined as theoherenceof the dictionary,
complementary yet correlated descriptions can be built Bd is written as:
proper distribution of the signal components. _

. | j= max |(aya,)]. (2)

The inherent redundancy present in the transform step, and ap,aqg€D

the goqd approgimation properties offered by overcqmple&)viously, an orthogonal basis has a coherenee0, while
expansions, qbwou;ly motivate the use of redundant diatio .highly redundant dictionaries have a coherence closé.to
les in the design of joint source and channel coding Stra'geg'Since the coherence only reflects an extreme property of the

Multiple description image coding stands as a typical appl('iictionary, thecumulative coherencge; (m) has been proposed

cation where the benefits of properly designed redundant g e agire the maximum total correlation between a fixed
tionaries are particularly advantageous. While previoaske atom withm distinct atoms. It is written as:

mostly use complex frame construction, or unequal prasacti
based on Forward Error Correction mechanisms [12], [13], p1(m) = max maxz {ap, ax)|. 3
we propose in this paper to build multiple descriptions with |Alsm aped S

a dicti_onary partitioning algorithm and a modified Matchingn general, the cumulative coherence gives more informatio
Pursuit algorithm. about the dictionary, but it is more difficult to compute. het
worst case, we can bound it as(m) < mpu.

B. Definitions Finally, it is often useful to partition redundant dictioes
Before going any deeper into the construction of descrifnto groups of atoms, for tree-based search algorithms, [19]

tions, we now fix the notations and definitions that are used for controlling the construction of multiple descripii®

in the remainder of this paper. We consider a scenario wi@$ detailed later. In this case, the dictionddyis partitioned

N descriptions that are denoteB;, with 1 < i < N. into blocks or sub-dictionarie$D;} such that{J,D; = D

Each description contain®/ signal components, and descripand D; (1D, = () for i # j. It then becomes interesting to

tions are balanced in terms of size, and importance. Thearacterize the distance between these sub-dictionditnes

distortion induced by the signal reconstruction with onheo block-coherence: s is therefore defined by:

description is called thaide distortion, while the distortion

after reconstruction from several descriptions is capladial BB = O ebreD, [{ap, ag)- )



A special class of redundant dictionaries represents tbhe d®;, as:
tionaries that can be partitioned into independent groups o ;5T = (5)

correlated atoms, which are callbbck-coherentlictionaries. . L .
where C; = (s,a;) gives the contribution of each atom in

®,. C;’s are continuous-valued vectors, which obviously need
to be quantized before coding and tranmission. We assume
in this paper that they are uniformly quantized to form a
A. MDC with partitioned dictionaries new vectorC;, with the same scalar quantizer and the same

Multiple description coding is an efficient strategy to fighguant!zat!on step siz& for all the coefﬁ_ments_. Even_nc thgt
against channel erasures, and redundant dictionariesnof fyduantization strategy may not be optlmgl, It con5|st§ In-a
tions certainly offer interesting properties for the counstion Vvery common moo_lel, used for examplg in the quantization
of correlated descriptions. Descriptions, which typigattp- ©f coefficients obtained by frame expansions (e.g., [1]])[2
resent sets of signal components, should be built in such/% additionally assume that all the coefficients are quedtiz
way that they are complementary in providing a good sign%ﬂ the next lower _que_mhzatl_on level, and thAF is _small
approximation, and yet correlated to provide robustness qgou_gh. The quantization noise then becomes independent on
channel erasures. We propose to achieve this construc,‘jziontIEBe signal, and we can write:
partitioning the dictionary into blocks of similar atomsadh C,=C; + n, (6)
atom of a block is then put into a different description, whic o ) ) .
ensures that descriptions are correlated. In the same tif{§erer denotes the quantization noise. The quantized coeffi-
since atoms in a block are still different, they all conttéoto  Ci€NtsC;’s, together with the indexes of the atomsiinfinally
improve the approximation of the signal. form the description.

