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Abstract— In this article is shown that with high probability
the thresholding algorithm can recover signals that are sparse in
a redundant dictionary as long as the2-Babel functionis growing
slowly. This implies that it can succeed for sparsity levelsup to
the order of the ambient dimension. The theoretical bounds are
illustrated with numerical simulations. As an application of the
theory sensing dictionariesfor optimal average performance are
characterised and their performance is tested numerically.

I. I NTRODUCTION

By now the possibilities of sparsely approximating signals
in redundant dictionaries have been widely recognised in
the signal processing community. Consequently there exist
a lot of algorithms, like thresholding, Matching Pursuits or
the Basis Pursuit Principle, see [6], [1], [3], [2], to name
just the most popular, which are successfully employed to
find sparse approximations. However so far the theoretical
analysis of these algorithms was reduced to studying their
worst case performance, see [4], [7]. The resulting worst
case bounds for recoverable sparsity levels turned out to be
overly pessimistic and quite in contrast to the much better
performance in practice. So if we define the coherence of the
dictionary as the maximal absolute inner product between two
different normalised atoms, i.e.µ = maxi6=j |〈ϕi, ϕj〉|, the
worst case analysis tells us that we can recover superpositions
of S atoms as long as:

S . µ−1 ≈
√
d,

where d is the ambient dimension, while in practice it is
usually possible to recover supports of sizes proportionalto
d. Motivated by the desire to better understand and capture
the performance of an algorithm together with a dictionary
people have started to analyse the average case performance.
In a recent paper Tropp was able to show that random sub-
dictionaries of a general dictionary are very likely to be well
conditioned as long as their size is of the order ofµ−2 ≈ d,
[8, Theorem B]. As an application of this result it is shown
that a signal constructed from a random superposition ofS
atoms with coefficients drawn from a continuous distribution
has almost surely no sparser representation, [8, Theorem 12].
If additionally the signs of the coefficients are drawn from

a uniform distribution then this representation is with high
probability recoverable via Basis Pursuit.

Theorem 1([8], Theorem 13). Assume thatΦΛ, the matrix we
get by extracting theS atoms inΛ from allK atoms inΦ, has
least singular valueσmin(ΦΛ) ≥

√

1/2. Assume also that the
signal y = ΦΛxΛ is synthesised from a coefficient sequence
xΛ whose signs form a Steinhaus sequence, i.e.εi = xi/|xi|,
i ∈ Λ, are independent realisations of the random variableeiX

with X uniformly distributed on(0, 2π). Then the probability
that Basis Pursuit fails to recoverxΛ from y is less than

P(BP fails) ≤ 2K exp
(

− 1

8µ2S

)

(1)

One of the conclusions of the above results is that Basis
Pursuit is able to recover sparse signal representations even
when the sparsity level is higher than the worst case barrier
of

√
d.

However the problem is that in practice Basis Pursuit is simply
too complex. Consider for instance image compression, a
small picture of size64 × 64 already results ind = 4096.
Taking a dictionary with reasonable redundancy 2 means that
we have to solve a convex optimisation problem inR

8192. On
the other hand one would typically be happy to recover the 100
most important components of the signal. Unfortunately this is
still more than64 =

√
d signifying the worst case performance

bottleneck for simpler algorithms like thresholding or the
Matching Pursuits, see [6], [7]. In the following we will
therefore analyse the average behaviour of thresholding to
find out that also here the recoverable sparsity scales with
the ambient dimension. Again the result will be in terms of
the coherenceµ or rather the 2-Babel functionµ2, defined as

µ2(Λ, k) =
(

∑

i∈Λ

|〈ϕi, ϕk〉|2
)

1

2 ,

µ2(Λ) = max
k/∈Λ

µ2(Λ, k),

µ2(S) = max
|Λ|=S

µ2(Λ).

From the estimateµ2(S) ≤
√
Sµ we see that the 2-Babel

function grows much slower than the 1-Babel function, which
is of the orderSµ.
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II. T HEORETICAL ANALYSIS

Before the theoretical analysis we give a quick reminder of
how the thresholding algorithm works in the table below and
introduce the probabilistic model we assume for our signalsy.

