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Abstract

In this paper, we address the design ofany number of balanced multiple descriptions using the

multiple description scalar quantization(MDSQ) technique. The proposed scheme has the advantages of

low complexity, the possibility of being extended easily to any number of descriptions and the possibility

to trade off between the side, partial and central distortions. Unlike existing schemes, it can produce

balanced descriptions at low rates, at the price however of a slightly higher distortion. The behavior

of the proposed index assignment at high rate is in the same time similar to state-of-the-art schemes.

The proposed scheme offers the possibility to adapt to loss probability, and rate constraints, in playing

with both the number of descriptions, and the rate of each of them, to minimize the average distortion.

The comparison with the systematic FEC(N, k) scheme shows that the FEC scheme in general gives

smaller average distortion, but that our scheme seems to be more robust to sudden changes in network

conditions and that receiving all the descriptions in general gives smaller distortions.

I. I NTRODUCTION

The multiple description (MD) coding was invented at Bell Laboratories, by Miller [1], in the late

seventies, in connection with improving the reliability of the telephone network without the standby links.

The idea of Jayant was to split and send the speech samples over two channels, one carrying odd and

another even samples. Normally, both halves are received and the signal is reconstructed with the highest

quality. However, receiving only half of the signal still guarantees the continuation of communication,

though at reduced quality.

In parallel to this work, Witsenhausen realized that the channel splitting makes a very interesting
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information theoretic problem. At the information theory workshop in1979, he posed the following

problem: ”given the rates of the two descriptions, what are the qualities of these descriptions taken

separately and jointly?”. Since then, this problem has been known as the multiple description (MD)

problem which, in the first decade, was considered only as an information theoretic problem. In that

context, the research was focused on finding the set of simultaneously achievable rates and distortions

for a particular source, known as the MD region. The first result on this topic was given by El Gamal

and Cover [2] and it was followed by [3], [4] and [5] and many others.

With the very fast development of the lossy packet networks, such as Internet, the MD coding found a

nice practical application. Namely, the goal of Multiple Description (MD) coding is the generation ofN

descriptions of a source, where each of them sent over the lossy network and possibly over a different path.

All the descriptions are independently decodable, therefore the signal can be reconstructed even if only

one of them is received. In addition, the more of them arrive at the decoder, the better the reconstructed

signal will be. These properties of MD coding make it superior to existing techniques, like hierarchical

or scalable coding, where losing a part of the information can cause dramatic degradations. Thus, it is

of great practical importance to have a scheme that provides the generation and the reconstruction of

arbitrary number of descriptions and under various loss scenarios.

However, the practical application of MD codes is usually limited to only two descriptions. The most

common solution for producingN > 2 descriptions, the unequal error protection (UEP) based method,

is optimized for exactlyN − k packet losses,1 ≤ k < N . If fewer packets are lost, there is no gain in

the quality, while if more packets are lost, there is a sharp degradation of performance. Finally,k andN

are chosen based on the network state, that is highly varying, which makes the implementation of this

scheme more difficult.

Multiple description scalar quantization (MDSQ) has given the first practical solution for generating two

descriptions, [6]. Though quite simple, this scheme has remarkable asymptotic properties. Moreover,

comparing to other techniques, it is less difficult to extend it to arbitrary number of descriptions. Still,

most of the research has been focused on only two descriptions.

In this paper, we propose a simple method for producing any numberN of descriptions, based on

the multiple description scalar quantization (MDSQ). To our best knowledge, this is the only solution

proposed in the literature that producesN descriptions with this technique. The proposed design easily

extends to any number of descriptions, while keeping a very low complexity. We show that, in the case

of uniformly distributed sources, we can achieve balanced descriptions even at low rates, which is not

possible with state-of-the-art MDSQ schemes. Moreover, our scheme can easily trade off the distortions,
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giving priority to some of them, depending on the lossy scenario. Finally, the fact that we can generate

any number of descriptions is advantageously used to optimize the average distortion for given loss

probabilities and rate constraints. It provides the flexibility to play with both the coding rates, and the

number of descriptions, without being penalized by the cliff-effect observed in UEP-based solutions.

The paper is organized as follows. Bla bla nja nja

II. OVERVIEW OF THE MD CODING TECHNIQUES

A. Preliminaries

Suppose we want to generateN descriptions of a stationary ergodic sourceX, with a probability

density functionp(x), which takes values in a finite alphabetX . Descriptionn ∈ {1, 2, ....N}, taking

values in the alphabetXn, is sent over the channeln at the rate ofRn bits/sample. HereRn corresponds

to the average codeword length at the output of variable length encoder (in the entropy-constrained case),

or to the rate at the output of the fixed-length encoder (which corresponds to the level-constrained case).

Therefore, in the entropy-constrained case, the rateRn is given by:

Rn = Hn = −
|Xn|∑

i=1

pilog2pi (1)

wherepi denotes the probability ofi ∈ Xn and|Xn| denotes the cardinality ofXn. In the level constrained

case, the rate is given by:

Rn = log2|Xn| (2)

During the transmission some of the channels may fail, in which case the descriptions sent over these

channels are completely lost. Suppose a setA ⊆ {1, 2, ..., N} of descriptions is received and letYA,

taking the values in alphabetYA, be the reconstructed value in that case.

Let d(x, y) = f(|x − y|) ≤ dmax be the bounded single-letter distortion measure, wheref(·) is a

nonnegative convex function with the only null point in0. Receiving a setA of descriptions causes the

distortion DA = E[d(X, YA)]. When |A| = 1, we call the distortionsDA = Dn the side distortions.

Receiving all the descriptions, i.e.|A| = N , causes thecentraldistortionD, while all the other distortions

are called thepartial distortions.