In more details, recall that our objective is to generate an
arbitrary numberN of descriptions of the signad, which B. Signal Reconstruction
are balanced in size and distortion. Each description @®ta (on the receiver side, the signal is reconstructed with the

a subset of atoms drawn from the dictiondy along with  gescriptions that are available at the decoder, after piessi

their respective coefficients that represent the confobudf erasures on a lossy channel. The redundant signal expansion

the atom in the signal approximation. We first partition thgronosed in the previous section obviously does not coeserv

dictionary into clusters ofV similar atoms. Each of theseipe energy of the signal, which therefore cannot be recon-

clusters is represented by a particular function that weacal gty cted by a simple linear combination of the vectors

molecule A molecule is representative of the characteristics gf,q the atoms from the matricés’s. We need to design a

the atoms within a cluster, and can be computed for examplcoding algorithm that removes the redundancy introduced

as a weighted sum of th’ atoms of the cluster. in the encoding stage, and we distinguish two cases, based on
Then, instead of searching for the atoms that best apprexa number of available descriptions.

imate the signak, the signal expansion is performed at the | only one descriptioni is available, the signal is simply

level of molecules. When the best representative mole@i®s oconstructed by determining the best approximatioof the
identified, the atoms that compose the corresponding Clusé?gnals in a least mean square sense. It is given by:
in the dictionary are distributed between the differentctigs

tions. This strategy first does not penalize consideralalitie ri = Ci =} (Ci+n) , (7)

distortion, resulting from the reconstruction of the sigvéh o et denote the pseudoinverse matrices. Such a reconstruc-

one description only, since the atoms in dictionary cluste{ion induces an MSE distortioR; that can be expressed as:
are likely to be very correlated. Second, proper recongtmic
Is = rill> _ |ls — ®] - (Ci + m)|)?

strategies are able to exploit the information brought by th D, — ®)
different atoms of a cluster, in order to increase the qualit v S S

of the signal approximation. It is interesting to note figall The distortion is composed of the distortid* due to the
that a search performed on the molecules typically decseaggproximation ofs over ®;, and the distortionD? due to
the computational complexity of the signal expansion (&g. quantization. Recall that these two terms can be separaed d
typical speed-up factor dbg, N can be achieved with respectqo the high rate approximation that leads to the independenc

to a full search on the dictionary). of the signal and the quantization noise. The source distort
More formally, suppose that a set 8f molecules{m;} can further be expressed as:

are selected as the best representative features of thal sign

IV. MULTIPLE DESCRIPTION CODING WITH REDUNDANT
DICTIONARIES

s — tr(ss” @ (2:]) "' ®y)

s. The multiple description coding scheme allocates thedchil D¢ =

a] of moleculem; to the description, wherei =1,2,..., N. ) - S S

The atoms that compose the descriptiaran subsequently be _ 8[| — ¢r(Cy (P:i®; )~ Ci) 9)
represented by a generating mattix, with ®; = {a]}, and S ’

j = 1,2,..., M. In addition to atoms, the descriptions alsavhere S corresponds to the signal size amd() and T
carry coefficients that reflect the relative contributioneaich respectively denote the trace and the transpose of a matrix.
atom in the signal reconstruction. Coefficients are simplgry In order to bound the distortio®{, we consider the worst

by the projection of the signal onto the generating matrix case scenario where the correlation between any pair ofsatom



in ®; is equal toup, i.e., the maximal possible correlationany pair of atoms in the dictionarp. The quantization
between any two partitions in the dictionaB: In this case, distortion is given by:

we can expresé®,; &)1 solely as a function ofiz and M A2
(i.e., the number of atoms per description), as follows: Dy, .= ﬁtr@;{@ﬂ)*l . (16)
2 2
D¢ < K5 _ 2. G pB (2 Ci) Under similar assumptions, it can be bounded by:
T8 S(U-pp) S(L—ph(M 1)+ pp(M - 2))

MA?2 14 pu(M—2)

[Is]1? > CF D <
< - i 10 12k =38 (1+p(M—1))(1 -
S S+ pus(M—1)) (10) kMAQ( +1u( )1 = )
Similarly, the quantization distortion can be written as: S 17)
DI = A—Qtr(rbicbf)*l . 11) We can note that the distortion at _reconstruction is clearly
38 linked to the properties of the dictionary, as expected. In

