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Abstract— This paper presents a computing model for
resource-limited mobile devices that might be ubiquitously de-
ployed in private and business environments. The model in-
tegrates a strongly-typed event-based communication paradigm
with abstractions for frugal control, assuming a small footprint
runtime. With our model, an application consists of a set of
distributed reactive objects, called Frugal Objects (FROBs), that
communicate through typed events and dynamically adapt their
behavior according to notifications about changes in resource
availability. FROBs have a logical time-slicing execution pattern
that helps monitor resource consuming tasks and determine re-
source profiles in terms of CPU, memory, battery and bandwidth.
The behavior of a FROB is represented by a set of stateless first-
class objects. Both state and behavioral objects are referenced
through a level of indirection within the FROB. This facilitates
the dynamic changes of the set of event types a FROB can
accept, say based on the available resources, without requiring a
significant footprint increase of the underlying FROB runtime.

It is not the strongest of the species that survives, nor the
most intelligent, but the one most responsive to change.

– C. Darwin

I. INTRODUCTION

Motivation

As millions of mobile devices are being deployed to become
ubiquitous in our private and business environments, the way
we do computing is changing. We are moving from static
and centralized systems of wire-based computers to much
more dynamic, frequently changing, distributed systems of
heterogeneous mobile devices. These devices, sometimes em-
bedded, are typically communication capable, loosely coupled,
and constrained in terms of resources available to them. In
particular, it is expected that many of such devices be limited
in terms of processing power, storage and bandwidth, for
these may or not be available, depending on the mobility
pattern and the solicitations. Software components running on
such devices are typically supposed to automatically discover
each other on the network and join to form ad-hoc peer-
to-peer communities enabling mutual sharing of each others
functionalities by offering and lending services. Underlying
communication substrates might include wireless LANs, satel-
lite links, cellular networks, or short-range radio links.

In an ever changing environment of resource-constrained
devices, the frugality of software components is paramount
to their operation. Besides conveying that these components
are simply ”small” (the meaning of which depends on the

underlying technologies), frugality also conveys notions of
resource-awareness and adaptivity. More specifically, this im-
plies being aware of resources used by the software, including
services provided in the surrounding environment, dynamically
adjusting the quality of service following changes to the envi-
ronment, and making sure that resources are in fact available
when certain tasks are launched.

We believe that three principles should drive the design of
a computing model for resource-constrained mobile devices:

1) Exception is the norm. The distinction between the
notion of a main flow of computing and an exceptional
flow (i.e., a plan B) is rather meaningless in dynamic and
mobile environments. As discussed above, the software
component of a device should adapt to its changing
environment and it cannot predict the mobility pattern
of surrounding devices or even the way the resources on
its own device will be allocated. The fact that something
exceptional is always going on calls for a computing
model where several flows of control co-exist, or even
be added or removed at run time.

2) Resources are luxuries. Just like it is nowadays consid-
ered normal practice that a software component be able
to adjust to specific changes on some of its acquaintance
components, and react accordingly, we argue for a
computing model where the components can react to
the shrinking of available resources. This calls for a
computing model where the components are made aware
of the resources they use. The fact that internal resources
are luxuries also mean that certain greedy programming
habits, such as loops, forks or wait statements, should
be used, if at all, parsimoniously.

3) Coupling is loose. Many distributed computing models
have been casted as direct extensions of centralized mod-
els through the remote procedure call (RPC) abstraction.
The RPC abstraction aims at promoting the porting of
centralized programs into a distributed context. Clearly,
RPC makes little sense when the invoker does not know
the invokee, or does not even know whether there is one
at a given point in time. Some of the extensions to the
RPC abstraction, including futures (also called promises)
only address the synchronization part of the problem.
Mobile environments rather call for anonymous and one-
way communication schemes.



Devising a computing model that, while obeying the above
principles, remains simple to comprehend yet implementable
on resource-constrained devices, is rather challenging.

Overview

This paper presents a computing model based on frugal
objects, called FROBs, which are supposed to be deployed
ubiquitously and executed on a small memory footprint run-
time running on a resource constrained device.

