
1

Toward life-like agents: integrating tasks, verbal

communication and behavioural engines

Angela Caicedo Jean-Sébastien Monzani

Daniel Thalmann

Computer Graphics Laboratory

EPFL-Lausanne

{caicedo,jmonzani,thalmann}@lig.di.epfl.ch

2

Abstract

 We present a platform for animating communicative autonomous virtual humans.

This is indeed a great technical challenge that involves the low-level animation

capabilities (using the notion of tasks to handle concurrent gestures) to the high-level

behaviour simulation as computed by our Intelligent Virtual Agent. In order to

exchange information, a verbal inter-agents communication is also possible.

Motivations are triggered by a “Beliefs, Desires and Intentions” architecture, and

these notions do not only apply to the virtual world, but also to other agents with a

simulation of trust. Finally, since the 3D animation and behaviour modules are

separated, we also describe in details how their integration is managed.

Keywords: Conversational characters, tasks, behavioral architecture, approximated

sound propagation, human-like behavioral agents, distributed and multi-languages

development.

1. Introduction

During the last years, the entertainment industry has produced a lot of exciting

movies, games or TV shows involving realistic virtual humans. However, most of the

work is hardly designed by artists and these impressing animations still require huge

efforts. Furthermore, since movies are now integrating more and more virtual

humans, there is a need for authoring tools specifically dedicated to autonomous

agents' animation. This has been clearly demonstrated by the famous Improv system

[17] or similar commercial tools, such as Motion Factory’s Motivate [15] or Virtools’

NeMo [19]. Efforts are continuously spent in order to obtain more and more realism:

3

the use of speech, better animation, and improved autonomy contribute to go toward

life-like characters. Target applications do not only include the entertainment

industry, but any inhabited virtual world might benefit from this kind of work. For

example, we are now working on a simulator into which policemen have to deal with

panic situations, with virtual humans running all around: this kind of training into a

virtual environment is a good test for realistic autonomous agents.

Unfortunately, the animation of a virtual human is not an easy process: it actually

involves various topics such as: motion control, action selection and verbal

communication. Consequently, the integration of these domains altogether is a

motivating technical challenge. The work presented by Bindiganavale et al. [2] is a

good illustration of this goal. Our research is focusing on the same topic, that is the

animation of autonomous virtual humans that are able to communicate verbally as

we do. We are now going to briefly summarise the contributions and previous

research for these domains.

From the animator’s point of view, it is difficult for one agent to handle concurrent

motions at the same time: how can one walk while carrying a box and looking

around? If we are able to do this everyday, the simulation of simultaneous gestures

and motions is a particular research subject. Models have been proposed to deal

with that, such as Granieri’s Parallel Transition Networks [10]. For the specific case

of gestures involved in virtual humans conversation, Cassel et al [8] studied an

automatic generation of movements and facial expressions (during conversation),

based on the content of the dialog itself.

Regarding realistic verbal communication, we also need some sound propagation

models. While Tsingos and Gascuel [22] and more recently, Funkhouser, Min and

Carlbom [9] introduced interesting algorithms for fast rendering of sound occlusion

4

and diffraction effects, we think that simpler models simulating sound within a room

and taking almost no CPU time have many useful applications in social simulations.

A good example would be the simulation of a party, with many people speaking at

the same time, and background music disturbing them. Our model is able to simulate

such situations, without high computational cost.

Finally, an autonomous agent has to select its actions by itself. Research has been

driven by people from different areas: ethologists such as Tinbergen [20], and

computer scientists such as Brooks [6], Maes [13] and Minsky [14] who lead the

school of Behaviour-Based Artificial Intelligence (BBAI). Our model, as proposed in

the BBAI, does not attempt to build models of the world, and the agent has to re-

evaluate its course of action on every slot of time. Some points are not directly

addressed by the BBAI such as the interplay between internal factors (emotional

levels) and external factors (common world situations). Other authors such as

Travers [21] have modelled a behavioural system where the agents are described in

terms of if-then rules. However, we show in this paper that a simple predicate

approach is not sufficient for modelling complex human behaviours based on

different levels of emotions.

We are now going to present briefly our system and the various components

embedded into it. The next section will focus on combining concurrent actions in

order to create higher-level tasks. We will continue with a brief overview of our verbal

communication model in section 4, and address in section 5 the integration of this

module with the agent’s brain. Finally we describe in section 6 the agent’s brain

implementation in LISP, before concluding.

5

2. Agent Common Environment

We have developed a system called: the Agent Common Environment (ACE) which

animates virtual humans able to perceive their shared environment, perform different

motions and have facial expressions. It also provides an easy way to plug-ins

different behavioural modules.