An upper bound on the quantization distortion can be deriv@articular, partial and central distortions are influendsd
by assuming the worst case scenario, where the correlatibg coherence within the dictionary, while the side disbort
between any pair of atoms is given bys: depends on the block coherence. The design of an optimal

dictionary has therefore to trade off correlation withirctdh-
MA? 14+ pup(M —2)

D! < nary partitions, and correlation between dictionary iaris.
T 38 (A4 ps(M —-1)((1 - ps) The compromise between side and central distortions isaypi
MA? 1 (12) in multiple description coding, and the best working point
35 1—uB depends on the quality of the communication channel. In the

We can note that the application of scalar quantization (E}?Xt section, we present an application of the above scheme

. . . o 0 a typical image communication scenario.
correlated components induces a distortion that is inlerse yp 9

proportional tol — . 5. The quantization error could be reduced
by orthogonalization ofp; at encoding, or by using vector V. MULTIPLE DESCRIPTIONIMAGE CODING
quantization, for example. The design of an optimal quan: Overview

tization strategy for redundant signal expansions is hewev Thi . th licati f multiole desigint
beyond the scope of the present paper. nis Section proposes the application of multiple desup
coding with redundant dictionaries, to a typical image com-

Finally, if k& descriptions are available for the signal re-~ = "% ° L :
Y, P ) L g unication problem. The overall description of the alduorit
construction, we can proceed in a similar way. The best . o . . .
) ST . IS given in Figure 2. The redundant dictionary is partitidne
signal approximation in a least mean squares sensey, is

obtained by grouping the generating matrices and coefici |Ht0 blocks of similar atoms, and each partition is représeén

vectors of the available descriptiods;, with 1 < ¢ < k. It y .the molecules. The '”.‘age IS .f|rst _decomposed mtp a
) series of L. molecules, which are iteratively selected with
can be expressed as:

a modified Matching Pursuit algorithm. The children atoms

Tio. gk = [(@1...<I>k)T]T . [él---ék] ) (13) are distributed into t_he different desc_riptiqns. The_ raald_
_ _ _ ~signal, after subtraction of the approximation obtainethwi
Since the matrix®x = [®;...@4] now has dimensions the molecules, is decomposed with a typical Matching Ptirsui

kM x M, computing its pseudoinverse is quite involvedgigorithm. The selected atoms are distributed in a rounthrob
However, the computational complexity can be drasticaltgshion, to the different descriptions, refined by the addiof

reduced using the fact thabl, = &% (®x®%)". Namely, a7 L atoms. Finally, coefficients are computed by projection
instead of computing a pseudoinverse ®fc, we simply of the signal on the set of atoms that compose each deseriptio
compute the inverse obx @} that is a symmetrid/ x M Eventually, they are uniformly quantized, and coded along
matrix. with the atom indexes, to form the final descriptions. The

The MSE distortion after signal reconstructiobs». x, next subsections describe in more details the key partseof th
again contains two components, the distortion due to theasig multiple description image coding algorithm.

approximationD{, ., and the distortion due to quantization,
Di, .. The distortion due to the signal approximation can be _ - _ _
written as: B. MDC with modified Matching Pursuit
2 T&HT Ty\—1 Even if redundant dictionaries present interesting advan-
Dfy = IsI” = #r(ss q)g(q)Kq)K) Px) ) (14) tages for the approximation of multidimensional signake i
images, searching for the sparsest (shortest) signalsepre
Similarly to the single description case, it can be bound®d gytjon in a redundant dictionary of functions is in general a
Is]|2 Z@i\{ 2 NP—hard problem_ [21]. For?unately, it is usually sufficignot
o 1 < s 50 +;(*le_ )’ (15) find a n_ear_ly optimal solution that wouI(_j reduce the sea_rch
complexity in a great manner, and very simple algorithms lik
where we consider the worst case scenario with any two atoMatching Pursuit [22], have been shown to provide very good
having a correlation that is the maximal correlation betweerapproximation performance.
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Fig. 2. Block diagram of the multiple description image eagalgorithm.