• Computing is triggered by typed events that regulate the
possibly anonymous and asynchronous communication
between FROBs ((1) in Fig. ??). A FROB can specify
the type of events it can process, and how, through
behavioral objects ((3) in Fig. ??). At any point in time,
the set of behavioral objects in a FROB complies with its
external interface, i.e., the set of event types it is capable
of handling ((2) in Fig. ??). Upon receiving an event,
the runtime matches it against the interface to determine
whether to accept the event for further processing or reject
it.

FROB
Device

FR
O

B
 C

queue

interface
FROB
Device

FR
O

B
 B

queue

FROB
Device

FR
O

B
 D

FR
O

B
 A

2

3

2

3

Event
diffusion & routing

publish()

1

interface

behavior

behavior

behavior

Fig. 1. Event-based interacting FROBs

• Besides preventing casting errors and acting as a filtering
mechanism, our typed event model promotes a fine-
grained serialization scheme that exploits the decentral-
ized representation of a behavior, and its binding to event
types.

• Key to supporting adaptivity with minimal underlying
footprint is the stateless representation of a FROB behav-
ior as a set of first-class objects within the FROB, together
with a level of indirection to its state and behavioral
references. This enables easy replacement of the FROB
behavior during execution.

• FROBs are inherently threadless and one behavioral
object is executed at a time. Long running procedures
are split up into small, short-lived event-based behavioral
objects. The resource requirements of these individual be-
havioral objects are thus limited and can be approximated
a priori.

• The FROB runtime continuously monitors availability of
internal resources on the device (CPU, memory, band-

width, etc.) and deduces resource profiles when executing
behavioral objects. Upon detecting a significant change
in resource availability, the runtime informs the FROBs
deployed on the device about the change. These notifi-
cations are themselves provided as regular typed events
that the FROBs can choose to react to by adjusting their
external interfaces.

We report on a prototype implementation of our computing
model on top of the Java J2ME CLDC platform [1] targeted at
resource-constrained devices, including modifications made to
the KVM virtual machine to experiment with the generation of
resource profiles. The implementation adds negligible exten-
sions to the memory footprint of the virtual machine and the
API, but introduces a slowdown of 6-10% because of runtime
resource profiling.

The structure of the rest of this paper is as follows. Sec. 2
overviews how to program with frugal objects. Sec. 3 details
the FROB computing model, and Sec. 4 gives some further
insights into the resource profiling. Sec. 5 discusses aspects of
the prototype implementation, and Sec. ?? positions the FROB
computing model with respect to existing work. Finally, Sec. 6
makes some concluding remarks.

II. PROGRAMMING WITH FRUGAL OBJECTS

A FROB conceptually consists of (Fig. 2): (1) an external
interface made of event types and deduced from the set of be-
havioral objects, (2) a FIFO-ordered queue of received events,
(3) a set of fine-grained behavioral objects to manipulate the
state of the FROB, and (4) the actual state representation of
the FROB.

Both the state and the behavioral objects of a FROB are
contained in named slots of a data structure within each FROB
called a dictionary (see (5) in Fig. 2). The notion of dictionary
is similar to that of slots in the Self language; a slot can contain
either state or code.

The event queue of the FROB (see (2) in Fig. 2) is not
contained in the dictionary and is under the sole control of the
FROB runtime, i.e., the FROB has no direct access to it and its
only way to consume events is by having adequate behavior
capable of handling the events. This enforces a decentralized
model of programming with multiple flows of control.

At any point in time, the FROB runtime uses the set of
behavioral objects in the dictionary of the FROBs to create
an external interface (and invoking the getEventType()
method, which is mapped into subscriptions for event types
that the behavioral objects are capable of handling.

When receiving events, the runtime places incoming events
into the queue of the FROB if they match one of the event
types in its external interface. When there are events in the
queue of a FROB, the runtime looks up in the dictionary and
executes the behavioral object capable of handling the typed
event by invoking the handleEvent() method.

FROBs are encapsulated entities that do not share state
(i.e., entries in the dictionaries) – the behavioral objects always



Programming a Behavioral Object:

class DecodeAudio extends BehavioralObject {
public Class getEventType(){

return AudioEvent.class;
}
public void handleEvent(byte[] ba) {

AudioEvent evt = deserialize(ba);
byte[] raw = decodeAudioEvent(evt);
byte[] playEvt =

serialize(new playAudioEvent(raw));
publish(playEvt);
...