ACE understands a set of different commands to be able to control the simulations:

• Creation and location of 3D objects, virtual humans, and smart objects [12].

• Performance of different motion motors and facial expression: playing key-frames

animation, using inverse kinematics [1], walking actions, etc.

• Virtual human interactions with smart objects.

• Query of perception pipelines for a given virtual human [4]

All these commands are easily accessible from Python scripts, where different

behavioural libraries can be created and plugged into ACE. Those scripts are

basically ensuring the low level 3D animation of the virtual humans, while the high

level decisions and behaviours are selected by the external Intelligent Virtual Agent

behavioural module (see section 6). Thanks to the available packages coming with

Python, one can manage easily concurrent processes with threads (such as, walking

while looking at something), while a TCP/IP connection is maintained between the

scripts and the Intelligent Virtual Agent.

We are now going to describe the Agent Common Environment in details.

2.1. Agent design

The agent’s specification and implementation is decomposed into two modules: the

low-level animation and the high-level decisions taking.

6

As many 3D environments, ACE is mainly coded in C++ to ensure high

performances. For convenient user-interaction, it also provides a Python layer that

interprets commands on the fly and animates the virtual humans. Python is an all-

purposes scripting language that we have extended to fit our needs. More precisely,

when the application is launched, a simple environment is created and displayed in a

window, and a command shell is prompted, ready for entering commands in Python.

ACE provides the basic commands for loading, moving, animating humans and

objects, giving a powerful set of functionalities straight from the scripting language. It

is very convenient indeed to reuse a language and extend it to match our purposes,

rather than developing a new syntax from scratch: this saves time and gives the

opportunity to reuse third-party modules, which have been already implemented and

tested by others.

On the other hand, the Intelligent Virtual Agent (IVA) is in charge of taking

decisions such as choosing the next action to take place, deciding what are the new

subgoals to be achieved, managing the dynamics of the agent’s emotions during the

simulation, and so on. Information is stored here in an abstract way, leaving the high

to low level binding to the Python layer. For instance, to indicate a specific furniture

in an office, we will specify it as the chair next to the window rather than x, y and z

coordinates: this mapping is handled directly in Python. To conclude, the IVA can be

considered as the agent’s brain.

2.2. Merging capabilities

Running into ACE, the script for each agent should handle various capabilities, such

as: perception, verbal communication, performing actions and connecting to the IVA

behavioural module. Thus, we split each capability into one class and merged all of

7

them into the definition of what an agent should be able to do. Using UML [3], we

present in Figure 1 the definition of the Agent class, as implemented in Python.

AgSocket

1

0..*

1

1

5

TasksHandler

AgPerceive AgTalking AgThread

Agent

AgController

AgID Thread

TaskStacks

Figure 1. Multiple inheritance architecture defining the agent capabilities

Since each agent has a unique ID, we start by defining the AgID class as a super

class, sharing the ID among the inherited classes. From this, we derive three basic

classes, for the various capabilities, as pointed out before:

• AgPerceive. This class encapsulates all the methods that allow the agent to

visually perceive objects and remembers when objects get on/out of focus.

• AgTalking lets the agent communicate by speaking to and hearing other agents.

• AgThread is the basic class for running one thread per agent, which means that

each agent is running its own code in its thread (these functions are provided by

the standard Thread class). Each thread is registered into an AgController, which

is then in charge of monitoring them. It also provides a shared space for

exchanging information between threads.

8

The final Agent class inherits from these three basic classes, which of course means

that our Agent is able to speak to someone, hear when someone speaks and

perceive the objects in the environment. But the Agent still need to use some other

modules:

• TasksHandler: This class is in charge of handling parallel tasks like walking,

looking, playing keyframes, applying facial expressions or interacting with objects.

The next section presents in details what we call tasks.

• AgSocket: Each agent should be connected in some way to its IVA behavioural

module and this class achieves this. The AgSocket class is able to decode orders

coming for the IVA or send stimuli like visual perception back to it. By using

sockets and TCP/IP connection, the system can run in a distributed way,

reducing the CPU cost on the machine that is responsible of the 3D environment

display.

The communication between the Agent object and the corresponding IVA is

summarised in Figure 2.