Matching Pursuit is a simple greedy algorithm that iterdsest approximate the signahre selected by running Matching
tively decomposes any functionin the Hilbert spacé{ with  Pursuit on the set of molecules, which yields:
atoms from a redundant dictionary. Let all the atoms, dehote

by a;, have a unit norm||a;|| = 1, and letD = {a;}, i = =
11 |2 — 1y - (58] - o ) ) )
1,2,...|D|. By setting Ry = s, the signal is first decomposed 5= ZO < Rjym; >m;+ R . (22)
as: =
Ro = (ao, Ro)ao + Ry , (18) The multiple descriptions are then built by distributingclea

atom from the blocks corresponding to these molecules, into
different descriptions. Formally, if a molecute; is chosen
ag = argmax |(a;, Ro)| , (19) in the j-th stage of MP, we attribute its child to description
b i, with ¢ = 1,2, ..., N. Typically, redundant expansions offer
a.nd Rl iS the I‘eSidual Signal aftel’ the fiI’St iteration. Th%e poss|b|||ty of Capturing most of the Signa| energy ina& fe
algorithm proceeds iteratively, by applying the same pdoce atoms. That property is observed also for Matching Pursuit e
to the residual signal. It can be shown that the energy of thgnsjons, where the first selected atoms are typically the mo

whereag is chosen so as to maximize the correlation with

residual after) iterations satisfies important ones for the signal approximation (see Eq. (21)).
) ) M-1 ) In the same time, atoms that are selected in later iterations
[ Rl = [|s]]" = Z [(Ri,a:)|” - (20) only bring a small contribution to the signal reconstruetio
=0

We therefore propose to adopt a two-stage algorithm, where
The approximation performance of Matching Pursuit is fight the first Matching Pursuit iterations are run on moleculed th
linked to the structure of a dictionary, and it has been demorapture most of the image energy. It offers us the possilidit
strated that the norm of the residual affdriterations can be put similar, and high energy atoms in the different desmis.
bounded by [23]: However, it may be wasteful to code with redundancy the
9 9 A9 9 9 pONM I 112 molecules that only bring a small contribution. Therefdhe,
1l < (1= @) 1 Rar |7 < (1= "5 87 (21) second stage of thg encgding runs a classical Matching Pursu
where 3 is the structural redundancy defined in Eq. (1) analgorithm on the atoms themselves, and distribute themen th
a € (0,1] is an optimality factor. This factor depends on thdifferent descriptions without any added redundancy. Thetm
algorithm that searches for the best atom in the dictionasfficient joint source and channel coding schemes proceed
at each iteration (e.gq = 1 for a full search strategy). by unequal error protection, and we basically pursue the
Matching Pursuit represents a simple, flexible yet efficiesame idea here. After the most significant molecules have
algorithm for signal expansion over redundant dictiormre been identified, a residual signal is built by subtracting th
therefore choose to use a modified Matching Pursuit algarithsignal reconstructed with all the selected molecules, ftioen
to decompose the image in a series of molecules. original image. A Matching Pursuit expansion of the residua
As explained above, we propose to genersitdescriptions signal is then performed on the level of atoms. The atoms
by distributing similar, but not identical atoms in diffete are simply distributed alternatively between descrigioto
descriptions. This can be achieved by computing the repexentually generate descriptions with a total &f atoms.
sentation of the signal on the level of molecules, instead bjpon completing both stages, thg atoms in descriptiori
the atoms themselves. ThHe moleculesm;, i = 1,...L that are gathered in a generating matds = {a]}, with j =



1,2,..., M, where the first. rows of ®; are children of the, atoms fromD. We use a top-down tree construction algo-

selected molecules, and the remainiig- L rows correspond rithm [27], which implements a clustering strategy based on

to atoms that are alternately distributed between desmngt segmentation, where a fixed numh®r of similar atoms are

To generate description) the signal is finally projected onto grouped together. The trees are constructed using-theans

®;, C; = ®;57. C;s are uniformly quantized int6’;. Together algorithm. Each of the non-leaf nodes in the tree is assatiat

with the indexes of the atoms if;, C; are then attributed to with the list of the atoms it represents. A molecule can be

descriptioni. Note finally that the choice of the number oftcomputed as a simple weighted sum of the atoms it spans,

moleculesL depends on the transmission channel properti¢aking into account the distance with the correspondingiato

and directly trades off the side and central distortionsMfle  Different metrics can be used for the distance measure. One

see below how one can choose optinfiabased on losses in of the most popular ones is simply given l§a;,a;) =

the network. 1 — [{ai,a;)|?. If the atoms are strongly correlated, their
distance is close t0, while in the case of orthogonal atoms