In general, MD systems that produceN descriptions involve2N +N −1 parameters:N rates and2N −1

possible sets of received descriptions. The performance analysis and the optimization of such scheme

are not trivial. However, this problem can be reduced to onlyN + 1 dimensions under the assumption

that all the rates are equal,Rn = R, and that anyk received descriptions out ofN always cause equal

February 5, 2007 DRAFT



4

distortions. This is the so calledbalancedcase, that will be considered through the rest of the paper.

The balanced case is somewhat motivated by the fact that the descriptions with the same rates will be

equally treated from the network. This case is also interesting because the distortions depend only on

the number of received descriptions, and not on which specific set is received.

The complete characterization of the achievable rates and distortions is given only for the case of two

descriptions and for continuous sources with mean squared error distortion. For the special case when

descriptions are balanced, Zamir [7] showed that the following expressions hold:

D1 ≥ Px2−2R (3)

D12 ≥ Px2−4R

1− (
√

π −√∆)2
(4)

wherePx = 1
2πe2

2h(p), π = (1− D1
Px

)2 and∆ = D2
1

P 2
x
− 2−4R. Hereh(p) denotes the differential entropy

of the source, defined ash(p) = − ∫
S p(x)logp(x)dx, wherep(x) is a pdf of the source andS is the

support set of the random variable. This product is tight whenR → ∞. It shows one very interesting

relation between the side and the central distortion. Namely, one cannot decrease the central distortion

if the side distortion is not increased and vice versa. Thus the tradeoff between the distortions.

However, rather than considering separately how distortionsD1 andD12 depend on the rate, in most of

the cases thedistortion productis used to qualify the ”goodness” of the scheme. It can be shown that

the following expression holds at high rate for the distortion product:

D1 ·D12 ≥ P 2
x

4
2−4R (5)

In the next section, some results on the existing distortion products will be given.

The excess rate, or redundancy, is also used to qualify the MDC schemes. It is defined as:

ρ = Rtot −R∗ (6)

whereRtot is the total rate budget used by MD coder and theR∗ represents the rate required by a single

description coder to achieve the same distortion comparing to the multiple description case. This measure

tells us how robust to losses one scheme is.

B. Multiple Description Scalar Quantization

The design of an MDSQ system generally follows two steps: a scalar quantization and an index

assignment method (the case of three descriptions can be represented as in Figure 1). The scalar quantizer,

like in the single description case, maps the continuous random variable to the discrete set of quantized
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values. The index assignment is introduced to produce multiple descriptions of such a quantized value, by

mapping it to a N-tuple of quantization indices(i1, i2, ..., iN ). Equivalently, we can think of the MDSQ

as havingN scalar quantizers, each of them used to produce one of the descriptions. Each indice (or

equivalently, each quantized version of the source) is then sent over a different channel and if all of them

are correctly received, the signal will be reconstructed with the highest quality. If any channel fails, the

decoder still reconstructs a version of the signal, though with a lower quality.

If a setA of descriptions is received, after the inverse index assignment, they are decoded with the

inverse quantizerIQA. The inverse quantizer simply takes the centroid of the maximum of all received

quantization low levels and the minimum of all upper levels. Similarly to previous notation, if|A| = 1,

we call IQA the side inverse quantizer, while if|A| = N we call it thecentral inverse quantizer. All the

other inverse quantizers are called thepartial inverse quantizers.
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Fig. 1. Three Description Coding Scheme.

In the case of entropy constrained MDSQ, the rate of the description can be calculated in the following

way:

Rn = H = −
∑

i

pilog2pi (7)

where pi denotes the probability of indicei. On the other hand, in the case of thelevel constrained

quantization, the rate is given by:

Rn = log2K (8)

whereK is the number of levels in quantizerQn.
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Let the bin size that corresponds to indicei after receiving a setA of descriptions have the size∆iA

and let its lower and upper bounds beLAi
andUAi

respectively. Then the distortionDA can be written

in the following way:

D =
∑

∆i

∫ UAi

LAi

p(x)(x− ŷAi
)2dx (9)

whereŷAi
is the centroid of the bin corresponding to the indicei.

The first idea for producing two balanced descriptions was very simple: use two quantizers that are offset

to each other half of the quantization step size, see Figure 2(a). Such scheme gives completely balanced

descriptions for symmetric pdf’s both in terms of rates and distortions since both quantizers have the

same set of bins. Receiving both descriptions results in approximately four times smaller distortion than

in the case when only one description is received. This scheme is called thestaggeredindex assignment

scheme. It can be extended to the case of three descriptions (Figure 2(b)); however, it fails to give

balanced descriptions at low rates since the quantizerQ1 has different bins than quantizersQ2 andQ3

and thus different rates and distortions. Extending it to four and more descriptions gives even bigger

disbalance both for rates and distortions and therefore is not used.

 

   0             1                2                3          4     

0          1               2                 3             4          

      0                1                2                3         

0       1          2          3          4    

  0          1          2           3      4    

  2δ        2δ        2δ        2δ      δ 

  Q1 
 
 

  Q2 

Q1 
 
 

Q2 

 
Q3 

             3δ               3δ              3δ              3δ     

(a)       (b)(a)       (b)

Fig. 2. Staggered index assignment for: (a)N = 2 and (b)N = 3.