}

private byte[] decodeAudio(AudioEvent evt) {...}
private AudioEvent deserialize(byte[] ba) {...}
private byte[] serialize(Event evt) {...}

}

Programming a FROB:

class AudioPlayer extends FROB {
public void initialize() {

setQueueSize(100);
dictionary.put("init", new InitAudioPlayer());
dictionary.put("decode", new DecodeAudio());
dictionary.put("play", new PlayAudio());
dictionary.put("counter", new Integer(0));
...

}
}

A Conceptual View of a FROB:
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Fig. 2. Example. A FROB, AudioPlayer, processes audio samples when received through typed events, this processing includes decoding the audio
sample into a raw byte stream, DecodeAudio, which is then sent to the behavioral object responsible for the actual audio playing.

run isolated from each other. This combination eliminates the
need for synchronization on entries in the dictionary.

III. FRUGAL OBJECT PROPERTIES

A. Typed Events

Events are the basic entity to which FROBs react: the
reception of an event is the only means by which a behavioral
object in a FROB is executed. Events serve as communication
units between multiple FROBs, whether deployed on different
devices or on the same one.

Events are typically published by the FROBs, or possibly
by the runtime itself following some internal event, and
distributed between the devices using the communication
infrastructure provided by the FROB runtime. An event is
accepted by a FROB only if the latter has subscribed to
the type of that event, i.e., if the FROB has that event type
in its interface. Unlike in many statically typed systems,
FROBs have dynamic types as their capabilities may change
throughout their lifetimes.

FROBs hence communicate through a topic-based publish-
subscribe interaction paradigm, where the topic is the type.
This event-based scheme is, resource-wise, a cheap alternative
to multi-threading systems that are considered expensive in
terms of stack management and over-provisioning of stacks,
as well as locking mechanisms.

Although a publish-subscribe scheme is inherently anony-
mous and asynchronous, it does not preclude coupled forms
of interactions. One could easily encode a point-to-point
interaction scheme by having the identifiers of the interacting
FROBs as parts of their event type.

B. Fine-grained Serialization

In order to collaborate, the FROBs first have to discover
each other and then initiate collaboration. FROBs collaborate
by exchanging events and by – as part of the collaboration
initiation – exchanging the necessary behavior to interpret the
events, i.e., the FROBs adapt to each other to collaborate. This
exchange of behavior is required as the particular capabilities
needed to interpret the events being sent might not be present
on the FROB receiving the events. To perform this exchange of
behavior and data over the network, a serialization mechanism
is required.

In contrast to a resource consuming, general-purpose se-
rialization mechanism typically found in traditional dis-
tributed runtimes, we consider a fine-grained mechanism
where each behavioral object is required to provide its own
(de-)serialization capabilities. As such, each behavioral object
contains the functionalities to deserialize the incoming event
type that it handles and serialize any typed event that it
publishes (Fig. 3).

We exploit the very fact that communication between
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Fig. 3. Behavioral object with deserializer and serializers

FROBs occurs through typed events. As mentioned earlier,
each behavioral object is bound to the typed event it can
handle, and its execution is solely triggered by a particular
typed event. In other words, the (de-)serialization capabilities
required for each behavioral object are thus limited, static and
all known at compile-time.

By bundling the actual (de-)serialization capabilities with
the behavioral objects using them, the specific capabilities,
so to say, follow their user, and thus make up a single,
fully functional distribution and deployment unit. With these
units, it is possible to have only the minimal (de-)serialization
capabilities loaded by the runtime. Once some behavior is
no longer needed, and thus gets unloaded by the runtime,
its (de-)serialization capabilities get unloaded too. Thus, the
coupling between the fine-grained behavioral representation
and the fine-grained serialization mechanism is a memory-
efficient combination suited for resource-constrained devices.

Conceptually, each behavioral object provides its own
(de-)serialization capabilities, a fact which results in a potential
memory overhead in situations where the same capabilities
are needed in multiple behavioral objects on the same device.
We circumvent this potential overhead by simply transparently
sharing these capabilities between behavioral objects based on
the same event type, and thereby only loading a single instance
of the functionality.