AgSocket

Agent n

Python interpreting

Display

GUI

ACE

PYTHON

AgThread

Tasks

LISP

Agent

Socket
Agent Common Environment

Thread
AgPerceive

AgTalkingHandler

Thread
Agent 2
Thread

Agents Controller
Shared area

Agent 1

Plans
Goals Internal

states
Beliefs

Behavioral engine

9

Figure 2. ACE system and connections to the Intelligent Virtual Agent (IVA)

2.3. The use of threads

One major improvement in adding the Python interpreter is the easy way of creating

threads within it. Threads all run in parallel and efficient synchronisation primitives

are available, such as events. This is a very convenient way to perform actions in

parallel. Such threads could easily handle blocking actions such as waiting for data

or event (for instance, a task to finish). While it is very tempting to use threads to

mimic human capabilities of performing various actions at the same time, one should

take care of not creating too many threads (let’s say, one per action), since it might

take too much CPU time. That is why we are concerned in the next sections by

simulating parallel behaviours within non-concurrent instructions too.

Our Agent has mainly three threads: the Agent itself, the Tasks Handler, and the

Agent Socket. The main task of the Agent is to be alert of what he sees, or hears,

and to give the appropriate response when one of these events happens. Even if the

agent is managing socket connections and parallel tasks, it has not to worry about

these matters, because separated threads continuously handle this. The Tasks

Handler is a thread that is managing the stacked tasks performed or to be

performed by the Agent. This thread is in charge of choosing the tasks that will be

triggered in the next time slot. The Agent Socket monitors the activity of the socket,

this means, is in charge of reading from the socket the incoming data, and writing the

outgoing data or feedback data to the IVA brain.

10

3. Low-level 3D animation using Tasks

Our approach for individual animation of a virtual human relies on a layered

architecture: Actions provide basic behaviours such as walk, look and coherently

mix them. Tasks and Tasks Stacks ease the automatic activation and inhibition of

actions, all under the responsibility of the Tasks Handler. This is discussed in the

next sections.

3.1. Actions

At the lowest level, we have a C library of actions that directly controls the posture of

the virtual human. Each action is applied to a subset of joints (called the scope of

this action), and action weights and priorities are used to mix various motions

altogether. In-depth details have already been discussed in a previous article [5],

therefore we will not go into details but briefly summarise what is already available

from our agent animation library: actions can be either activated or not, and smooth

transitions between these states are computed by adjusting the individual actions

weights. By taking into account the various tasks scopes and performing weighted

sums, the system is then able to compute the various joints values, and combine the

actions.

Actions provided by the library are:

• walk to location

• look at location

• interact with an object

• play a keyframe sequence (usually, a motion captured on a real human)

• change the facial expression

11

While this approach elegantly avoids conflicts and produces smooth animations, it is

not sufficient to specify high level behaviours, since every action has to be triggered

by hand. For instance, chaining actions like “do action 1 then do action 2” requires to

check by hand when action 1 is finished, and then remove it and activate action 2.

Therefore, making a virtual human follow a path (which we are decomposing into go

to location 1, then go to location 2, etc...) forces one to look if the virtual human has

finally arrived at the location before triggering the next action. This becomes quickly

complicated when we try to mix various behaviours. To manage in parallel the

chaining of actions while performing tests (in order to delete actions that are

terminated), we introduce our Tasks.

3.2. Combining Actions into Tasks

Tasks are a convenient way to execute actions and monitor their evolution over time.

They are implemented as Python classes, and all inherit from the same generic task

which contains the following attributes: the task call-back is the key element of the

task; it generally just calls one action (as presented in the previous section), but

more complex behaviours can be easily implemented (for instance, switching from

various keyframes depending on the context). The termination callback is

responsible for testing the end of the task and is called at each frame. This enables

the automatic removing of terminated tasks from the Tasks stacks, as we will see

later on. Of course, together with the own task id, you will find a reference to the

controlled virtual human (vh_id), timing attributes (time_start and duration), and the

state of the task (Suspended or Activated)

12

There are two more important attributes: the activation, which takes one of the

values {Reactivated, Repeated, Once}, and the next tasks to trigger once the task is

terminated. This will be discussed in details in next section.

One has to notice that the term task is here used as the notion of performing some

actions in a specific way: e.g. since the only action that we have for walking

corresponds to something like walk to this location and then stop, then following a

trajectory (that is, going sequentially to various locations) can be seen as a task.

Therefore, it is definitively not a synonym of threads or concurrent processes, as one

can think, but rather a general way to consider some virtual human actions.

task
callback

termination
callback

Walk Task

Application

vhwalk(vh_id,
destination)

vhgetpos(vh_id)
== destination

vh_id

destination

Figure 3. Example callback for a walking task

As an example, Figure 3 shows some of the attributes for a Walk Task. This task

first stores a reference to the virtual human it is controlling (vh_id) and the

destination point, which is the location that the virtual human should reach. The

task callback makes the virtual human walk: in order to activate the corresponding

action, we are using the vhwalk function provided by ACE. The task is terminated

when the virtual human is at the correct location. Once again, the termination

callback uses vhgetpos to get the position of the agent and regularly checks if it

corresponds to the destination.