Though very simple, the idea of staggered bins suffers from the high level of redundancy, thus being

suitable when the losses in the network are high. In order to reduce the redundancy, the authors in [6],

[8] proposed using noncontiguous quantization bins. They build the index assignment matrices, where

the row corresponds to one of the descriptions and the column to another one. Making such matrices

always starts with filling the main diagonal and it is subsequently followed by adding a certain number

of diagonals below and above the main one. By varying the number of diagonals in such matrices, one

can control the tradeoff between the side and central distortions. The authors showed later in [9] that the
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distortion product for their family of quantizers and in case of the level constrained quantizer satisfies:

D1 ·D12 ≥ 3π2P 2
x

16
2−4R (10)

while in the case of entropy constrained quantizer it satisfies:

D1 ·D12 ≥ (
2πe

12
)2

P 2
x

4
2−4R (11)

Therefore, there is a8.69 dB gap between the proposed level constrained quantizer and the rate distortion

bound, and a gap of3.07 dB for the level constrained quantizer.

In [10], the authors proposed index assignment matrices similar to the ones proposed in [6], but instead

of using only the main diagonal in the first step, they propose using also the one diagonal above. For

such a scheme, they showed that the distortion product improved for0.4 dB compared to [6]. Later,

in [11], the same authors proposed an additional refinement stage for the case when both descriptions

are received and they show that the distortion product is equal to one obtained in [9].

Although the obtained results were remarkable, the design of more than two descriptions was not

considered. Extending this method to the design ofN descriptions would require the search for the

solution in the hypercube of dimensionN , which is not a trivial problem. In [12], the author proposed

the encoding procedure in a multistage fashion, where each stage doubles the number of descriptions

using the method proposed in [6]. However, his scheme allows only the number of descriptions that is

a power of two.

C. Other techniques

In parallel to scalar quantization, other ideas were proposed for the generation of two and more

balanced descriptions. Most of them were based on unequal error protection (UEP) principles. The

staggered index assignment in combination with UEP was proposed for the design of three balanced

descriptions in [13] and as the first stage of the design in [14]. In [15], the authors use Reed-Solomon

(n,k) codes to make equally important descriptions from the output of a progressive coder. In [16], they

propose adding the controlled amount of redundancy to the same progressive coder. This is achieved by

spreading the information about each wavelet tree in many descriptions, which guarantees recovery of the

most important information. Schemes based on the UEP assume that at leastk out of N descriptions are

received and they might not be able to reconstruct the signal if fewer thank descriptions are received.

Moreover, receiving more thank descriptions might not bring any improvement in the reconstructed

quality. Besides, the protection level of these schemes (k
N ) depends on the state of the channel, which
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may change very rapidly during the transmission.

In order to soften the cliff effect, the authors in [13], [17] propose using (N,k) source-channel erasure

codes for the generation ofN descriptions. They derive the complete rate region for their scheme and

they show that when exactlyk descriptions are received, the achievable distortion exactly matches the

optimal distortion rate performance that would be achieved by a source rate ofkR bits. However, their

study is still based on the assumption that at leastk descriptions are received.

The concepts of MDSQ apply also to vectors. Although the performance of the vector quantizer is better

because the correlation between the components is also taken into account, it is not easy to extend it to

more than two descriptions. The first reason is that the code vectors cannot be naturally ordered. The

second is that the design complexity grows exponentially as a number of descriptions,N . In order to

overcome these difficulties, the multiple description lattice vector quantization was proposed, [18], [19].

Recently, the authors in [20] proposed generating of arbitrary number of descriptions with this method.

In the paper they show the necessity for having the flexibility to produce more than two descriptions.

For example, when the packet loss ratio is0.2, the decrease in distortion for4 descriptions is10.6 dB

comparing to the case of only two descriptions.

Correlating transforms [21], [22], [23] can also be applied for the generation of the multiple descriptions.

A correlating transform introduces a known and a controlled amount of redundancy between initially

uncorrelated coefficients. Thus the statistical estimation of the lost coefficients based on the received

ones. The method is successfully applied for two descriptions. Already for three descriptions there is no

analytical solution for the transform, but the approximate solutions can be obtained if probabilities of

channel breakdowns are small. For more than three descriptions, the cascade structure was proposed, but

this solution is far from optimal.

Redundant frame expansions such as frames have very nice properties like resilience to additive noise,

resilience to quantization, numerical stability of reconstruction and greater freedom to capture significant

signal characteristics, [24], [25]. The redundancy of a frame mitigates the effect of losses in packet

networks. Recently, in [26], a family of frames maximally robust to errors appeared, after which frames

will hopefully be more widely used.

The general conclusion for the methods proposed for multiple descriptions is that they are mostly limited

to only two descriptions, mostly due to the complexity and the lack of mathematical results that can

tell how to expandN = 2 to arbitraryN . Except for the UEP based systems that are not very suitable

because of already explained reasons, the MDSQ seems to be one of the most serious candidates to

consider. They have excellent asymptotic properties, but it was also shown that they perform very good

February 5, 2007 DRAFT



9

even at low rates. Moreover, it can have a very nice practical application since almost all video and image

coding schemes use a quantization as a part of the standard. In the next section, we will show how we

extended the MDSQ principles to the generation ofN descriptions.

III. B ALANCED INDEX ASSIGNMENT FOR N-DESCRIPTIONS

A. Balanced index assignment for N descriptions: uniform distribution

In this section, we consider the problem of index assignment, for the generation ofN balanced

descriptions, based on entropy constrained scalar quantization. We assume a source uniformly distributed

on the interval[0, 1]. Each of theN descriptions has a rateRn = R, and the total rateRtot therefore

becomesRtot = NR. In addition, the proposed scheme balances the side and partial distortions, which

are all measured by the mean squared error, MSE, relative to the input signal.

Since it is known that the uniform quantization minimizes the distortion for uniform sources, a

proper index assignment should result in a uniform quantization of the source when allN descriptions

are combined together. Let the quantization step size of such uniform quantizer beδ. Several index

assignments strategies could fulfill this requirement. However, we are mostly interested in the particular

ones that guarantee balanced descriptions in terms of rates and distortions.