- this distance id.
C. Dictionary

A great amount of research has focused on the constrigg- pistortion model

tion of "good” dictionaries for redundant signal expansion We h iously derived th bound both

Some examples include spikes and sinusoids [24], wavelet et at\_/e pre\émus yt' e;!ve N upt))per doun N ond_ol re-

packets [25], frames [26], or Gabor atoms [22], for examplgpns ruction and quantization errors, based on some mtyo .
operties as well as the number of descriptions and the si

We use here an overcomplete dictionary composed of ed . .
like functions, as proposed in [18]. The structured dicti owever, since these bounds are computed in a worst case
is built on two mother functions. First, an isotropic Gaassi scenario in terms of atom correlation, they are generaly o

y chaose in practical applications like image coding.

t2h; gv\fl;rnecéfgr’] le, ;ﬁ;?ggggﬁig:r O(?fgtr:]uiarg;gaep:)resentatlon In order to define tighter _bounds fpr the encoding scheme
proposed above, we bound its behavior by the performance of
R SO I a classical Matching Pursuit algorithm. Indeed, the sigeal
gi(z,y) = e . (23) i : . SR
LS construction gievn in Eq. (13) leads to the best approxiomati
én a least mean square sense, which is not necessarily the cas
classical reconstructions with simple linear combioasi
atoms selected by Matching Pursuit. Therefore, we can
always bound the distortion due to our least mean squares
_ 2 0 oy (@) approximation, by the Matching Pursuit distortion given in
Such a shape is chosen in order to capture the contours thaﬁ'na"y’ we can model the distortion due to s_lgnal approx-
represent most of the content of natural images. Geometh apon as the sum of two terms, correspondmg to the two
transforms (translation, rotation and scaling) are theplieg coding sf[eps _Of the proposed .scheme. Th? f”?t one refers
to the mother functions to build a structured redundanidalict to the distortion due to the signal approximation with

nary. We allow the translation parameters to be any integ tlheglr"e?‘isr;evr;helzlr?t tsrlz see;;;nd LO r;fotgfssc\;{/bee;::ild'srg;txtsu
smaller than the image size. The scaling is isotropic and 9 N ' PP

. . . S it'in the following manner :
varies from% to % of the image size on a logarithmic scale 9

with a resolution of one third of octave. As for the second D¢, , =c+a-b" 4+ cio i + a1,k -b’féf‘_’{;”. (25)
function, we use the same translation parameters and the . ] ) )

scaling parameters are uniformly distributed on a logenitch 1 he shape oDy,  fits the behavior given by Eq. (21), up
scale from one toé of the image size, with a resolution ofto an additive constant. The distortion decay is captured by

one third of octave. We also allow the rotation parameter I8MMSa b, ¢, a12..k, bi2._k, c12..k, that are chosen to best fit
vary in increments of~ the real distortion values. Similarly, the quantizatiostdition
18° : .
The dictionary is finally partitioned into blocks of similar'S Mmodeled as:
atoms, represented by molecules. In general, such paditio DY, =k dio j A% (26)

can be obtained by eithertap-downor abottom-upclustering _ ) _
approach. The former method tries to segment the initidlis model keeps the shape of the upper-bounds derived in

dictionary into a number of subdictionaries, each of thefads- (12) and (17), up to multiplicative constants that gira
consisting of atoms that satisfy some similarity constsain chosen to fit the real quantization distortion values. .
On the other hand, the bottom-up approach groups atoms adhis distortion model can now bg used to find the opt|.mal
long as similarity constraints are satisfied. Since thedpatt Number of moleculesl, and the optimal number of descrip-
up approach becomes rapidly complex when each cluster #28S for a given communication channel, such that the geera
to contain a fixed numbeN of atoms, we propose to use istortion is minimized. The average distortidh,, is given