13

3.3. Managing priorities with Tasks Stacks

Tasks of the same type are organised into stacks, with one stack of each type per

agent. Typical stacks that we have in our application are: walking, looking, interacting

with objects, playing a keyframe, and manipulating the agent face. Into each stack,

only one task can be executed at a specific time (the top task, see bellow), and tasks

on top of the stack have higher priorities than those bellow. At each frame, Tasks

Stacks are responsible for updating Tasks, activate them, delete terminated ones,

etc... Since Tasks have two states (Suspended or Activated), only Activated tasks

are taken into account, as one can expect. Executing tasks (that is, the ones which

are calling their task callback attribute) depends on the type of task to perform: the

activation attribute of the task is set to Once if the task is activated once (playing a

keyframe, for example), Repeated for continuous tasks which should be performed

at each frame (visual tracking of a moving object) and Reactivated if the task

callback has be executed each time the task becomes active again (typically, walking

to a location).

The Task inspection algorithm for each individual Tasks Stack is the following: it

starts from the top of the stacks and looks for the first Activated task (Suspended

ones are simply ignored). This task is called the top task, that is, the first activated

one, starting from the top. Now, depending on the activation of the task:

• if set to Once and the task has never been executed, execute it.

• if set to Repeated, execute the task.

• if set to Reactivated and the top task is not the same than for the previous frame,

execute the task.

14

Once the top task has been found, we do not execute the pending tasks anymore,

but we still go through the stack in order to detect tasks which are terminated, by

testing their termination callback. Terminated tasks are removed from the stack,

and eventually activate other suspended tasks stored in their next task list. This is a

very convenient way to chain the tasks: to make the agent follow a path composed of

three locations, we put three Walking Tasks on the stack, chain them by setting the

next tasks of Walking Task 1 to Walking Task 2, then for Walking Task 2 to Walking

Task 3 and only activate the first Task. Once it is terminated, Walking Task 1 is

removed from the stack and Walking Task 2 is activated. Same for the next one.

Walk to A Walk to A

Walk to B
Walk to C

Walk to A

Walk to B

New tasks are
added before
the agent has

arrived to
location A

Task Walk to C
is terminated.

Task Walk to A
is reactivated

Tasks stack Tasks stack Tasks stack

Legend:
Activated task Suspended task top task

Figure 4. Reactivated tasks - Task stack for the Walking tasks

As an example of Reactivated tasks, consider Figure 4: we have represented the

stack of Walking Tasks for one agent. At the beginning, there is only one activated

task, which asks the agent to go to location A. But before the agent could actually

arrive there, two new tasks are appended on the top of the stack: one order to go to

location B (which is ignored, since it is Suspended) and an order to go to location C,

which becomes the top task and consequently initiates the lower level action “go to

location C”. When location C has been reached, the task is removed, and the Tasks

stack reactivates “go to location A” again.

An important thing to note is that if the agent reaches location A while going to

location C, then task Walk to A is considered to be terminated and removed from the

15

stack. To prevent this kind of behaviour, one can suspend tasks and use the next

tasks lists as we have described previously in our example on how to follow a path.

Repeated tasks are illustrated in Figure 5 with the visual tracking of an object. We

first track object A (this is the first Activated task) and when the tracking of object C is

stacked with a higher priority, it becomes the top task and prevents the execution of

others tasks. If the tracking of object C is removed and the tracking of D queued,

then the top task becomes the tracking of A again, and consequently executes this

task at each frame.

Track A Track A
Track B
Track C

A new tracking
task C is

set

Legend:
Activated task Suspended task top task

Task C
is removed, and
a new Task D
is enqueued

Tasks stack Tasks stack Tasks stack

Track B
Track D
Track A
Track B

Figure 5. Repeated tasks - Task stack for the Looking tasks

3.4. Multiple tasks altogether: the Tasks Handler

The Tasks Handler gathers all the Tasks stacks for one agent and repetitively

activates sequentially each stack, in order to let them execute/purge their tasks.

Tasks stacks are launched into threads so that the user only has to append tasks

and do not matter to check when they are terminated or not. Since all stacks are

regrouped into one object, it is easier to link them, as shown in Figure 6, into which

the next tasks lists sequentially activates two Walking Tasks and a keyframe. As

expected, the generated behaviour drives the agent from location 1, then 2, then 3

16

and once the agent is arrived, make it applause. In parallel, the visual attention of the

agent is focusing on a car.