C. Indirectional Reflection

As opposed to a general-purpose class-based reflection
scheme, we rather adopt an indirectional reflection based on
a fine-grained representation of every FROB in the form of a
state representation, together with a set of first-class objects:
behavioral objects. This fine-grained granularity allows for
flexible modifications of the FROB. Through the separation
of state and behavior within the FROB, the behavioral objects
are immutable, which at the same time makes them suitable
units of replacement as no state is lost during the replacement.

Each behavioral object has access to the dictionary of the
FROB to which it belongs, and can manipulate it through
appropriate primitives (for looking up, adding and removing
entries) during its execution.

The name/value pairs in the dictionary provide a level of
indirection which is key to our reflection capabilities. Using
this level of indirection, all references to state and behavioral
objects go through these name/value pairs, which thus enables
the actual values to be easily replaced without replacing the
references (Fig. ??). In fact, this also enables behavioral
objects to cause their own replacement.
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    // get value of size
    Value v1 = dic.get(”size”);

    // check and replace
    if (v1 > 1000) {
        Value v2 = ...;

        // replace value
        dic.put(”size”, v2);
    }
    …
}

Fig. 4. Dictionary with state and behavioral objects

Roughly speaking, a FROB adapts by changing behavior,
i.e., what capabilities it can provide, or how it provides them.
This behavioral change materializes by (1) keeping the current
set of behavioral objects contained in the dictionary, but
making adjustments to state on which they depend, or (2)
by actually extending, reducing or modifying the behavioral
objects within that set.

D. Logical Time-Slicing

FROBs are inherently threadless. Instead, threads are as-
signed to the execution of FROBs (or rather their behavioral
objects) by the runtime in a time-slicing scheme. In this
scheme, an event in some FROB’s queue represents a request
for some time-slice, which is granted when the behavioral
object consuming that event is executed.

The FROB runtime does not dictate a specific threading
model for executing the behavioral objects. It ensures, how-
ever, that (1) a behavioral object, for which a typed event
matching the interface of the FROB has been received, will
eventually be executed on the event, and (2) no two behavioral
objects of the same FROB can execute concurrently. These
two mechanisms combined with the time-slicing scheme gives
the FROB runtime explicit control points between executions,
i.e., the FROB runtime has total control over the FROBs
between each granted time-slice. Besides concurrency con-
trol and resource-profiling motivations, these explicit control
points make it easier to manipulate (i.e., to perform behavioral
changes) the FROB and even leaves the possibility to check-
point or migrate it. Specifically, since at any explicit control
points no thread is active within the FROB, its state is well-
defined and it can thus easily be captured or manipulated.

Once executed by the runtime, behavioral objects are al-
lowed to run to completion, if possible with respect to avail-
able resources. The resource requirements of these individual
behavioral objects are thus limited in terms of actual resource



amount needed and their usage duration. These requirements
are associated to each behavioral object expressed in a resource
profile used by the runtime. This scheme of small, short-lived
execution units is also promoted by the fact that the FROB
programming model precludes the use of recursive calls, forks,
and synchronization primitives within the behavioral objects.
In particular, this prevents the execution of a behavioral object
from thread monopolizing the CPU. Instead, the behavioral
objects systematically yield the control to the runtime. In
addition, since the computing model defines no blocking
primitives, a FROB has no way to compromise liveness.

IV. RESOURCE-PROFILING

The FROB runtime constantly monitors the availability
of internal resources such as CPU, memory, bandwidth etc
(Fig. 4). Upon detecting significant changes to resource avail-
ability, according to some predefined threshold values, the
runtime publishes notifications enabling FROBs to possibly
react and change behavior.
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Fig. 5. Resource profiling and monitoring in the FROB runtime

Attached to each behavioral object is a resource profile
which describes the amount of resources (CPU, memory,
bandwidth, etc) the object required during its execution. These
profiles are generated by the FROB runtime by measuring the
actual execution of the behavioral objects, and are attached
to them subsequently. Through these resource profiles, the
runtime has a prediction of the resource requirement for a
future execution. Throughout the lifetime of a behavioral
object, its execution pattern might change, e.g., by executing
differently (and thus have different resource requirements)
depending on the actual event received. To try to limit the
distorted effects that such execution variations have on the
prediction, the runtime tries to compensate by keeping track of
certain historical executions, and thus the profile gets more and
more accurate the more the behavioral object gets executed.