To achieve both balanced rate and distortion, the index assignment strategy has to rely onN side

quantizers with the same set of bins. Having the same set of bins guarantees balanced rates, even for low

rate, since for the uniform source it is given byRn = −∑
i ∆ilog2∆i, where∆i is the size of bini.

Moreover, all the side distortions will also be equal since they are given byDn =
∫ 1
0 p(x)(x− ŷ)2dx =

∑
i

∆3
i

12 . In addition, to ensure balanced partial distortions, the combination of anyk descriptions in a

partial decoder should also provide the same set of bins, for all the partial decoders.

A trivial solution is to make all the side quantizers equal and uniform, with step sizeδ. Thus, the

same information is sentN times. This solution is, however, expensive in terms of redundancy, since

for R bits of useful information we spendNR bits. Moreover, the combination of several descriptions

does not refine the quantization, and the distortion does not decrease as more descriptions is received.

In order to reduce the redundancy and to make distortion decreasing as a function of the number of

received descriptions, some of the bins in side quantizers can be made coarser, by merging several bins

δ together. The remaining bins keep their initial size. Letp consecutive bins be merged into the coarse

bin pδ, wherep is an integer smaller than the number of bins in the central quantizer (p = 1 means we

did not do any merging). Recall that, to keep the rates and the side distortions still balanced, all the side

quantizers need to have the same number of such coarse bins.
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At the decoder side, we assume that the bins in partial inverse quantizers can be eitherpδ or δ.

Moreover, we assume that each next received description refines one of the remaining coarse bins to bins

δ. Finally, upon the reception of all descriptions, all the bins are refined and equal toδ.

The following lemma gives the minimal necessary number of bins per side quantizer.

Lemma 1: The minimal required number of coarse binspδ, p > 1, per each of theN side quantizers,

that satisfies the following:

1) each next received description refines one of the coarse bins

2) receiving all the descriptions corresponds to the uniform central inverse quantizer, with the step

sizeδ

is N − 1.

Proof: Receiving all the descriptions leaves no more coarse bins. Therefore, receiving anyN−1 out of

N descriptions should leave one coarse bin, the combination of anyN − 2 out of N leaves two of them

etc. Following this logic, anyN − k descriptions leavek coarse bin. Thus, one description (k = N − 1)

hasN − 1 coarse bins.¤
If all the coarse bins have sizepδ, the minimal number of binsδ in each of the quantizers needs to be

p. These bins are necessary to refine the quality of coarse bins and finally to ensure the uniform inverse

quantization with step sizeδ when all descriptions are received. We will assume that the number of bins

δ is someq, q ≥ p. However, we still can achieve balanced rates and distortions, as will be shown later,

if we allow for the increase of one of the binspδ. Let the size of the new bin be(p + a)δ, a ≥ 0, a

is integer. The first reason for increasing the size of one bin is that, by varyinga, we can increase the

set of achievable rates for our descriptions. The second reason, as we will show later, is to add more

flexibility to our scheme in terms of trading off the side, partial and central distortions. Allowing one of

the bins to be bigger does not change the condition that the bins in partial inverse quantizers are either

pδ or δ. However, now the number of binsδ needs to be bigger, so that also a bigger bin,(p + a)δ, can

be refined.

There is some freedom in placing binspδ, (p+a)δ andδ in the side quantizers structure. For example,

Figure 3 shows two preliminary quantizer structures forN = 4 balanced descriptions, with parameters

p = 3, a = 1 andq = 10. Both structures satisfy all the requirements for having both rates and distortions

balanced. However, the second one places bins more uniformly in the quantizer structures and might be

preferred also for other symmetric distributions different from uniform. On the other hand, the first one

has a structure that could be better applied to nonsymmetric distributions. For example, for the exponential

source on the interval[0,∞] with f(x) = e−x, the inverted first structure will perform better than the
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second one, since it provides finer quantization in the area when the samples of the signal are more

probable. We will explain this more in detail in the following sections.

         pδδδδ             pδδδδ              (p+1)δδδδ        δδδδ    δδδδ    δδδδ    δδδδ    δδδδ    δδδδ    δδδδ    δδδδ    δδδδ    δδδδ 

   Q1 

 
   Q2 

 
   Q3 

 

 
   Q4 

 

     0                1                  2              3    4    5    6    7    8    9   10  11  12 

      0                   1             2    3    4         5          6    7    8    9   10  11  12 

        0             1    2          3          4          5          6    7    8    9   10  11  12 

0    1    2          3               4                    5            6    7    8    9   10  11  12 

        pδδδδ        δδδδ    δδδδ    δδδδ          pδδδδ        δδδδ    δδδδ    δδδδ         (p+1)δδδδ        δδδδ    δδδδ    δδδδ    δδδδ    

     0           1    2    3          4          5    6    7             8             9   10  11  12 

     0           1    2    3             4             5    6    7    8    9  10   11       12 

         0             1    2    3    4    5    6    7    8         9         10  11       12 

   0    1    2    3    4    5          6          7    8    9        10        11          12 

   Q1 

 
   Q2 

 
   Q3 

 

 
   Q4 

 

Fig. 3. Two equivalent quantizer structures that give us balanced descriptions forN = 4, p = 3, a = 1 andq = 10.