The second mother function is an anisotropic function, Wwhi
consists in a Gaussian function along one direction andm?
second derivative of a Gaussian along the orthogonal dbrect 0

top-down approach in this paper. as. N
The top-down approach recursively segments our dictignary D,y = Z (N) PN R~ p)*Dia (27)
to eventually generate a tree structure whose leaves are the i \Fk



where p is the channel loss probability anf, = 15 lara:. ayap.  ay. | [ara:. a] aei.. |
Figure 3 finally illustrates the model accuracy. It shows tt

g R . . . . N | FEC |a1, 2. Aqul.. I N |aI az .. ﬂpl Ap+2 . |
minimal achievable average distortion for three deswiti
for loss probabilities ofp € [107%,0.05]. We can see that || FEC [ | e a]as. |
the model provides a very good approximation of the actt (@ ®

distortion values. , )
Fig. 4. (a) FEC scheme and (b) atom sharing scheme

85
| A to the transmission channel characteristics. Overallyghalts
J demonstrate that the proposed scheme is competitive with
T f | state-of-the art MDC schemes that are able to generate any
ol JEa number of descriptions. Moreover, the proposed scheme is
] /8 less sensitive to bad estimation of the loss probabilityictvh
5 o5 A//’/ I clearly penalizes optimized unequal error protection sese
2 et
60 ’/ s
/ B. Optimal number of descriptions
o,
s //A ] In the first experiment, we observe the behavior of the
= proposed MDC scheme, when the overall bit rate is fixed, and
50 il 1 . . . .
P it the number of descriptions varies. We fix the total number of
H L L atoms to 600 and vary the number of descriptions between 2
1 10 orobabilty ofoss, p 10 and 4, as well as the number of atoms per description. The

number of atoms per description therefore varies betvgéén
Fig. 3. Minimal achievable average distortions for the cadethree to 150. We usell bits to code the atom indexes, and all
descriptions: real values vs. model. the coefficients are quantized uniformly with a unitary step
size, which results in the total rate ©f08 kB. We choose the
optimal number of moleculeg in each of the cases, in such
VI. SIMULATION RESULTS a way that the average distortion is minimized. The minimal
achievable average distortions are computed as a function o

A. Settings . _4
) ) packet loss probability, wherep € [107%,0.05]. The results
This section analyzes the performance of the proposggh jllustrated in Figure 5.

coding scheme, in a typical image communication scenario.yhen the losses are very low (i.ea, < 10-3), a small
The distortion of the reconstructed signal is th_e mean Uumber of descriptions is generally the best choice, as it
error (MSE), and we compute the average distortion as thgows for sufficient redundancy, and good approximation pe
probability weighted sum of the side, partial and centrghymance since the number of closely related atoms is small.
distortions, as given in Eq. (27). We assume that descriptions the losses increase, the optimal number of descriptions
are balanced, such that each subseét ofit of N descriptions 550 augments, as expected. However, a significant diferen
induces approximately the same distortion at reconstmcti i, nerformance can only be observed when losses ext&ed
We further assume that the descriptions are either receivﬁfﬁosses of5%, four descriptions improve the performance
error-free or completely Iqst. _Finally, we do not implemengs | 7 4B, resp.0.2 dB, with respect to the cases with 2
any concealment or post-filtering strategy at the decoder. anq 3 descriptions only. Note that similar observationsehav
We first show the behavior of the proposed scheme, a%ffeady been reported in other MDC schemes (e.g., [29],
function of the number of descr?ptions and network Iosse@o]_ It confirms that the case of two descriptions, which
We then analyze in more details the performance of O the most frequently studied, is not necessarily optimal,
scheme in the case where the nurr_1b_er of descriptions is mitgnq that the ability to generate more descriptions is agytai
to two, respectively three descriptions. We compare theggneficial at high loss rates. Finally, we can conjectureitha
performances to two MDC schemes that implement simplggjistic cases, building more than four descriptions dmigg

atom repetition [14], and Unequal Error Protection (UER|[2 negligible improvements, and this is the limit we will use in
These two schemes are illustrated in Figure 4. The atQy, simulations.