Thresholding
find: Λ that contains the indices

corresponding to theS largest
values of|〈y, ϕi〉|

reconstruct:xΛ = (ΦΛ)†y, ỹ = ΦΛxΛ

Signal Model:

y = ΦΛxΛ =
∑

i∈Λ

xiϕi, xi = εi|xi|, ∀i ∈ Λ,

where Φ is a dictionary ofK normalised atoms andΦΛ

a subdictionary of all atoms with indices inΛ and |Λ| =
S. While the supportΛ and the absolute magnitude of the
coefficients are considered to be arbitrary, the signsεi form
either a Steinhaus sequence or a Rademacher sequence, i.e.
εi = ±1 with equal probability.

Theorem 2. Let’s abbreviate the event ”Thresholding fails to
recover the componentϕi” as ” /i” and ”Thresholding fails
to recover all components” as ”/”. Under the above signal
model

a) P(/i) < 2(K − S + 1) exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S)

)

b) P(/) < 2K exp
(

− |xmin|2
‖x‖2

∞

c

8µ2
2(S)

)

where c = 1 for Steinhaus andc = 1/16 for Rademacher
sequences andxmin denotes the coefficient with smallest
absolute value.

The proof is a straightforward application of the following
large deviation inequalities.

Theorem 3. Let α be an arbitrary real/complex vector andε
a Rademacher/Steinhaus sequence. Then for allt > 0

P(|
∑

i

εiαi| > t) ≤ 2e−c0t
2/‖α‖2

2

wherec0 = 1/32 for Rademacher andc0 = 1/2 for Steinhaus
sequences.

For a proof for Steinhaus sequences see [8] and references
therein. The proof for Rademacher sequences can be found
in [5, Section 4]. We now turn to the proof of Theorem 2.

Proof: [Theorem 2] We can bound the probability of not
recoveringϕi by the probability that its inner product with
the signal is lower than a thresholdp while the inner product
of an atom not in the support is higher than the threshold.

P(/i) = P
(

|〈y, ϕi〉| < max
k∈Λ

|〈y, ϕk〉|
)

≤ P
(

|〈y, ϕi〉| < p
)

+ P
(

max
k∈Λ

|〈y, ϕk〉| > p
)

≤ P
(

|〈y, ϕi〉| < p
)

+ P
(

⋃

k∈Λ

|〈y, ϕk〉| > p
)

≤ P
(

|〈y, ϕi〉| < p
)

+
∑

k∈Λ

P
(

|〈y, ϕk〉| > p
)

The probability of the correlation of the signal withϕi being
smaller than the threshold can be further bounded as,

P
(

|〈y, ϕi〉| < p
)

= P
(

|
∑

j∈Λ

xj〈ϕj , ϕi〉| < p
)

= P
(

|xi +
∑

j 6=i

xj〈ϕj , ϕi〉| < p
)

≤ P
(

|
∑

j 6=i

xj〈ϕj , ϕi〉| > |xi| − p
)

.

Choosing the threshold asp = |xi|/2 and using Theorem 3
we arrive at,

P
(

|〈y, ϕi〉| ≤ p
)

< P
(

|
∑

j 6=i

εj|xj |〈ϕj , ϕi〉| > 1
2 |xi|

)

≤ 2 exp
(

− c0
4

|xi|2
∑

j 6=i |xj |2|〈ϕj , ϕi〉|2
)

≤ 2 exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S − 1)

)

.

Similarly we can estimate the probability of the correlation
of an atom not in the support being larger than the threshold,

P
(

|〈y, ϕk〉| > p
)

≤ P
(

|
∑

j∈Λ

εj |xj |〈ϕj , ϕk〉| > 1
2 |xi|

)

≤ 2 exp
(

− c0
4

|xi|2
∑

j∈Λ |xj |2|〈ϕj , ϕk〉|2
)

≤ 2 exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S)

)

.

Putting it all together we finally arrive at,

P(/i) ≤ 2 exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S − 1)

)

+ |Λ|2 exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S)

)

≤ 2(K − S + 1) exp
(

− |xi|2
‖x‖2

∞

c

8µ2
2(S)

)

.

To estimate the probability of thresholding failing to recover
all components we can proceed in the same fashion. Essen-
tially we just need to adapt the choice of the thresholdp.