So far, we described what our quantizers should fulfill to achieve balanced descriptions and we gave

two possible and equivalent constructions for one set of parameters. However, we would like to give a

generic rule for their design, that holds for arbitrary choice ofN , p, q anda. The solution we propose is

to make the quantizerQi, i = 2, 3, ...N , have a structure ofQi−1 cyclically permuted for a certain number

of bins. We stress that this solution is not unique; other equivalent solutions can be found. However, we

chose this one because it is generic and easily extendable. First, what we would like to have, is that all

the coarse binspδ and (p + a)δ start on the same positions in all quantizers. This fact ensures that no

matter which and how many descriptions are received, the intersection bins can be eitherpδ or δ. Next,

to make binsδ appear more uniformly in the quantizer structures, we propose putting some number of
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them after each coarse bin.

What we need to do, is to define the structure of the quantizerQ1; all the other structures will be

obtained by the simple cyclic permutation. Without loss of generality, we propose placing first the coarse

bins in the quantizerQ1, and placinga − 1 bins δ between each pair of coarse bins. Ifa ≤ 1, we do

not insert these bins between the coarse bins. Also, without loss of generality, we first placeN − 2 bins

pδ and then a bin(p + a)δ. The remaining binsδ we place in the end of the structure ofQ1. Since we

would like that all the coarse bins start at the same positions in all the quantizers, we propose cyclic

permutation for a binpδ and a − 1 bins δ (in case binsδ are inserted between the coarse bins). The

cyclic permutation of quantizer structures moves binsδ along the interval[0, 1], that each time provides

refinement of some of the coarse bins that starts on that position in some other quantizer.

More formally, we now show the proposed structure of quantizerQ1, depicted in Figure 4. The basic

building block is the structure that contains a binpδ, followed bya−1 bins δ. This basic building block

is then repeatedN − 2 times, The structure is subsequently followed by a block that contains a bin

(p+a)δ andqmin− (N −2) · (a−1) bins δ. The minimal number of binsδ in each of the quantizers for

the permutation scheme that we propose is:qmin = (N − 2) · (a− 1) + p + a− 1; a− 1 bins following

each binpδ andp + a− 1 bins following the bin(p + a)δ. Finally, a remaining part ofq − qmin bins δ

is added to the end of the structure. Further on, we make quantizerQi, 2 ≤ i < N , have the structure of

Qi−1 cyclically permuted for the basic building block (binpδ followed by a− 1 bins δ) or for (p + a)δ

if i = N . We do not permute the last part of the structure, that containsq − qmin bins δ, it is always at

the end of all quantizers. In addition, one binδ needs to be added to the permuting structure of all the

quantizers, to compensate for edge effects that results from shifting of the quantizerQN−1 for the bin

(p + a)δ and thus leaving one binδ in the beginning of the last quantizer structure.

Some examples of quantizer structures are given on Figures 5, 6 and 7, where the influence of parametera

 

        pδδδδ         δδδδ  ...    δδδδ         pδδδδ         δδδδ  …    δδδδ                        pδδδδ         δδδδ  ...     δδδδ           (p+a )δδδδ          δδδδ   …   δδδδ    δδδδ   …   δδδδ    

                      …                                …             …                              …                                            …              … 

  ( a -1) x δ [qmin-1-(N-2)⋅(a -1)] x δ 
 

             #1                                #2                                            # N-2                                                                   q-qmin 
 

Fig. 4. The structure of the quantizerQ1.
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on the quantizer structure can be seen. The case whena = 0, as in Figure 5, corresponds to the simplest

way of obtaining balanced descriptions, where we start from a uniform quantizer with step sizespδ.

Subsequently, we divide the last bin of that quantizer intop bins δ. Finally, we get the structure of

remainingN − 1 quantizers by pure shifting by binpδ. The case whena 6= 0, depicted in Figures 6 and

7, is somewhat different due to the edge effect explained above.

      pδδδδ              pδδδδ              pδδδδ        δδδδ    δδδδ    δδδδ 

   Q1 
 

 

   Q2 

 
 

   Q3 

 
   Q4 

     0                1                2           3    4    5 

     0                1           2    3    4          5 

     0           1    2    3          4                5 

0    1    2          3                4                5 

Fig. 5. Balanced descriptions whenN = 4, p = 3, a = 0 andq = 3.

         4δδδδ                   4δδδδ                    4δδδδ                       5δδδδ               δδδδ    δδδδ    δδδδ    δδδδ 

   Q1 

 
   Q2 

 
   Q3 

 

 
   Q4 

 

 
     Q5 

 

           0                      1                      2                         3                4    5     6    7 

           0                      1                         2                 3    4    5             6            7 

           0                         1                 2    3    4            5                       6            7 

               0                1    2    3             4                      5                      6            7 

   0    1    2    3             4                      5                      6                       7 

Fig. 6. Balanced descriptions whenN = 5, p = 4, a = 1 andq = 4.

Obviously, the combination ofany k out of N descriptions results inp(k − 1) + q + a bins of sizeδ

and (N − k) bins of sizepδ. This guarantees balanced side and partial distortions, as explained above.

Therefore, our descriptions remain completely balanced for any choice of parametersN , p, q anda.

The minimal rate, for the givenN , that the proposed scheme can give, can be obtained by putting

p = 2, a = 0 and q = 2 : Rmin(N) = log2(2N) − N−1
N . This scheme corresponds to thestep split
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   Q4 

 

Fig. 7. Balanced descriptions whenN = 4, p = 3, a = 4 andq = 12.

scheme that we proposed in [27]. It consists ofN −1 bins2δ and two binsδ. Each quantizer is obtained

from the previous one by a simple shifting by2δ. Puttingp = 2 and a = 1 leads us to themerge and

split scheme also proposed in [27], that consists ofN − 2 bins 2δ, one bin3δ and two binsδ.