Walk Task : goto 1

Walk Task : goto 2

Walk Task : goto 3 Track object "Car"

Look Tasks Stack

Keyframe "Applause"

Keyframe Tasks Stack

Next task

Next task

Next task

Tasks Handler

Walk Tasks Stack

Legend:
Activated task Suspended task top task

Figure 6. The Tasks Handler

3.5. Life-like behaviours: idle state example

One complex behaviour that we have implemented is the agent “idle state”

parameterised by the agent anxiety. Using motion capture, we have recorded various

postures of someone waiting and then split keyframes from the upper, the lower

body and the hands. This gave us a library of postures for the legs, the spine and the

fingers. By randomly switching between them, we manage to produce a realistic

feeling for our virtual human. Blinking the eyes is also an important feature, together

with changes of expressions on the face, random rotation of the head and breathing.

All of these concurrent tasks are simply parameterised by the agent anxiety (ranging

from 0 to 1). When the user is changing this value into the graphical user interface,

he/she will notice that the amplitude and frequency of motions are updated

accordingly.

17

4. Verbal Communication

We have extended an events based communication model with an approximate

model of sound propagation, which is less accurate than real sound simulation but

suitable for real-time applications [16]. We are not going to describe in details the

various messages exchanged between agents, but to briefly summarise, a sentence

is split into the time to understand it and the remaining time (to complete the

sentence). For each utterance, three messages are sent: is-speaking first warns the

others that someone starts to speak, but the semantic itself is not sent yet, until the

time to understand has been reached. The message-interchange actually carries the

content of the message and when the sentence is terminated, an end-of-message is

sent to finish the communication.

4.1. Model for the speaker

We define the speech amplitude ()α,xAmplitudei when agent i is speaking to j by

the product of the radial distribution ()xDradial times the angular distribution

()αangularD . α and x are the angle and distance between the listener and the

speaker. Both distributions have thresholds: when dundersxx tan≤ or hearxx < , radialD

returns respectively 1 or 0, while in-between values are computed with a cubic

Hermite interpolation. Similarly, if fullαα ≤ or αα ≤low , ()αangularD returns 1 or behindA

(sound amplitude at the back of the head), and in-between input is also interpolated.

Error! Reference source not found. presents the value of the Amplitude in the 2D

plane. As one can expect, the value decreases over the distance (radial distribution)

and increases for the “gaze” (mouth) direction (angular distribution).

18

The sound quality of the environment Q is defined as follow: the higher the noise,

the lower the quality will be. Thus, each time an actor speaks, the value decreases

for a certain amount and increases again once the sentence is over. We have

defined that behindlowfull ααα ,, are linear functions of Q . heardunders xx ,tan depend on the

volume of the voice of the speakerand are also affected by Q .

10 8 6 4 2 0 2 4 6

gaze10
8

6
4

2
0

2
4

6
8

10

lateral

0

0.2

0.4

0.6

0.8

1

amplitude

Speech volume distribution

Figure 7. Speech amplitude distribution

4.2. Model for the listener

To evaluate if the listener is able to understand a message, each actor will set two

thresholds, dundersA tan and hearA , between 0 and 1. When evaluating the amplitude A of

a message, the listener will understand the message if []1,tandundersAA∈ , hear but not

understand when []dundershear AAA tan,∈ and will not perceive anything if []hearAA ,0∈ .

19

5. Interconnecting the Animation and Behavioural modules

As we have mentioned before, the agent animation is handled by Python scripts

(specifically by the Agent class) while the behavioural selection and the decisions

making process are handle by the Intelligent Virtual Agent. Both modules are

interconnected through sockets. In the python side the Agent Socket is in charge of

managing the socket and translating high level orders (coming from the IVA) to low

level ones understandable by the Python Agent, and vice-versa. We can basically

distinguish three kinds of communications:

Figure 8. Communication between the Agent Python class and the IVA

5.1. Perceiving an object or another agent.

One of the main activities of the Python Agent is to watch the surrounding

environment: if any new object is perceived, the method newPerceived inherited from

AgPerceive returns true, and a new message is created for the AgSocket (see

Figure 8a). This message consists of a short description of what happened and the

ID of the perceived object. The AgSocket receives this message and translates it

into a new one understandable by the IVA: the ID of the perceived object is mapped

to the corresponding object’s name. Similarly, the method newPerceived is also used

to update the objects that get out of focus.