As part of its event scheduling strategy, the runtime uses
the resource profile associated with each behavioral object to
evaluate the ability, at a given point in time, to execute the
behavioral object based on the resource requirement stated in
the profile compared to the resource availability on the device.

By comparing the two, the runtime can determine if there are
enough resources to execute a behavioral object. The FROB
runtime uses a best-effort strategy to determine if enough
resources are available to execute a behavioral object. In fact,
there is no guarantee that the behavioral object can run to
completion without experiencing resource-related errors. If not
enough resources are available, the execution of the behavioral
object is postponed and an event is published to the FROBs
deployed on the runtime, notifying them about the current
resource shortage. Upon receiving such an event, the FROBs
can then try to collaborate by freeing up resources, i.e., by
adapting.

If a FROB desires to adapt to such a notification by actually
replacing behavioral objects, the resource profiles can be used
by the FROB as an indicator for finding an alternate behavioral
object that uses less resources, or uses resources differently,
e.g., more bandwidth, but less CPU and/or memory, such that
the resource shortage can be lifted.

For instance, if the resource availability is reduced within
a device, a FROB might adapt using strategies that try to
either reduce the current resource consumption or tries to find
alternative sources of resources. We considered the following
strategies

1) Unload Behavior – The FROB can try to unload unused
or infrequently used behavioral objects present in the
dictionary, in order to try to free resources. Unloading
behavioral objects might have a limited effect on mem-
ory, though, as the behavioral objects themselves are
stateless and thus do not carry a lot of data.

2) Adjust Quality of Service – The FROB can try to offer
the same service at a lower quality in such a way
that its resource consumption better fits with the newly
announced resource availability. Specifically, this adjust-
ment is done by adjusting or replacing behavioral objects
using the resource profiles attached to the behavioral
objects to determine which fit better to the resource
availability.

3) Migrate – The FROB can try to migrate from one
device to another following resource availability changes
that motivates the execution to be continued on another
device. In particular, this can be cause by the reception
of a notification that the computing environment on
which the FROB is running is about to close down,
e.g., due to power exhaustion.

V. IMPLEMENTATION

A prototype of FROBs have been implemented on top of the
Java J2ME virtual machine, which was designed for resource-
constrained uniprocessor embedded devices. Our implemen-
tation consists of modifications made to the KVM virtual
machine as well as a small API exploiting these modifications.
The size of the compiled KVM virtual machine shows a
negligible increase of 0.3%, and the growth of the API
extensions account for 0.5% compared to the default J2ME
CLDC API.



A. Class-Unloading

The mechanism of loading classes is per default imple-
mented in the Java virtual machine. Unloading of classes
is, however, not possible1; only instances of classes can be
unloaded. While this might be sufficient in a resource rich
environment, such class definitions might quickly add up in
an environment characterized by few available resources and
frequent dynamic changes involving loading of new classes.

In our implementation, the FROB API contains a method
to manually have a class definition removed from the class
table at the next garbage collection. For this purpose, KVM
was configured with a non-compaction garbage collector to
prevent the class elements from being allocated in immortal
memory and instead be represented as normal objects subject
to garbage collection. Currently, the process of unloading a
class is not safe, i.e., there are no security checks that the
class being removed is no longer in use.2

B. Resource Profiling

Our resource profiler has been implemented as native ex-
tensions to the virtual machine. In the current implementation,
the resource profiler accounts for memory and CPU-cycles, the
latter represented in terms of number of bytecodes, in addition
to deducing an approximate energy consumption following
from these.

The resource profiles are generated at runtime when each
behavioral object is executed. Counters have been added to
the native thread to (1) count the number of bytecodes being
executed in a behavioral object, and (2) sum up the total
number of bytes being allocated on the heap. These counters
are reset every time the thread starts to execute a behavioral
object, and are read when the execution is done, except if
execution is aborted following an exception.

Energy (in µJ) consumption is deduced from a catego-
rization of bytecodes and a per-bytecode energy consump-
tion model [2], i.e., a table containing for each bytecode a
corresponding energy cost (aggregating CPU instructions and
memory energy costs).

Having generated a resource profile containing memory,
CPU and energy for a given behavioral object, the profile
object is attached to the behavioral object, and is available
through the getResourceProfile() method on the re-
source profile object.