sharing scheme repeats a certain humber of most important

atomsa; in all the descriptions, while the remaining atoms o

are alternatively split between descriptions. On the otibe, C- TWo descriptions

the UEP FEC scheme applies a systematic code, column-wis&/e now compare the performance of our scheme\for 2

across the N-packet block. Here, atoms are protected a@ngorddescriptions with other MDC strategies (note that whién=

to their importance. 2, the UEP scheme is equivalent to the atom sharing scheme).
Finally, we analyze the performance of our scheme corve first observe the evolution of the minimal achievable

pared to an MDC scheme based on unequal error protectiamerage distortion with respect to the packet loss proinabil

when the number of descriptions can be optimized with rdspec Similarly to the previous experiments, we build descaps



estimation of the channel characteristics.
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Fig. 5. Comparison of minimal achievable distortions foofhree and four
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with M = 300 atoms, of 18 bits each (i.e., the total bitrate_ 7 PSNR wal | babilitv. for th destl and
. . . 10. /. VS actual loss probabplliity, Tor € proposeael an

IS again arlound 1.08 kB)' The number of shared at'_:)ms In tﬁg atom sharing scheme, optimized for a total rate of 1.08&«&l a loss
atom sharing scheme, and the number of molecule®) the probability of 10-3 (Lena image).

proposed scheme, are optimized. The results are shown on

Figure 6. We can see that our scheme provides improvemenjye finally observe the images reconstructed with different

of up 10 0.6 dB comparing to the atom sharing (and UEP)mper of descriptions. Both encoding schemes have been op-
scheme. This is due to the fact that our scheme takes adeantag,;- e forp = 10~3, and a total rate of 1.08 kB. The images

from all the received atoms, while the existing schemes ainn, given in Figure 8, for our scheme, and the atom sharing

use the redundant atoms, which are a waste of resources wg@rr;b

no loss occurs.

PSNR (dB

315

me. We can observe that the side reconstruction ig bette
for the proposed MDC scheme (i.&.,5 dB improvement),
while the central reconstruction gives an improvement.df

R R dB. The difference in side distortion is mostly due to thet fac
SR T 1 that the number of repeated atoms is very small in the atoms
wsl 77T S TE | sharing scheme optimized for low loss probabilipy= 10~3).
. “iig .

30

295

29

Fig. 6.

=B - Our scheme
- & — Atom sharing scheme

10

-3

Probability of loss, p

PSNR vs loss probability for the proposed scheme, thadatom
sharing scheme, optimized for a total rate of 1.08 kB (Lenage).

Better central distortion is expected, since the imporéoimns
are not repeated in our scheme, and correlated, yet differen
atoms bring more information for the reconstruction.

D. Three descriptions

We now consider the case d¥ = 3 descriptions, and
propose a similar analysis as above. The minimal average
distortion as a function gf for the proposed scheme, a MDC
scheme based on atom sharing, and an unequal error protectio
scheme, is given in Figures 9 and 10 for the Lena and Peppers
images, respectively. We see that our scheme outperforns th
existing schemes in a wide range of losses, especially at low
packet loss ratios, where the advantage in central distorti
becomes predominant (i.e., the improvement reaches about

Next, we compare both schemes optimized for a given lo8$ dB in the case of Lena). As the losses exce&q the
ratio p, but when the actual channel characteristics are sont=C scheme tends to slightly outperform our scheme, and at
what different (as it may happen in practical scenarios when= 5% the improvement reaches almds8 to 0.5 dB. This
the channel status changes). Figure 7 shows the performacae be explained by the fact that the FEC scheme protects
of both schemes optimized fpr= 10—3, while the actual loss different atoms according to their importance and therefsr
probability covers the range@0—*, 10~1]. We can see that our more flexible to protect the strongest atoms, which is beiagfic
scheme always gives better results and the improvement isahigh loss rate. It is also interesting to notice that th€RERd
to 1.4 dB. While the atom sharing scheme seems to work weltom sharing scheme perform similarly at low losses, while
in the very narrow range around the loss probability valug it there is an increasing gain in favor of FEC scheme as the loss
optimized for, our scheme tends to be more robust in a widetio increased, since redundancy is allocated more efflgie
range of actual probabilities, and thus more resilient td bavith an unequal error protection strategy.
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PSNR =18.6 dB

PSNR =30.8 dB

Fig. 8. Reconstructed Lena images, as a function of a numbeceived
descriptions, from 1 description on the left column, to 2adiggions on the B T A 1 W
right column. (Top row, our scheme. Bottom row, atom shasnfgeme).
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Fig. 9. PSNR vs loss probability, for the proposed scheme,URP FEC
scheme, and the atom sharing scheme, optimized for a tdéabfal.65 kB

(Lena image). at high loss rates (i.e., up 8 dB improvement, respectively

4.3 dB wrt the atom sharing scheme, and the FEC scheme).