20

5.2. Speaking to and hearing another agent

The Python Agent also handles the verbal communication: when someone starts to

speak, the method can-hear inherited from AgTalking returns true, and the Agent

receives the incoming message. The is-speaking and the end-of-message messages

are ignored, because these ones are just used for synchronisation purposes. The

AgSocket again is in charge of extracting the relevant information for the IVA, and

creating a new message that contains the name of the agent who spoke with the

message utterance.

The speaking process is a little bit different. It is the IVA this time who starts the

conversation, as presented in Figure 8b. The message consists of the action that will

take place (in that case, the action say), the agent receiver’s name, and the text that

the agent wants to say. The AgSocket receives this message and generates three

new SpokenMessages: is-speaking, message-interchange (which carries the

semantic) and end-of-message to finish the communication.

5.3. Walking, looking, playing keyframes or applying face actions

All these mentioned tasks have something in common: the Python Agent treats them

in the same way, specifically by the Agent’s Tasks Handler. Again, the IVA triggers

the need of performing one of these tasks, sending a message to the AgSocket.

Then the AgSocket activates the corresponding task callback associated with the

task and push it into its Tasks Stack. The Tasks Handler keeps checking for the

termination callback of all the tasks inside the Tasks Handler, and when the

21

termination callback is triggered, a new message is sent to AgSocket to reflect the

changes into the Agent’s brain (see Figure 8c).

6. The IVA Brain: Intelligent Virtual Agent

The Intelligent Virtual Agent is based on a BDI architecture (Beliefs, desires and

intentions), widely described by Georgeff [18]. This architecture is promising but

needs some extensions for achieving our goal: giving to the virtual human the ability

to act by itself in a dynamic environment relying on its beliefs, internal states, current

state of the surrounded world and assumptions about other agents. It should also

allow us to control it in real time [7].

6.1. IVA’s components

An IVA has all its knowledge organised into sets, which are distributed according to

their functionality (Figure 9): the set of Beliefs, the set of Goals, the set of Competing

Plans, the set of Internal states, the set of Beliefs About Others. Based on all its

knowledge, the IVA is able to select the correct action to perform in order to achieve

its goal. The Behavioural Engine that will be explained later in this paper does this

process.

22

Beliefs about others

Tiredness 0 100 80 DSC

Emotional states

John is my friend

Steal LIG’s

Goal

information

Anxiety 0 100 30 DSC

LIG’s_Lab

I’m a stealer
I’m a woman

get the diskette

turn−on light

Secondary goals

turn−off light

ask someone

Beliefs
Plans to steal something

Set of plans

Plans for hobbies
Plans to have a rest

Statics

Dynamic

I’m in LIG area
can I found information

I don’t know where

Figure 9. The intelligent virtual agent IVA

• Beliefs. Beliefs are a set of statements that the IVA believes to be true. The

agent’s beliefs are organised in such a way that allows us to simulate short-term

memory (Short-term beliefs, STB), and everlasting memory (Long term beliefs,

LTB).

• Goals. IVAs have one main Goal and one or several Subgoals. The main goal is

the objective that the IVA is trying to achieve at a certain moment. During this

process, an IVA has to deal with smaller subgoals on which the outcome of the

larger one relies on.

• Competing plans An IVA uses a set of competing plans that specified a

sequence of actions required to reach its main goal (see Figure 10). A competing

plan Pi is described as: Pi = (isi, pci, efi) , where:

23

 (newPlan ’inspect−place
 ’((curiosity 50 >))
 ’((is at (? place))
 (! (has been is (? place))))

(RememberPlan

 (Add (inspecting the (? place)))
 (Add (has been in (? place)))
))
 P_Walker)

 ’((Act (inspect the (? place)))

Figure 10. Plan example

� isi is a list of internal states to be checked before the plan can be executed.

Each of the internal states has an associated valid value or range.

� pci is a list of preconditions that have to be true before the competing plan can

be triggered. The preconditions belong either to the agent’s beliefs or to the

general knowledge stored in the world.

� efi is a list that contains the effects of a plan execution. When a plan is

selected, changes at agent or world level will occur (new knowledge will be

added and old one will be deleted). These changes are consequences of the

plan’s effects, as shown in Figure 11.

DEL

ADD

Beliefs

CH

Internal states Virtual Human

DELW

World

ADDW

ACT

Figure 11. Plans’ effects

• Internal states The agent stores a set of internal states representing

physiological or psychological variables of the virtual human. Internal state act as

24

stimulus for the agent, i.e. a high hunger level will stimulate the agent to eat. An

internal state isi is described as a tuple: (ni, mini, maxi, ci, cati), where for any

given internal state i: ni is its name, mini is its minimum accepted value, maxi ,

the maximum accepted value, ci the current value, and cati is its category.