P(/) = P
(

min
i∈Λ

|〈y, ϕi〉| < max
k∈Λ

|〈y, ϕk〉|
)

≤ P
(

min
i∈Λ

|〈y, ϕi〉| < p
)

+ P
(

max
k∈Λ

|〈y, ϕk〉| > p
)

.
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The first probability can be expanded as

P
(

min
i∈Λ

|〈y, ϕi〉| < p
)

≤ P
(

min
i∈Λ

|xi +
∑

j 6=i

xj〈ϕj , ϕi〉| < p
)

≤ P
(

min
i∈Λ

(|xmin| − |
∑

j 6=i

xj〈ϕj , ϕi〉|) < p
)

≤ P
(

max
i∈Λ

|
∑

j 6=i

xj〈ϕj , ϕi〉| > |xmin| − p
)

≤
∑

i∈Λ

P(|
∑

j 6=i

xj〈ϕj , ϕi〉| > |xmin| − p)

Now we choose as thresholdp = |xmin|/2 and using Theo-
rem 3 get the bound:

P
(

min
i∈Λ

|〈y, ϕi〉| < p
)

≤ 2S exp
(

− |xmin|2
‖x‖2

∞

c

8µ2
2(S − 1)

)

.

Repeating the steps above we can estimate the probability of
an atom not in the support having higher correlation than the
threshold as

P
(

max
k∈Λ

|〈y, ϕk〉| > p
)

≤ 2(K − S) exp
(

− |xmin|2
‖x‖2

∞

c

8µ2
2(S)

)

.

In combination this leads to the final bound:

P(/) < 2K exp
(

− |xmin|2
‖x‖2

∞

c

8µ2
2(S)

)

.

Comparing the above result for Steinhaus sequences to
Theorem 1 we see that the essential difference in the failure
probability bound for the two algorithms is the additional
coefficient x

2

min

‖x‖2
∞

in the exponent for thresholding. This means
that for coefficients of constant absolute magnitude the two
algorithms should perform comparably. Also it promises a
good behaviour of thresholding as long as the coefficients
are reasonably well balanced and in that case makes it an
interesting low complexity alternative to BP.

III. N UMERICAL SIMULATIONS

A. An Experiment with Dimensions

To show numerically how the recovery rates of thresholding
scale with the dimension we conducted the following exper-
iment. In dimensions2p, p = 8 . . . 12 a dictionary made
up the Dirac and the Discrete Cosine Transform bases was
constructed. The coherence of these dictionaries isµ =

√

2/d
and the 2-Babel function behaves approximately likeµ2(S) ≈
√

S/d. For each dimension and relative sparsity levelS/d,
1000 signals were constructed by randomly choosing a support
and coefficients with constant absolute value one and random
signs,xi = ±1 with equal probability. Then we counted how
often thresholding was able to recover the full support.

From the theorem we know that thresholding will fail with
small probability as long as

µ2
2(S) .

c′

log(2K)
⇒ S

d
.

c′

(p+ 1) log 2
.

If we compare these theoretical bounds to the simulation
results displayed in Figure 1 we see that they reflect the
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Fig. 1. Comparison of Numerical Recovery Rates and Theoretical Recovery
Bounds

average behaviour quite well. For the bounds as plotted in
the figure we chosec′ = 0.3 which is somewhat better than
the theorem suggests (c′ ≈ 1

128 ).

B. An Application

As an application of Theorem 2 we will construct a sensing
dictionary to improve the average performance of a dictionary
for thresholding. The concept of sensing dictionaries for
greedy algorithms was introduced in [6], where sensing
dictionaries improving the worst case performance were
characterised and constructed. The basic idea in the case
of thresholding would be to determine which components
to pick from the absolute inner products of the signal with
atoms in a special sensing dictionaryψi ∈ Ψ instead of the
original dictionary, see table below.

Thresholding with Sensing Dictionary Ψ

find: Λ that contains the indices
corresponding to theS largest
values of|〈y, ψi〉|

reconstruct:xΛ = (ΦΛ)†y, ỹ = ΦΛxΛ

The only a priori requirements we pose on the sensing
matrix are that it has the same size as the original dictionary
and that the inner products between corresponding atoms, i.e.
with the same index, are one,〈ϕi, ψi〉 = 1. The average
performance of thresholding with a sensing dictionary can be
analysed as before. We only need to adjust the definition of
the 2-Babel function to describe the pseudo Gram matrixΨ

⋆
Φ

instead of the Gram matrix.

µ̃2(Λ, k) =
(

∑

i∈Λ

|〈ϕi, ψk〉|2
)

1

2

µ̃2(Λ) = max
k/∈Λ

µ̃2(Λ, k)

µ̃2(S) = max
|Λ|=S

µ̃2(Λ).