As counters are incremented at runtime on every bytecode
execution and memory allocation, the overall execution speed
of an application is reduced. Using CaffeineMark 3.0 bench-
mark [3] for embedded devices, we have measured a speed re-
duction caused by the dynamic profiling of 9.23% as depicted
in Fig. 5. Using similar benchmarks such as JGrande 2.0 [4]

1Except when using the rather heavyweight custom classloader framework
present only in J2SE.

2However, for the purpose of illustrating the usefulness of class-unloading,
this limitation implies that the programmer must ensure that the classes
contained in and used exclusively by the behavioral object can only be
removed once the behavioral object has been removed from the dictionary
of the FROB.

and JOlden [5], we experienced speed reductions of respec-
tively 6.46% and 9.86% following the dynamic profiling,
which we believe is very acceptable at our prototyping level.
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C. Resource Monitoring

For resource monitoring and notification, our current imple-
mentation is limited to only monitor changes in the level of
available memory. Resource levels are monitored following ex-
ecution of behavioral objects. Using a policy-based approach,
the resource monitoring mechanism publishes events following
the detection of significant changes in resource availability
according to threshold values (at each extreme of the spectrum)
defined in the policy.

VI. RELATED WORK

We position here our model with respect to some alternative
models designed to be to be (1) resource-cautious, mean-
ing that they were designed to generate a small footprint,
(2) resource-aware, meaning that they provide hints about re-
source consumption and/or availability to the applications they
host, or (3) adaptive, meaning that they provide adaptation
mechanisms, e.g., dynamic code replacement, migration etc.,
to the applications they host.

In short, most distributed systems that are marketed for
mobile devices focus on one or the other of these dimensions,
while leaving the others out of scope. The challenge addressed
by FROBs is precisely that of providing a computing model
for the development of adaptive and resource-aware programs
running on resource-cautious systems.

A. Resource-Cautious Models

Computing models currently considered by the industry for
building mobile applications on resource-constrained devices,
such as Java J2ME CLDC [1] and .Net Compact Frame-
work [6], are merely descendants of programming models used
to build traditional applications for more static environments.



Neither the models, nor their runtime support, provide the
constructed applications with adequate ability of combined
adaptivity and resource-awareness.

To save memory footprint, runtime platforms for resource-
constrained devices, such as Java J2ME CLDC [1] and
OSVM [7], typically sacrifice reflection, usually key to adap-
tivity and resource-awareness. 3

For very resource-constrained devices, the most notable
research project is TinyOS [8], which is centered around
sensor networks. TinyOS supports limited adaptivity because
once the code is linked and deployed on a device, it cannot be
changed. The Maté [9] project addresses the replacement issue
of TinyOS by providing a virtual machine on which very small
blocks of code, capsules of 24 instructions, can be replaced.
However, limited to small blocks of code, this solution is still
very inflexible compared to the FROB model. Deluge [10],
on the other hand, enables a whole image to be redeployed
remotely on a node, which helps the dissemination at deploy-
ment time but does not enable non-interrupted runtime code
replacement.

B. Resource-Aware Models

There is no broadly accepted programming model for re-
source management, and, a fortiori, resource-awareness. Sev-
eral prototypes have been proposed, using Java (Standard Edi-
tion) as execution platform, such as the Aroma VM [11], Kaf-
feOS [12] and the Multi-tasking Virtual Machine (MVM) [13],
which all keep or extend the standard Java computing model
and are not targetted at mobile devices.

The behavioral objects of a FROB are typically small
units of executions without synchronization primitives, and
are executed isolated from each other. Therefore, the resource
management scheme is not only capable of reliably measuring
resource consumptions of current executions, but also of
usefully exploiting this data to predict upcoming executions,
in a simple, resource-efficient way.

SEDA [14] promotes an event-based approach which fo-
cuses, like we do, on designing systems that behave gracefully
even under severe load. However, whereas SEDA proposes
a rather fixed architecture for Internet servers, FROBs aim
at representing a more general-purpose computing model for
mobile devices.

C. Adaptive Models

Many of the early distributed computing models provided
a fully reflective and hence adaptive execution scheme [15],
[16], [17], [18], [19]. None of those however was designed
with resource-constrained devices in mind.