Internal states are constantly being adjusted, as the simulation evolves and plans

are adopted. Changes in the internal state are consequences of: the

autonomous growth or damping associated with the internal state and the side

effects of an active behaviour.

We categorise the internal states as ascendant (the higher the level the better),

descendants (the lower the level the better) and not categorised (-), as shown in

Figure 12.

Curiosity
Love

Emotion

Boredom Excitement

Category

ASC

DSC
ASC
DSC

Enthusiasm
Impatience

CategoryEmotion

Figure 12. Categorising the internal states

• Beliefs about others In our model each IVA is autonomous, and it can accept or

reject an order coming from the user or from another agent. Each IVA includes a

set of Beliefs about others into which it stores the trust levels associated with

them (Figure 9). An IVA sees the user as another agent, and depending on the

user’s category it will accept an order or not.

The levels of trust will evolve during the simulation [8], following the Hinde

statement: "Trust, once established in some degree, is often self-reinforcing

because individuals have stronger tendencies to confirm their prior beliefs than to

disprove them." [11]. This characteristic is applied to evolve the beliefs about

others through the hysteresis curve as shown in Figure 13a.

25

Average

L L-M M M-H BH-BH

b

Trust

Trusting
Untrusting

Untrusting

Average

Trusting

Acceptance

a

1
1
(e+

0-L

µ)x-

0

0.2

0.4

0.6

0

1.2

1

0.8

Trust

A
cc

ep
ta

nc
e

Figure 13. Trusting curve.

To be able to show this behaviour we have chosen some categories, from the

lowest trusting level to the highest trusting levels: 0-Low, Low, Low-Medium,

Medium, Medium-High, High, High-Blind, Blindly.

All IVAS contain the name of the other agents and the level of trust associated

to them. The value of acceptance for any order coming from a user with certain

trusting level can be seen in Figure 13b: the higher/lower the trust level, the

higher/lower the possibility of accepting the order. This means that it could

arrived that a user’s order is rejected by the agent, showing how societies really

work: Once your reliability on someone is corrupted your won’t believe him

anymore and you won’t accept its orders that easy.

For the user to be able to recover the agent’s reliability, it should try slowly to

obtain a higher level of confidence (climb in the trust curve) or just interact with

the agent through another agent who has a high level of confidence1.

1 More details of the Trust model are presented in [7]

26

6.2. The Behavioural Engine (BE)

The behavioural engine is in charge of updating the internal states of the IVA and

selecting its next action to perform. It is composed of some controllers as shown in

Figure 14.

External control

Plan Contro ller

IVA

Action

World Agent

Dynamic common
knowledge

knowledge
Static common

Knowledge

Internal state

Event Controller

Plans

Events

Knowledge

Beliefs

Beliefs

Behavioral Engine

Short term beliefs

Long term beliefs

Set of
plans

Plan seeker

Internal states

Virtual Human

State Controller

Local control

Precondition Controller

incomming
List of

events

Effects performer

Figure 14. Behavioural engine

First the Event Controller checks in the pending events list for those events that

trigger in a specific time slot to be integrated in the IVA’s knowledge. Then the Plan

Seeker sequentially passes the plans to the Plan Controller who verifies if the plan

will be trigger or not. A plan to be triggered needs to have the suitable internal states

levels and to full-fill all the preconditions. The State Controller checks the internal

states levels and if all of them have the appropriate values it will give the control to

the Precondition Controller, otherwise the Plan Seeker will search for the next plan

27

to evaluate. The Precondition Controller searches if all the preconditions are full-

filled from its local knowledge, or from the external knowledge (World Agent). If the

Precondition Controller agrees with all the preconditions the Effects Performer will

be called, in order to perform all the necessaries updates inside the IVA or in the

World Agent, and send the selected action (if there is one) to the Virtual Human.

6.3. World Agent

The world agent manages the general information about the environment, such as

the names and IDs of all active virtual humans. Each IVA maintains a reference to

the world agent so that some information can be exchanged through it. Information is

organised in two different groups: Static Common Knowledge for the world’s

information, which is not subject to change, while the Dynamic Common

Knowledge manages the evolving events.

7. Discussion

In comparison with systems such as Improv, Motivate or NeMo, ACE focuses more

on autonomy than animation: while previous applications were targeted to designers

and animators, we propose better autonomy by using results from A. I. research in

BDI architectures. It is therefore closer to the Smart avatars from Bindiganavale et al.

[2]. Their PAR architecture is somewhat similar to what we propose with our Tasks.