One can change the rate by playing withp, q and a. However, there is one more way to increase the

rate. It consists of the simple repetition of the structure explained abovem times. For such a general

case, we haveδ = 1
m(p[N−1]+q+a) and we write the following expressions for rates and distortions:

Rn = −log2δ − (p + a)log2(p + a) + (N − 2)plog2(p)
p(N − 1) + q + a

(12)

Dn =
(N − 2)p3 + (p + a)3 + q

12
mδ3 =

(N − 2)p3 + (p + a)3 + q

((N − 1)p + q + a) · 2
2(N−2)plog2p+2(p+a)log2(p+a)

(N−1)p+q+a

· 2−2Rn

12
(13)

D12...k =
(N − k)p3 + (k − 1)p + q + a

12
mδ3 =

(N − k)p3 + (k − 1)p + q + a

((N − 1)p + q + a) · 2
2(N−2)plog2p+2(p+a)log2(p+a)

(N−1)p+q+a

· 2−2Rn

12
, k ≥ 2 (14)

It can be seen that there is an explicit relation between the rate and distortion for our scheme, which

holds even at low rates. Besides, we see that all the distortions have the same decay rate(2−2Rn) and

that they decay linearly as a function of the number of received descriptions,k.

All the distortions obviously depend on parametersp, q, a and m. The partial derivation over the

parametera shows that the distortionD1 increases with the increase ofa, while on the other side all

the other distortions decrease. Moreover, further calculation shows that all the distortions are decreasing

functions ofm andq. This is because increasing these parameters decreasesδ for a fixed interval[0, 1],

and all the distortions are proportional to the third power ofδ. The influence of parameterp is especially

interesting. While it will make some partial distortions monotonically decreasing or increasing, some
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of the distortions will not be monotonic at all! Figure 8 shows how all the distortions depend on the

parameterp when N = 5, a = 5, q = 10 and m = 1. It can be seen, for example. that the distortions

D1 and D1234 are not monotonic and have the minimal value whenp = 3. DistortionsD12 and D123

are monotonically increasing withp, while the central distortionD12345 is a monotonically decreasing

function ofp. Therefore, the parameterp plays the central role in trading off the side, partial and central

distortions.
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Fig. 8. Distortions as a function ofp whenN = 5, a = 5, q = 10 andm = 1.

It is also interesting to analyze the excess rate or redundancy, that in our case turns to beρ =

NR + log2δ. We show thatρ decreases as we increasea or p, while it increases with the increase ofq.

This is very intuitive result. Less redundant schemes should have highera andp and they should keepq

low. Such schemes are suitable for very low description loss probabilities, where more attention is put to

minimizing the central distortion, rather than the partial ones. On the other side, more redundant schemes

keep parametersa andp low, while they repeat a lot of binsδ. This is suitable for scenarios where we

expect more losses and when we penalize the central distortion in order to make partial distortions lower.

B. Balanced index assignment for N descriptions: arbitrary source distribution

The proposed method for the uniform source distribution can be further extended to arbitrary sources,

when all the quantizers decision levels are adapted to the different distribution. This can be done by

using compander functions.
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For example, we show how the coding of Gaussian sources is derived from the method described

above. Denote byQU,N the set ofN quantizers used for the uniform source and byQG,N the same set

for the Gaussian source. The lower and upper decision levels of each bin inQU,N is transformed to a

new set of lower and upper decision levels inQG,N , that will adapt to the new signal. If the Gaussian

source has zero mean and unit variance, the transform is given simply by:

g =
1 + erf( u√

2
)

2
, (15)

where u corresponds to levels inQU,N , and g corresponds to new levels inQG,N . Note that such

transformation guarantees that the rates of the descriptions stay balanced. However, the side and partial

distortions are not balanced any more at low rate. The reason is that trying to keep the linear metrics

balanced (i.e, rates) for the Gaussian distribution, does not allow for keeping the square metrics (i.e.,

MSE distortion) balanced, at the same time. However, the descriptions will be asymptotically balanced

in distortions when the rate increases, as we will show later. When choosing between the balanced rates

or balanced distortions, we give preference to balanced rates since the packets formed for each of the

descriptions will have the same size and thus be equally treated from the network.

Finally, a similar transform could also be applied to other source distributions.

C. Loss analysis of our scheme

Multiple description coding scheme is intended for lossy scenarios. It intentionally adds redundancy in

order to recover a certain part of possibly lost information. Depending on flexibility of the scheme, one

can chose which part and which percent of the information will be protected. Comparing to other state-

of-the-art source coding techniques, like hierarchical coding schemes, it provides better error resilience

at the price of, however, higher redundancy.

In this section, we show how our scheme can be applied to different lossy scenarios. Assume we can

sendN descriptions over a lossy network, each one over a different channel, like in Figure 9. Assume

also that the probability that each channel will break down is equal toPLR, and that the breakdowns

are independent. If all descriptions are received, which happens with the probabilityPLRN , the signal

will be reconstructed with the lowest, central distortion(D). If we receive anyk descriptions out of

N , which happens with the probability
(
N
k

)
PLRN−k(1− PLR)k, the reconstructed signal will be with

the distortion(D12...k). The most severe case will correspond to the case when all descriptions are lost,

which happens with the probability(1−PLR)N . In that case, the receiver can just guess what was sent

by the sender and the distortion will be equal to the variance of the source. Since all the descriptions
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Fig. 9. Lossy scenario that we consider.

have the same rate and they are balanced, we can write the average distortion in the presence of losses

in the following way:

Dav =
N−1∑

k=0

(
N

k

)
PLRk(1− PLR)N−kD12...(N−k) + PLRNσ2 (16)

Therefore, the average distortion in the lossy scenario will depend on the number of descriptions, rates

of descriptions and the probability of error.