Finally, we represent in Figures 13 and 14 the decoded

Figures 11 and 12 show the behavior of the three schemiesages, reconstructed with different number of descnygtio
when the actual loss probability is different from the expdc for the three schemes that have been optimized for a loss
one. The schemes have all been optimized for a loss probapilebabilitesp = 1072 andp = 5 - 10~ respectively. We
ity of p = 1073, respectivelyp = 5 - 1072, and we compute observe that the side and even partial distortions are giyer
the average distortion when the actual loss probabilityegar quite poor in the UEP FEC scheme, since it is optimized for
It can be seen again that the FEC scheme works well inr@atively low loss probability. On the other side, the pyepd
very narrow range of losses. Namely, when the loss prolybilscheme, and the atom sharing scheme are more conservative
increases, the FEC scheme becomes very vulnerable, givimngallocation of redundancy, and therefore more resilient t
the sharpest decrease in quality out of all compared schéimeshanges in the actual loss probability. Finally, we can olese
is also interesting to note that, even if the atom sharingiseh that our scheme, as expected, always performs best when
performs worse than the FEC scheme in average, it tends todfledescriptions are available, since it does not send pure
more robust to changing channel characteristics. Our seheradundancy for important components, but rather correlate
is the most resilient to such changes, and this is mostlpheisi information that still improve the central distortion.



PSNR =21.8 dB
(a) Proposed scheme

PSNR =20.7 dB PSNR = 30.7 dB

(b) Atom sharing scheme

PSNR =11 dB PSNR =19.5 dB PSNR = 30.8 dB

(c) FEC scheme

Fig. 13. Reconstructed Lena images, as a function of a nupfleceived descriptions, from 1 description on the left3tdescriptions on the right column.

E. Improved FEC reconstruction the reconstruction is slightly improved in the FEC scheme,
the performance does not change significantly. We can see

We have considered so far comparisons with state-of-the-gr, '\, scheme still provides better results in the range of

schemes that use ordinary reconstruction strategy based QBsses of[10-4,10-2], mainly due to an improved central

simple linear combination of the atoms available at decod fstortion. As the losses increase. the FEC scheme tends to

The reconstruction can however be improved in the case ; ; : ; :
: : . _——~ perform better, since it provides a high protection to thesmo
MDC based on UEP protection, by using a similar prOJGCtIOI? P ghp

methc_)d as in the MDC _scheme_ proposed in this paper. Sli%hpe%rtsganiiozrgg(;gf?ﬁ;h?Qgsarafgghtly better side distortio
a projection method optimizes, in a least mean square sense,
the approximation that can be constructed from the availabl
atoms. For the sake of completeness, we provide here a
comparison between the proposed MDC scheme, and a FECThis paper has presented a multiple description coding
scheme whose reconstruction is improved by the projectisnheme, which exploits the redundancy present in redun-
method. We keep the same simulations settings as befote, vdaint dictionaries. Instead of repeating signal components

a total rate equivalent to 600 atoms, and we vary the numberaafding pure redundancy to the signal decomposition, redun-
descriptions and number of FEC packets in order to reach ttient transforms with partitioned dictionaries allow to ttoh
optimal working point for different channel loss probatids. the correlation between the description, and put different
Results are depicted in Figure 15, for the Lena image. Whiet correlated atoms, in different descriptions. This wa#io

VIlI. CONCLUSIONS



PSNR = 11.6 dB PSNR =22.1 dB

(c) FEC scheme

Fig. 14. Reconstructed Peppers images, as a function of &ewaf received descriptions, from 1 description on the l&ft3 descriptions on the right
column.

for improving the central distortion, as descriptions hjice definition of optimally distributed dictionaries is stillnder
complement each others, without important penalty on tthe siinvestigation, for typical MDC scenarios.

distortion. Besides its flexibility, the proposed schemespnts
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