They also integrated natural language interaction, which was off-topic for us. Once

again, differences are in the behaviours: the trust model that we adopted is for

instance one of our improvements.

28

8. Conclusion

We have presented how ACE, the Agents’ Common Environment can successfully

integrate both abstract behavioural decisions with virtual humans 3D animations. At

the animation level, we proposed the notion of Tasks to handle and synchronise

concurrent motions and gestures. For more realism, we have included verbal

communication using an approximate propagation of sound. We have shown how a

high level Intelligent Virtual Agent, independent of graphics specification, is able to

intelligently interact with its environment. And to enhance the inter-agents relations,

we added a model for Trust. Finally, one can notice how the overall integration can

successfully end up with a multi-layered and distributed multi-languages architecture.

9. Reference

[1] P. Baerlocher and R. Boulic. Task priority formulations for the kinematic control

of highly redundant articulated structures. In IEEE IROS’ 98, pages 323-329,

1998.

[2] R. Bindiganavale, W. Schuler, Allbeck J., Badler N., Joshi A., and M. Palmer.

Dynamically altering agent behaviours using natural language instructions. In

Autonomous Agents 2000 Proceedings, 2000.

[3] Grady Booch, Ivar Jacobson, James Rumbaugh, and Jim Rumbaugh. The

Unified Modelling Language User Guide. Addison-Wesley, 1998.

[4] C. Bordeux R. Boulic and D. Thalmann. An efficient and flexible perception

pipeline for autonomous agents. In Proceedings of Eurographics’ 99, pages 23-

30, 1999.

29

[5] R. Boulic, P. Becheiraz, L. Emering, and D. Thalmann. Integration of motion

control techniques for virtual human and avatar real-time animation. ACM

Symposium on Virtual Reality Software and Technology, September 1997.

[6] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation RA-2, 1986.

[7] A. Caicedo and D. Thalmann. Virtual humanoid: Let them be autonomous

without losing control. In The fourth international conference of computer

graphics and artificial intelligence, Limoges, France, May 2000.

[8] Justine Cassell, Catherine Pelachaud, Norman Badler, Mark Steedman, Brett

Achorn, Tripp Bechet, Brett Douville, Scott Prevost, and Matthew Stone.

Animated conversation: Rule-based generation of facial expression gesture and

spoken intonation for multiple. In Andrew Glassner, editor, Proceedings of

SIGGRAPH 94, pages 413-420. ACM Press, 1994.

[9] Thomas A. Funkhouser, Patrick Min, and Ingrid Carlbom. Real-time acoustic

modeling for distributed virtual environments. Proceedings of SIGGRAPH 99,

pages 365-374, August 1999.

[10] John P. Granieri, Welton Becket, Barry D. Reich, Jonathan Crabtree, and

Norman L. Badler. Behavioral control for real-time simulated human agents.

1995 Symposium on Interactive 3D Graphics, pages 173-180, April 1995.

[11] Robert Hinde and Jo Groebel. Cooperation and prosocial behaviour.

Cambridge University Press, 1991.

[12] M. Kallmann and D. Thalmann. A behavioural interface to simulate agent-object

interactions in real-time. In IEEE Computer Society Press, editor, Proceedings

of Computer Animation 99, pages 138-146, 1999.

30

[13] P. Maes. How to do the right thing. Connection Science Journal, 1:291-323,

Dec 1989.

[14] M. Minsky. The society of mind. Simon and Schuster, 1988.

[15] Karen Moltenbrey. All the right moves. Computer Graphics Word, 22, October

1999.

[16] J.-S. Monzani and D. Thalmann. Verbal communication: Using approximate

sound propagation. In Autonomous Agents’2000 Conference Proceedings,

2000.

[17] Ken Perlin and Athomas Goldberg. Improv: A system for scripting interactive

actors in virtual worlds. Proceedings of SIGGRAPH 96, pages 205-216, August

1996.

[18] A. S. Rao and M. P. Georgeff. Modelling rational agents within a bdi-

architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the

Third International Conference on Principles of Knowledge Representation and

Reasoning. Morgan Kaufmann, 1991.

[19] Dan Teven. Virtools’ nemo. Game Developer Magazine, September 1999.

[20] N. Tinbergen. The study of Instinc. Oxford University Press, 1951.

[21] M. Travers. Agar: An animal construction kit. PhD thesis, The Media Lab, MIT,

1988.

[22] Nicholas Tsingos and Jean-Dominique Gascuel. Sound rendering in dynamic

environments with occlusions. Graphics Interface ’97, pages 9-16, May 1997.