We will show in the next section that, given the losses on a network and the total rate constraint, we

can choose the parameters

IV. EXPERIMENTAL RESULTS

A. R-D performance

In this section, we consider first the generation ofN = 3 balanced descriptions for the uniform source,

and we compare our scheme with the existing staggered scheme. The comparison is done at higher rates

since the staggered scheme does not allow for balanced descriptions at low rates. It is not difficult to

derive the following expressions for the staggered scheme whenR →∞:

Dn ≈ 0.083 · 2−2R (17)

D12 ≈ 0.025 · 2−2R (18)

D123 ≈ 0.0093 · 2−2R (19)

This scheme gives fixed expressions for rates and distortions. Moreover, it gives the constant relations

between the distortions: each next received description reduces the distortion approximately three times.
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Our scheme has only one parameter fixed:N = 3. All the other parameters can be chosen based on

which distortion we might want to minimize, or how fast we want to decrease the distortion, or which rates

and rate granularity we want to have. Basically, our objective will be to minimize the average distortion

seen by the client, and this will be discussed in detail in the next section. Here we will just show what

is the advantage of our scheme in terms of having the ability to arbitrarily choose the parameters:p, a

andm.

We will show the performance of our scheme on few examples. First, let us for example set the

following parameters in our scheme:p = q = 6 and a = 1. This set of parameters gives the following

expressions for distortions:

Dn ≈ 0.123 · 2−2R (20)

D12 ≈ 0.077 · 2−2R (21)

D123 ≈ 0.0064 · 2−2R (22)

that hold both at low and high rates. Puttingp = 4, q = 30 anda = 14 on the other hand gives us the

following expressions:

Dn ≈ 1.03 · 2−2R (23)

D12 ≈ 0.0195 · 2−2R (24)

D123 ≈ 0.009 · 2−2R (25)

Rate distortion functions for these two cases and for the staggered scheme are given on Figure 10. With

the first se of parameters, the central distortion is made1.4 smaller, at the expense of having1.47 times

higher side distortion and3.1 times higher partial distortion. The second set of parameters gives12 times

higher side distortion. However, the partial distortion is made1.66 times smaller and the central distortion

is made1.03 times smaller. Thus, by playing with the parametersp, q, a andm, one can change all the

distortions and the relations between them. Different sets of parameters can clearly be chosen to favor

different scenarios. For example, the first set of parameters might be chosen if the losses on the network

are low and one expects receiving all three descriptions. On the other side, the second set of parameters

tends to minimize the distortionD12. Therefore, we can sacrifice the performance of the distortionD1

if we expect receiving two or three descriptions.

Thus, contrary to the staggered scheme, our scheme provides the possibility to make a trade off between

the distortions and gives the possibility to choose parameters that can minimize only one of them. This,
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together with the fact that that our descriptions are completely balanced at both low and high rates, makes

our scheme superior to the existing scheme.
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(a) p = q = 6, a = 1.
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Fig. 10. Comparison of our scheme and staggered scheme forN = 3 and different setd of parametersp, q anda.
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Fig. 11. Comparison of our scheme forp = 4, a = 14 andq = 30 and the existing scheme for the Gaussian distribution and

Di andDij , i, j = 1, 2, 3.
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Finally, we compare our scheme and the staggered scheme for the Gaussian distribution function.

The relation between the distortionsDi, i = 1, 2, 3 for the two schemes and the choice of parameters

p = 4, a = 14 and q = 30 is given on Figure 11(a), while the relation between the distortionsDij ,

i, j = 1, 2, 3 is given on Figure 11(b). From these figures, the similar conclusion like in the case of the

uniform source can be made. All the side distortions are better for the staggered scheme, while two of

our partial distortions are better than all the partial distortions for the staggered scheme.

Similarly, with the different set of parameters, we can again tradeoff our distortions and choose

parameters that will outperform the staggered scheme for the specific scenario. However, what is most

interesting to notice here is that the distortions in the staggered scheme are more balanced, even though

they are not balanced in terms of rate. On the other side, our descriptions are completely balanced in

terms of rate, but tend to give less balanced distortions. This is mostly visible at low rates.

V. L OSSY SCENARIOS

A. Our scheme in lossy scenarios

In this section, we intend to investigate the behavior of our scheme in lossy scenarios, as well as to

compare it to the FEC scheme under the same conditions. As we will show, our scheme tends to give

higher average distortions in case of losses, but it is also more robust to sudden changes of network

conditions. Now we can formulate the following problem.

Problem formulation: Given the probabilityPLR that any of the channels will break down, and the

total rate Rtot available for generation of balanced descriptions,find the parametersN , m, p, q and a

that will minimize the average distortion,Dav, given by(25).

The solution to this question is given in Figure 12, which shows the minimal achievable average distortion

as a function of thePLR, and in Table1 which shows the best parameters for the proposed scenario. It can

be seen that the case when the rate budget is small is much more sensitive to losses of descriptions. This

is due to the fact that we can produce fewer descriptions at lower rates, but also because these descriptions

are necessarily less redundant. Losing one of them therefore causes higher increase in distortion than in

the case of more redundant descriptions. We also see from the Table1 that, for a given rateRtot, with

the increase of packet loss ratio, the optimal number of descriptions is increasing and the rate of each

description decreasing. In addition, the redundancy is also increasing. This is not a surprising result, since

as the losses tend to increase, it makes sense to make and send more descriptions and to make them

more redundant, with the hope that at least one of the descriptions will be received and at least the most

important information will be recovered. We can also see that the parametersp and a are decreasing
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as the PLR increases. This is because the decrease of these parameters increases the redundancy of the

scheme. Not surprisingly, when the losses are very high, there is a tendency to increase the number of

descriptions and to increase the redundancy of the scheme. An interesting effect appears whenRtot = 40

bits andPLR = 0.9 : the multiple description scheme degenerates to the simple repetition of the same

information in all descriptions. More specifically, allNopt = 11 descriptions will contain the information

of the source that is uniformly quantized with the quantizer with step sizeδ = 1
12 .
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Fig. 12. Minimal achievable distortion, as a function of packet loss ratio.