Like Emerald [20], the FROB computing model supports
migration of running processes. However, unlike Emerald,
the FROB model does not support migration of the process’
thread. The FROB model is threadless, and thus maintains a
loose coupling between the behavioral objects and the thread

3In fact, another consequence of the lack of reflection is the lack of
general-purpose object serialization mechanisms obstructing the ability to
communicate easily.

executing them. The threads are assigned to the execution of
behavioral objects by the runtime in a time-slicing scheme.
Given this time-slicing scheme, and the fact that within any
FROB, only one behavioral object at a time is executed,
the checkpointing of the runtime state of a running process
between two behavioral object executions is straightforward.

Other projects, such as [21], [22], [23], have also addressed
adaptivity with predefined service levels or infrastructure
responsibility to actually initiate the possible changes. In
SOS [24], the ability to reconfigure a node can lead to corrupt
the consistency of the application, caused by intermodule
dependencies and should be seen as a way to update an
application slightly and for long term, and not as a way to
adapt the quality of service of a node. In addition, unlike
Contiki [21] the FROB platform also allows mobility as
part of the adaptation to changes in resource availability. As
such, FROBs can adapt to resource changes by requesting the
runtime to be migrated to another devices, where it better can
exploit remote resources.

From the adaptive and control flow perspective, our FROB
model is close to the actor model [25], [15] (and more
precisely its ActorSpace [26] variant with anonymous event-
based communication, itself inspired by [27]).

Unlike many concurrent computing models [28], [20], [29],
but just like the actor model, only one behavioral object at
a time is executed by a FROB, and behavioral objects do
not contain synchronization statements. In particular, remote
procedure calls, be them completely synchronous, or semi-
synchronous through the use of futures [30] or promises [31],
are precluded within behavioral objects. If needed, they are
programmed through events across several behavioral object
executions.

There are, however, important differences between the
FROB and the actor model. An actor is an immutable object
(state changes are achieved through the creation of new actors
- become statement), a FROB is on the contrary expected
to change its state and behavior. Also, FROBs have a type
oriented notion of interface. At any point in time, the set of
event types that a FROB can handle is precisely defined, and
this facilitates code reuse, prevents casting errors and enables
cheap fine-grained serialization.

VII. CONCLUDING REMARKS

We presented a computing model, FROBs, for programming
adaptive, resource-aware applications on resource-constrained
mobile devices. Frugal Objects use a set of loosely coupled
pieces of logic, represented as behavioral objects, and a level
of indirection to enable reflective adjustment of functionality
over the lifetime.

More generally, instead of proposing a scaled down variant
of a modern computing model, the FROB model goes back
to the roots of the seminal work of Dijkstra on guarded
commands [32] and its derivatives [33]. The underlying idea is
to divide a program into a set of behavioral objects protected
by predicates. A predicate determines the exact conditions
under which a certain behavioral object can be executed. In the



FROB context, resource profiles, as amount of resources (CPU,
memory, bandwidth) that a behavioral object will presumably
require, acan typically act as a condition to fulfill before
starting the execution of the behavioral object.

By requiring complete encapsulation of the behavioral
objects, including their required deserializer and serializer,
adaptation to environment changes becomes a question of
changing the set of loaded behavioral objects, and since these
can be completely unloaded, and thus completely release any
bound resources.

Through the introduction of profiling of behavioral objects,
the resource consumption of execution can be determined,
and can lay the foundation for adapting the set of behavioral
objects in order to encompass current resource availabilities.

An initial prototype implementation of the base functional-
ity of FROBs shows that the extensions to the virtual machine
and API only increase the footprint slightly, and that the cost
of doing runtime resource profiling introduces a slowdown of
6-10%.
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(ASPLOS-X), San José, October 2002, pp. 85–95.

[10] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proceedings of the
2nd International Conference on Embedded networked sensor systems
(SenSys 2004), Baltimore, November 2004, pp. 81–94.

[11] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill,
R. Jeffers, T. S. Mitrovich, B. R. Pouliot, and D. S. Smith, “NOMADS:
toward a strong and safe mobile agent system,” in Proceedings of the
4th International Conference on Autonomous Agents (AGENTS 2000),
Barcelona, June 2000, pp. 163–164.