The analogue of partb) of Theorem 2 now reads:

Theorem 4. Under the same assumptions on the signal model
as in the previous section we can bound the probability that
thresholding with the sensing matrixΨ fails as

P(/) < 2K exp
(

− |xmin|2
‖x‖2

∞

c

8µ̃2
2(S)

)

.
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Proof: Follow the proof of Theorem 2 mutatis mutandis.

One deduction from the Theorem is that a sensing matrix
for good average performance should minimise the 2-Babel
function. Let us consider what this would mean for the
distribution of the off-diagonal entries of the pseudo-Gram
matrix. Since to calculate the 2-Babel function we always sum
over the squared maximal entries in one row we would want
the distribution as flat as possible, see [6] for more details
in that direction. However this might not be optimal in the
sense that dampening the (absolutely) maximal off side entries
comes at the price of rising otherwise small entries. Takinga
look back at the proof of Theorem 2 we see that this could
have devastating results since more of the relevant off diagonal
entriesΨ⋆

ΦΛ could have been raised than lowered, increasing
the failure probability in the end,

P(/) ≤ 2(
∑

k∈Λ

e−c
′/µ2

2
(Λ/k,k) +

∑

k/∈Λ

e−c
′/µ2

2
(Λ,k)).

Another consideration suggesting a different approach is
that the supportΛ might be chosen at random as well. Then
the optimal sensing dictionary would need to minimise

EΛ(
∑

k∈Λ

e−c
′/µ2

2
(Λ/k,k) +

∑

k/∈Λ

e−c
′/µ2

2
(Λ,k)),

and thus should not have a pseudo gram matrix with a
flat distribution of the entries. The problem of how the off-
diagonal entries should be distributed is quite intricate and
a definite topic of further study. For now we only observe
that all off-diagonal entries are equally likely to contribute
to the final bound. So as simplified but feasible approach we
will reduce their cumulative destructive power by finding the
sensing dictionary that minimises the Frobenius norm of the
pseudo-Gram matrix.

Ψ0 = arg min
〈ψi,ϕi〉=1

‖Ψ⋆
Φ‖F

= arg min
〈ψi,ϕi〉=1

(

∑

i

∑

j

|〈ϕi, ψj〉|2
)

1

2 .

The advantage of the problem as formulated above is that there
exists an analytic solution, that can be easily derived using
Lagrange multipliers. To make our lives easier we consider
the square of the objective function‖Ψ⋆

Φ‖2
F . We then derive

both the objective and the constraint function alongψi,

d

dψj
‖Ψ⋆

Φ‖2
F =

∑

i

2〈ϕi, ψj〉ϕi = 2ΦΦ
⋆ψj

d

dψj
〈ϕj , ψj〉 = ϕj

Since at the minimum the derivatives need to be parallel we set
2ΦΦ

⋆ψj = cjϕj which leads toψj =
cj

2 (ΦΦ
⋆)−1ϕj . If we

choose the constantscj appropriately to ensure〈ϕj , ψj〉 = 1
and collect them in the diagonal matrixD, we see that the
optimal sensing matrix is just the rescaled transpose of the
Moore Penrose pseudo inverse,

Ψ0 = (ΦΦ
⋆)−1

ΦD = (Φ†)⋆D.

To test the performance of an average sensing matrix we
did the following small experiment. We built a dictionary of
256 atoms that are randomly distributed on the sphere inR

128.
For each support size between 1 and 20 we constructed 1000
signals by choosing the support set uniformely at random and
coefficients of absolute value one but with random signs, i.e.
xi = ±1 with equal probability. We then compared how often
thresholding could recover the full support when using the
original dictionary, the worst case sensing matrix, see [6], and
the average case sensing matrix. The results are displayed in
Figure 2
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Fig. 2. Recovery Rates for Different Sensing Dictionaries

The improvement already gained by using the worst case
sensing matrix is further increased by using the average case
sensing matrix. The performance differences are also well
reflected by the Frobenius norms of the (pseudo-) Gram
matrices.

dictionary original worst case average case
‖Ψ⋆

Φ‖F 27.7217 23.8902 22.6743

So there is a large decrease in norm between the original
dictionary and the worst case sensing matrix accounting for
the large performance gap and a smaller decrease between the
worst case and the average case sensing matrix reflecting a
smaller improvement.
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