B. FEC scheme in lossy scenarios

For the forward error correction (FEC) scheme, we assume the equal error protection (EEP) scheme, since we

do not give any priority to some quantized values over the other ones.

Most of the FEC schemes are based on the Reed-Solomon codes or X-OR functions that can, in general, correct

as many losses as the number of redundancy packets. In the systematic(N, k) FEC scheme (Figure 13), the set of

k data packets is followed by(N − k) redundancy packets. If at leastk out of N packets are correctly received,

all the data can be correctly decoded. Otherwise, none of the lost packets can be recovered by the receiver.

In general, the average distortion in the presence of losses can be written in the following way:

DavFEC = p · σ2 + (1− p) ·D(R) (26)
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Rtot[bits] p = 10−3 p = 10−2 p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

N 2 2 2 3 3 3 3

m 1 1 1 1 1 1 1

p 1 1 1 1 1 1 1

q 5 9 9 5 1 1 1 1

a 9 9 2 1 1 0 0

R 2.499 2.499 2.41 1.5 1.5 1.585 1.585

ρ 0.751 0.751 1.81 2.5 2.5 3.17 3.17

N 2 3 3 4 5 5 5

m 19 5 7 2 1 1 1

p 20 10 4 3 1 1 1

q 15 24 10 4 5 4 4 4

a 5 1 1 1 1 0 0

R 7.49 4.98 4.99 3.74 2.95 3 3

ρ 5.12 7.65 8.49 10.05 11.57 12 12

N 3 3 4 6 8 8 8

m 32 48 13 1 1 1 1

p 39 12 5 3 2 2 2

q 25 39 12 5 18 2 2 2

a 1 1 1 4 1 1 0

R 8.33 8.33 6.25 4.14 3.101 3.101 3.125

ρ 13.11 14.2 16.9 19.78 20.73 20.73 21

N 3 4 5 7 9 11 11

m 176 100 28 6 2 1 1

p 40 19 4 5 3 4 1

q 40‘ 250 25 8 5 4 4 2

a 106 3 2 1 1 1 0

R 13.33 10 7.99 5.71 4.43 3.99 3.59

ρ 23.76 26.95 30.43 32.23 34.05 35.11 35.85

TABLE I

OPTIMAL PARAMETERS N , m, p, q AND a THAT MINIMIZE THE AVERAGE DISTORTION IN THE PRESENCE OF LOSSES.
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Herep denotes the average probability that the data will not be recovered after the FEC decoding,σ denotes the

variance of the source, whileD(R) denotes the source distortion-rate function.

The average probability that the data will not be recovered after the FEC decoding can be written in the following

way:

p =
∑

i · pi(N, k)
k

(27)

where pi(N, k) denotes the probability thati data packets will not be recovered after the FEC decoding. This

corresponds to the case wheni data packets are lost and at leastN − k − i + 1 FEC packets are also lost, which

happens with the probability:

pi(N, k) =
(

k

i

)
PLRi(1− PLR)k−i

n−k∑

j=bn−k+1−ic

(
n− k

j

)
PLRj(1− PLR)n−k−j (28)

The rate used for the source coding isR = k
N Rtot. For the purpose of further comparisons, we assume that this

rate is used for the uniform quantization of the source. Therefore, for the uniform source, we can write:

DavFEC = p · 1
12

+ (1− p)
2
−kRtot

N

12
(29)

C. Comparison of our and FEC scheme

To make a fair comparison of both schemes from the network point of view, we set the number of FEC packets

to be equal to the number of descriptions in our scheme, for eachRtot and PLR.

Figure 14 shows the average distortions for the FEC and MDSQ scheme, for the total rates of5 bits/symbol and

25 bits/symbol, when PLR changes from10−4 up to0.3. We see that whenRtot = 5 bits/symbol, the FEC scheme

outperforms our scheme in the range of very low losses. However, when PLR exceeds3 · 10−3, our scheme tends

to give smaller average distortion. The results favor even more our scheme for higher total rate constraints. For

example, whenRtot = 25 bits/symbol, our scheme starts outperforming the FEC scheme even at very low losses,

in this case3 · 10−4.
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Fig. 14. Comparison of the FEC scheme and the MDSQ scheme forRtot = 5 bits andRtot = 25 bits.

Next, we examine how both schemes perform when the network conditions change. Namely, both schemes,

optimized for some PLR andRtot, continue to work in the conditions they are not optimized for. Figure 15 shows

the comparison in two cases: one when the schemes are optimized for theRtot = 5 bits/symbol andPLR = 10−3

and the second whenRtot = 25 bits andPLR = 0.05. For the first case, when the losses in the network drop, the

FEC scheme will tend to give smaller distortions. However, as the losses increase, our scheme will give smaller

average distortion. When there is a big increase of PLR (due to congestion for example) the schemes will give

similar distortions, but ours remains better. In the second case, we see that our scheme strongly outperforms the

FEC scheme up to the point whenPLR = 0.2, after which they give practically equal results.

From these results, we conclude that besides giving smaller average distortion, our scheme is also more robust

to network changes.

VI. CONCLUSIONS

A
In this paper bla bla bla...
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