[12] G. Back, W. Hsieh, and J. Lepreau, “Processes in KaffeOS: Isolation,
resource management, and sharing in Java,” in Proceedings of the 4th
Symposium on Operating Systems Design and Implementation (OSDI
2000), San Diego, October 2000.

[13] G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and C. Bryce, “A resource
management interface for the Java platform,” Software Practice and
Experience, vol. 35, no. 2, pp. 123–157, November 2004.

[14] M. Welsh and D. Culler, “Overload management as a fundamental
service design primitive,” in Proceedings of the 10th ACM SIGOPS
European Workshop, Saint-Emilion, September 2002.

[15] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge: MIT Press, 1986.

[16] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa, “Ab-
stracting object interactions using composition filters,” in Workshop on
Object-Based Distributed Programming (ECOOP’93), Kaiserslautern,
June 1993, pp. 152–184.

[17] J.-P. Briot, R. Guerraoui, and K.-P. Lohr, “Concurrency and distribution
in object-oriented programming,” ACM Computing Surveys, vol. 30,
no. 3, pp. 291–329, September 1998.

[18] C. V. Lopes and G. Kiczales, “D: A language framework for distributed
programming,” Palo Alto, Tech. Rep. SPL97-010, P9710047, February
1997.

[19] H. Masuhara and A. Yonezawa, “An object-oriented concurrent reflective
language ABCL/R3: Its meta-level design and efficient implementation
techniques,” in Object-Oriented Parallel and Distributed Programming,
J.-P. Bahsoun, T. Baba, J.-P. Briot, and A. Yonezawa, Eds. Paris:
HERMES Science Publications, 2000, pp. 151–165.

[20] E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-grained mobility in
the Emerald system,” ACM Transactions on Computer Systems, vol. 6,
no. 1, pp. 109–133, February 1988.

[21] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proceedings of
the 1st IEEE Workshop on Embedded Networked Sensors, Tamba Bay,
November 2004.

[22] A. Mukhija and M. Glinz, “A framework for dynamically adaptive appli-
cations in a self-organized mobile network environment,” in Proceedings
of the 24th International Conference on Distributed Computing Systems
Workshops - W2: DARES (ICDCS 2004), Tokyo, March 2004, pp. 368–
374.

[23] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis, “A Reconfigurable Component-based Middleware for
networked Embedded Systems,” Journal of Wireless Information Net-
works, 2006, to appear.

[24] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A
dynamic operating system for sensor nodes,” in Proceedings of the 3rd
International Conference on Mobile systems, applications and services
(Mobisys 2005), Seattle, June 2005, pp. 163–176.

[25] C. E. Hewitt, “Viewing control structures as patterns of passing mes-
sages,” Journal of Artificial Intelligence, vol. 8, no. 3, June 1977.

[26] G. Agha and C. J. Callsen, “ActorSpace: an open distributed program-
ming paradigm,” in Proceedings of the 4th ACM SIGPLAN symposium
on Principles and Practice Of Parallel Programming (PPOPP’93), San
Diego, May 1993, pp. 23–32.

[27] W. A. Kornfeld and C. E. Hewitt, “The scientific community metaphor,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 11, no. 1,
pp. 24–33, January 1981.

[28] J. Armstrong, “The development of Erlang,” in Proceedings of the 2nd
ACM SIGPLAN international conference on Functional programming
(ICFP’97), Amsterdam, June 1997, pp. 196–203.

[29] A. Yonezawa and M. Tokoro, Object-oriented concurrent programming.
Cambridge: MIT Press, 1987.

[30] J. Robert H. Halstead, “MULTILISP: a language for concurrent sym-
bolic computation,” ACM Transactions on Programming Languages and
Systems, vol. 7, no. 4, pp. 501–538, October 1985.

[31] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems,” in Proceedings
of the ACM SIGPLAN conference on Programming Language design
and Implementation (PLDI’88), Atlanta, June 1988, pp. 260–267.

[32] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-
tion of programs,” Communications of the ACM, vol. 18, no. 8, pp.
453–457, August 1975.

[33] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Programming languages
for distributed computing systems,” ACM Computing Surveys, vol. 21,
no. 3, pp. 261–322, September 1989.


